HomeHome Intuitionistic Logic Explorer
Theorem List (p. 148 of 159)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 14701-14800   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremxmetres2 14701 Restriction of an extended metric. (Contributed by Mario Carneiro, 20-Aug-2015.)
((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅𝑋) → (𝐷 ↾ (𝑅 × 𝑅)) ∈ (∞Met‘𝑅))
 
Theoremmetreslem 14702 Lemma for metres 14705. (Contributed by Mario Carneiro, 24-Aug-2015.)
(dom 𝐷 = (𝑋 × 𝑋) → (𝐷 ↾ (𝑅 × 𝑅)) = (𝐷 ↾ ((𝑋𝑅) × (𝑋𝑅))))
 
Theoremmetres2 14703 Lemma for metres 14705. (Contributed by FL, 12-Oct-2006.) (Proof shortened by Mario Carneiro, 14-Aug-2015.)
((𝐷 ∈ (Met‘𝑋) ∧ 𝑅𝑋) → (𝐷 ↾ (𝑅 × 𝑅)) ∈ (Met‘𝑅))
 
Theoremxmetres 14704 A restriction of an extended metric is an extended metric. (Contributed by Mario Carneiro, 24-Aug-2015.)
(𝐷 ∈ (∞Met‘𝑋) → (𝐷 ↾ (𝑅 × 𝑅)) ∈ (∞Met‘(𝑋𝑅)))
 
Theoremmetres 14705 A restriction of a metric is a metric. (Contributed by NM, 26-Aug-2007.) (Revised by Mario Carneiro, 14-Aug-2015.)
(𝐷 ∈ (Met‘𝑋) → (𝐷 ↾ (𝑅 × 𝑅)) ∈ (Met‘(𝑋𝑅)))
 
Theorem0met 14706 The empty metric. (Contributed by NM, 30-Aug-2006.) (Revised by Mario Carneiro, 14-Aug-2015.)
∅ ∈ (Met‘∅)
 
9.2.3  Metric space balls
 
Theoremblfvalps 14707* The value of the ball function. (Contributed by NM, 30-Aug-2006.) (Revised by Mario Carneiro, 11-Nov-2013.) (Revised by Thierry Arnoux, 11-Feb-2018.)
(𝐷 ∈ (PsMet‘𝑋) → (ball‘𝐷) = (𝑥𝑋, 𝑟 ∈ ℝ* ↦ {𝑦𝑋 ∣ (𝑥𝐷𝑦) < 𝑟}))
 
Theoremblfval 14708* The value of the ball function. (Contributed by NM, 30-Aug-2006.) (Revised by Mario Carneiro, 11-Nov-2013.) (Proof shortened by Thierry Arnoux, 11-Feb-2018.)
(𝐷 ∈ (∞Met‘𝑋) → (ball‘𝐷) = (𝑥𝑋, 𝑟 ∈ ℝ* ↦ {𝑦𝑋 ∣ (𝑥𝐷𝑦) < 𝑟}))
 
Theoremblex 14709 A ball is a set. Also see blfn 14185 in case you just know 𝐷 is a set, not 𝐷 ∈ (∞Met‘𝑋). (Contributed by Jim Kingdon, 4-May-2023.)
(𝐷 ∈ (∞Met‘𝑋) → (ball‘𝐷) ∈ V)
 
Theoremblvalps 14710* The ball around a point 𝑃 is the set of all points whose distance from 𝑃 is less than the ball's radius 𝑅. (Contributed by NM, 31-Aug-2006.) (Revised by Mario Carneiro, 11-Nov-2013.) (Revised by Thierry Arnoux, 11-Mar-2018.)
((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑅) = {𝑥𝑋 ∣ (𝑃𝐷𝑥) < 𝑅})
 
Theoremblval 14711* The ball around a point 𝑃 is the set of all points whose distance from 𝑃 is less than the ball's radius 𝑅. (Contributed by NM, 31-Aug-2006.) (Revised by Mario Carneiro, 11-Nov-2013.)
((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑅) = {𝑥𝑋 ∣ (𝑃𝐷𝑥) < 𝑅})
 
Theoremelblps 14712 Membership in a ball. (Contributed by NM, 2-Sep-2006.) (Revised by Mario Carneiro, 11-Nov-2013.) (Revised by Thierry Arnoux, 11-Mar-2018.)
((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → (𝐴 ∈ (𝑃(ball‘𝐷)𝑅) ↔ (𝐴𝑋 ∧ (𝑃𝐷𝐴) < 𝑅)))
 
Theoremelbl 14713 Membership in a ball. (Contributed by NM, 2-Sep-2006.) (Revised by Mario Carneiro, 11-Nov-2013.)
((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → (𝐴 ∈ (𝑃(ball‘𝐷)𝑅) ↔ (𝐴𝑋 ∧ (𝑃𝐷𝐴) < 𝑅)))
 
Theoremelbl2ps 14714 Membership in a ball. (Contributed by NM, 9-Mar-2007.) (Revised by Thierry Arnoux, 11-Mar-2018.)
(((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅 ∈ ℝ*) ∧ (𝑃𝑋𝐴𝑋)) → (𝐴 ∈ (𝑃(ball‘𝐷)𝑅) ↔ (𝑃𝐷𝐴) < 𝑅))
 
