| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > pm2.04 | GIF version | ||
| Description: Swap antecedents. Theorem *2.04 of [WhiteheadRussell] p. 100. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 12-Sep-2012.) | 
| Ref | Expression | 
|---|---|
| pm2.04 | ⊢ ((𝜑 → (𝜓 → 𝜒)) → (𝜓 → (𝜑 → 𝜒))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | id 19 | . 2 ⊢ ((𝜑 → (𝜓 → 𝜒)) → (𝜑 → (𝜓 → 𝜒))) | |
| 2 | 1 | com23 78 | 1 ⊢ ((𝜑 → (𝜓 → 𝜒)) → (𝜓 → (𝜑 → 𝜒))) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 | 
| This theorem is referenced by: com34 83 com45 89 bi2.04 248 equsexd 1743 sbi2v 1907 ralcom3 2665 gencbval 2812 bj-findis 15625 | 
| Copyright terms: Public domain | W3C validator |