| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ax-1 | GIF version | ||
| Description: Axiom Simp. Axiom
A1 of [Margaris] p. 49. One of the axioms of
propositional calculus. This axiom is called Simp or "the
principle of
simplification" in Principia Mathematica (Theorem *2.02 of
[WhiteheadRussell] p. 100)
because "it enables us to pass from the joint
assertion of 𝜑 and 𝜓 to the assertion of 𝜑
simply."
The theorems of propositional calculus are also called tautologies. Although classical propositional logic tautologies can be proved using truth tables, there is no similarly simple system for intuitionistic propositional logic, so proving tautologies from axioms is the preferred approach. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| ax-1 | ⊢ (𝜑 → (𝜓 → 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wph | . 2 wff 𝜑 | |
| 2 | wps | . . 3 wff 𝜓 | |
| 3 | 2, 1 | wi 4 | . 2 wff (𝜓 → 𝜑) |
| 4 | 1, 3 | wi 4 | 1 wff (𝜑 → (𝜓 → 𝜑)) |
| Colors of variables: wff set class |
| This axiom is referenced by: a1i 9 id 19 idALT 20 a1d 22 a1dd 48 jarr 97 jarri 98 pm2.86i 99 pm2.86d 100 pm5.1im 173 biimt 241 pm5.4 249 pm4.45im 334 conax1 655 pm4.8 709 oibabs 716 imorr 723 pm2.53 724 imorri 751 jao1i 798 pm2.64 803 pm2.82 814 condcOLD 856 pm5.12dc 912 pm5.14dc 913 peircedc 916 pm4.83dc 954 dedlem0a 971 oplem1 978 a1ddd 1456 stdpc4 1799 sbequi 1863 sbidm 1875 eumo 2087 moimv 2121 euim 2123 alral 2552 r19.12 2613 r19.27av 2642 r19.37 2659 gencbval 2822 eqvinc 2897 eqvincg 2898 rr19.3v 2913 ralidm 3562 ralm 3565 class2seteq 4211 exmid0el 4252 sotritric 4375 elnnnn0b 9346 zltnle 9425 iccneg 10118 qltnle 10393 frec2uzlt2d 10556 hashfzp1 10976 algcvgblem 12415 bj-trst 15749 bj-findis 15989 |
| Copyright terms: Public domain | W3C validator |