Theoremelbl2 14715 Membership in a ball. (Contributed by NM, 9-Mar-2007.)
(((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ*) ∧ (𝑃𝑋𝐴𝑋)) → (𝐴 ∈ (𝑃(ball‘𝐷)𝑅) ↔ (𝑃𝐷𝐴) < 𝑅))
 
Theoremelbl3ps 14716 Membership in a ball, with reversed distance function arguments. (Contributed by NM, 10-Nov-2007.)
(((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅 ∈ ℝ*) ∧ (𝑃𝑋𝐴𝑋)) → (𝐴 ∈ (𝑃(ball‘𝐷)𝑅) ↔ (𝐴𝐷𝑃) < 𝑅))
 
Theoremelbl3 14717 Membership in a ball, with reversed distance function arguments. (Contributed by NM, 10-Nov-2007.)
(((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ*) ∧ (𝑃𝑋𝐴𝑋)) → (𝐴 ∈ (𝑃(ball‘𝐷)𝑅) ↔ (𝐴𝐷𝑃) < 𝑅))
 
Theoremblcomps 14718 Commute the arguments to the ball function. (Contributed by Mario Carneiro, 22-Jan-2014.) (Revised by Thierry Arnoux, 11-Mar-2018.)
(((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑅 ∈ ℝ*) ∧ (𝑃𝑋𝐴𝑋)) → (𝐴 ∈ (𝑃(ball‘𝐷)𝑅) ↔ 𝑃 ∈ (𝐴(ball‘𝐷)𝑅)))
 
Theoremblcom 14719 Commute the arguments to the ball function. (Contributed by Mario Carneiro, 22-Jan-2014.)
(((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ*) ∧ (𝑃𝑋𝐴𝑋)) → (𝐴 ∈ (𝑃(ball‘𝐷)𝑅) ↔ 𝑃 ∈ (𝐴(ball‘𝐷)𝑅)))
 
Theoremxblpnfps 14720 The infinity ball in an extended metric is the set of all points that are a finite distance from the center. (Contributed by Mario Carneiro, 23-Aug-2015.) (Revised by Thierry Arnoux, 11-Mar-2018.)
((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋) → (𝐴 ∈ (𝑃(ball‘𝐷)+∞) ↔ (𝐴𝑋 ∧ (𝑃𝐷𝐴) ∈ ℝ)))
 
Theoremxblpnf 14721 The infinity ball in an extended metric is the set of all points that are a finite distance from the center. (Contributed by Mario Carneiro, 23-Aug-2015.)
((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) → (𝐴 ∈ (𝑃(ball‘𝐷)+∞) ↔ (𝐴𝑋 ∧ (𝑃𝐷𝐴) ∈ ℝ)))
 
Theoremblpnf 14722 The infinity ball in a standard metric is just the whole space. (Contributed by Mario Carneiro, 23-Aug-2015.)
((𝐷 ∈ (Met‘𝑋) ∧ 𝑃𝑋) → (𝑃(ball‘𝐷)+∞) = 𝑋)
 
Theorembldisj 14723 Two balls are disjoint if the center-to-center distance is more than the sum of the radii. (Contributed by Mario Carneiro, 30-Dec-2013.)
(((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ* ∧ (𝑅 +𝑒 𝑆) ≤ (𝑃𝐷𝑄))) → ((𝑃(ball‘𝐷)𝑅) ∩ (𝑄(ball‘𝐷)𝑆)) = ∅)
 
Theoremblgt0 14724 A nonempty ball implies that the radius is positive. (Contributed by NM, 11-Mar-2007.) (Revised by Mario Carneiro, 23-Aug-2015.)
(((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) ∧ 𝐴 ∈ (𝑃(ball‘𝐷)𝑅)) → 0 < 𝑅)
 
Theorembl2in 14725 Two balls are disjoint if they don't overlap. (Contributed by NM, 11-Mar-2007.) (Revised by Mario Carneiro, 23-Aug-2015.)
(((𝐷 ∈ (Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑅 ≤ ((𝑃𝐷𝑄) / 2))) → ((𝑃(ball‘𝐷)𝑅) ∩ (𝑄(ball‘𝐷)𝑅)) = ∅)
 
Theoremxblss2ps 14726 One ball is contained in another if the center-to-center distance is less than the difference of the radii. In this version of blss2 14729 for extended metrics, we have to assume the balls are a finite distance apart, or else 𝑃 will not even be in the infinity ball around 𝑄. (Contributed by Mario Carneiro, 23-Aug-2015.) (Revised by Thierry Arnoux, 11-Mar-2018.)
(𝜑𝐷 ∈ (PsMet‘𝑋))    &   (𝜑𝑃𝑋)    &   (𝜑𝑄𝑋)    &   (𝜑𝑅 ∈ ℝ*)    &   (𝜑𝑆 ∈ ℝ*)    &   (𝜑 → (𝑃𝐷𝑄) ∈ ℝ)    &   (𝜑 → (𝑃𝐷𝑄) ≤ (𝑆 +𝑒 -𝑒𝑅))       (𝜑 → (𝑃(ball‘𝐷)𝑅) ⊆ (𝑄(ball‘𝐷)𝑆))
 
