HomeHome Intuitionistic Logic Explorer
Theorem List (Table of Contents)
< Wrap  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page:  Detailed Table of Contents  Page List

Table of Contents Summary
PART 1  INTUITIONISTIC FIRST-ORDER LOGIC WITH EQUALITY
      1.1  Pre-logic
      1.2  Propositional calculus
      1.3  Predicate calculus mostly without distinct variables
      1.4  Predicate calculus with distinct variables
      1.5  First-order logic with one non-logical binary predicate
PART 2  SET THEORY
      2.1  IZF Set Theory - start with the Axiom of Extensionality
      2.2  IZF Set Theory - add the Axioms of Collection and Separation
      2.3  IZF Set Theory - add the Axioms of Power Sets and Pairing
      2.4  IZF Set Theory - add the Axiom of Union
      2.5  IZF Set Theory - add the Axiom of Set Induction
      2.6  IZF Set Theory - add the Axiom of Infinity
PART 3  CHOICE PRINCIPLES
      3.1  Countable Choice and Dependent Choice
PART 4  REAL AND COMPLEX NUMBERS
      4.1  Construction and axiomatization of real and complex numbers
      4.2  Derive the basic properties from the field axioms
      4.3  Real and complex numbers - basic operations
      4.4  Integer sets
      4.5  Order sets
      4.6  Elementary integer functions
      4.7  Elementary real and complex functions
      4.8  Elementary limits and convergence
      4.9  Elementary trigonometry
PART 5  ELEMENTARY NUMBER THEORY
      5.1  Elementary properties of divisibility
      5.2  Elementary prime number theory
      5.3  Cardinality of real and complex number subsets
PART 6  BASIC STRUCTURES
      6.1  Extensible structures
PART 7  BASIC ALGEBRAIC STRUCTURES
      7.1  Monoids
      7.2  Groups
      7.3  Rings
      7.4  Division rings and fields
      7.5  The complex numbers as an algebraic extensible structure
PART 8  BASIC TOPOLOGY
      8.1  Topology
      8.2  Metric spaces
PART 9  BASIC REAL AND COMPLEX ANALYSIS
      9.1  Derivatives
PART 10  BASIC REAL AND COMPLEX FUNCTIONS
      10.1  Basic trigonometry
      10.2  Basic number theory
PART 11  GUIDES AND MISCELLANEA
      11.1  Guides (conventions, explanations, and examples)
PART 12  SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
      12.1  Mathboxes for user contributions
      12.2  Mathbox for BJ
      12.3  Mathbox for Jim Kingdon
      12.4  Mathbox for Mykola Mostovenko
      12.5  Mathbox for David A. Wheeler

Detailed Table of Contents
(* means the section header has a description)
*PART 1  INTUITIONISTIC FIRST-ORDER LOGIC WITH EQUALITY
      *1.1  Pre-logic
            *1.1.1  Inferences for assisting proof development   idi 1
      *1.2  Propositional calculus
            1.2.1  Recursively define primitive wffs for propositional calculus   wn 3
            1.2.2  Propositional logic axioms for implication   ax-mp 5
            *1.2.3  Logical implication   mp2b 8
            1.2.4  Logical conjunction and logical equivalence   wa 104
            1.2.5  Logical negation (intuitionistic)   ax-in1 614
            1.2.6  Logical disjunction   wo 708
            1.2.7  Stable propositions   wstab 830
            1.2.8  Decidable propositions   wdc 834
            *1.2.9  Theorems of decidable propositions   const 852
            1.2.10  Miscellaneous theorems of propositional calculus   pm5.21nd 916
            1.2.11  Abbreviated conjunction and disjunction of three wff's   w3o 977
            1.2.12  True and false constants   wal 1351
                  *1.2.12.1  Universal quantifier for use by df-tru   wal 1351
                  *1.2.12.2  Equality predicate for use by df-tru   cv 1352
                  1.2.12.3  Define the true and false constants   wtru 1354
            1.2.13  Logical 'xor'   wxo 1375
