Theorem List for Intuitionistic Logic Explorer - 14701-14800 *Has distinct variable
group(s)
| Type | Label | Description |
| Statement |
| |
| 9.1.7 Limits and continuity in topological
spaces
|
| |
| Syntax | ccn 14701 |
Extend class notation with the class of continuous functions between
topologies.
|
| class Cn |
| |
| Syntax | ccnp 14702 |
Extend class notation with the class of functions between topologies
continuous at a given point.
|
| class CnP |
| |
| Syntax | clm 14703 |
Extend class notation with a function on topological spaces whose value is
the convergence relation for limit sequences in the space.
|
| class ⇝𝑡 |
| |
| Definition | df-cn 14704* |
Define a function on two topologies whose value is the set of continuous
mappings from the first topology to the second. Based on definition of
continuous function in [Munkres] p. 102.
See iscn 14713 for the predicate
form. (Contributed by NM, 17-Oct-2006.)
|
| ⊢ Cn = (𝑗 ∈ Top, 𝑘 ∈ Top ↦ {𝑓 ∈ (∪ 𝑘 ↑𝑚
∪ 𝑗) ∣ ∀𝑦 ∈ 𝑘 (◡𝑓 “ 𝑦) ∈ 𝑗}) |
| |
| Definition | df-cnp 14705* |
Define a function on two topologies whose value is the set of continuous
mappings at a specified point in the first topology. Based on Theorem
7.2(g) of [Munkres] p. 107.
(Contributed by NM, 17-Oct-2006.)
|
| ⊢ CnP = (𝑗 ∈ Top, 𝑘 ∈ Top ↦ (𝑥 ∈ ∪ 𝑗 ↦ {𝑓 ∈ (∪ 𝑘 ↑𝑚
∪ 𝑗) ∣ ∀𝑦 ∈ 𝑘 ((𝑓‘𝑥) ∈ 𝑦 → ∃𝑔 ∈ 𝑗 (𝑥 ∈ 𝑔 ∧ (𝑓 “ 𝑔) ⊆ 𝑦))})) |
| |
| Definition | df-lm 14706* |
Define a function on topologies whose value is the convergence relation
for sequences into the given topological space. Although 𝑓 is
typically a sequence (a function from an upperset of integers) with
values in the topological space, it need not be. Note, however, that
the limit property concerns only values at integers, so that the
real-valued function (𝑥 ∈ ℝ ↦ (sin‘(π
· 𝑥)))
converges to zero (in the standard topology on the reals) with this
definition. (Contributed by NM, 7-Sep-2006.)
|
| ⊢ ⇝𝑡 = (𝑗 ∈ Top ↦
{〈𝑓, 𝑥〉 ∣ (𝑓 ∈ (∪ 𝑗
↑pm ℂ) ∧ 𝑥 ∈ ∪ 𝑗 ∧ ∀𝑢 ∈ 𝑗 (𝑥 ∈ 𝑢 → ∃𝑦 ∈ ran ℤ≥(𝑓 ↾ 𝑦):𝑦⟶𝑢))}) |
| |
| Theorem | lmrcl 14707 |
Reverse closure for the convergence relation. (Contributed by Mario
Carneiro, 7-Sep-2015.)
|
| ⊢ (𝐹(⇝𝑡‘𝐽)𝑃 → 𝐽 ∈ Top) |
| |
| Theorem | lmfval 14708* |
The relation "sequence 𝑓 converges to point 𝑦 "
in a metric
space. (Contributed by NM, 7-Sep-2006.) (Revised by Mario Carneiro,
21-Aug-2015.)
