ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  com45 GIF version

Theorem com45 89
Description: Commutation of antecedents. Swap 4th and 5th. (Contributed by Jeff Hankins, 28-Jun-2009.)
Hypothesis
Ref Expression
com5.1 (𝜑 → (𝜓 → (𝜒 → (𝜃 → (𝜏𝜂)))))
Assertion
Ref Expression
com45 (𝜑 → (𝜓 → (𝜒 → (𝜏 → (𝜃𝜂)))))

Proof of Theorem com45
StepHypRef Expression
1 com5.1 . 2 (𝜑 → (𝜓 → (𝜒 → (𝜃 → (𝜏𝜂)))))
2 pm2.04 82 . 2 ((𝜃 → (𝜏𝜂)) → (𝜏 → (𝜃𝜂)))
31, 2syl8 71 1 (𝜑 → (𝜓 → (𝜒 → (𝜏 → (𝜃𝜂)))))
Colors of variables: wff set class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by:  com35  90  com25  91  com5l  92
  Copyright terms: Public domain W3C validator