Theorem List for Intuitionistic Logic Explorer - 14701-14800   *Has distinct variable
 group(s)
| Type | Label | Description | 
| Statement | 
|   | 
| Theorem | mscl 14701 | 
Closure of the distance function of a metric space.  (Contributed by NM,
       30-Aug-2006.)  (Revised by Mario Carneiro, 2-Oct-2015.)
 | 
| ⊢ 𝑋 = (Base‘𝑀)   
 &   ⊢ 𝐷 = (dist‘𝑀)    ⇒   ⊢ ((𝑀 ∈ MetSp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐵) ∈ ℝ) | 
|   | 
| Theorem | xmscl 14702 | 
Closure of the distance function of an extended metric space.
       (Contributed by Mario Carneiro, 2-Oct-2015.)
 | 
| ⊢ 𝑋 = (Base‘𝑀)   
 &   ⊢ 𝐷 = (dist‘𝑀)    ⇒   ⊢ ((𝑀 ∈ ∞MetSp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐵) ∈
 ℝ*) | 
|   | 
| Theorem | xmsge0 14703 | 
The distance function in an extended metric space is nonnegative.
       (Contributed by Mario Carneiro, 4-Oct-2015.)
 | 
| ⊢ 𝑋 = (Base‘𝑀)   
 &   ⊢ 𝐷 = (dist‘𝑀)    ⇒   ⊢ ((𝑀 ∈ ∞MetSp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → 0 ≤ (𝐴𝐷𝐵)) | 
|   | 
| Theorem | xmseq0 14704 | 
The distance between two points in an extended metric space is zero iff
       the two points are identical.  (Contributed by Mario Carneiro,
       2-Oct-2015.)
 | 
| ⊢ 𝑋 = (Base‘𝑀)   
 &   ⊢ 𝐷 = (dist‘𝑀)    ⇒   ⊢ ((𝑀 ∈ ∞MetSp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐴𝐷𝐵) = 0 ↔ 𝐴 = 𝐵)) | 
|   | 
| Theorem | xmssym 14705 | 
The distance function in an extended metric space is symmetric.
       (Contributed by Mario Carneiro, 2-Oct-2015.)
 | 
| ⊢ 𝑋 = (Base‘𝑀)   
 &   ⊢ 𝐷 = (dist‘𝑀)    ⇒   ⊢ ((𝑀 ∈ ∞MetSp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐵) = (𝐵𝐷𝐴)) | 
|   | 
| Theorem | xmstri2 14706 | 
Triangle inequality for the distance function of an extended metric.
       (Contributed by Mario Carneiro, 2-Oct-2015.)
 | 
| ⊢ 𝑋 = (Base‘𝑀)   
 &   ⊢ 𝐷 = (dist‘𝑀)    ⇒   ⊢ ((𝑀 ∈ ∞MetSp ∧ (𝐶 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐴𝐷𝐵) ≤ ((𝐶𝐷𝐴) +𝑒 (𝐶𝐷𝐵))) | 
|   | 
| Theorem | mstri2 14707 | 
Triangle inequality for the distance function of a metric space.
       (Contributed by Mario Carneiro, 2-Oct-2015.)
 | 
| ⊢ 𝑋 = (Base‘𝑀)   
 &   ⊢ 𝐷 = (dist‘𝑀)    ⇒   ⊢ ((𝑀 ∈ MetSp ∧ (𝐶 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐴𝐷𝐵) ≤ ((𝐶𝐷𝐴) + (𝐶𝐷𝐵))) | 
|   | 
| Theorem | xmstri 14708 | 
Triangle inequality for the distance function of a metric space.
       Definition 14-1.1(d) of [Gleason] p.
223.  (Contributed by Mario
       Carneiro, 2-Oct-2015.)
 | 
| ⊢ 𝑋 = (Base‘𝑀)   
 &   ⊢ 𝐷 = (dist‘𝑀)    ⇒   ⊢ ((𝑀 ∈ ∞MetSp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴𝐷𝐵) ≤ ((𝐴𝐷𝐶) +𝑒 (𝐶𝐷𝐵))) | 
|   | 
| Theorem | mstri 14709 | 
Triangle inequality for the distance function of a metric space.
       Definition 14-1.1(d) of [Gleason] p.
223.  (Contributed by Mario
       Carneiro, 2-Oct-2015.)
 | 
| ⊢ 𝑋 = (Base‘𝑀)   
 &   ⊢ 𝐷 = (dist‘𝑀)    ⇒   ⊢ ((𝑀 ∈ MetSp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴𝐷𝐵) ≤ ((𝐴𝐷𝐶) + (𝐶𝐷𝐵))) | 
|   | 
| Theorem | xmstri3 14710 | 
Triangle inequality for the distance function of an extended metric.
       (Contributed by Mario Carneiro, 2-Oct-2015.)
 | 
| ⊢ 𝑋 = (Base‘𝑀)   
 &   ⊢ 𝐷 = (dist‘𝑀)    ⇒   ⊢ ((𝑀 ∈ ∞MetSp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴𝐷𝐵) ≤ ((𝐴𝐷𝐶) +𝑒 (𝐵𝐷𝐶))) | 
|   | 
| Theorem | mstri3 14711 | 
Triangle inequality for the distance function of a metric space.
       (Contributed by Mario Carneiro, 2-Oct-2015.)
 | 
| ⊢ 𝑋 = (Base‘𝑀)   
 &   ⊢ 𝐷 = (dist‘𝑀)    ⇒   ⊢ ((𝑀 ∈ MetSp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴𝐷𝐵) ≤ ((𝐴𝐷𝐶) + (𝐵𝐷𝐶))) | 
|   | 
| Theorem | msrtri 14712 | 
Reverse triangle inequality for the distance function of a metric space.
       (Contributed by Mario Carneiro, 4-Oct-2015.)
 | 
| ⊢ 𝑋 = (Base‘𝑀)   
 &   ⊢ 𝐷 = (dist‘𝑀)    ⇒   ⊢ ((𝑀 ∈ MetSp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (abs‘((𝐴𝐷𝐶) − (𝐵𝐷𝐶))) ≤ (𝐴𝐷𝐵)) | 
|   | 
| Theorem | xmspropd 14713 | 
Property deduction for an extended metric space.  (Contributed by Mario
       Carneiro, 4-Oct-2015.)
 | 
| ⊢ (𝜑 → 𝐵 = (Base‘𝐾))    &   ⊢ (𝜑 → 𝐵 = (Base‘𝐿))    &   ⊢ (𝜑 → ((dist‘𝐾) ↾ (𝐵 × 𝐵)) = ((dist‘𝐿) ↾ (𝐵 × 𝐵)))    &   ⊢ (𝜑 → (TopOpen‘𝐾) = (TopOpen‘𝐿))   
 ⇒   ⊢ (𝜑 → (𝐾 ∈ ∞MetSp ↔ 𝐿 ∈
 ∞MetSp)) | 
|   | 
| Theorem | mspropd 14714 | 
Property deduction for a metric space.  (Contributed by Mario Carneiro,
       4-Oct-2015.)
