| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ax-1 | Unicode version | ||
| Description: Axiom Simp. Axiom
A1 of [Margaris] p. 49. One of the axioms of
propositional calculus. This axiom is called Simp or "the
principle of
simplification" in Principia Mathematica (Theorem *2.02 of
[WhiteheadRussell] p. 100)
because "it enables us to pass from the joint
assertion of The theorems of propositional calculus are also called tautologies. Although classical propositional logic tautologies can be proved using truth tables, there is no similarly simple system for intuitionistic propositional logic, so proving tautologies from axioms is the preferred approach. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| ax-1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wph |
. 2
| |
| 2 | wps |
. . 3
| |
| 3 | 2, 1 | wi 4 |
. 2
|
| 4 | 1, 3 | wi 4 |
1
|
| Colors of variables: wff set class |
| This axiom is referenced by: a1i 9 id 19 idALT 20 a1d 22 a1dd 48 jarr 97 jarri 98 pm2.86i 99 pm2.86d 100 pm5.1im 173 biimt 241 pm5.4 249 pm4.45im 334 conax1 655 pm4.8 709 oibabs 716 imorr 723 pm2.53 724 imorri 751 jao1i 798 pm2.64 803 pm2.82 814 condcOLD 856 pm5.12dc 912 pm5.14dc 913 peircedc 916 pm4.83dc 954 dedlem0a 971 oplem1 978 stdpc4 1798 sbequi 1862 sbidm 1874 eumo 2086 moimv 2120 euim 2122 alral 2551 r19.12 2612 r19.27av 2641 r19.37 2658 gencbval 2821 eqvinc 2896 eqvincg 2897 rr19.3v 2912 ralidm 3561 ralm 3564 class2seteq 4207 exmid0el 4248 sotritric 4371 elnnnn0b 9339 zltnle 9418 iccneg 10111 qltnle 10386 frec2uzlt2d 10549 hashfzp1 10969 algcvgblem 12371 bj-trst 15675 bj-findis 15915 |
| Copyright terms: Public domain | W3C validator |