Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ax-1 | GIF version |
Description: Axiom Simp. Axiom
A1 of [Margaris] p. 49. One of the axioms of
propositional calculus. This axiom is called Simp or "the
principle of
simplification" in Principia Mathematica (Theorem *2.02 of
[WhiteheadRussell] p. 100)
because "it enables us to pass from the joint
assertion of 𝜑 and 𝜓 to the assertion of 𝜑
simply."
The theorems of propositional calculus are also called tautologies. Although classical propositional logic tautologies can be proved using truth tables, there is no similarly simple system for intuitionistic propositional logic, so proving tautologies from axioms is the preferred approach. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
ax-1 | ⊢ (𝜑 → (𝜓 → 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wph | . 2 wff 𝜑 | |
2 | wps | . . 3 wff 𝜓 | |
3 | 2, 1 | wi 4 | . 2 wff (𝜓 → 𝜑) |
4 | 1, 3 | wi 4 | 1 wff (𝜑 → (𝜓 → 𝜑)) |
Colors of variables: wff set class |
This axiom is referenced by: a1i 9 id 19 idALT 20 a1d 22 a1dd 48 jarr 97 jarri 98 pm2.86i 99 pm2.86d 100 pm5.1im 173 biimt 241 pm5.4 249 pm4.45im 334 conax1 653 pm4.8 707 oibabs 714 imorr 721 pm2.53 722 imorri 749 jao1i 796 pm2.64 801 pm2.82 812 condcOLD 854 pm5.12dc 910 pm5.14dc 911 peircedc 914 pm4.83dc 951 dedlem0a 968 oplem1 975 stdpc4 1773 sbequi 1837 sbidm 1849 eumo 2056 moimv 2090 euim 2092 alral 2520 r19.12 2581 r19.27av 2610 r19.37 2627 gencbval 2783 eqvinc 2858 eqvincg 2859 rr19.3v 2874 ralidm 3521 ralm 3525 class2seteq 4158 exmid0el 4199 sotritric 4318 elnnnn0b 9191 zltnle 9270 iccneg 9958 qltnle 10214 frec2uzlt2d 10372 hashfzp1 10770 algcvgblem 12014 bj-trst 14031 bj-findis 14271 |
Copyright terms: Public domain | W3C validator |