ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  adantl6r Unicode version

Theorem adantl6r 518
Description: Deduction adding 1 conjunct to antecedent. (Contributed by Thierry Arnoux, 11-Feb-2018.)
Hypothesis
Ref Expression
adantl6r.1  |-  ( ( ( ( ( ( ( ph  /\  et )  /\  ze )  /\  si )  /\  rh )  /\  mu )  /\  la )  ->  ka )
Assertion
Ref Expression
adantl6r  |-  ( ( ( ( ( ( ( ( ph  /\  ta )  /\  et )  /\  ze )  /\  si )  /\  rh )  /\  mu )  /\  la )  ->  ka )

Proof of Theorem adantl6r
StepHypRef Expression
1 adantl6r.1 . . . 4  |-  ( ( ( ( ( ( ( ph  /\  et )  /\  ze )  /\  si )  /\  rh )  /\  mu )  /\  la )  ->  ka )
21ex 114 . . 3  |-  ( ( ( ( ( (
ph  /\  et )  /\  ze )  /\  si )  /\  rh )  /\  mu )  ->  ( la  ->  ka ) )
32adantl5r 517 . 2  |-  ( ( ( ( ( ( ( ph  /\  ta )  /\  et )  /\  ze )  /\  si )  /\  rh )  /\  mu )  ->  ( la  ->  ka ) )
43imp 123 1  |-  ( ( ( ( ( ( ( ( ph  /\  ta )  /\  et )  /\  ze )  /\  si )  /\  rh )  /\  mu )  /\  la )  ->  ka )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator