| Mathbox for David A. Wheeler |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > df-alsc | GIF version | ||
| Description: Define "all some" applied to a class, which means 𝜑 is true for all 𝑥 in 𝐴 and there is at least one 𝑥 in 𝐴. (Contributed by David A. Wheeler, 20-Oct-2018.) |
| Ref | Expression |
|---|---|
| df-alsc | ⊢ (∀!𝑥 ∈ 𝐴𝜑 ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ ∃𝑥 𝑥 ∈ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wph | . . 3 wff 𝜑 | |
| 2 | vx | . . 3 setvar 𝑥 | |
| 3 | cA | . . 3 class 𝐴 | |
| 4 | 1, 2, 3 | walsc 15721 | . 2 wff ∀!𝑥 ∈ 𝐴𝜑 |
| 5 | 1, 2, 3 | wral 2475 | . . 3 wff ∀𝑥 ∈ 𝐴 𝜑 |
| 6 | 2 | cv 1363 | . . . . 5 class 𝑥 |
| 7 | 6, 3 | wcel 2167 | . . . 4 wff 𝑥 ∈ 𝐴 |
| 8 | 7, 2 | wex 1506 | . . 3 wff ∃𝑥 𝑥 ∈ 𝐴 |
| 9 | 5, 8 | wa 104 | . 2 wff (∀𝑥 ∈ 𝐴 𝜑 ∧ ∃𝑥 𝑥 ∈ 𝐴) |
| 10 | 4, 9 | wb 105 | 1 wff (∀!𝑥 ∈ 𝐴𝜑 ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ ∃𝑥 𝑥 ∈ 𝐴)) |
| Colors of variables: wff set class |
| This definition is referenced by: alsconv 15724 alsc1d 15727 alsc2d 15728 |
| Copyright terms: Public domain | W3C validator |