| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ax-1 | GIF version | ||
| Description: Axiom Simp. Axiom
A1 of [Margaris] p. 49. One of the axioms of
propositional calculus. This axiom is called Simp or "the
principle of
simplification" in Principia Mathematica (Theorem *2.02 of
[WhiteheadRussell] p. 100)
because "it enables us to pass from the joint
assertion of 𝜑 and 𝜓 to the assertion of 𝜑
simply."
The theorems of propositional calculus are also called tautologies. Although classical propositional logic tautologies can be proved using truth tables, there is no similarly simple system for intuitionistic propositional logic, so proving tautologies from axioms is the preferred approach. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| ax-1 | ⊢ (𝜑 → (𝜓 → 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wph | . 2 wff 𝜑 | |
| 2 | wps | . . 3 wff 𝜓 | |
| 3 | 2, 1 | wi 4 | . 2 wff (𝜓 → 𝜑) |
| 4 | 1, 3 | wi 4 | 1 wff (𝜑 → (𝜓 → 𝜑)) |
| Colors of variables: wff set class |
| This axiom is referenced by: a1i 9 id 19 idALT 20 a1d 22 a1dd 48 jarr 97 jarri 98 pm2.86i 99 pm2.86d 100 pm5.1im 173 biimt 241 pm5.4 249 pm4.45im 334 conax1 657 pm4.8 711 oibabs 718 imorr 725 pm2.53 726 imorri 753 jao1i 800 pm2.64 805 pm2.82 816 condcOLD 858 pm5.12dc 914 pm5.14dc 915 peircedc 918 pm4.83dc 956 dedlem0a 973 oplem1 980 a1ddd 1458 stdpc4 1801 sbequi 1865 sbidm 1877 eumo 2089 moimv 2124 euim 2126 alral 2555 r19.12 2617 r19.27av 2646 r19.37 2663 gencbval 2829 eqvinc 2906 eqvincg 2907 rr19.3v 2922 ralidm 3572 ralm 3575 class2seteq 4226 exmid0el 4267 sotritric 4392 elnnnn0b 9381 zltnle 9460 iccneg 10153 qltnle 10430 frec2uzlt2d 10593 hashfzp1 11013 algcvgblem 12537 bj-trst 16013 bj-findis 16252 |
| Copyright terms: Public domain | W3C validator |