            *1.2.14  Truth tables: Operations on true and false constants   truantru 1401
            *1.2.15  Stoic logic indemonstrables (Chrysippus of Soli)   mptnan 1423
            1.2.16  Logical implication (continued)   syl6an 1434
      1.3  Predicate calculus mostly without distinct variables
            *1.3.1  Universal quantifier (continued)   ax-5 1447
            *1.3.2  Equality predicate (continued)   weq 1503
            1.3.3  Axiom ax-17 - first use of the $d distinct variable statement   ax-17 1526
            1.3.4  Introduce Axiom of Existence   ax-i9 1530
            1.3.5  Additional intuitionistic axioms   ax-ial 1534
            1.3.6  Predicate calculus including ax-4, without distinct variables   spi 1536
            1.3.7  The existential quantifier   19.8a 1590
            1.3.8  Equality theorems without distinct variables   a9e 1696
            1.3.9  Axioms ax-10 and ax-11   ax10o 1715
            1.3.10  Substitution (without distinct variables)   wsb 1762
            1.3.11  Theorems using axiom ax-11   equs5a 1794
      1.4  Predicate calculus with distinct variables
            1.4.1  Derive the axiom of distinct variables ax-16   spimv 1811
            1.4.2  Derive the obsolete axiom of variable substitution ax-11o   ax11o 1822
            1.4.3  More theorems related to ax-11 and substitution   albidv 1824
            1.4.4  Predicate calculus with distinct variables (cont.)   ax16i 1858
            1.4.5  More substitution theorems   hbs1 1938
            1.4.6  Existential uniqueness   weu 2026
            *1.4.7  Aristotelian logic: Assertic syllogisms   barbara 2124
      *1.5  First-order logic with one non-logical binary predicate
*PART 2  SET THEORY
      2.1  IZF Set Theory - start with the Axiom of Extensionality
            2.1.1  Introduce the Axiom of Extensionality   ax-ext 2159
            2.1.2  Class abstractions (a.k.a. class builders)   cab 2163
            2.1.3  Class form not-free predicate   wnfc 2306
            2.1.4  Negated equality and membership   wne 2347
                  2.1.4.1  Negated equality   wne 2347
                  2.1.4.2  Negated membership   wnel 2442
            2.1.5  Restricted quantification   wral 2455
            2.1.6  The universal class   cvv 2737
            *2.1.7  Conditional equality (experimental)   wcdeq 2945
            2.1.8  Russell's Paradox   ru 2961
            2.1.9  Proper substitution of classes for sets   wsbc 2962
            2.1.10  Proper substitution of classes for sets into classes   csb 3057
            2.1.11  Define basic set operations and relations   cdif 3126
            2.1.12  Subclasses and subsets   df-ss 3142
            2.1.13  The difference, union, and intersection of two classes   dfdif3 3245
                  2.1.13.1  The difference of two classes   dfdif3 3245
                  2.1.13.2  The union of two classes   elun 3276
                  2.1.13.3  The intersection of two classes   elin 3318
                  2.1.13.4  Combinations of difference, union, and intersection of two classes   unabs 3366
                  2.1.13.5  Class abstractions with difference, union, and intersection of two classes   symdifxor 3401
                  2.1.13.6  Restricted uniqueness with difference, union, and intersection   reuss2 3415
            2.1.14  The empty set   c0 3422
            2.1.15  Conditional operator   cif 3534
            2.1.16  Power classes   cpw 3575
            2.1.17  Unordered and ordered pairs   csn 3592
            2.1.18  The union of a class   cuni 3809
            2.1.19  The intersection of a class   cint 3844
            2.1.20  Indexed union and intersection   ciun 3886
            2.1.21  Disjointness   wdisj 3980
            2.1.22  Binary relations   wbr 4003
            2.1.23  Ordered-pair class abstractions (class builders)   copab 4063