|
| ⊢ (𝐽 ∈ (TopOn‘𝑋) →
(⇝𝑡‘𝐽) = {〈𝑓, 𝑥〉 ∣ (𝑓 ∈ (𝑋 ↑pm ℂ) ∧
𝑥 ∈ 𝑋 ∧ ∀𝑢 ∈ 𝐽 (𝑥 ∈ 𝑢 → ∃𝑦 ∈ ran ℤ≥(𝑓 ↾ 𝑦):𝑦⟶𝑢))}) |
| |
| Theorem | lmreltop 14709 |
The topological space convergence relation is a relation. (Contributed
by Jim Kingdon, 25-Mar-2023.)
|
| ⊢ (𝐽 ∈ Top → Rel
(⇝𝑡‘𝐽)) |
| |
| Theorem | cnfval 14710* |
The set of all continuous functions from topology 𝐽 to topology
𝐾. (Contributed by NM, 17-Oct-2006.)
(Revised by Mario Carneiro,
21-Aug-2015.)
|
| ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐽 Cn 𝐾) = {𝑓 ∈ (𝑌 ↑𝑚 𝑋) ∣ ∀𝑦 ∈ 𝐾 (◡𝑓 “ 𝑦) ∈ 𝐽}) |
| |
| Theorem | cnpfval 14711* |
The function mapping the points in a topology 𝐽 to the set of all
functions from 𝐽 to topology 𝐾 continuous at that
point.
(Contributed by NM, 17-Oct-2006.) (Revised by Mario Carneiro,
21-Aug-2015.)
|
| ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐽 CnP 𝐾) = (𝑥 ∈ 𝑋 ↦ {𝑓 ∈ (𝑌 ↑𝑚 𝑋) ∣ ∀𝑤 ∈ 𝐾 ((𝑓‘𝑥) ∈ 𝑤 → ∃𝑣 ∈ 𝐽 (𝑥 ∈ 𝑣 ∧ (𝑓 “ 𝑣) ⊆ 𝑤))})) |
| |
| Theorem | cnovex 14712 |
The class of all continuous functions from a topology to another is a
set. (Contributed by Jim Kingdon, 14-Dec-2023.)
|
| ⊢ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝐽 Cn 𝐾) ∈ V) |
| |
| Theorem | iscn 14713* |
The predicate "the class 𝐹 is a continuous function from
topology
𝐽 to topology 𝐾". Definition of
continuous function in
[Munkres] p. 102. (Contributed by NM,
17-Oct-2006.) (Revised by Mario
Carneiro, 21-Aug-2015.)
|
| ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ 𝐾 (◡𝐹 “ 𝑦) ∈ 𝐽))) |
| |
| Theorem | cnpval 14714* |
The set of all functions from topology 𝐽 to topology 𝐾 that are
continuous at a point 𝑃. (Contributed by NM, 17-Oct-2006.)
(Revised by Mario Carneiro, 11-Nov-2013.)
|
| ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) → ((𝐽 CnP 𝐾)‘𝑃) = {𝑓 ∈ (𝑌 ↑𝑚 𝑋) ∣ ∀𝑦 ∈ 𝐾 ((𝑓‘𝑃) ∈ 𝑦 → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝑓 “ 𝑥) ⊆ 𝑦))}) |
| |
| Theorem | iscnp 14715* |
The predicate "the class 𝐹 is a continuous function from
topology
𝐽 to topology 𝐾 at point 𝑃".
Based on Theorem 7.2(g) of
[Munkres] p. 107. (Contributed by NM,
17-Oct-2006.) (Revised by Mario
Carneiro, 21-Aug-2015.)
|
| ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ 𝐾 ((𝐹‘𝑃) ∈ 𝑦 → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝑦))))) |
| |
| Theorem | iscn2 14716* |
The predicate "the class 𝐹 is a continuous function from
topology
𝐽 to topology 𝐾". Definition of
continuous function in
[Munkres] p. 102. (Contributed by Mario
Carneiro, 21-Aug-2015.)
|
| ⊢ 𝑋 = ∪ 𝐽 & ⊢ 𝑌 = ∪
𝐾
⇒ ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) ↔ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ 𝐾 (◡𝐹 “ 𝑦) ∈ 𝐽))) |
| |
| Theorem | cntop1 14717 |
Reverse closure for a continuous function. (Contributed by Mario
Carneiro, 21-Aug-2015.)
|
| ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top) |
| |
| Theorem | cntop2 14718 |
Reverse closure for a continuous function. (Contributed by Mario
Carneiro, 21-Aug-2015.)
|
| ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top) |
| |
| Theorem | iscnp3 14719* |
The predicate "the class 𝐹 is a continuous function from
topology
𝐽 to topology 𝐾 at point 𝑃".