 | 
| ⊢ (𝜑 → 𝐵 = (Base‘𝐾))    &   ⊢ (𝜑 → 𝐵 = (Base‘𝐿))    &   ⊢ (𝜑 → ((dist‘𝐾) ↾ (𝐵 × 𝐵)) = ((dist‘𝐿) ↾ (𝐵 × 𝐵)))    &   ⊢ (𝜑 → (TopOpen‘𝐾) = (TopOpen‘𝐿))   
 ⇒   ⊢ (𝜑 → (𝐾 ∈ MetSp ↔ 𝐿 ∈ MetSp)) | 
|   | 
| Theorem | setsmsbasg 14715 | 
The base set of a constructed metric space.  (Contributed by Mario
         Carneiro, 28-Aug-2015.)
 | 
| ⊢ (𝜑 → 𝑋 = (Base‘𝑀))    &   ⊢ (𝜑 → 𝐷 = ((dist‘𝑀) ↾ (𝑋 × 𝑋)))    &   ⊢ (𝜑 → 𝐾 = (𝑀 sSet 〈(TopSet‘ndx),
 (MetOpen‘𝐷)〉))    &   ⊢ (𝜑 → 𝑀 ∈ 𝑉)   
 &   ⊢ (𝜑 → (MetOpen‘𝐷) ∈ 𝑊)    ⇒   ⊢ (𝜑 → 𝑋 = (Base‘𝐾)) | 
|   | 
| Theorem | setsmsdsg 14716 | 
The distance function of a constructed metric space.  (Contributed by
         Mario Carneiro, 28-Aug-2015.)
 | 
| ⊢ (𝜑 → 𝑋 = (Base‘𝑀))    &   ⊢ (𝜑 → 𝐷 = ((dist‘𝑀) ↾ (𝑋 × 𝑋)))    &   ⊢ (𝜑 → 𝐾 = (𝑀 sSet 〈(TopSet‘ndx),
 (MetOpen‘𝐷)〉))    &   ⊢ (𝜑 → 𝑀 ∈ 𝑉)   
 &   ⊢ (𝜑 → (MetOpen‘𝐷) ∈ 𝑊)    ⇒   ⊢ (𝜑 → (dist‘𝑀) = (dist‘𝐾)) | 
|   | 
| Theorem | setsmstsetg 14717 | 
The topology of a constructed metric space.  (Contributed by Mario
         Carneiro, 28-Aug-2015.)  (Revised by Jim Kingdon, 7-May-2023.)
 | 
| ⊢ (𝜑 → 𝑋 = (Base‘𝑀))    &   ⊢ (𝜑 → 𝐷 = ((dist‘𝑀) ↾ (𝑋 × 𝑋)))    &   ⊢ (𝜑 → 𝐾 = (𝑀 sSet 〈(TopSet‘ndx),
 (MetOpen‘𝐷)〉))    &   ⊢ (𝜑 → 𝑀 ∈ 𝑉)   
 &   ⊢ (𝜑 → (MetOpen‘𝐷) ∈ 𝑊)    ⇒   ⊢ (𝜑 → (MetOpen‘𝐷) = (TopSet‘𝐾)) | 
|   | 
| Theorem | mopni 14718* | 
An open set of a metric space includes a ball around each of its points.
       (Contributed by NM, 3-Sep-2006.)  (Revised by Mario Carneiro,
       12-Nov-2013.)
 | 
| ⊢ 𝐽 = (MetOpen‘𝐷)    ⇒   ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ 𝐽 ∧ 𝑃 ∈ 𝐴) → ∃𝑥 ∈ ran (ball‘𝐷)(𝑃 ∈ 𝑥 ∧ 𝑥 ⊆ 𝐴)) | 
|   | 
| Theorem | mopni2 14719* | 
An open set of a metric space includes a ball around each of its points.
       (Contributed by NM, 2-May-2007.)  (Revised by Mario Carneiro,
       12-Nov-2013.)
 | 
| ⊢ 𝐽 = (MetOpen‘𝐷)    ⇒   ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ 𝐽 ∧ 𝑃 ∈ 𝐴) → ∃𝑥 ∈ ℝ+ (𝑃(ball‘𝐷)𝑥) ⊆ 𝐴) | 
|   | 
| Theorem | mopni3 14720* | 
An open set of a metric space includes an arbitrarily small ball around
       each of its points.  (Contributed by NM, 20-Sep-2007.)  (Revised by
       Mario Carneiro, 12-Nov-2013.)
 | 
| ⊢ 𝐽 = (MetOpen‘𝐷)    ⇒   ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ 𝐽 ∧ 𝑃 ∈ 𝐴) ∧ 𝑅 ∈ ℝ+) →
 ∃𝑥 ∈
 ℝ+ (𝑥
 < 𝑅 ∧ (𝑃(ball‘𝐷)𝑥) ⊆ 𝐴)) | 
|   | 
| Theorem | blssopn 14721 | 
The balls of a metric space are open sets.  (Contributed by NM,
       12-Sep-2006.)  (Revised by Mario Carneiro, 23-Dec-2013.)
 | 
| ⊢ 𝐽 = (MetOpen‘𝐷)    ⇒   ⊢ (𝐷 ∈ (∞Met‘𝑋) → ran (ball‘𝐷) ⊆ 𝐽) | 
|   | 
| Theorem | unimopn 14722 | 
The union of a collection of open sets of a metric space is open.
       Theorem T2 of [Kreyszig] p. 19. 
(Contributed by NM, 4-Sep-2006.)
       (Revised by Mario Carneiro, 23-Dec-2013.)
 | 
| ⊢ 𝐽 = (MetOpen‘𝐷)    ⇒   ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ⊆ 𝐽) → ∪ 𝐴 ∈ 𝐽) | 
|   | 
| Theorem | mopnin 14723 | 
The intersection of two open sets of a metric space is open.
       (Contributed by NM, 4-Sep-2006.)  (Revised by Mario Carneiro,
       23-Dec-2013.)
 | 
| ⊢ 𝐽 = (MetOpen‘𝐷)    ⇒   ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ 𝐽 ∧ 𝐵 ∈ 𝐽) → (𝐴 ∩ 𝐵) ∈ 𝐽) | 
|   | 
| Theorem | mopn0 14724 | 
The empty set is an open set of a metric space.  Part of Theorem T1 of
       [Kreyszig] p. 19.  (Contributed by NM,
4-Sep-2006.)
 | 
| ⊢ 𝐽 = (MetOpen‘𝐷)    ⇒   ⊢ (𝐷 ∈ (∞Met‘𝑋) → ∅ ∈ 𝐽) | 
|   | 
| Theorem | rnblopn 14725 | 
A ball of a metric space is an open set.  (Contributed by NM,
       12-Sep-2006.)
 | 
| ⊢ 𝐽 = (MetOpen‘𝐷)    ⇒   ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ ran (ball‘𝐷)) → 𝐵 ∈ 𝐽) | 
|   | 
| Theorem | blopn 14726 | 
A ball of a metric space is an open set.  (Contributed by NM,
       9-Mar-2007.)  (Revised by Mario Carneiro, 12-Nov-2013.)
