Higher-Order Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HOLE Home > Th. List > syl2anc | Unicode version |
Description: Syllogism inference. (Contributed by Mario Carneiro, 7-Oct-2014.) |
Ref | Expression |
---|---|
syl2anc.1 | |
syl2anc.2 | |
syl2anc.3 |
Ref | Expression |
---|---|
syl2anc |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl2anc.1 | . . 3 | |
2 | syl2anc.2 | . . 3 | |
3 | 1, 2 | jca 18 | . 2 |
4 | syl2anc.3 | . 2 | |
5 | 3, 4 | syl 16 | 1 |
Colors of variables: type var term |
Syntax hints: kct 10 wffMMJ2 11 |
This theorem was proved from axioms: ax-syl 15 ax-jca 17 |
This theorem is referenced by: mpdan 35 syldan 36 trul 39 eqcomx 52 ancoms 54 sylan 59 an32s 60 anassrs 62 ceq12 88 hbxfr 108 |
Copyright terms: Public domain | W3C validator |