| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ax-1 | GIF version | ||
| Description: Axiom Simp. Axiom
A1 of [Margaris] p. 49. One of the axioms of
propositional calculus. This axiom is called Simp or "the
principle of
simplification" in Principia Mathematica (Theorem *2.02 of
[WhiteheadRussell] p. 100)
because "it enables us to pass from the joint
assertion of 𝜑 and 𝜓 to the assertion of 𝜑
simply."
The theorems of propositional calculus are also called tautologies. Although classical propositional logic tautologies can be proved using truth tables, there is no similarly simple system for intuitionistic propositional logic, so proving tautologies from axioms is the preferred approach. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| ax-1 | ⊢ (𝜑 → (𝜓 → 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wph | . 2 wff 𝜑 | |
| 2 | wps | . . 3 wff 𝜓 | |
| 3 | 2, 1 | wi 4 | . 2 wff (𝜓 → 𝜑) |
| 4 | 1, 3 | wi 4 | 1 wff (𝜑 → (𝜓 → 𝜑)) |
| Colors of variables: wff set class |
| This axiom is referenced by: a1i 9 id 19 idALT 20 a1d 22 a1dd 48 jarr 97 jarri 98 pm2.86i 99 pm2.86d 100 pm5.1im 173 biimt 241 pm5.4 249 pm4.45im 334 conax1 654 pm4.8 708 oibabs 715 imorr 722 pm2.53 723 imorri 750 jao1i 797 pm2.64 802 pm2.82 813 condcOLD 855 pm5.12dc 911 pm5.14dc 912 peircedc 915 pm4.83dc 953 dedlem0a 970 oplem1 977 stdpc4 1789 sbequi 1853 sbidm 1865 eumo 2077 moimv 2111 euim 2113 alral 2542 r19.12 2603 r19.27av 2632 r19.37 2649 gencbval 2812 eqvinc 2887 eqvincg 2888 rr19.3v 2903 ralidm 3552 ralm 3555 class2seteq 4197 exmid0el 4238 sotritric 4360 elnnnn0b 9310 zltnle 9389 iccneg 10081 qltnle 10350 frec2uzlt2d 10513 hashfzp1 10933 algcvgblem 12242 bj-trst 15469 bj-findis 15709 |
| Copyright terms: Public domain | W3C validator |