 | 
| ⊢ 𝐽 = (MetOpen‘𝐷)    ⇒   ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑅) ∈ 𝐽) | 
|   | 
| Theorem | neibl 14727* | 
The neighborhoods around a point 𝑃 of a metric space are those
       subsets containing a ball around 𝑃.  Definition of neighborhood in
       [Kreyszig] p. 19.  (Contributed by NM,
8-Nov-2007.)  (Revised by Mario
       Carneiro, 23-Dec-2013.)
 | 
| ⊢ 𝐽 = (MetOpen‘𝐷)    ⇒   ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) → (𝑁 ∈ ((nei‘𝐽)‘{𝑃}) ↔ (𝑁 ⊆ 𝑋 ∧ ∃𝑟 ∈ ℝ+ (𝑃(ball‘𝐷)𝑟) ⊆ 𝑁))) | 
|   | 
| Theorem | blnei 14728 | 
A ball around a point is a neighborhood of the point.  (Contributed by
       NM, 8-Nov-2007.)  (Revised by Mario Carneiro, 24-Aug-2015.)
 | 
| ⊢ 𝐽 = (MetOpen‘𝐷)    ⇒   ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ+) → (𝑃(ball‘𝐷)𝑅) ∈ ((nei‘𝐽)‘{𝑃})) | 
|   | 
| Theorem | blsscls2 14729* | 
A smaller closed ball is contained in a larger open ball.  (Contributed
       by Mario Carneiro, 10-Jan-2014.)
 | 
| ⊢ 𝐽 = (MetOpen‘𝐷)   
 &   ⊢ 𝑆 = {𝑧 ∈ 𝑋 ∣ (𝑃𝐷𝑧) ≤ 𝑅}    ⇒   ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) ∧ (𝑅 ∈ ℝ* ∧ 𝑇 ∈ ℝ*
 ∧ 𝑅 < 𝑇)) → 𝑆 ⊆ (𝑃(ball‘𝐷)𝑇)) | 
|   | 
| Theorem | metss 14730* | 
Two ways of saying that metric 𝐷 generates a finer topology than
       metric 𝐶.  (Contributed by Mario Carneiro,
12-Nov-2013.)  (Revised
       by Mario Carneiro, 24-Aug-2015.)
 | 
| ⊢ 𝐽 = (MetOpen‘𝐶)   
 &   ⊢ 𝐾 = (MetOpen‘𝐷)    ⇒   ⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) → (𝐽 ⊆ 𝐾 ↔ ∀𝑥 ∈ 𝑋 ∀𝑟 ∈ ℝ+ ∃𝑠 ∈ ℝ+
 (𝑥(ball‘𝐷)𝑠) ⊆ (𝑥(ball‘𝐶)𝑟))) | 
|   | 
| Theorem | metequiv 14731* | 
Two ways of saying that two metrics generate the same topology.  Two
       metrics satisfying the right-hand side are said to be (topologically)
       equivalent.  (Contributed by Jeff Hankins, 21-Jun-2009.)  (Revised by
       Mario Carneiro, 12-Nov-2013.)
 | 
| ⊢ 𝐽 = (MetOpen‘𝐶)   
 &   ⊢ 𝐾 = (MetOpen‘𝐷)    ⇒   ⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) → (𝐽 = 𝐾 ↔ ∀𝑥 ∈ 𝑋 (∀𝑟 ∈ ℝ+ ∃𝑠 ∈ ℝ+
 (𝑥(ball‘𝐷)𝑠) ⊆ (𝑥(ball‘𝐶)𝑟) ∧ ∀𝑎 ∈ ℝ+ ∃𝑏 ∈ ℝ+
 (𝑥(ball‘𝐶)𝑏) ⊆ (𝑥(ball‘𝐷)𝑎)))) | 
|   | 
| Theorem | metequiv2 14732* | 
If there is a sequence of radii approaching zero for which the balls of
       both metrics coincide, then the generated topologies are equivalent.
       (Contributed by Mario Carneiro, 26-Aug-2015.)
 | 
| ⊢ 𝐽 = (MetOpen‘𝐶)   
 &   ⊢ 𝐾 = (MetOpen‘𝐷)    ⇒   ⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) → (∀𝑥 ∈ 𝑋 ∀𝑟 ∈ ℝ+ ∃𝑠 ∈ ℝ+
 (𝑠 ≤ 𝑟 ∧ (𝑥(ball‘𝐶)𝑠) = (𝑥(ball‘𝐷)𝑠)) → 𝐽 = 𝐾)) | 
|   | 
| Theorem | metss2lem 14733* | 
Lemma for metss2 14734.  (Contributed by Mario Carneiro,
14-Sep-2015.)
 | 
| ⊢ 𝐽 = (MetOpen‘𝐶)   
 &   ⊢ 𝐾 = (MetOpen‘𝐷)   
 &   ⊢ (𝜑 → 𝐶 ∈ (Met‘𝑋))    &   ⊢ (𝜑 → 𝐷 ∈ (Met‘𝑋))    &   ⊢ (𝜑 → 𝑅 ∈ ℝ+)    &   ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝑥𝐶𝑦) ≤ (𝑅 · (𝑥𝐷𝑦)))    ⇒   ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑆 ∈ ℝ+)) → (𝑥(ball‘𝐷)(𝑆 / 𝑅)) ⊆ (𝑥(ball‘𝐶)𝑆)) | 
|   | 
| Theorem | metss2 14734* | 
If the metric 𝐷 is "strongly finer" than
𝐶
(meaning that there
       is a positive real constant 𝑅 such that
       𝐶(𝑥, 𝑦) ≤ 𝑅 · 𝐷(𝑥, 𝑦)), then 𝐷 generates a finer
       topology.  (Using this theorem twice in each direction states that if
       two metrics are strongly equivalent, then they generate the same
       topology.)  (Contributed by Mario Carneiro, 14-Sep-2015.)
 | 
| ⊢ 𝐽 = (MetOpen‘𝐶)   
 &   ⊢ 𝐾 = (MetOpen‘𝐷)   
 &   ⊢ (𝜑 → 𝐶 ∈ (Met‘𝑋))    &   ⊢ (𝜑 → 𝐷 ∈ (Met‘𝑋))    &   ⊢ (𝜑 → 𝑅 ∈ ℝ+)    &   ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝑥𝐶𝑦) ≤ (𝑅 · (𝑥𝐷𝑦)))    ⇒   ⊢ (𝜑 → 𝐽 ⊆ 𝐾) | 
|   | 
| Theorem | comet 14735* | 
The composition of an extended metric with a monotonic subadditive
       function is an extended metric.  (Contributed by Mario Carneiro,
       21-Mar-2015.)