            2.1.24  Transitive classes   wtr 4101
      2.2  IZF Set Theory - add the Axioms of Collection and Separation
            2.2.1  Introduce the Axiom of Collection   ax-coll 4118
            2.2.2  Introduce the Axiom of Separation   ax-sep 4121
            2.2.3  Derive the Null Set Axiom   zfnuleu 4127
            2.2.4  Theorems requiring subset and intersection existence   nalset 4133
            2.2.5  Theorems requiring empty set existence   class2seteq 4163
            2.2.6  Collection principle   bnd 4172
      2.3  IZF Set Theory - add the Axioms of Power Sets and Pairing
            2.3.1  Introduce the Axiom of Power Sets   ax-pow 4174
            2.3.2  A notation for excluded middle   wem 4194
            2.3.3  Axiom of Pairing   ax-pr 4209
            2.3.4  Ordered pair theorem   opm 4234
            2.3.5  Ordered-pair class abstractions (cont.)   opabid 4257
            2.3.6  Power class of union and intersection   pwin 4282
            2.3.7  Epsilon and identity relations   cep 4287
            *2.3.8  Partial and total orderings   wpo 4294
            2.3.9  Founded and set-like relations   wfrfor 4327
            2.3.10  Ordinals   word 4362
      2.4  IZF Set Theory - add the Axiom of Union
            2.4.1  Introduce the Axiom of Union   ax-un 4433
            2.4.2  Ordinals (continued)   ordon 4485
      2.5  IZF Set Theory - add the Axiom of Set Induction
            2.5.1  The ZF Axiom of Foundation would imply Excluded Middle   regexmidlemm 4531
            2.5.2  Introduce the Axiom of Set Induction   ax-setind 4536
            2.5.3  Transfinite induction   tfi 4581
      2.6  IZF Set Theory - add the Axiom of Infinity
            2.6.1  Introduce the Axiom of Infinity   ax-iinf 4587
            2.6.2  The natural numbers   com 4589
            2.6.3  Peano's postulates   peano1 4593
            2.6.4  Finite induction (for finite ordinals)   find 4598
            2.6.5  The Natural Numbers (continued)   nn0suc 4603
            2.6.6  Relations   cxp 4624
            2.6.7  Definite description binder (inverted iota)   cio 5176
            2.6.8  Functions   wfun 5210
            2.6.9  Cantor's Theorem   canth 5828
            2.6.10  Restricted iota (description binder)   crio 5829
            2.6.11  Operations   co 5874
            2.6.12  Maps-to notation   elmpocl 6068
            2.6.13  Function operation   cof 6080
            2.6.14  Functions (continued)   resfunexgALT 6108
            2.6.15  First and second members of an ordered pair   c1st 6138
            *2.6.16  Special maps-to operations   opeliunxp2f 6238
            2.6.17  Function transposition   ctpos 6244
            2.6.18  Undefined values   pwuninel2 6282
            2.6.19  Functions on ordinals; strictly monotone ordinal functions   iunon 6284
            2.6.20  "Strong" transfinite recursion   crecs 6304
            2.6.21  Recursive definition generator   crdg 6369
            2.6.22  Finite recursion   cfrec 6390
            2.6.23  Ordinal arithmetic   c1o 6409
            2.6.24  Natural number arithmetic   nna0 6474
            2.6.25  Equivalence relations and classes   wer 6531
            2.6.26  The mapping operation   cmap 6647
            2.6.27  Infinite Cartesian products   cixp 6697
            2.6.28  Equinumerosity   cen 6737
            2.6.29  Equinumerosity (cont.)   xpf1o 6843
            2.6.30  Pigeonhole Principle   phplem1 6851
            2.6.31  Finite sets   fict 6867
            2.6.32  Schroeder-Bernstein Theorem   sbthlem1 6955
            2.6.33  Finite intersections   cfi 6966
            2.6.34  Supremum and infimum   csup 6980
            2.6.35  Ordinal isomorphism   ordiso2 7033
            2.6.36  Disjoint union   cdju 7035