Theoremxblss2 14727 One ball is contained in another if the center-to-center distance is less than the difference of the radii. In this version of blss2 14729 for extended metrics, we have to assume the balls are a finite distance apart, or else 𝑃 will not even be in the infinity ball around 𝑄. (Contributed by Mario Carneiro, 23-Aug-2015.)
(𝜑𝐷 ∈ (∞Met‘𝑋))    &   (𝜑𝑃𝑋)    &   (𝜑𝑄𝑋)    &   (𝜑𝑅 ∈ ℝ*)    &   (𝜑𝑆 ∈ ℝ*)    &   (𝜑 → (𝑃𝐷𝑄) ∈ ℝ)    &   (𝜑 → (𝑃𝐷𝑄) ≤ (𝑆 +𝑒 -𝑒𝑅))       (𝜑 → (𝑃(ball‘𝐷)𝑅) ⊆ (𝑄(ball‘𝐷)𝑆))
 
Theoremblss2ps 14728 One ball is contained in another if the center-to-center distance is less than the difference of the radii. (Contributed by Mario Carneiro, 15-Jan-2014.) (Revised by Mario Carneiro, 23-Aug-2015.) (Revised by Thierry Arnoux, 11-Mar-2018.)
(((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑆 ∈ ℝ ∧ (𝑃𝐷𝑄) ≤ (𝑆𝑅))) → (𝑃(ball‘𝐷)𝑅) ⊆ (𝑄(ball‘𝐷)𝑆))
 
Theoremblss2 14729 One ball is contained in another if the center-to-center distance is less than the difference of the radii. (Contributed by Mario Carneiro, 15-Jan-2014.) (Revised by Mario Carneiro, 23-Aug-2015.)
(((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑄𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑆 ∈ ℝ ∧ (𝑃𝐷𝑄) ≤ (𝑆𝑅))) → (𝑃(ball‘𝐷)𝑅) ⊆ (𝑄(ball‘𝐷)𝑆))
 
Theoremblhalf 14730 A ball of radius 𝑅 / 2 is contained in a ball of radius 𝑅 centered at any point inside the smaller ball. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 14-Jan-2014.)
(((𝑀 ∈ (∞Met‘𝑋) ∧ 𝑌𝑋) ∧ (𝑅 ∈ ℝ ∧ 𝑍 ∈ (𝑌(ball‘𝑀)(𝑅 / 2)))) → (𝑌(ball‘𝑀)(𝑅 / 2)) ⊆ (𝑍(ball‘𝑀)𝑅))
 
Theoremblfps 14731 Mapping of a ball. (Contributed by NM, 7-May-2007.) (Revised by Mario Carneiro, 23-Aug-2015.) (Revised by Thierry Arnoux, 11-Mar-2018.)
(𝐷 ∈ (PsMet‘𝑋) → (ball‘𝐷):(𝑋 × ℝ*)⟶𝒫 𝑋)
 
Theoremblf 14732 Mapping of a ball. (Contributed by NM, 7-May-2007.) (Revised by Mario Carneiro, 23-Aug-2015.)
(𝐷 ∈ (∞Met‘𝑋) → (ball‘𝐷):(𝑋 × ℝ*)⟶𝒫 𝑋)
 
Theoremblrnps 14733* Membership in the range of the ball function. Note that ran (ball‘𝐷) is the collection of all balls for metric 𝐷. (Contributed by NM, 31-Aug-2006.) (Revised by Mario Carneiro, 12-Nov-2013.) (Revised by Thierry Arnoux, 11-Mar-2018.)
(𝐷 ∈ (PsMet‘𝑋) → (𝐴 ∈ ran (ball‘𝐷) ↔ ∃𝑥𝑋𝑟 ∈ ℝ* 𝐴 = (𝑥(ball‘𝐷)𝑟)))
 
Theoremblrn 14734* Membership in the range of the ball function. Note that ran (ball‘𝐷) is the collection of all balls for metric 𝐷. (Contributed by NM, 31-Aug-2006.) (Revised by Mario Carneiro, 12-Nov-2013.)
(𝐷 ∈ (∞Met‘𝑋) → (𝐴 ∈ ran (ball‘𝐷) ↔ ∃𝑥𝑋𝑟 ∈ ℝ* 𝐴 = (𝑥(ball‘𝐷)𝑟)))
 
Theoremxblcntrps 14735 A ball contains its center. (Contributed by NM, 2-Sep-2006.) (Revised by Mario Carneiro, 12-Nov-2013.) (Revised by Thierry Arnoux, 11-Mar-2018.)
((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋 ∧ (𝑅 ∈ ℝ* ∧ 0 < 𝑅)) → 𝑃 ∈ (𝑃(ball‘𝐷)𝑅))
 
Theoremxblcntr 14736 A ball contains its center. (Contributed by NM, 2-Sep-2006.) (Revised by Mario Carneiro, 12-Nov-2013.)
((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋 ∧ (𝑅 ∈ ℝ* ∧ 0 < 𝑅)) → 𝑃 ∈ (𝑃(ball‘𝐷)𝑅))
 