 | 
| ⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝑋))    &   ⊢ (𝜑 → 𝐹:(0[,]+∞)⟶ℝ*)    &   ⊢ ((𝜑 ∧ 𝑥 ∈ (0[,]+∞)) → ((𝐹‘𝑥) = 0 ↔ 𝑥 = 0))   
 &   ⊢ ((𝜑
 ∧ (𝑥 ∈ (0[,]+∞) ∧
 𝑦 ∈ (0[,]+∞))) →
 (𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≤ (𝐹‘𝑦)))   
 &   ⊢ ((𝜑
 ∧ (𝑥 ∈ (0[,]+∞) ∧
 𝑦 ∈ (0[,]+∞))) →
 (𝐹‘(𝑥 +𝑒 𝑦)) ≤ ((𝐹‘𝑥) +𝑒 (𝐹‘𝑦)))    ⇒   ⊢ (𝜑
 → (𝐹 ∘ 𝐷) ∈ (∞Met‘𝑋)) | 
|   | 
| Theorem | bdmetval 14736* | 
Value of the standard bounded metric.  (Contributed by Mario Carneiro,
       26-Aug-2015.)  (Revised by Jim Kingdon, 9-May-2023.)
 | 
| ⊢ 𝐷 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ inf({(𝑥𝐶𝑦), 𝑅}, ℝ*, <
 ))    ⇒   ⊢ (((𝐶:(𝑋 × 𝑋)⟶ℝ* ∧ 𝑅 ∈ ℝ*)
 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐴𝐷𝐵) = inf({(𝐴𝐶𝐵), 𝑅}, ℝ*, <
 )) | 
|   | 
| Theorem | bdxmet 14737* | 
The standard bounded metric is an extended metric given an extended
       metric and a positive extended real cutoff.  (Contributed by Mario
       Carneiro, 26-Aug-2015.)  (Revised by Jim Kingdon, 9-May-2023.)
 | 
| ⊢ 𝐷 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ inf({(𝑥𝐶𝑦), 𝑅}, ℝ*, <
 ))    ⇒   ⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
 𝑅) → 𝐷 ∈ (∞Met‘𝑋)) | 
|   | 
| Theorem | bdmet 14738* | 
The standard bounded metric is a proper metric given an extended metric
       and a positive real cutoff.  (Contributed by Mario Carneiro,
       26-Aug-2015.)  (Revised by Jim Kingdon, 19-May-2023.)
 | 
| ⊢ 𝐷 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ inf({(𝑥𝐶𝑦), 𝑅}, ℝ*, <
 ))    ⇒   ⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ+) → 𝐷 ∈ (Met‘𝑋)) | 
|   | 
| Theorem | bdbl 14739* | 
The standard bounded metric corresponding to 𝐶 generates the same
       balls as 𝐶 for radii less than 𝑅. 
(Contributed by Mario
       Carneiro, 26-Aug-2015.)  (Revised by Jim Kingdon, 19-May-2023.)
 | 
| ⊢ 𝐷 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ inf({(𝑥𝐶𝑦), 𝑅}, ℝ*, <
 ))    ⇒   ⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
 𝑅) ∧ (𝑃 ∈ 𝑋 ∧ 𝑆 ∈ ℝ* ∧ 𝑆 ≤ 𝑅)) → (𝑃(ball‘𝐷)𝑆) = (𝑃(ball‘𝐶)𝑆)) | 
|   | 
| Theorem | bdmopn 14740* | 
The standard bounded metric corresponding to 𝐶 generates the same
       topology as 𝐶.  (Contributed by Mario Carneiro,
26-Aug-2015.)
       (Revised by Jim Kingdon, 19-May-2023.)
 | 
| ⊢ 𝐷 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ inf({(𝑥𝐶𝑦), 𝑅}, ℝ*, < ))    &   ⊢ 𝐽 = (MetOpen‘𝐶)   
 ⇒   ⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
 𝑅) → 𝐽 = (MetOpen‘𝐷)) | 
|   | 
| Theorem | mopnex 14741* | 
The topology generated by an extended metric can also be generated by a
       true metric.  Thus, "metrizable topologies" can equivalently
be defined
       in terms of metrics or extended metrics.  (Contributed by Mario
       Carneiro, 26-Aug-2015.)
 | 
| ⊢ 𝐽 = (MetOpen‘𝐷)    ⇒   ⊢ (𝐷 ∈ (∞Met‘𝑋) → ∃𝑑 ∈ (Met‘𝑋)𝐽 = (MetOpen‘𝑑)) | 
|   | 
| Theorem | metrest 14742 | 
Two alternate formulations of a subspace topology of a metric space
       topology.  (Contributed by Jeff Hankins, 19-Aug-2009.)  (Proof shortened
       by Mario Carneiro, 5-Jan-2014.)
 | 
| ⊢ 𝐷 = (𝐶 ↾ (𝑌 × 𝑌))    &   ⊢ 𝐽 = (MetOpen‘𝐶)    &   ⊢ 𝐾 = (MetOpen‘𝐷)   
 ⇒   ⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) → (𝐽 ↾t 𝑌) = 𝐾) | 
|   | 
| Theorem | xmetxp 14743* | 
The maximum metric (Chebyshev distance) on the product of two sets.
         (Contributed by Jim Kingdon, 11-Oct-2023.)
 | 
| ⊢ 𝑃 = (𝑢 ∈ (𝑋 × 𝑌), 𝑣 ∈ (𝑋 × 𝑌) ↦ sup({((1st
 ‘𝑢)𝑀(1st ‘𝑣)), ((2nd ‘𝑢)𝑁(2nd ‘𝑣))}, ℝ*, <
 ))   
 &   ⊢ (𝜑 → 𝑀 ∈ (∞Met‘𝑋))    &   ⊢ (𝜑 → 𝑁 ∈ (∞Met‘𝑌))    ⇒   ⊢ (𝜑 → 𝑃 ∈ (∞Met‘(𝑋 × 𝑌))) | 
|   | 
| Theorem | xmetxpbl 14744* | 
The maximum metric (Chebyshev distance) on the product of two sets,
         expressed in terms of balls centered on a point 𝐶 with radius
         𝑅.  (Contributed by Jim Kingdon,
22-Oct-2023.)
 | 
| ⊢ 𝑃 = (𝑢 ∈ (𝑋 × 𝑌), 𝑣 ∈ (𝑋 × 𝑌) ↦ sup({((1st
 ‘𝑢)𝑀(1st ‘𝑣)), ((2nd ‘𝑢)𝑁(2nd ‘𝑣))}, ℝ*, <
 ))   
 &   ⊢ (𝜑 → 𝑀 ∈ (∞Met‘𝑋))    &   ⊢ (𝜑 → 𝑁 ∈ (∞Met‘𝑌))    &   ⊢ (𝜑 → 𝑅 ∈ ℝ*)    &   ⊢ (𝜑 → 𝐶 ∈ (𝑋 × 𝑌))    ⇒   ⊢ (𝜑 → (𝐶(ball‘𝑃)𝑅) = (((1st ‘𝐶)(ball‘𝑀)𝑅) × ((2nd ‘𝐶)(ball‘𝑁)𝑅))) | 
|   | 
| Theorem | xmettxlem 14745* | 
Lemma for xmettx 14746.  (Contributed by Jim Kingdon, 15-Oct-2023.)