(Contributed by NM,
15-May-2007.)
|
| ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ 𝐾 ((𝐹‘𝑃) ∈ 𝑦 → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ 𝑥 ⊆ (◡𝐹 “ 𝑦)))))) |
| |
| Theorem | cnf 14720 |
A continuous function is a mapping. (Contributed by FL, 8-Dec-2006.)
(Revised by Mario Carneiro, 21-Aug-2015.)
|
| ⊢ 𝑋 = ∪ 𝐽 & ⊢ 𝑌 = ∪
𝐾
⇒ ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹:𝑋⟶𝑌) |
| |
| Theorem | cnf2 14721 |
A continuous function is a mapping. (Contributed by Mario Carneiro,
21-Aug-2015.)
|
| ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐹:𝑋⟶𝑌) |
| |
| Theorem | cnprcl2k 14722 |
Reverse closure for a function continuous at a point. (Contributed by
Mario Carneiro, 21-Aug-2015.) (Revised by Jim Kingdon, 28-Mar-2023.)
|
| ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝑃 ∈ 𝑋) |
| |
| Theorem | cnpf2 14723 |
A continuous function at point 𝑃 is a mapping. (Contributed by
Mario Carneiro, 21-Aug-2015.) (Revised by Jim Kingdon, 28-Mar-2023.)
|
| ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃)) → 𝐹:𝑋⟶𝑌) |
| |
| Theorem | tgcn 14724* |
The continuity predicate when the range is given by a basis for a
topology. (Contributed by Mario Carneiro, 7-Feb-2015.) (Revised by
Mario Carneiro, 22-Aug-2015.)
|
| ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐾 = (topGen‘𝐵)) & ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) ⇒ ⊢ (𝜑 → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ 𝐵 (◡𝐹 “ 𝑦) ∈ 𝐽))) |
| |
| Theorem | tgcnp 14725* |
The "continuous at a point" predicate when the range is given by a
basis
for a topology. (Contributed by Mario Carneiro, 3-Feb-2015.) (Revised
by Mario Carneiro, 22-Aug-2015.)
|
| ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐾 = (topGen‘𝐵)) & ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) & ⊢ (𝜑 → 𝑃 ∈ 𝑋) ⇒ ⊢ (𝜑 → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ 𝐵 ((𝐹‘𝑃) ∈ 𝑦 → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝑦))))) |
| |
| Theorem | ssidcn 14726 |
The identity function is a continuous function from one topology to
another topology on the same set iff the domain is finer than the
codomain. (Contributed by Mario Carneiro, 21-Mar-2015.) (Revised by
Mario Carneiro, 21-Aug-2015.)
|
| ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋)) → (( I ↾ 𝑋) ∈ (𝐽 Cn 𝐾) ↔ 𝐾 ⊆ 𝐽)) |
| |
| Theorem | icnpimaex 14727* |
Property of a function continuous at a point. (Contributed by FL,
31-Dec-2006.) (Revised by Jim Kingdon, 28-Mar-2023.)
|
| ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴 ∈ 𝐾 ∧ (𝐹‘𝑃) ∈ 𝐴)) → ∃𝑥 ∈ 𝐽 (𝑃 ∈ 𝑥 ∧ (𝐹 “ 𝑥) ⊆ 𝐴)) |
| |
| Theorem | idcn 14728 |
A restricted identity function is a continuous function. (Contributed
by FL, 27-Dec-2006.) (Proof shortened by Mario Carneiro,
21-Mar-2015.)
|
| ⊢ (𝐽 ∈ (TopOn‘𝑋) → ( I ↾ 𝑋) ∈ (𝐽 Cn 𝐽)) |
| |
| Theorem | lmbr 14729* |
Express the binary relation "sequence 𝐹 converges to point
𝑃 " in a topological space.
