Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ax-1 | GIF version |
Description: Axiom Simp. Axiom
A1 of [Margaris] p. 49. One of the axioms of
propositional calculus. This axiom is called Simp or "the
principle of
simplification" in Principia Mathematica (Theorem *2.02 of
[WhiteheadRussell] p. 100)
because "it enables us to pass from the joint
assertion of 𝜑 and 𝜓 to the assertion of 𝜑
simply."
The theorems of propositional calculus are also called tautologies. Although classical propositional logic tautologies can be proved using truth tables, there is no similarly simple system for intuitionistic propositional logic, so proving tautologies from axioms is the preferred approach. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
ax-1 | ⊢ (𝜑 → (𝜓 → 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wph | . 2 wff 𝜑 | |
2 | wps | . . 3 wff 𝜓 | |
3 | 2, 1 | wi 4 | . 2 wff (𝜓 → 𝜑) |
4 | 1, 3 | wi 4 | 1 wff (𝜑 → (𝜓 → 𝜑)) |
Colors of variables: wff set class |
This axiom is referenced by: a1i 9 id 19 idALT 20 a1d 22 a1dd 48 jarr 97 pm2.86i 98 pm2.86d 99 pm5.1im 172 biimt 240 pm5.4 248 pm4.45im 332 conax1 643 pm4.8 697 oibabs 704 imorr 711 pm2.53 712 imorri 739 jao1i 786 pm2.64 791 pm2.82 802 condcOLD 844 pm5.12dc 900 pm5.14dc 901 peircedc 904 pm4.83dc 941 dedlem0a 958 oplem1 965 stdpc4 1763 sbequi 1827 sbidm 1839 eumo 2046 moimv 2080 euim 2082 alral 2510 r19.12 2571 r19.27av 2600 r19.37 2617 gencbval 2773 eqvinc 2848 eqvincg 2849 rr19.3v 2864 ralidm 3508 ralm 3512 class2seteq 4141 exmid0el 4182 sotritric 4301 elnnnn0b 9154 zltnle 9233 iccneg 9921 qltnle 10177 frec2uzlt2d 10335 hashfzp1 10733 algcvgblem 11977 bj-trst 13580 bj-findis 13821 |
Copyright terms: Public domain | W3C validator |