 | 
| ⊢ 𝑃 = (𝑢 ∈ (𝑋 × 𝑌), 𝑣 ∈ (𝑋 × 𝑌) ↦ sup({((1st
 ‘𝑢)𝑀(1st ‘𝑣)), ((2nd ‘𝑢)𝑁(2nd ‘𝑣))}, ℝ*, <
 ))   
 &   ⊢ (𝜑 → 𝑀 ∈ (∞Met‘𝑋))    &   ⊢ (𝜑 → 𝑁 ∈ (∞Met‘𝑌))    &   ⊢ 𝐽 = (MetOpen‘𝑀)    &   ⊢ 𝐾 = (MetOpen‘𝑁)    &   ⊢ 𝐿 = (MetOpen‘𝑃)   
 ⇒   ⊢ (𝜑 → 𝐿 ⊆ (𝐽 ×t 𝐾)) | 
|   | 
| Theorem | xmettx 14746* | 
The maximum metric (Chebyshev distance) on the product of two sets,
           expressed as a binary topological product.  (Contributed by Jim
           Kingdon, 11-Oct-2023.)
 | 
| ⊢ 𝑃 = (𝑢 ∈ (𝑋 × 𝑌), 𝑣 ∈ (𝑋 × 𝑌) ↦ sup({((1st
 ‘𝑢)𝑀(1st ‘𝑣)), ((2nd ‘𝑢)𝑁(2nd ‘𝑣))}, ℝ*, <
 ))   
 &   ⊢ (𝜑 → 𝑀 ∈ (∞Met‘𝑋))    &   ⊢ (𝜑 → 𝑁 ∈ (∞Met‘𝑌))    &   ⊢ 𝐽 = (MetOpen‘𝑀)    &   ⊢ 𝐾 = (MetOpen‘𝑁)    &   ⊢ 𝐿 = (MetOpen‘𝑃)   
 ⇒   ⊢ (𝜑 → 𝐿 = (𝐽 ×t 𝐾)) | 
|   | 
| 9.2.5  Continuity in metric spaces
 | 
|   | 
| Theorem | metcnp3 14747* | 
Two ways to express that 𝐹 is continuous at 𝑃 for
metric spaces.
       Proposition 14-4.2 of [Gleason] p. 240. 
(Contributed by NM,
       17-May-2007.)  (Revised by Mario Carneiro, 28-Aug-2015.)
 | 
| ⊢ 𝐽 = (MetOpen‘𝐶)   
 &   ⊢ 𝐾 = (MetOpen‘𝐷)    ⇒   ⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃 ∈ 𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+
 (𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹‘𝑃)(ball‘𝐷)𝑦)))) | 
|   | 
| Theorem | metcnp 14748* | 
Two ways to say a mapping from metric 𝐶 to metric 𝐷 is
       continuous at point 𝑃.  (Contributed by NM, 11-May-2007.) 
(Revised
       by Mario Carneiro, 28-Aug-2015.)
 | 
| ⊢ 𝐽 = (MetOpen‘𝐶)   
 &   ⊢ 𝐾 = (MetOpen‘𝐷)    ⇒   ⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃 ∈ 𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+
 ∀𝑤 ∈ 𝑋 ((𝑃𝐶𝑤) < 𝑧 → ((𝐹‘𝑃)𝐷(𝐹‘𝑤)) < 𝑦)))) | 
|   | 
| Theorem | metcnp2 14749* | 
Two ways to say a mapping from metric 𝐶 to metric 𝐷 is
       continuous at point 𝑃.  The distance arguments are swapped
compared
       to metcnp 14748 (and Munkres' metcn 14750) for compatibility with df-lm 14426.
       Definition 1.3-3 of [Kreyszig] p. 20. 
(Contributed by NM, 4-Jun-2007.)
       (Revised by Mario Carneiro, 13-Nov-2013.)
 | 
| ⊢ 𝐽 = (MetOpen‘𝐶)   
 &   ⊢ 𝐾 = (MetOpen‘𝐷)    ⇒   ⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃 ∈ 𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+
 ∀𝑤 ∈ 𝑋 ((𝑤𝐶𝑃) < 𝑧 → ((𝐹‘𝑤)𝐷(𝐹‘𝑃)) < 𝑦)))) | 
|   | 
| Theorem | metcn 14750* | 
Two ways to say a mapping from metric 𝐶 to metric 𝐷 is
       continuous.  Theorem 10.1 of [Munkres]
p. 127.  The second biconditional
       argument says that for every positive "epsilon" 𝑦 there
is a
       positive "delta" 𝑧 such that a distance less than delta
in 𝐶
       maps to a distance less than epsilon in 𝐷.  (Contributed by NM,
       15-May-2007.)  (Revised by Mario Carneiro, 28-Aug-2015.)
 | 
| ⊢ 𝐽 = (MetOpen‘𝐶)   
 &   ⊢ 𝐾 = (MetOpen‘𝐷)    ⇒   ⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+
 ∀𝑤 ∈ 𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝐹‘𝑥)𝐷(𝐹‘𝑤)) < 𝑦)))) | 
|   | 
| Theorem | metcnpi 14751* | 
Epsilon-delta property of a continuous metric space function, with
       function arguments as in metcnp 14748.  (Contributed by NM, 17-Dec-2007.)
       (Revised by Mario Carneiro, 13-Nov-2013.)
 | 
| ⊢ 𝐽 = (MetOpen‘𝐶)   
 &   ⊢ 𝐾 = (MetOpen‘𝐷)    ⇒   ⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴 ∈ ℝ+)) →
 ∃𝑥 ∈
 ℝ+ ∀𝑦 ∈ 𝑋 ((𝑃𝐶𝑦) < 𝑥 → ((𝐹‘𝑃)𝐷(𝐹‘𝑦)) < 𝐴)) | 
|   | 
| Theorem | metcnpi2 14752* | 
Epsilon-delta property of a continuous metric space function, with
       swapped distance function arguments as in metcnp2 14749.  (Contributed by
       NM, 16-Dec-2007.)  (Revised by Mario Carneiro, 13-Nov-2013.)
 | 
| ⊢ 𝐽 = (MetOpen‘𝐶)   
 &   ⊢ 𝐾 = (MetOpen‘𝐷)    ⇒   ⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴 ∈ ℝ+)) →
 ∃𝑥 ∈
 ℝ+ ∀𝑦 ∈ 𝑋 ((𝑦𝐶𝑃) < 𝑥 → ((𝐹‘𝑦)𝐷(𝐹‘𝑃)) < 𝐴)) | 
|   | 
| Theorem | metcnpi3 14753* | 
Epsilon-delta property of a metric space function continuous at 𝑃.