Definition 1.4-1 of [Kreyszig] p. 25.
The condition 𝐹 ⊆ (ℂ × 𝑋) allows us to use objects more
general
than sequences when convenient; see the comment in df-lm 14706.
(Contributed by Mario Carneiro, 14-Nov-2013.)
|
| ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) ⇒ ⊢ (𝜑 → (𝐹(⇝𝑡‘𝐽)𝑃 ↔ (𝐹 ∈ (𝑋 ↑pm ℂ) ∧
𝑃 ∈ 𝑋 ∧ ∀𝑢 ∈ 𝐽 (𝑃 ∈ 𝑢 → ∃𝑦 ∈ ran ℤ≥(𝐹 ↾ 𝑦):𝑦⟶𝑢)))) |
| |
| Theorem | lmbr2 14730* |
Express the binary relation "sequence 𝐹 converges to point
𝑃 " in a metric space using an
arbitrary upper set of integers.
(Contributed by Mario Carneiro, 14-Nov-2013.)
|
| ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ 𝑍 =
(ℤ≥‘𝑀)
& ⊢ (𝜑 → 𝑀 ∈ ℤ)
⇒ ⊢ (𝜑 → (𝐹(⇝𝑡‘𝐽)𝑃 ↔ (𝐹 ∈ (𝑋 ↑pm ℂ) ∧
𝑃 ∈ 𝑋 ∧ ∀𝑢 ∈ 𝐽 (𝑃 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹‘𝑘) ∈ 𝑢))))) |
| |
| Theorem | lmbrf 14731* |
Express the binary relation "sequence 𝐹 converges to point
𝑃 " in a metric space using an
arbitrary upper set of integers.
This version of lmbr2 14730 presupposes that 𝐹 is a function.
(Contributed by Mario Carneiro, 14-Nov-2013.)
|
| ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ 𝑍 =
(ℤ≥‘𝑀)
& ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹:𝑍⟶𝑋)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐴) ⇒ ⊢ (𝜑 → (𝐹(⇝𝑡‘𝐽)𝑃 ↔ (𝑃 ∈ 𝑋 ∧ ∀𝑢 ∈ 𝐽 (𝑃 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)𝐴 ∈ 𝑢)))) |
| |
| Theorem | lmconst 14732 |
A constant sequence converges to its value. (Contributed by NM,
8-Nov-2007.) (Revised by Mario Carneiro, 14-Nov-2013.)
|
| ⊢ 𝑍 = (ℤ≥‘𝑀)
⇒ ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑀 ∈ ℤ) → (𝑍 × {𝑃})(⇝𝑡‘𝐽)𝑃) |
| |
| Theorem | lmcvg 14733* |
Convergence property of a converging sequence. (Contributed by Mario
Carneiro, 14-Nov-2013.)
|
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑃 ∈ 𝑈)
& ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹(⇝𝑡‘𝐽)𝑃)
& ⊢ (𝜑 → 𝑈 ∈ 𝐽) ⇒ ⊢ (𝜑 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑈) |
| |
| Theorem | iscnp4 14734* |
The predicate "the class 𝐹 is a continuous function from
topology
𝐽 to topology 𝐾 at point 𝑃 "
in terms of neighborhoods.
(Contributed by FL, 18-Jul-2011.) (Revised by Mario Carneiro,
10-Sep-2015.)
|
| ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝑃 ∈ 𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝑃)})∃𝑥 ∈ ((nei‘𝐽)‘{𝑃})(𝐹 “ 𝑥) ⊆ 𝑦))) |
| |
| Theorem | cnpnei 14735* |
A condition for continuity at a point in terms of neighborhoods.