Theoremblcntrps 14737 A ball contains its center. (Contributed by NM, 2-Sep-2006.) (Revised by Mario Carneiro, 12-Nov-2013.) (Revised by Thierry Arnoux, 11-Mar-2018.)
((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ+) → 𝑃 ∈ (𝑃(ball‘𝐷)𝑅))
 
Theoremblcntr 14738 A ball contains its center. (Contributed by NM, 2-Sep-2006.) (Revised by Mario Carneiro, 12-Nov-2013.)
((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ+) → 𝑃 ∈ (𝑃(ball‘𝐷)𝑅))
 
Theoremxblm 14739* A ball is inhabited iff the radius is positive. (Contributed by Mario Carneiro, 23-Aug-2015.)
((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → (∃𝑥 𝑥 ∈ (𝑃(ball‘𝐷)𝑅) ↔ 0 < 𝑅))
 
Theorembln0 14740 A ball is not empty. It is also inhabited, as seen at blcntr 14738. (Contributed by NM, 6-Oct-2007.) (Revised by Mario Carneiro, 12-Nov-2013.)
((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ+) → (𝑃(ball‘𝐷)𝑅) ≠ ∅)
 
Theoremblelrnps 14741 A ball belongs to the set of balls of a metric space. (Contributed by NM, 2-Sep-2006.) (Revised by Mario Carneiro, 12-Nov-2013.) (Revised by Thierry Arnoux, 11-Mar-2018.)
((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑅) ∈ ran (ball‘𝐷))
 
Theoremblelrn 14742 A ball belongs to the set of balls of a metric space. (Contributed by NM, 2-Sep-2006.) (Revised by Mario Carneiro, 12-Nov-2013.)
((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑅) ∈ ran (ball‘𝐷))
 
Theoremblssm 14743 A ball is a subset of the base set of a metric space. (Contributed by NM, 31-Aug-2006.) (Revised by Mario Carneiro, 12-Nov-2013.)
((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑅) ⊆ 𝑋)
 
Theoremunirnblps 14744 The union of the set of balls of a metric space is its base set. (Contributed by NM, 12-Sep-2006.) (Revised by Mario Carneiro, 12-Nov-2013.) (Revised by Thierry Arnoux, 11-Mar-2018.)
(𝐷 ∈ (PsMet‘𝑋) → ran (ball‘𝐷) = 𝑋)
 
Theoremunirnbl 14745 The union of the set of balls of a metric space is its base set. (Contributed by NM, 12-Sep-2006.) (Revised by Mario Carneiro, 12-Nov-2013.)
(𝐷 ∈ (∞Met‘𝑋) → ran (ball‘𝐷) = 𝑋)
 
Theoremblininf 14746 The intersection of two balls with the same center is the smaller of them. (Contributed by NM, 1-Sep-2006.) (Revised by Mario Carneiro, 12-Nov-2013.)
(((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ*)) → ((𝑃(ball‘𝐷)𝑅) ∩ (𝑃(ball‘𝐷)𝑆)) = (𝑃(ball‘𝐷)inf({𝑅, 𝑆}, ℝ*, < )))
 
Theoremssblps 14747 The size of a ball increases monotonically with its radius. (Contributed by NM, 20-Sep-2007.) (Revised by Mario Carneiro, 24-Aug-2015.) (Revised by Thierry Arnoux, 11-Mar-2018.)
(((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ*) ∧ 𝑅𝑆) → (𝑃(ball‘𝐷)𝑅) ⊆ (𝑃(ball‘𝐷)𝑆))
 
Theoremssbl 14748 The size of a ball increases monotonically with its radius. (Contributed by NM, 20-Sep-2007.) (Revised by Mario Carneiro, 24-Aug-2015.)
(((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ*𝑆 ∈ ℝ*) ∧ 𝑅𝑆) → (𝑃(ball‘𝐷)𝑅) ⊆ (𝑃(ball‘𝐷)𝑆))
 
Theoremblssps 14749* Any point 𝑃 in a ball 𝐵 can be centered in another ball that is a subset of 𝐵. (Contributed by NM, 31-Aug-2006.) (Revised by Mario Carneiro, 24-Aug-2015.) (Revised by Thierry Arnoux, 11-Mar-2018.)
((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐵 ∈ ran (ball‘𝐷) ∧ 𝑃𝐵) → ∃𝑥 ∈ ℝ+ (𝑃(ball‘𝐷)𝑥) ⊆ 𝐵)
 
Theoremblss 14750* Any point 𝑃 in a ball 𝐵 can be centered in another ball that is a subset of 𝐵. (Contributed by NM, 31-Aug-2006.) (Revised by Mario Carneiro, 24-Aug-2015.)
((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ ran (ball‘𝐷) ∧ 𝑃𝐵) → ∃𝑥 ∈ ℝ+ (𝑃(ball‘𝐷)𝑥) ⊆ 𝐵)
 
Theoremblssexps 14751* Two ways to express the existence of a ball subset. (Contributed by NM, 5-May-2007.) (Revised by Mario Carneiro, 12-Nov-2013.) (Revised by Thierry Arnoux, 11-Mar-2018.)
((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋) → (∃𝑥 ∈ ran (ball‘𝐷)(𝑃𝑥𝑥𝐴) ↔ ∃𝑟 ∈ ℝ+ (𝑃(ball‘𝐷)𝑟) ⊆ 𝐴))
 