       A variation of metcnpi2 14752 with non-strict ordering.  (Contributed by
NM,
       16-Dec-2007.)  (Revised by Mario Carneiro, 13-Nov-2013.)
 | 
| ⊢ 𝐽 = (MetOpen‘𝐶)   
 &   ⊢ 𝐾 = (MetOpen‘𝐷)    ⇒   ⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴 ∈ ℝ+)) →
 ∃𝑥 ∈
 ℝ+ ∀𝑦 ∈ 𝑋 ((𝑦𝐶𝑃) ≤ 𝑥 → ((𝐹‘𝑦)𝐷(𝐹‘𝑃)) ≤ 𝐴)) | 
|   | 
| Theorem | txmetcnp 14754* | 
Continuity of a binary operation on metric spaces.  (Contributed by
       Mario Carneiro, 2-Sep-2015.)  (Revised by Jim Kingdon, 22-Oct-2023.)
 | 
| ⊢ 𝐽 = (MetOpen‘𝐶)   
 &   ⊢ 𝐾 = (MetOpen‘𝐷)   
 &   ⊢ 𝐿 = (MetOpen‘𝐸)    ⇒   ⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌)) → (𝐹 ∈ (((𝐽 ×t 𝐾) CnP 𝐿)‘〈𝐴, 𝐵〉) ↔ (𝐹:(𝑋 × 𝑌)⟶𝑍 ∧ ∀𝑧 ∈ ℝ+ ∃𝑤 ∈ ℝ+
 ∀𝑢 ∈ 𝑋 ∀𝑣 ∈ 𝑌 (((𝐴𝐶𝑢) < 𝑤 ∧ (𝐵𝐷𝑣) < 𝑤) → ((𝐴𝐹𝐵)𝐸(𝑢𝐹𝑣)) < 𝑧)))) | 
|   | 
| Theorem | txmetcn 14755* | 
Continuity of a binary operation on metric spaces.  (Contributed by
       Mario Carneiro, 2-Sep-2015.)
 | 
| ⊢ 𝐽 = (MetOpen‘𝐶)   
 &   ⊢ 𝐾 = (MetOpen‘𝐷)   
 &   ⊢ 𝐿 = (MetOpen‘𝐸)    ⇒   ⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) → (𝐹 ∈ ((𝐽 ×t 𝐾) Cn 𝐿) ↔ (𝐹:(𝑋 × 𝑌)⟶𝑍 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 ∀𝑧 ∈ ℝ+ ∃𝑤 ∈ ℝ+
 ∀𝑢 ∈ 𝑋 ∀𝑣 ∈ 𝑌 (((𝑥𝐶𝑢) < 𝑤 ∧ (𝑦𝐷𝑣) < 𝑤) → ((𝑥𝐹𝑦)𝐸(𝑢𝐹𝑣)) < 𝑧)))) | 
|   | 
| Theorem | metcnpd 14756* | 
Two ways to say a mapping from metric 𝐶 to metric 𝐷 is
       continuous at point 𝑃.  (Contributed by Jim Kingdon,
       14-Jun-2023.)
 | 
| ⊢ (𝜑 → 𝐽 = (MetOpen‘𝐶))    &   ⊢ (𝜑 → 𝐾 = (MetOpen‘𝐷))    &   ⊢ (𝜑 → 𝐶 ∈ (∞Met‘𝑋))    &   ⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝑌))    &   ⊢ (𝜑 → 𝑃 ∈ 𝑋)    ⇒   ⊢ (𝜑 → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+
 ∀𝑤 ∈ 𝑋 ((𝑃𝐶𝑤) < 𝑧 → ((𝐹‘𝑃)𝐷(𝐹‘𝑤)) < 𝑦)))) | 
|   | 
| 9.2.6  Topology on the reals
 | 
|   | 
| Theorem | qtopbasss 14757* | 
The set of open intervals with endpoints in a subset forms a basis for a
       topology.  (Contributed by Mario Carneiro, 17-Jun-2014.)  (Revised by
       Jim Kingdon, 22-May-2023.)
 | 
| ⊢ 𝑆 ⊆ ℝ*    &   ⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → sup({𝑥, 𝑦}, ℝ*, < ) ∈ 𝑆)    &   ⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → inf({𝑥, 𝑦}, ℝ*, < ) ∈ 𝑆)   
 ⇒   ⊢ ((,) “ (𝑆 × 𝑆)) ∈ TopBases | 
|   | 
| Theorem | qtopbas 14758 | 
The set of open intervals with rational endpoints forms a basis for a
       topology.  (Contributed by NM, 8-Mar-2007.)
 | 
| ⊢ ((,) “ (ℚ × ℚ))
 ∈ TopBases | 
|   | 
| Theorem | retopbas 14759 | 
A basis for the standard topology on the reals.  (Contributed by NM,
       6-Feb-2007.)  (Proof shortened by Mario Carneiro, 17-Jun-2014.)
 | 
| ⊢ ran (,) ∈ TopBases | 
|   | 
| Theorem | retop 14760 | 
The standard topology on the reals.  (Contributed by FL, 4-Jun-2007.)
 | 
| ⊢ (topGen‘ran (,)) ∈
 Top | 
|   | 
| Theorem | uniretop 14761 | 
The underlying set of the standard topology on the reals is the reals.
     (Contributed by FL, 4-Jun-2007.)
 | 
| ⊢ ℝ = ∪
 (topGen‘ran (,)) | 
|   | 
| Theorem | retopon 14762 | 
The standard topology on the reals is a topology on the reals.
     (Contributed by Mario Carneiro, 28-Aug-2015.)
 | 
| ⊢ (topGen‘ran (,)) ∈
 (TopOn‘ℝ) | 
|   | 
| Theorem | retps 14763 | 
The standard topological space on the reals.  (Contributed by NM,
       19-Oct-2012.)
 | 
| ⊢ 𝐾 = {〈(Base‘ndx), ℝ〉,
 〈(TopSet‘ndx), (topGen‘ran
 (,))〉}    ⇒   ⊢ 𝐾 ∈ TopSp | 
|   | 
| Theorem | iooretopg 14764 | 
Open intervals are open sets of the standard topology on the reals .
     (Contributed by FL, 18-Jun-2007.)  (Revised by Jim Kingdon,
     23-May-2023.)
 | 
| ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*)
 → (𝐴(,)𝐵) ∈ (topGen‘ran
 (,))) | 
|   | 
| Theorem | cnmetdval 14765 | 
Value of the distance function of the metric space of complex numbers.
