![]() |
Higher-Order Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HOLE Home > Th. List > syl2anc | Unicode version |
Description: Syllogism inference. |
Ref | Expression |
---|---|
syl2anc.1 |
![]() ![]() ![]() ![]() |
syl2anc.2 |
![]() ![]() ![]() ![]() |
syl2anc.3 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
syl2anc |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl2anc.1 |
. . 3
![]() ![]() ![]() ![]() | |
2 | syl2anc.2 |
. . 3
![]() ![]() ![]() ![]() | |
3 | 1, 2 | jca 18 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | syl2anc.3 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
5 | 3, 4 | syl 16 |
1
![]() ![]() ![]() ![]() |
Colors of variables: type var term |
Syntax hints: kct 10
![]() |
This theorem was proved from axioms: ax-syl 15 ax-jca 17 |
This theorem is referenced by: mpdan 33 syldan 34 trul 37 eqcomx 47 ancoms 49 sylan 54 an32s 55 anassrs 57 ceq12 78 hbxfr 98 |
Copyright terms: Public domain | W3C validator |