(Contributed by Jeff Hankins, 7-Sep-2009.)
|
| ⊢ 𝑋 = ∪ 𝐽 & ⊢ 𝑌 = ∪
𝐾
⇒ ⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋⟶𝑌) ∧ 𝐴 ∈ 𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴) ↔ ∀𝑦 ∈ ((nei‘𝐾)‘{(𝐹‘𝐴)})(◡𝐹 “ 𝑦) ∈ ((nei‘𝐽)‘{𝐴}))) |
| |
| Theorem | cnima 14736 |
An open subset of the codomain of a continuous function has an open
preimage. (Contributed by FL, 15-Dec-2006.)
|
| ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ∈ 𝐾) → (◡𝐹 “ 𝐴) ∈ 𝐽) |
| |
| Theorem | cnco 14737 |
The composition of two continuous functions is a continuous function.
(Contributed by FL, 8-Dec-2006.) (Revised by Mario Carneiro,
21-Aug-2015.)
|
| ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐺 ∈ (𝐾 Cn 𝐿)) → (𝐺 ∘ 𝐹) ∈ (𝐽 Cn 𝐿)) |
| |
| Theorem | cnptopco 14738 |
The composition of a function 𝐹 continuous at 𝑃 with a function
continuous at (𝐹‘𝑃) is continuous at 𝑃.
Proposition 2 of
[BourbakiTop1] p. I.9.
(Contributed by FL, 16-Nov-2006.) (Proof
shortened by Mario Carneiro, 27-Dec-2014.)
|
| ⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐿 ∈ Top) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)‘(𝐹‘𝑃)))) → (𝐺 ∘ 𝐹) ∈ ((𝐽 CnP 𝐿)‘𝑃)) |
| |
| Theorem | cnclima 14739 |
A closed subset of the codomain of a continuous function has a closed
preimage. (Contributed by NM, 15-Mar-2007.) (Revised by Mario Carneiro,
21-Aug-2015.)
|
| ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ∈ (Clsd‘𝐾)) → (◡𝐹 “ 𝐴) ∈ (Clsd‘𝐽)) |
| |
| Theorem | cnntri 14740 |
Property of the preimage of an interior. (Contributed by Mario
Carneiro, 25-Aug-2015.)
|
| ⊢ 𝑌 = ∪ 𝐾 ⇒ ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆 ⊆ 𝑌) → (◡𝐹 “ ((int‘𝐾)‘𝑆)) ⊆ ((int‘𝐽)‘(◡𝐹 “ 𝑆))) |
| |
| Theorem | cnntr 14741* |
Continuity in terms of interior. (Contributed by Jeff Hankins,
2-Oct-2009.) (Proof shortened by Mario Carneiro, 25-Aug-2015.)
|
| ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝒫 𝑌(◡𝐹 “ ((int‘𝐾)‘𝑥)) ⊆ ((int‘𝐽)‘(◡𝐹 “ 𝑥))))) |
| |
| Theorem | cnss1 14742 |
If the topology 𝐾 is finer than 𝐽, then there are more
continuous functions from 𝐾 than from 𝐽. (Contributed by Mario
Carneiro, 19-Mar-2015.) (Revised by Mario Carneiro, 21-Aug-2015.)
|
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ⊆ 𝐾) → (𝐽 Cn 𝐿) ⊆ (𝐾 Cn 𝐿)) |
| |
| Theorem | cnss2 14743 |
If the topology 𝐾 is finer than 𝐽, then there are fewer
continuous functions into 𝐾 than into 𝐽 from some other space.
