ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ax-1 Unicode version

Axiom ax-1 6
Description: Axiom Simp. Axiom A1 of [Margaris] p. 49. One of the axioms of propositional calculus. This axiom is called Simp or "the principle of simplification" in Principia Mathematica (Theorem *2.02 of [WhiteheadRussell] p. 100) because "it enables us to pass from the joint assertion of  ph and  ps to the assertion of  ph simply."

The theorems of propositional calculus are also called tautologies. Although classical propositional logic tautologies can be proved using truth tables, there is no similarly simple system for intuitionistic propositional logic, so proving tautologies from axioms is the preferred approach. (Contributed by NM, 5-Aug-1993.)

Assertion
Ref Expression
ax-1  |-  ( ph  ->  ( ps  ->  ph )
)

Detailed syntax breakdown of Axiom ax-1
StepHypRef Expression
1 wph . 2  wff  ph
2 wps . . 3  wff  ps
32, 1wi 4 . 2  wff  ( ps 
->  ph )
41, 3wi 4 1  wff  ( ph  ->  ( ps  ->  ph )
)
Colors of variables: wff set class
This axiom is referenced by:  a1i  9  id  19  idALT  20  a1d  22  a1dd  48  jarr  97  pm2.86i  98  pm2.86d  99  pm5.1im  172  biimt  240  pm5.4  248  pm4.45im  332  conax1  648  pm4.8  702  oibabs  709  imorr  716  pm2.53  717  imorri  744  jao1i  791  pm2.64  796  pm2.82  807  condcOLD  849  pm5.12dc  905  pm5.14dc  906  peircedc  909  pm4.83dc  946  dedlem0a  963  oplem1  970  stdpc4  1768  sbequi  1832  sbidm  1844  eumo  2051  moimv  2085  euim  2087  alral  2515  r19.12  2576  r19.27av  2605  r19.37  2622  gencbval  2778  eqvinc  2853  eqvincg  2854  rr19.3v  2869  ralidm  3514  ralm  3518  class2seteq  4147  exmid0el  4188  sotritric  4307  elnnnn0b  9166  zltnle  9245  iccneg  9933  qltnle  10189  frec2uzlt2d  10347  hashfzp1  10746  algcvgblem  11990  bj-trst  13733  bj-findis  13974
  Copyright terms: Public domain W3C validator