                  2.6.36.1  Disjoint union   cdju 7035
                  *2.6.36.2  Left and right injections of a disjoint union   cinl 7043
                  2.6.36.3  Universal property of the disjoint union   djuss 7068
                  2.6.36.4  Dominance and equinumerosity properties of disjoint union   djudom 7091
                  2.6.36.5  Older definition temporarily kept for comparison, to be deleted   cdjud 7100
                  2.6.36.6  Countable sets   0ct 7105
            *2.6.37  The one-point compactification of the natural numbers   xnninf 7117
            2.6.38  Omniscient sets   comni 7131
            2.6.39  Markov's principle   cmarkov 7148
            2.6.40  Weakly omniscient sets   cwomni 7160
            2.6.41  Cardinal numbers   ccrd 7177
            2.6.42  Axiom of Choice equivalents   wac 7203
            2.6.43  Cardinal number arithmetic   endjudisj 7208
            2.6.44  Ordinal trichotomy   exmidontriimlem1 7219
            2.6.45  Excluded middle and the power set of a singleton   pw1on 7224
            2.6.46  Apartness relations   wap 7245
*PART 3  CHOICE PRINCIPLES
      3.1  Countable Choice and Dependent Choice
            3.1.1  Introduce Countable Choice   wacc 7260
*PART 4  REAL AND COMPLEX NUMBERS
      4.1  Construction and axiomatization of real and complex numbers
            4.1.1  Dedekind-cut construction of real and complex numbers   cnpi 7270
            4.1.2  Final derivation of real and complex number postulates   axcnex 7857
            4.1.3  Real and complex number postulates restated as axioms   ax-cnex 7901
      4.2  Derive the basic properties from the field axioms
            4.2.1  Some deductions from the field axioms for complex numbers   cnex 7934
            4.2.2  Infinity and the extended real number system   cpnf 7987
            4.2.3  Restate the ordering postulates with extended real "less than"   axltirr 8022
            4.2.4  Ordering on reals   lttr 8029
            4.2.5  Initial properties of the complex numbers   mul12 8084
      4.3  Real and complex numbers - basic operations
            4.3.1  Addition   add12 8113
            4.3.2  Subtraction   cmin 8126
            4.3.3  Multiplication   kcnktkm1cn 8338
            4.3.4  Ordering on reals (cont.)   ltadd2 8374
            4.3.5  Real Apartness   creap 8529
            4.3.6  Complex Apartness   cap 8536
            4.3.7  Reciprocals   recextlem1 8606
            4.3.8  Division   cdiv 8627
            4.3.9  Ordering on reals (cont.)   ltp1 8799
            4.3.10  Suprema   lbreu 8900
            4.3.11  Imaginary and complex number properties   crap0 8913
      4.4  Integer sets
            4.4.1  Positive integers (as a subset of complex numbers)   cn 8917
            4.4.2  Principle of mathematical induction   nnind 8933
            *4.4.3  Decimal representation of numbers   c2 8968
            *4.4.4  Some properties of specific numbers   neg1cn 9022
            4.4.5  Simple number properties   halfcl 9143
            4.4.6  The Archimedean property   arch 9171
            4.4.7  Nonnegative integers (as a subset of complex numbers)   cn0 9174
            *4.4.8  Extended nonnegative integers   cxnn0 9237
            4.4.9  Integers (as a subset of complex numbers)   cz 9251
            4.4.10  Decimal arithmetic   cdc 9382
            4.4.11  Upper sets of integers   cuz 9526
            4.4.12  Rational numbers (as a subset of complex numbers)   cq 9617
            4.4.13  Complex numbers as pairs of reals   cnref1o 9648
      4.5  Order sets
            4.5.1  Positive reals (as a subset of complex numbers)   crp 9651
            4.5.2  Infinity and the extended real number system (cont.)   cxne 9767
            4.5.3  Real number intervals   cioo 9886