Theoremblssex 14752* Two ways to express the existence of a ball subset. (Contributed by NM, 5-May-2007.) (Revised by Mario Carneiro, 12-Nov-2013.)
((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) → (∃𝑥 ∈ ran (ball‘𝐷)(𝑃𝑥𝑥𝐴) ↔ ∃𝑟 ∈ ℝ+ (𝑃(ball‘𝐷)𝑟) ⊆ 𝐴))
 
Theoremssblex 14753* A nested ball exists whose radius is less than any desired amount. (Contributed by NM, 20-Sep-2007.) (Revised by Mario Carneiro, 12-Nov-2013.)
(((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) ∧ (𝑅 ∈ ℝ+𝑆 ∈ ℝ+)) → ∃𝑥 ∈ ℝ+ (𝑥 < 𝑅 ∧ (𝑃(ball‘𝐷)𝑥) ⊆ (𝑃(ball‘𝐷)𝑆)))
 
Theoremblin2 14754* Given any two balls and a point in their intersection, there is a ball contained in the intersection with the given center point. (Contributed by Mario Carneiro, 12-Nov-2013.)
(((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ (𝐵𝐶)) ∧ (𝐵 ∈ ran (ball‘𝐷) ∧ 𝐶 ∈ ran (ball‘𝐷))) → ∃𝑥 ∈ ℝ+ (𝑃(ball‘𝐷)𝑥) ⊆ (𝐵𝐶))
 
Theoremblbas 14755 The balls of a metric space form a basis for a topology. (Contributed by NM, 12-Sep-2006.) (Revised by Mario Carneiro, 15-Jan-2014.)
(𝐷 ∈ (∞Met‘𝑋) → ran (ball‘𝐷) ∈ TopBases)
 
Theoremblres 14756 A ball in a restricted metric space. (Contributed by Mario Carneiro, 5-Jan-2014.)
𝐶 = (𝐷 ↾ (𝑌 × 𝑌))       ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ (𝑋𝑌) ∧ 𝑅 ∈ ℝ*) → (𝑃(ball‘𝐶)𝑅) = ((𝑃(ball‘𝐷)𝑅) ∩ 𝑌))
 
Theoremxmeterval 14757 Value of the "finitely separated" relation. (Contributed by Mario Carneiro, 24-Aug-2015.)
= (𝐷 “ ℝ)       (𝐷 ∈ (∞Met‘𝑋) → (𝐴 𝐵 ↔ (𝐴𝑋𝐵𝑋 ∧ (𝐴𝐷𝐵) ∈ ℝ)))
 
Theoremxmeter 14758 The "finitely separated" relation is an equivalence relation. (Contributed by Mario Carneiro, 24-Aug-2015.)
= (𝐷 “ ℝ)       (𝐷 ∈ (∞Met‘𝑋) → Er 𝑋)
 
Theoremxmetec 14759 The equivalence classes under the finite separation equivalence relation are infinity balls. (Contributed by Mario Carneiro, 24-Aug-2015.)
= (𝐷 “ ℝ)       ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋) → [𝑃] = (𝑃(ball‘𝐷)+∞))
 
Theoremblssec 14760 A ball centered at 𝑃 is contained in the set of points finitely separated from 𝑃. This is just an application of ssbl 14748 to the infinity ball. (Contributed by Mario Carneiro, 24-Aug-2015.)
= (𝐷 “ ℝ)       ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑆 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑆) ⊆ [𝑃] )
 
Theoremblpnfctr 14761 The infinity ball in an extended metric acts like an ultrametric ball in that every point in the ball is also its center. (Contributed by Mario Carneiro, 21-Aug-2015.)
((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝐴 ∈ (𝑃(ball‘𝐷)+∞)) → (𝑃(ball‘𝐷)+∞) = (𝐴(ball‘𝐷)+∞))
 
Theoremxmetresbl 14762 An extended metric restricted to any ball (in particular the infinity ball) is a proper metric. Together with xmetec 14759, this shows that any extended metric space can be "factored" into the disjoint union of proper metric spaces, with points in the same region measured by that region's metric, and points in different regions being distance +∞ from each other. (Contributed by Mario Carneiro, 23-Aug-2015.)
𝐵 = (𝑃(ball‘𝐷)𝑅)       ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → (𝐷 ↾ (𝐵 × 𝐵)) ∈ (Met‘𝐵))
 
9.2.4  Open sets of a metric space
 
Theoremmopnrel 14763 The class of open sets of a metric space is a relation. (Contributed by Jim Kingdon, 5-May-2023.)
Rel MetOpen
 
Theoremmopnval 14764 An open set is a subset of a metric space which includes a ball around each of its points. Definition 1.3-2 of [Kreyszig] p. 18. The object (MetOpen‘𝐷) is the family of all open sets in the metric space determined by the metric 𝐷. By mopntop 14766, the open sets of a metric space form a topology 𝐽, whose base set is 𝐽 by mopnuni 14767. (Contributed by NM, 1-Sep-2006.) (Revised by Mario Carneiro, 12-Nov-2013.)
𝐽 = (MetOpen‘𝐷)       (𝐷 ∈ (∞Met‘𝑋) → 𝐽 = (topGen‘ran (ball‘𝐷)))
 
