| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ax-1 | Unicode version | ||
| Description: Axiom Simp. Axiom
A1 of [Margaris] p. 49. One of the axioms of
propositional calculus. This axiom is called Simp or "the
principle of
simplification" in Principia Mathematica (Theorem *2.02 of
[WhiteheadRussell] p. 100)
because "it enables us to pass from the joint
assertion of The theorems of propositional calculus are also called tautologies. Although classical propositional logic tautologies can be proved using truth tables, there is no similarly simple system for intuitionistic propositional logic, so proving tautologies from axioms is the preferred approach. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| ax-1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wph |
. 2
| |
| 2 | wps |
. . 3
| |
| 3 | 2, 1 | wi 4 |
. 2
|
| 4 | 1, 3 | wi 4 |
1
|
| Colors of variables: wff set class |
| This axiom is referenced by: a1i 9 id 19 idALT 20 a1d 22 a1dd 48 jarr 97 jarri 98 pm2.86i 99 pm2.86d 100 pm5.1im 173 biimt 241 pm5.4 249 pm4.45im 334 conax1 657 pm4.8 712 oibabs 719 imorr 726 pm2.53 727 imorri 754 jao1i 801 pm2.64 806 pm2.82 817 condcOLD 859 pm5.12dc 915 pm5.14dc 916 peircedc 919 pm4.83dc 957 dedlem0a 974 oplem1 981 a1ddd 1478 stdpc4 1821 sbequi 1885 sbidm 1897 eumo 2109 moimv 2144 euim 2146 alral 2575 r19.12 2637 r19.27av 2666 r19.37 2683 gencbval 2849 eqvinc 2926 eqvincg 2927 rr19.3v 2942 ralidm 3592 ralm 3595 class2seteq 4246 exmid0el 4287 sotritric 4414 elnnnn0b 9409 zltnle 9488 iccneg 10181 qltnle 10458 frec2uzlt2d 10621 hashfzp1 11041 algcvgblem 12566 bj-trst 16061 bj-findis 16300 |
| Copyright terms: Public domain | W3C validator |