       (Contributed by NM, 9-Dec-2006.)  (Revised by Mario Carneiro,
       27-Dec-2014.)
 | 
| ⊢ 𝐷 = (abs ∘ −
 )    ⇒   ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝐷𝐵) = (abs‘(𝐴 − 𝐵))) | 
|   | 
| Theorem | cnmet 14766 | 
The absolute value metric determines a metric space on the complex
       numbers.  This theorem provides a link between complex numbers and
       metrics spaces, making metric space theorems available for use with
       complex numbers.  (Contributed by FL, 9-Oct-2006.)
 | 
| ⊢ (abs ∘ − ) ∈
 (Met‘ℂ) | 
|   | 
| Theorem | cnxmet 14767 | 
The absolute value metric is an extended metric.  (Contributed by Mario
       Carneiro, 28-Aug-2015.)
 | 
| ⊢ (abs ∘ − ) ∈
 (∞Met‘ℂ) | 
|   | 
| Theorem | cntoptopon 14768 | 
The topology of the complex numbers is a topology.  (Contributed by Jim
       Kingdon, 6-Jun-2023.)
 | 
| ⊢ 𝐽 = (MetOpen‘(abs ∘ −
 ))    ⇒   ⊢ 𝐽 ∈
 (TopOn‘ℂ) | 
|   | 
| Theorem | cntoptop 14769 | 
The topology of the complex numbers is a topology.  (Contributed by Jim
       Kingdon, 6-Jun-2023.)
 | 
| ⊢ 𝐽 = (MetOpen‘(abs ∘ −
 ))    ⇒   ⊢ 𝐽 ∈ Top | 
|   | 
| Theorem | cnbl0 14770 | 
Two ways to write the open ball centered at zero.  (Contributed by Mario
       Carneiro, 8-Sep-2015.)
 | 
| ⊢ 𝐷 = (abs ∘ −
 )    ⇒   ⊢ (𝑅 ∈ ℝ* → (◡abs “ (0[,)𝑅)) = (0(ball‘𝐷)𝑅)) | 
|   | 
| Theorem | cnblcld 14771* | 
Two ways to write the closed ball centered at zero.  (Contributed by
       Mario Carneiro, 8-Sep-2015.)
 | 
| ⊢ 𝐷 = (abs ∘ −
 )    ⇒   ⊢ (𝑅 ∈ ℝ* → (◡abs “ (0[,]𝑅)) = {𝑥 ∈ ℂ ∣ (0𝐷𝑥) ≤ 𝑅}) | 
|   | 
| Theorem | cnfldms 14772 | 
The complex number field is a metric space.  (Contributed by Mario
     Carneiro, 28-Aug-2015.)
 | 
| ⊢ ℂfld ∈
 MetSp | 
|   | 
| Theorem | cnfldxms 14773 | 
The complex number field is a topological space.  (Contributed by Mario
     Carneiro, 28-Aug-2015.)
 | 
| ⊢ ℂfld ∈
 ∞MetSp | 
|   | 
| Theorem | cnfldtps 14774 | 
The complex number field is a topological space.  (Contributed by Mario
     Carneiro, 28-Aug-2015.)
 | 
| ⊢ ℂfld ∈
 TopSp | 
|   | 
| Theorem | cnfldtopn 14775 | 
The topology of the complex numbers.  (Contributed by Mario Carneiro,
       28-Aug-2015.)
 | 
| ⊢ 𝐽 =
 (TopOpen‘ℂfld)    ⇒   ⊢ 𝐽 = (MetOpen‘(abs ∘ −
 )) | 
|   | 
| Theorem | cnfldtopon 14776 | 
The topology of the complex numbers is a topology.  (Contributed by
       Mario Carneiro, 2-Sep-2015.)
 | 
| ⊢ 𝐽 =
 (TopOpen‘ℂfld)    ⇒   ⊢ 𝐽 ∈
 (TopOn‘ℂ) | 
|   | 
| Theorem | cnfldtop 14777 | 
The topology of the complex numbers is a topology.  (Contributed by
       Mario Carneiro, 2-Sep-2015.)
 | 
| ⊢ 𝐽 =
 (TopOpen‘ℂfld)    ⇒   ⊢ 𝐽 ∈ Top | 
|   | 
| Theorem | unicntopcntop 14778 | 
The underlying set of the standard topology on the complex numbers is the
     set of complex numbers.  (Contributed by Glauco Siliprandi, 11-Dec-2019.)
     (Revised by Jim Kingdon, 12-Dec-2023.)
 | 
| ⊢ ℂ = ∪
 (MetOpen‘(abs ∘ − )) | 
|   | 
| Theorem | unicntop 14779 | 
The underlying set of the standard topology on the complex numbers is the
     set of complex numbers.  (Contributed by Glauco Siliprandi,
     11-Dec-2019.)
 | 
| ⊢ ℂ = ∪
 (TopOpen‘ℂfld) | 
|   | 
| Theorem | cnopncntop 14780 | 
The set of complex numbers is open with respect to the standard topology
     on complex numbers.  (Contributed by Glauco Siliprandi, 11-Dec-2019.)
     (Revised by Jim Kingdon, 12-Dec-2023.)
 | 
| ⊢ ℂ ∈ (MetOpen‘(abs ∘
 − )) | 
|   | 
| Theorem | cnopn 14781 | 
The set of complex numbers is open with respect to the standard topology
     on complex numbers.  (Contributed by Glauco Siliprandi, 11-Dec-2019.)
 | 
| ⊢ ℂ ∈
 (TopOpen‘ℂfld) | 
|   | 
| Theorem | reopnap 14782* | 
The real numbers apart from a given real number form an open set.
       (Contributed by Jim Kingdon, 13-Dec-2023.)
 | 
| ⊢ (𝐴 ∈ ℝ → {𝑤 ∈ ℝ ∣ 𝑤 # 𝐴} ∈ (topGen‘ran
 (,))) | 
|   | 
| Theorem | remetdval 14783 | 
Value of the distance function of the metric space of real numbers.
       (Contributed by NM, 16-May-2007.)
 | 
| ⊢ 𝐷 = ((abs ∘ − ) ↾ (ℝ
 × ℝ))    ⇒   ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐷𝐵) = (abs‘(𝐴 − 𝐵))) | 
|   | 
| Theorem | remet 14784 | 
The absolute value metric determines a metric space on the reals.
       (Contributed by NM, 10-Feb-2007.)
 | 
| ⊢ 𝐷 = ((abs ∘ − ) ↾ (ℝ
 × ℝ))    ⇒   ⊢ 𝐷 ∈
 (Met‘ℝ) | 
|   | 
| Theorem | rexmet 14785 | 
The absolute value metric is an extended metric.  (Contributed by Mario
       Carneiro, 28-Aug-2015.)
 | 
| ⊢ 𝐷 = ((abs ∘ − ) ↾ (ℝ
 × ℝ))    ⇒   ⊢ 𝐷 ∈
 (∞Met‘ℝ) | 
|   | 
| Theorem | bl2ioo 14786 | 
A ball in terms of an open interval of reals.  (Contributed by NM,
       18-May-2007.)  (Revised by Mario Carneiro, 13-Nov-2013.)
 | 
| ⊢ 𝐷 = ((abs ∘ − ) ↾ (ℝ
 × ℝ))    ⇒   ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴(ball‘𝐷)𝐵) = ((𝐴 − 𝐵)(,)(𝐴 + 𝐵))) | 
|   | 
| Theorem | ioo2bl 14787 | 
An open interval of reals in terms of a ball.  (Contributed by NM,
       18-May-2007.)  (Revised by Mario Carneiro, 28-Aug-2015.)