Theoremmopntopon 14765 The set of open sets of a metric space 𝑋 is a topology on 𝑋. Remark in [Kreyszig] p. 19. This theorem connects the two concepts and makes available the theorems for topologies for use with metric spaces. (Contributed by Mario Carneiro, 24-Aug-2015.)
𝐽 = (MetOpen‘𝐷)       (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ (TopOn‘𝑋))
 
Theoremmopntop 14766 The set of open sets of a metric space is a topology. (Contributed by NM, 28-Aug-2006.) (Revised by Mario Carneiro, 12-Nov-2013.)
𝐽 = (MetOpen‘𝐷)       (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ Top)
 
Theoremmopnuni 14767 The union of all open sets in a metric space is its underlying set. (Contributed by NM, 4-Sep-2006.) (Revised by Mario Carneiro, 12-Nov-2013.)
𝐽 = (MetOpen‘𝐷)       (𝐷 ∈ (∞Met‘𝑋) → 𝑋 = 𝐽)
 
Theoremelmopn 14768* The defining property of an open set of a metric space. (Contributed by NM, 1-Sep-2006.) (Revised by Mario Carneiro, 12-Nov-2013.)
𝐽 = (MetOpen‘𝐷)       (𝐷 ∈ (∞Met‘𝑋) → (𝐴𝐽 ↔ (𝐴𝑋 ∧ ∀𝑥𝐴𝑦 ∈ ran (ball‘𝐷)(𝑥𝑦𝑦𝐴))))
 
Theoremmopnfss 14769 The family of open sets of a metric space is a collection of subsets of the base set. (Contributed by NM, 3-Sep-2006.) (Revised by Mario Carneiro, 12-Nov-2013.)
𝐽 = (MetOpen‘𝐷)       (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ⊆ 𝒫 𝑋)
 
Theoremmopnm 14770 The base set of a metric space is open. Part of Theorem T1 of [Kreyszig] p. 19. (Contributed by NM, 4-Sep-2006.) (Revised by Mario Carneiro, 12-Nov-2013.)
𝐽 = (MetOpen‘𝐷)       (𝐷 ∈ (∞Met‘𝑋) → 𝑋𝐽)
 
Theoremelmopn2 14771* A defining property of an open set of a metric space. (Contributed by NM, 5-May-2007.) (Revised by Mario Carneiro, 12-Nov-2013.)
𝐽 = (MetOpen‘𝐷)       (𝐷 ∈ (∞Met‘𝑋) → (𝐴𝐽 ↔ (𝐴𝑋 ∧ ∀𝑥𝐴𝑦 ∈ ℝ+ (𝑥(ball‘𝐷)𝑦) ⊆ 𝐴)))
 
Theoremmopnss 14772 An open set of a metric space is a subspace of its base set. (Contributed by NM, 3-Sep-2006.)
𝐽 = (MetOpen‘𝐷)       ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝐽) → 𝐴𝑋)
 
Theoremisxms 14773 Express the predicate "𝑋, 𝐷 is an extended metric space" with underlying set 𝑋 and distance function 𝐷. (Contributed by Mario Carneiro, 2-Sep-2015.)
𝐽 = (TopOpen‘𝐾)    &   𝑋 = (Base‘𝐾)    &   𝐷 = ((dist‘𝐾) ↾ (𝑋 × 𝑋))       (𝐾 ∈ ∞MetSp ↔ (𝐾 ∈ TopSp ∧ 𝐽 = (MetOpen‘𝐷)))
 
Theoremisxms2 14774 Express the predicate "𝑋, 𝐷 is an extended metric space" with underlying set 𝑋 and distance function 𝐷. (Contributed by Mario Carneiro, 2-Sep-2015.)
𝐽 = (TopOpen‘𝐾)    &   𝑋 = (Base‘𝐾)    &   𝐷 = ((dist‘𝐾) ↾ (𝑋 × 𝑋))       (𝐾 ∈ ∞MetSp ↔ (𝐷 ∈ (∞Met‘𝑋) ∧ 𝐽 = (MetOpen‘𝐷)))
 
Theoremisms 14775 Express the predicate "𝑋, 𝐷 is a metric space" with underlying set 𝑋 and distance function 𝐷. (Contributed by NM, 27-Aug-2006.) (Revised by Mario Carneiro, 24-Aug-2015.)
𝐽 = (TopOpen‘𝐾)    &   𝑋 = (Base‘𝐾)    &   𝐷 = ((dist‘𝐾) ↾ (𝑋 × 𝑋))       (𝐾 ∈ MetSp ↔ (𝐾 ∈ ∞MetSp ∧ 𝐷 ∈ (Met‘𝑋)))
 