(Contributed by Mario Carneiro, 19-Mar-2015.) (Revised by Mario
Carneiro, 21-Aug-2015.)
|
| ⊢ 𝑌 = ∪ 𝐾 ⇒ ⊢ ((𝐿 ∈ (TopOn‘𝑌) ∧ 𝐿 ⊆ 𝐾) → (𝐽 Cn 𝐾) ⊆ (𝐽 Cn 𝐿)) |
| |
| Theorem | cncnpi 14744 |
A continuous function is continuous at all points. One direction of
Theorem 7.2(g) of [Munkres] p. 107.
(Contributed by Raph Levien,
20-Nov-2006.) (Proof shortened by Mario Carneiro, 21-Aug-2015.)
|
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ∈ 𝑋) → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐴)) |
| |
| Theorem | cnsscnp 14745 |
The set of continuous functions is a subset of the set of continuous
functions at a point. (Contributed by Raph Levien, 21-Oct-2006.)
(Revised by Mario Carneiro, 21-Aug-2015.)
|
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝑃 ∈ 𝑋 → (𝐽 Cn 𝐾) ⊆ ((𝐽 CnP 𝐾)‘𝑃)) |
| |
| Theorem | cncnp 14746* |
A continuous function is continuous at all points. Theorem 7.2(g) of
[Munkres] p. 107. (Contributed by NM,
15-May-2007.) (Proof shortened
by Mario Carneiro, 21-Aug-2015.)
|
| ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥)))) |
| |
| Theorem | cncnp2m 14747* |
A continuous function is continuous at all points. Theorem 7.2(g) of
[Munkres] p. 107. (Contributed by Raph
Levien, 20-Nov-2006.) (Revised
by Jim Kingdon, 30-Mar-2023.)
|
| ⊢ 𝑋 = ∪ 𝐽 & ⊢ 𝑌 = ∪
𝐾
⇒ ⊢ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ ∃𝑦 𝑦 ∈ 𝑋) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ ∀𝑥 ∈ 𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑥))) |
| |
| Theorem | cnnei 14748* |
Continuity in terms of neighborhoods. (Contributed by Thierry Arnoux,
3-Jan-2018.)
|
| ⊢ 𝑋 = ∪ 𝐽 & ⊢ 𝑌 = ∪
𝐾
⇒ ⊢ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:𝑋⟶𝑌) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ ∀𝑝 ∈ 𝑋 ∀𝑤 ∈ ((nei‘𝐾)‘{(𝐹‘𝑝)})∃𝑣 ∈ ((nei‘𝐽)‘{𝑝})(𝐹 “ 𝑣) ⊆ 𝑤)) |
| |
| Theorem | cnconst2 14749 |
A constant function is continuous. (Contributed by Mario Carneiro,
19-Mar-2015.)
|
| ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐵 ∈ 𝑌) → (𝑋 × {𝐵}) ∈ (𝐽 Cn 𝐾)) |
| |
| Theorem | cnconst 14750 |
A constant function is continuous. (Contributed by FL, 15-Jan-2007.)
(Proof shortened by Mario Carneiro, 19-Mar-2015.)
|
| ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) ∧ (𝐵 ∈ 𝑌 ∧ 𝐹:𝑋⟶{𝐵})) → 𝐹 ∈ (𝐽 Cn 𝐾)) |
| |
| Theorem | cnrest 14751 |
Continuity of a restriction from a subspace. (Contributed by Jeff
Hankins, 11-Jul-2009.) (Revised by Mario Carneiro, 21-Aug-2015.)
|
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ⊆ 𝑋) → (𝐹 ↾ 𝐴) ∈ ((𝐽 ↾t 𝐴) Cn 𝐾)) |
| |
| Theorem | cnrest2 14752 |
Equivalence of continuity in the parent topology and continuity in a
subspace. (Contributed by Jeff Hankins, 10-Jul-2009.) (Proof shortened
by Mario Carneiro, 21-Aug-2015.)
|
| ⊢ ((𝐾 ∈ (TopOn‘𝑌) ∧ ran 𝐹 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝑌) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ 𝐹 ∈ (𝐽 Cn (𝐾 ↾t 𝐵)))) |
| |
| Theorem | cnrest2r 14753 |
Equivalence of continuity in the parent topology and continuity in a
subspace. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario
Carneiro, 7-Jun-2014.)