 | 
| ⊢ 𝐷 = ((abs ∘ − ) ↾ (ℝ
 × ℝ))    ⇒   ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴(,)𝐵) = (((𝐴 + 𝐵) / 2)(ball‘𝐷)((𝐵 − 𝐴) / 2))) | 
|   | 
| Theorem | ioo2blex 14788 | 
An open interval of reals in terms of a ball.  (Contributed by Mario
       Carneiro, 14-Nov-2013.)
 | 
| ⊢ 𝐷 = ((abs ∘ − ) ↾ (ℝ
 × ℝ))    ⇒   ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴(,)𝐵) ∈ ran (ball‘𝐷)) | 
|   | 
| Theorem | blssioo 14789 | 
The balls of the standard real metric space are included in the open
       real intervals.  (Contributed by NM, 8-May-2007.)  (Revised by Mario
       Carneiro, 13-Nov-2013.)
 | 
| ⊢ 𝐷 = ((abs ∘ − ) ↾ (ℝ
 × ℝ))    ⇒   ⊢ ran (ball‘𝐷) ⊆ ran
 (,) | 
|   | 
| Theorem | tgioo 14790 | 
The topology generated by open intervals of reals is the same as the
         open sets of the standard metric space on the reals.  (Contributed by
         NM, 7-May-2007.)  (Revised by Mario Carneiro, 13-Nov-2013.)
 | 
| ⊢ 𝐷 = ((abs ∘ − ) ↾ (ℝ
 × ℝ))   
 &   ⊢ 𝐽 = (MetOpen‘𝐷)    ⇒   ⊢ (topGen‘ran (,)) = 𝐽 | 
|   | 
| Theorem | tgqioo 14791 | 
The topology generated by open intervals of reals with rational
       endpoints is the same as the open sets of the standard metric space on
       the reals.  In particular, this proves that the standard topology on the
       reals is second-countable.  (Contributed by Mario Carneiro,
       17-Jun-2014.)
 | 
| ⊢ 𝑄 = (topGen‘((,) “ (ℚ
 × ℚ)))    ⇒   ⊢ (topGen‘ran (,)) = 𝑄 | 
|   | 
| Theorem | resubmet 14792 | 
The subspace topology induced by a subset of the reals.  (Contributed by
       Jeff Madsen, 2-Sep-2009.)  (Revised by Mario Carneiro, 13-Aug-2014.)
 | 
| ⊢ 𝑅 = (topGen‘ran (,))    &   ⊢ 𝐽 = (MetOpen‘((abs ∘
 − ) ↾ (𝐴
 × 𝐴)))    ⇒   ⊢ (𝐴 ⊆ ℝ → 𝐽 = (𝑅 ↾t 𝐴)) | 
|   | 
| Theorem | tgioo2cntop 14793 | 
The standard topology on the reals is a subspace of the complex metric
       topology.  (Contributed by Mario Carneiro, 13-Aug-2014.)  (Revised by
       Jim Kingdon, 6-Aug-2023.)
 | 
| ⊢ 𝐽 = (MetOpen‘(abs ∘ −
 ))    ⇒   ⊢ (topGen‘ran (,)) = (𝐽 ↾t
 ℝ) | 
|   | 
| Theorem | rerestcntop 14794 | 
The subspace topology induced by a subset of the reals.  (Contributed by
       Mario Carneiro, 13-Aug-2014.)  (Revised by Jim Kingdon, 6-Aug-2023.)
 | 
| ⊢ 𝐽 = (MetOpen‘(abs ∘ −
 ))   
 &   ⊢ 𝑅 = (topGen‘ran
 (,))    ⇒   ⊢ (𝐴 ⊆ ℝ → (𝐽 ↾t 𝐴) = (𝑅 ↾t 𝐴)) | 
|   | 
| Theorem | tgioo2 14795 | 
The standard topology on the reals is a subspace of the complex metric
       topology.  (Contributed by Mario Carneiro, 13-Aug-2014.)
 | 
| ⊢ 𝐽 =
 (TopOpen‘ℂfld)    ⇒   ⊢ (topGen‘ran (,)) = (𝐽 ↾t
 ℝ) | 
|   | 
| Theorem | rerest 14796 | 
The subspace topology induced by a subset of the reals.  (Contributed by
       Mario Carneiro, 13-Aug-2014.)
 | 
| ⊢ 𝐽 =
 (TopOpen‘ℂfld)    &   ⊢ 𝑅 = (topGen‘ran
 (,))    ⇒   ⊢ (𝐴 ⊆ ℝ → (𝐽 ↾t 𝐴) = (𝑅 ↾t 𝐴)) | 
|   | 
| Theorem | addcncntoplem 14797* | 
Lemma for addcncntop 14798, subcncntop 14799, and mulcncntop 14800.
         (Contributed by Mario Carneiro, 5-May-2014.)  (Revised by Jim Kingdon,
         22-Oct-2023.)
 | 
| ⊢ 𝐽 = (MetOpen‘(abs ∘ −
 ))   
 &   ⊢  + :(ℂ ×
 ℂ)⟶ℂ   
 &   ⊢ ((𝑎 ∈ ℝ+ ∧ 𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ) →
 ∃𝑦 ∈
 ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑢 ∈ ℂ ∀𝑣 ∈ ℂ
 (((abs‘(𝑢 −
 𝑏)) < 𝑦 ∧ (abs‘(𝑣 − 𝑐)) < 𝑧) → (abs‘((𝑢 + 𝑣) − (𝑏 + 𝑐))) < 𝑎))    ⇒   ⊢  + ∈ ((𝐽 ×t 𝐽) Cn 𝐽) | 
|   | 
| Theorem | addcncntop 14798 | 
Complex number addition is a continuous function.  Part of Proposition
       14-4.16 of [Gleason] p. 243. 
(Contributed by NM, 30-Jul-2007.)  (Proof
       shortened by Mario Carneiro, 5-May-2014.)
 | 
| ⊢ 𝐽 = (MetOpen‘(abs ∘ −
 ))    ⇒   ⊢  + ∈ ((𝐽 ×t 𝐽) Cn 𝐽) | 
|   | 
| Theorem | subcncntop 14799 | 
Complex number subtraction is a continuous function.  Part of
       Proposition 14-4.16 of [Gleason] p. 243.
(Contributed by NM,
       4-Aug-2007.)  (Proof shortened by Mario Carneiro, 5-May-2014.)
 | 
| ⊢ 𝐽 = (MetOpen‘(abs ∘ −
 ))    ⇒   ⊢  − ∈ ((𝐽 ×t 𝐽) Cn 𝐽) | 
|   | 
| Theorem | mulcncntop 14800 | 
Complex number multiplication is a continuous function.  Part of
       Proposition 14-4.16 of [Gleason] p. 243.
(Contributed by NM,
       30-Jul-2007.)  (Proof shortened by Mario Carneiro, 5-May-2014.)
 | 
| ⊢ 𝐽 = (MetOpen‘(abs ∘ −
 ))    ⇒   ⊢  · ∈ ((𝐽 ×t 𝐽) Cn 𝐽) |