            4.5.4  Finite intervals of integers   cfz 10006
            *4.5.5  Finite intervals of nonnegative integers   elfz2nn0 10109
            4.5.6  Half-open integer ranges   cfzo 10139
            4.5.7  Rational numbers (cont.)   qtri3or 10240
      4.6  Elementary integer functions
            4.6.1  The floor and ceiling functions   cfl 10265
            4.6.2  The modulo (remainder) operation   cmo 10319
            4.6.3  Miscellaneous theorems about integers   frec2uz0d 10396
            4.6.4  Strong induction over upper sets of integers   uzsinds 10439
            4.6.5  The infinite sequence builder "seq"   cseq 10442
            4.6.6  Integer powers   cexp 10516
            4.6.7  Ordered pair theorem for nonnegative integers   nn0le2msqd 10694
            4.6.8  Factorial function   cfa 10700
            4.6.9  The binomial coefficient operation   cbc 10722
            4.6.10  The ` # ` (set size) function   chash 10750
      4.7  Elementary real and complex functions
            4.7.1  The "shift" operation   cshi 10818
            4.7.2  Real and imaginary parts; conjugate   ccj 10843
            4.7.3  Sequence convergence   caucvgrelemrec 10983
            4.7.4  Square root; absolute value   csqrt 11000
            4.7.5  The maximum of two real numbers   maxcom 11207
            4.7.6  The minimum of two real numbers   mincom 11232
            4.7.7  The maximum of two extended reals   xrmaxleim 11247
            4.7.8  The minimum of two extended reals   xrnegiso 11265
      4.8  Elementary limits and convergence
            4.8.1  Limits   cli 11281
            4.8.2  Finite and infinite sums   csu 11356
            4.8.3  The binomial theorem   binomlem 11486
            4.8.4  Infinite sums (cont.)   isumshft 11493
            4.8.5  Miscellaneous converging and diverging sequences   divcnv 11500
            4.8.6  Arithmetic series   arisum 11501
            4.8.7  Geometric series   expcnvap0 11505
            4.8.8  Ratio test for infinite series convergence   cvgratnnlembern 11526
            4.8.9  Mertens' theorem   mertenslemub 11537
            4.8.10  Finite and infinite products   prodf 11541
                  4.8.10.1  Product sequences   prodf 11541
                  4.8.10.2  Non-trivial convergence   ntrivcvgap 11551
                  4.8.10.3  Complex products   cprod 11553
                  4.8.10.4  Finite products   fprodseq 11586
      4.9  Elementary trigonometry
            4.9.1  The exponential, sine, and cosine functions   ce 11645
                  4.9.1.1  The circle constant (tau = 2 pi)   ctau 11777
            4.9.2  _e is irrational   eirraplem 11779
*PART 5  ELEMENTARY NUMBER THEORY
      5.1  Elementary properties of divisibility
            5.1.1  The divides relation   cdvds 11789
            *5.1.2  Even and odd numbers   evenelz 11866
            5.1.3  The division algorithm   divalglemnn 11917
            5.1.4  The greatest common divisor operator   cgcd 11937
            5.1.5  Bézout's identity   bezoutlemnewy 11991
            5.1.6  Decidable sets of integers   nnmindc 12029
            5.1.7  Algorithms   nn0seqcvgd 12035
            5.1.8  Euclid's Algorithm   eucalgval2 12047
            *5.1.9  The least common multiple   clcm 12054
            *5.1.10  Coprimality and Euclid's lemma   coprmgcdb 12082
            5.1.11  Cancellability of congruences   congr 12094
      5.2  Elementary prime number theory
            *5.2.1  Elementary properties   cprime 12101
            *5.2.2  Coprimality and Euclid's lemma (cont.)   coprm 12138
            5.2.3  Non-rationality of square root of 2   sqrt2irrlem 12155
            5.2.4  Properties of the canonical representation of a rational   cnumer 12175
            5.2.5  Euler's theorem   codz 12202