|
| ⊢ (𝐾 ∈ Top → (𝐽 Cn (𝐾 ↾t 𝐵)) ⊆ (𝐽 Cn 𝐾)) |
| |
| Theorem | cnptopresti 14754 |
One direction of cnptoprest 14755 under the weaker condition that the point
is in the subset rather than the interior of the subset. (Contributed
by Mario Carneiro, 9-Feb-2015.) (Revised by Jim Kingdon,
31-Mar-2023.)
|
| ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ Top) ∧ (𝐴 ⊆ 𝑋 ∧ 𝑃 ∈ 𝐴 ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃))) → (𝐹 ↾ 𝐴) ∈ (((𝐽 ↾t 𝐴) CnP 𝐾)‘𝑃)) |
| |
| Theorem | cnptoprest 14755 |
Equivalence of continuity at a point and continuity of the restricted
function at a point. (Contributed by Mario Carneiro, 8-Aug-2014.)
(Revised by Jim Kingdon, 5-Apr-2023.)
|
| ⊢ 𝑋 = ∪ 𝐽 & ⊢ 𝑌 = ∪
𝐾
⇒ ⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐴 ⊆ 𝑋) ∧ (𝑃 ∈ ((int‘𝐽)‘𝐴) ∧ 𝐹:𝑋⟶𝑌)) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹 ↾ 𝐴) ∈ (((𝐽 ↾t 𝐴) CnP 𝐾)‘𝑃))) |
| |
| Theorem | cnptoprest2 14756 |
Equivalence of point-continuity in the parent topology and
point-continuity in a subspace. (Contributed by Mario Carneiro,
9-Aug-2014.) (Revised by Jim Kingdon, 6-Apr-2023.)
|
| ⊢ 𝑋 = ∪ 𝐽 & ⊢ 𝑌 = ∪
𝐾
⇒ ⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐹:𝑋⟶𝐵 ∧ 𝐵 ⊆ 𝑌)) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ 𝐹 ∈ ((𝐽 CnP (𝐾 ↾t 𝐵))‘𝑃))) |
| |
| Theorem | cndis 14757 |
Every function is continuous when the domain is discrete. (Contributed
by Mario Carneiro, 19-Mar-2015.) (Revised by Mario Carneiro,
21-Aug-2015.)
|
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐽 ∈ (TopOn‘𝑋)) → (𝒫 𝐴 Cn 𝐽) = (𝑋 ↑𝑚 𝐴)) |
| |
| Theorem | cnpdis 14758 |
If 𝐴 is an isolated point in 𝑋 (or
equivalently, the singleton
{𝐴} is open in 𝑋), then every function is
continuous at
𝐴. (Contributed by Mario Carneiro,
9-Sep-2015.)
|
| ⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴 ∈ 𝑋) ∧ {𝐴} ∈ 𝐽) → ((𝐽 CnP 𝐾)‘𝐴) = (𝑌 ↑𝑚 𝑋)) |
| |
| Theorem | lmfpm 14759 |
If 𝐹 converges, then 𝐹 is a
partial function. (Contributed by
Mario Carneiro, 23-Dec-2013.)
|
| ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹(⇝𝑡‘𝐽)𝑃) → 𝐹 ∈ (𝑋 ↑pm
ℂ)) |
| |
| Theorem | lmfss 14760 |
Inclusion of a function having a limit (used to ensure the limit
relation is a set, under our definition). (Contributed by NM,
7-Dec-2006.) (Revised by Mario Carneiro, 23-Dec-2013.)
|
| ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹(⇝𝑡‘𝐽)𝑃) → 𝐹 ⊆ (ℂ × 𝑋)) |
| |
| Theorem | lmcl 14761 |
Closure of a limit. (Contributed by NM, 19-Dec-2006.) (Revised by
Mario Carneiro, 23-Dec-2013.)