Theoremisms2 14776 Express the predicate "𝑋, 𝐷 is a metric space" with underlying set 𝑋 and distance function 𝐷. (Contributed by NM, 27-Aug-2006.) (Revised by Mario Carneiro, 24-Aug-2015.)
𝐽 = (TopOpen‘𝐾)    &   𝑋 = (Base‘𝐾)    &   𝐷 = ((dist‘𝐾) ↾ (𝑋 × 𝑋))       (𝐾 ∈ MetSp ↔ (𝐷 ∈ (Met‘𝑋) ∧ 𝐽 = (MetOpen‘𝐷)))
 
Theoremxmstopn 14777 The topology component of an extended metric space coincides with the topology generated by the metric component. (Contributed by Mario Carneiro, 26-Aug-2015.)
𝐽 = (TopOpen‘𝐾)    &   𝑋 = (Base‘𝐾)    &   𝐷 = ((dist‘𝐾) ↾ (𝑋 × 𝑋))       (𝐾 ∈ ∞MetSp → 𝐽 = (MetOpen‘𝐷))
 
Theoremmstopn 14778 The topology component of a metric space coincides with the topology generated by the metric component. (Contributed by Mario Carneiro, 26-Aug-2015.)
𝐽 = (TopOpen‘𝐾)    &   𝑋 = (Base‘𝐾)    &   𝐷 = ((dist‘𝐾) ↾ (𝑋 × 𝑋))       (𝐾 ∈ MetSp → 𝐽 = (MetOpen‘𝐷))
 
Theoremxmstps 14779 An extended metric space is a topological space. (Contributed by Mario Carneiro, 26-Aug-2015.)
(𝑀 ∈ ∞MetSp → 𝑀 ∈ TopSp)
 
Theoremmsxms 14780 A metric space is an extended metric space. (Contributed by Mario Carneiro, 26-Aug-2015.)
(𝑀 ∈ MetSp → 𝑀 ∈ ∞MetSp)
 
Theoremmstps 14781 A metric space is a topological space. (Contributed by Mario Carneiro, 26-Aug-2015.)
(𝑀 ∈ MetSp → 𝑀 ∈ TopSp)
 
Theoremxmsxmet 14782 The distance function, suitably truncated, is an extended metric on 𝑋. (Contributed by Mario Carneiro, 2-Sep-2015.)
𝑋 = (Base‘𝑀)    &   𝐷 = ((dist‘𝑀) ↾ (𝑋 × 𝑋))       (𝑀 ∈ ∞MetSp → 𝐷 ∈ (∞Met‘𝑋))
 
Theoremmsmet 14783 The distance function, suitably truncated, is a metric on 𝑋. (Contributed by Mario Carneiro, 12-Nov-2013.)
𝑋 = (Base‘𝑀)    &   𝐷 = ((dist‘𝑀) ↾ (𝑋 × 𝑋))       (𝑀 ∈ MetSp → 𝐷 ∈ (Met‘𝑋))
 
Theoremmsf 14784 The distance function of a metric space is a function into the real numbers. (Contributed by NM, 30-Aug-2006.) (Revised by Mario Carneiro, 12-Nov-2013.)
𝑋 = (Base‘𝑀)    &   𝐷 = ((dist‘𝑀) ↾ (𝑋 × 𝑋))       (𝑀 ∈ MetSp → 𝐷:(𝑋 × 𝑋)⟶ℝ)
 
Theoremxmsxmet2 14785 The distance function, suitably truncated, is an extended metric on 𝑋. (Contributed by Mario Carneiro, 2-Oct-2015.)
𝑋 = (Base‘𝑀)    &   𝐷 = (dist‘𝑀)       (𝑀 ∈ ∞MetSp → (𝐷 ↾ (𝑋 × 𝑋)) ∈ (∞Met‘𝑋))
 
Theoremmsmet2 14786 The distance function, suitably truncated, is a metric on 𝑋. (Contributed by Mario Carneiro, 2-Oct-2015.)
𝑋 = (Base‘𝑀)    &   𝐷 = (dist‘𝑀)       (𝑀 ∈ MetSp → (𝐷 ↾ (𝑋 × 𝑋)) ∈ (Met‘𝑋))
 
Theoremmscl 14787 Closure of the distance function of a metric space. (Contributed by NM, 30-Aug-2006.) (Revised by Mario Carneiro, 2-Oct-2015.)
𝑋 = (Base‘𝑀)    &   𝐷 = (dist‘𝑀)       ((𝑀 ∈ MetSp ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐷𝐵) ∈ ℝ)
 
Theoremxmscl 14788 Closure of the distance function of an extended metric space. (Contributed by Mario Carneiro, 2-Oct-2015.)
𝑋 = (Base‘𝑀)    &   𝐷 = (dist‘𝑀)       ((𝑀 ∈ ∞MetSp ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐷𝐵) ∈ ℝ*)
 
Theoremxmsge0 14789 The distance function in an extended metric space is nonnegative. (Contributed by Mario Carneiro, 4-Oct-2015.)
𝑋 = (Base‘𝑀)    &   𝐷 = (dist‘𝑀)       ((𝑀 ∈ ∞MetSp ∧ 𝐴𝑋𝐵𝑋) → 0 ≤ (𝐴𝐷𝐵))
 