            5.2.6  Arithmetic modulo a prime number   modprm1div 12241
            5.2.7  Pythagorean Triples   coprimeprodsq 12251
            5.2.8  The prime count function   cpc 12278
            5.2.9  Pocklington's theorem   prmpwdvds 12347
            5.2.10  Infinite primes theorem   infpnlem1 12351
            5.2.11  Fundamental theorem of arithmetic   1arithlem1 12355
            5.2.12  Lagrange's four-square theorem   cgz 12361
      5.3  Cardinality of real and complex number subsets
            5.3.1  Countability of integers and rationals   oddennn 12387
PART 6  BASIC STRUCTURES
      6.1  Extensible structures
            *6.1.1  Basic definitions   cstr 12452
            6.1.2  Slot definitions   cplusg 12530
            6.1.3  Definition of the structure product   crest 12678
            6.1.4  Definition of the structure quotient   cimas 12706
PART 7  BASIC ALGEBRAIC STRUCTURES
      7.1  Monoids
            *7.1.1  Magmas   cplusf 12726
            *7.1.2  Identity elements   mgmidmo 12745
            *7.1.3  Semigroups   csgrp 12761
            *7.1.4  Definition and basic properties of monoids   cmnd 12771
            7.1.5  Monoid homomorphisms and submonoids   cmhm 12803
      7.2  Groups
            7.2.1  Definition and basic properties   cgrp 12831
            *7.2.2  Group multiple operation   cmg 12937
            7.2.3  Subgroups and Quotient groups   csubg 12980
            7.2.4  Abelian groups   ccmn 13041
                  7.2.4.1  Definition and basic properties   ccmn 13041
      7.3  Rings
            7.3.1  Multiplicative Group   cmgp 13083
            *7.3.2  Ring unity (multiplicative identity)   cur 13095
            7.3.3  Semirings   csrg 13099
            7.3.4  Definition and basic properties of unital rings   crg 13132
            7.3.5  Opposite ring   coppr 13192
            7.3.6  Divisibility   cdsr 13208
            7.3.7  Ring homomorphisms   crh 13272
            7.3.8  Nonzero rings and zero rings   cnzr 13276
            7.3.9  Local rings   clring 13284
      7.4  Division rings and fields
            7.4.1  Ring apartness   capr 13291
            7.4.2  Subrings of a ring   csubrg 13298
      7.5  The complex numbers as an algebraic extensible structure
            7.5.1  Definition and basic properties   cpsmet 13330
            *7.5.2  Ring of integers   czring 13371
PART 8  BASIC TOPOLOGY
      8.1  Topology
            *8.1.1  Topological spaces   ctop 13388
                  8.1.1.1  Topologies   ctop 13388
                  8.1.1.2  Topologies on sets   ctopon 13401
                  8.1.1.3  Topological spaces   ctps 13421
            8.1.2  Topological bases   ctb 13433
            8.1.3  Examples of topologies   distop 13478
            8.1.4  Closure and interior   ccld 13485
            8.1.5  Neighborhoods   cnei 13531
            8.1.6  Subspace topologies   restrcl 13560
            8.1.7  Limits and continuity in topological spaces   ccn 13578
            8.1.8  Product topologies   ctx 13645
            8.1.9  Continuous function-builders   cnmptid 13674
            8.1.10  Homeomorphisms   chmeo 13693
      8.2  Metric spaces
            8.2.1  Pseudometric spaces   psmetrel 13715
            8.2.2  Basic metric space properties   cxms 13729
            8.2.3  Metric space balls   blfvalps 13778
            8.2.4  Open sets of a metric space   mopnrel 13834
            8.2.5  Continuity in metric spaces   metcnp3 13904
            8.2.6  Topology on the reals   qtopbasss 13914
            8.2.7  Topological definitions using the reals   ccncf 13950
PART 9  BASIC REAL AND COMPLEX ANALYSIS
            9.0.1  Dedekind cuts   dedekindeulemuub 13988
            9.0.2  Intermediate value theorem   ivthinclemlm 14005
      9.1  Derivatives
