HOLE Home Higher-Order Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HOLE Home  >  Th. List  >  jca Unicode version

Theorem jca 18
Description: Syllogism inference. (Contributed by Mario Carneiro, 8-Oct-2014.)
Hypotheses
Ref Expression
ax-jca.1 |- R |= S
ax-jca.2 |- R |= T
Assertion
Ref Expression
jca |- R |= (S, T)

Proof of Theorem jca
StepHypRef Expression
1 ax-jca.1 . 2 |- R |= S
2 ax-jca.2 . 2 |- R |= T
31, 2ax-jca 17 1 |- R |= (S, T)
Colors of variables: type var term
Syntax hints:  kct 10   |= wffMMJ2 11
This theorem was proved from axioms:  ax-jca 17
This theorem is referenced by:  syl2anc  19  ct1  57  ct2  58  dfan2  154  ex  158
  Copyright terms: Public domain W3C validator