Theoremxmseq0 14790 The distance between two points in an extended metric space is zero iff the two points are identical. (Contributed by Mario Carneiro, 2-Oct-2015.)
𝑋 = (Base‘𝑀)    &   𝐷 = (dist‘𝑀)       ((𝑀 ∈ ∞MetSp ∧ 𝐴𝑋𝐵𝑋) → ((𝐴𝐷𝐵) = 0 ↔ 𝐴 = 𝐵))
 
Theoremxmssym 14791 The distance function in an extended metric space is symmetric. (Contributed by Mario Carneiro, 2-Oct-2015.)
𝑋 = (Base‘𝑀)    &   𝐷 = (dist‘𝑀)       ((𝑀 ∈ ∞MetSp ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐷𝐵) = (𝐵𝐷𝐴))
 
Theoremxmstri2 14792 Triangle inequality for the distance function of an extended metric. (Contributed by Mario Carneiro, 2-Oct-2015.)
𝑋 = (Base‘𝑀)    &   𝐷 = (dist‘𝑀)       ((𝑀 ∈ ∞MetSp ∧ (𝐶𝑋𝐴𝑋𝐵𝑋)) → (𝐴𝐷𝐵) ≤ ((𝐶𝐷𝐴) +𝑒 (𝐶𝐷𝐵)))
 
Theoremmstri2 14793 Triangle inequality for the distance function of a metric space. (Contributed by Mario Carneiro, 2-Oct-2015.)
𝑋 = (Base‘𝑀)    &   𝐷 = (dist‘𝑀)       ((𝑀 ∈ MetSp ∧ (𝐶𝑋𝐴𝑋𝐵𝑋)) → (𝐴𝐷𝐵) ≤ ((𝐶𝐷𝐴) + (𝐶𝐷𝐵)))
 
Theoremxmstri 14794 Triangle inequality for the distance function of a metric space. Definition 14-1.1(d) of [Gleason] p. 223. (Contributed by Mario Carneiro, 2-Oct-2015.)
𝑋 = (Base‘𝑀)    &   𝐷 = (dist‘𝑀)       ((𝑀 ∈ ∞MetSp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐴𝐷𝐵) ≤ ((𝐴𝐷𝐶) +𝑒 (𝐶𝐷𝐵)))
 
Theoremmstri 14795 Triangle inequality for the distance function of a metric space. Definition 14-1.1(d) of [Gleason] p. 223. (Contributed by Mario Carneiro, 2-Oct-2015.)
𝑋 = (Base‘𝑀)    &   𝐷 = (dist‘𝑀)       ((𝑀 ∈ MetSp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐴𝐷𝐵) ≤ ((𝐴𝐷𝐶) + (𝐶𝐷𝐵)))
 
Theoremxmstri3 14796 Triangle inequality for the distance function of an extended metric. (Contributed by Mario Carneiro, 2-Oct-2015.)
𝑋 = (Base‘𝑀)    &   𝐷 = (dist‘𝑀)       ((𝑀 ∈ ∞MetSp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐴𝐷𝐵) ≤ ((𝐴𝐷𝐶) +𝑒 (𝐵𝐷𝐶)))
 
Theoremmstri3 14797 Triangle inequality for the distance function of a metric space. (Contributed by Mario Carneiro, 2-Oct-2015.)
𝑋 = (Base‘𝑀)    &   𝐷 = (dist‘𝑀)       ((𝑀 ∈ MetSp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐴𝐷𝐵) ≤ ((𝐴𝐷𝐶) + (𝐵𝐷𝐶)))
 
Theoremmsrtri 14798 Reverse triangle inequality for the distance function of a metric space. (Contributed by Mario Carneiro, 4-Oct-2015.)
𝑋 = (Base‘𝑀)    &   𝐷 = (dist‘𝑀)       ((𝑀 ∈ MetSp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (abs‘((𝐴𝐷𝐶) − (𝐵𝐷𝐶))) ≤ (𝐴𝐷𝐵))
 
Theoremxmspropd 14799 Property deduction for an extended metric space. (Contributed by Mario Carneiro, 4-Oct-2015.)
(𝜑𝐵 = (Base‘𝐾))    &   (𝜑𝐵 = (Base‘𝐿))    &   (𝜑 → ((dist‘𝐾) ↾ (𝐵 × 𝐵)) = ((dist‘𝐿) ↾ (𝐵 × 𝐵)))    &   (𝜑 → (TopOpen‘𝐾) = (TopOpen‘𝐿))       (𝜑 → (𝐾 ∈ ∞MetSp ↔ 𝐿 ∈ ∞MetSp))
 
Theoremmspropd 14800 Property deduction for a metric space. (Contributed by Mario Carneiro, 4-Oct-2015.)
(𝜑𝐵 = (Base‘𝐾))    &   (𝜑𝐵 = (Base‘𝐿))    &   (𝜑 → ((dist‘𝐾) ↾ (𝐵 × 𝐵)) = ((dist‘𝐿) ↾ (𝐵 × 𝐵)))    &   (𝜑 → (TopOpen‘𝐾) = (TopOpen‘𝐿))       (𝜑 → (𝐾 ∈ MetSp ↔ 𝐿 ∈ MetSp))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15819
  Copyright terms: Public domain < Previous  Next >