            9.1.1  Real and complex differentiation   climc 14016
                  9.1.1.1  Derivatives of functions of one complex or real variable   climc 14016
PART 10  BASIC REAL AND COMPLEX FUNCTIONS
      10.1  Basic trigonometry
            10.1.1  The exponential, sine, and cosine functions (cont.)   efcn 14082
            10.1.2  Properties of pi = 3.14159...   pilem1 14093
            10.1.3  The natural logarithm on complex numbers   clog 14170
            *10.1.4  Logarithms to an arbitrary base   clogb 14254
            10.1.5  Quartic binomial expansion   binom4 14290
      10.2  Basic number theory
            *10.2.1  Quadratic residues and the Legendre symbol   clgs 14291
            10.2.2  All primes 4n+1 are the sum of two squares   2sqlem1 14343
PART 11  GUIDES AND MISCELLANEA
      11.1  Guides (conventions, explanations, and examples)
            *11.1.1  Conventions   conventions 14355
            11.1.2  Definitional examples   ex-or 14356
PART 12  SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
      12.1  Mathboxes for user contributions
            12.1.1  Mathbox guidelines   mathbox 14366
      12.2  Mathbox for BJ
            12.2.1  Propositional calculus   bj-nnsn 14367
                  *12.2.1.1  Stable formulas   bj-trst 14373
                  12.2.1.2  Decidable formulas   bj-trdc 14386
            12.2.2  Predicate calculus   bj-ex 14396
            12.2.3  Set theorey miscellaneous   bj-el2oss1o 14408
            *12.2.4  Extensionality   bj-vtoclgft 14409
            *12.2.5  Decidability of classes   wdcin 14427
            12.2.6  Disjoint union   djucllem 14434
            12.2.7  Miscellaneous   funmptd 14437
            *12.2.8  Constructive Zermelo--Fraenkel set theory (CZF): Bounded formulas and classes   wbd 14446
                  *12.2.8.1  Bounded formulas   wbd 14446
                  *12.2.8.2  Bounded classes   wbdc 14474
            *12.2.9  CZF: Bounded separation   ax-bdsep 14518
                  12.2.9.1  Delta_0-classical logic   ax-bj-d0cl 14558
                  12.2.9.2  Inductive classes and the class of natural number ordinals   wind 14560
                  *12.2.9.3  The first three Peano postulates   bj-peano2 14573
            *12.2.10  CZF: Infinity   ax-infvn 14575
                  *12.2.10.1  The set of natural number ordinals   ax-infvn 14575
                  *12.2.10.2  Peano's fifth postulate   bdpeano5 14577
                  *12.2.10.3  Bounded induction and Peano's fourth postulate   findset 14579
            *12.2.11  CZF: Set induction   setindft 14599
                  *12.2.11.1  Set induction   setindft 14599
                  *12.2.11.2  Full induction   bj-findis 14613
            *12.2.12  CZF: Strong collection   ax-strcoll 14616
            *12.2.13  CZF: Subset collection   ax-sscoll 14621
            12.2.14  Real numbers   ax-ddkcomp 14623
      12.3  Mathbox for Jim Kingdon
            12.3.1  Propositional and predicate logic   nnnotnotr 14624
            12.3.2  Natural numbers   ss1oel2o 14625
            12.3.3  The power set of a singleton   pwtrufal 14629
            12.3.4  Omniscience of NN+oo   0nninf 14635
            12.3.5  Schroeder-Bernstein Theorem   exmidsbthrlem 14652
            12.3.6  Real and complex numbers   qdencn 14657
            *12.3.7  Analytic omniscience principles   trilpolemclim 14666
            12.3.8  Supremum and infimum   supfz 14700
            12.3.9  Circle constant   taupi 14702
      12.4  Mathbox for Mykola Mostovenko
      12.5  Mathbox for David A. Wheeler
            12.5.1  Testable propositions   dftest 14704
            *12.5.2  Allsome quantifier   walsi 14705

    < Wrap  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14713
  Copyright terms: Public domain < Wrap  Next >