| Higher-Order Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HOLE Home > Th. List > dfan2 | Unicode version | ||
| Description: An alternative definition of the "and" term in terms of the context conjunction. (Contributed by Mario Carneiro, 9-Oct-2014.) |
| Ref | Expression |
|---|---|
| dfan2.1 |
|
| dfan2.2 |
|
| Ref | Expression |
|---|---|
| dfan2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wan 136 |
. . . . . 6
| |
| 2 | dfan2.1 |
. . . . . 6
| |
| 3 | dfan2.2 |
. . . . . 6
| |
| 4 | 1, 2, 3 | wov 72 |
. . . . 5
|
| 5 | 4 | trud 27 |
. . . 4
|
| 6 | wv 64 |
. . . . . . . 8
| |
| 7 | 6, 2, 3 | wov 72 |
. . . . . . 7
|
| 8 | 7 | wl 66 |
. . . . . 6
|
| 9 | wv 64 |
. . . . . . . 8
| |
| 10 | 9 | wl 66 |
. . . . . . 7
|
| 11 | 10 | wl 66 |
. . . . . 6
|
| 12 | 8, 11 | wc 50 |
. . . . 5
|
| 13 | 4 | id 25 |
. . . . . . 7
|
| 14 | 2, 3 | anval 148 |
. . . . . . . 8
|
| 15 | 4, 14 | a1i 28 |
. . . . . . 7
|
| 16 | 13, 15 | mpbi 82 |
. . . . . 6
|
| 17 | 8, 11, 16 | ceq1 89 |
. . . . 5
|
| 18 | 6, 11 | weqi 76 |
. . . . . . . . . 10
|
| 19 | 18 | id 25 |
. . . . . . . . 9
|
| 20 | 6, 2, 3, 19 | oveq 102 |
. . . . . . . 8
|
| 21 | 9, 2 | weqi 76 |
. . . . . . . . . . 11
|
| 22 | 21 | id 25 |
. . . . . . . . . 10
|
| 23 | wv 64 |
. . . . . . . . . . . 12
| |
| 24 | 23, 3 | weqi 76 |
. . . . . . . . . . 11
|
| 25 | 24, 2 | eqid 83 |
. . . . . . . . . 10
|
| 26 | 9, 2, 3, 22, 25 | ovl 117 |
. . . . . . . . 9
|
| 27 | 18, 26 | a1i 28 |
. . . . . . . 8
|
| 28 | 7, 20, 27 | eqtri 95 |
. . . . . . 7
|
| 29 | 7, 11, 28 | cl 116 |
. . . . . 6
|
| 30 | 4, 29 | a1i 28 |
. . . . 5
|
| 31 | wtru 43 |
. . . . . . . 8
| |
| 32 | 6, 31, 31 | wov 72 |
. . . . . . 7
|
| 33 | 6, 31, 31, 19 | oveq 102 |
. . . . . . . 8
|
| 34 | 9, 31 | weqi 76 |
. . . . . . . . . . 11
|
| 35 | 34 | id 25 |
. . . . . . . . . 10
|
| 36 | 23, 31 | weqi 76 |
. . . . . . . . . . 11
|
| 37 | 36, 31 | eqid 83 |
. . . . . . . . . 10
|
| 38 | 9, 31, 31, 35, 37 | ovl 117 |
. . . . . . . . 9
|
| 39 | 18, 38 | a1i 28 |
. . . . . . . 8
|
| 40 | 32, 33, 39 | eqtri 95 |
. . . . . . 7
|
| 41 | 32, 11, 40 | cl 116 |
. . . . . 6
|
| 42 | 4, 41 | a1i 28 |
. . . . 5
|
| 43 | 12, 17, 30, 42 | 3eqtr3i 97 |
. . . 4
|
| 44 | 5, 43 | mpbir 87 |
. . 3
|
| 45 | 23 | wl 66 |
. . . . . . 7
|
| 46 | 45 | wl 66 |
. . . . . 6
|
| 47 | 8, 46 | wc 50 |
. . . . 5
|
| 48 | 8, 46, 16 | ceq1 89 |
. . . . 5
|
| 49 | 6, 46 | weqi 76 |
. . . . . . . . . 10
|
| 50 | 49 | id 25 |
. . . . . . . . 9
|
| 51 | 6, 2, 3, 50 | oveq 102 |
. . . . . . . 8
|
| 52 | 7, 46, 51 | cl 116 |
. . . . . . 7
|
| 53 | 21, 23 | eqid 83 |
. . . . . . . . 9
|
| 54 | 24 | id 25 |
. . . . . . . . 9
|
| 55 | 23, 2, 3, 53, 54 | ovl 117 |
. . . . . . . 8
|
| 56 | 31, 55 | a1i 28 |
. . . . . . 7
|
| 57 | 47, 52, 56 | eqtri 95 |
. . . . . 6
|
| 58 | 4, 57 | a1i 28 |
. . . . 5
|
| 59 | 6, 31, 31, 50 | oveq 102 |
. . . . . . . 8
|
| 60 | 34, 23 | eqid 83 |
. . . . . . . . . 10
|
| 61 | 36 | id 25 |
. . . . . . . . . 10
|
| 62 | 23, 31, 31, 60, 61 | ovl 117 |
. . . . . . . . 9
|
| 63 | 49, 62 | a1i 28 |
. . . . . . . 8
|
| 64 | 32, 59, 63 | eqtri 95 |
. . . . . . 7
|
| 65 | 32, 46, 64 | cl 116 |
. . . . . 6
|
| 66 | 4, 65 | a1i 28 |
. . . . 5
|
| 67 | 47, 48, 58, 66 | 3eqtr3i 97 |
. . . 4
|
| 68 | 5, 67 | mpbir 87 |
. . 3
|
| 69 | 44, 68 | jca 18 |
. 2
|
| 70 | 2, 3 | simpl 22 |
. . . . . . 7
|
| 71 | 70 | eqtru 86 |
. . . . . 6
|
| 72 | 2, 3 | simpr 23 |
. . . . . . 7
|
| 73 | 72 | eqtru 86 |
. . . . . 6
|
| 74 | 6, 31, 31, 71, 73 | oveq12 100 |
. . . . 5
|
| 75 | 32, 74 | eqcomi 79 |
. . . 4
|
| 76 | 7, 75 | leq 91 |
. . 3
|
| 77 | 70 | ax-cb1 29 |
. . . 4
|
| 78 | 77, 14 | a1i 28 |
. . 3
|
| 79 | 76, 78 | mpbir 87 |
. 2
|
| 80 | 69, 79 | dedi 85 |
1
|
| Colors of variables: type var term |
| Syntax hints: tv 1
|
| This theorem was proved from axioms: ax-syl 15 ax-jca 17 ax-simpl 20 ax-simpr 21 ax-id 24 ax-trud 26 ax-cb1 29 ax-cb2 30 ax-wctl 31 ax-wctr 32 ax-weq 40 ax-refl 42 ax-eqmp 45 ax-ded 46 ax-wct 47 ax-wc 49 ax-ceq 51 ax-wv 63 ax-wl 65 ax-beta 67 ax-distrc 68 ax-leq 69 ax-distrl 70 ax-wov 71 ax-eqtypi 77 ax-eqtypri 80 ax-hbl1 103 ax-17 105 ax-inst 113 |
| This theorem depends on definitions: df-ov 73 df-an 128 |
| This theorem is referenced by: hbct 155 mpd 156 ex 158 |
| Copyright terms: Public domain | W3C validator |