|
| ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹(⇝𝑡‘𝐽)𝑃) → 𝑃 ∈ 𝑋) |
| |
| Theorem | lmss 14762 |
Limit on a subspace. (Contributed by NM, 30-Jan-2008.) (Revised by
Mario Carneiro, 30-Dec-2013.)
|
| ⊢ 𝐾 = (𝐽 ↾t 𝑌)
& ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑌 ∈ 𝑉)
& ⊢ (𝜑 → 𝐽 ∈ Top) & ⊢ (𝜑 → 𝑃 ∈ 𝑌)
& ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹:𝑍⟶𝑌) ⇒ ⊢ (𝜑 → (𝐹(⇝𝑡‘𝐽)𝑃 ↔ 𝐹(⇝𝑡‘𝐾)𝑃)) |
| |
| Theorem | sslm 14763 |
A finer topology has fewer convergent sequences (but the sequences that
do converge, converge to the same value). (Contributed by Mario
Carneiro, 15-Sep-2015.)
|
| ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑋) ∧ 𝐽 ⊆ 𝐾) →
(⇝𝑡‘𝐾) ⊆
(⇝𝑡‘𝐽)) |
| |
| Theorem | lmres 14764 |
A function converges iff its restriction to an upper integers set
converges. (Contributed by Mario Carneiro, 31-Dec-2013.)
|
| ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐹 ∈ (𝑋 ↑pm
ℂ))
& ⊢ (𝜑 → 𝑀 ∈ ℤ)
⇒ ⊢ (𝜑 → (𝐹(⇝𝑡‘𝐽)𝑃 ↔ (𝐹 ↾
(ℤ≥‘𝑀))(⇝𝑡‘𝐽)𝑃)) |
| |
| Theorem | lmff 14765* |
If 𝐹 converges, there is some upper
integer set on which 𝐹 is
a total function. (Contributed by Mario Carneiro, 31-Dec-2013.)
|
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹 ∈ dom
(⇝𝑡‘𝐽)) ⇒ ⊢ (𝜑 → ∃𝑗 ∈ 𝑍 (𝐹 ↾
(ℤ≥‘𝑗)):(ℤ≥‘𝑗)⟶𝑋) |
| |
| Theorem | lmtopcnp 14766 |
The image of a convergent sequence under a continuous map is
convergent to the image of the original point. (Contributed by Mario
Carneiro, 3-May-2014.) (Revised by Jim Kingdon, 6-Apr-2023.)
|
| ⊢ (𝜑 → 𝐹(⇝𝑡‘𝐽)𝑃)
& ⊢ (𝜑 → 𝐾 ∈ Top) & ⊢ (𝜑 → 𝐺 ∈ ((𝐽 CnP 𝐾)‘𝑃)) ⇒ ⊢ (𝜑 → (𝐺 ∘ 𝐹)(⇝𝑡‘𝐾)(𝐺‘𝑃)) |
| |
| Theorem | lmcn 14767 |
The image of a convergent sequence under a continuous map is convergent
to the image of the original point. (Contributed by Mario Carneiro,
3-May-2014.)
|
| ⊢ (𝜑 → 𝐹(⇝𝑡‘𝐽)𝑃)
& ⊢ (𝜑 → 𝐺 ∈ (𝐽 Cn 𝐾)) ⇒ ⊢ (𝜑 → (𝐺 ∘ 𝐹)(⇝𝑡‘𝐾)(𝐺‘𝑃)) |
| |
| 9.1.8 Product topologies
|
| |
| Syntax | ctx 14768 |
Extend class notation with the binary topological product operation.
|
| class ×t |
| |
| Definition | df-tx 14769* |
Define the binary topological product, which is homeomorphic to the
general topological product over a two element set, but is more
convenient to use. (Contributed by Jeff Madsen, 2-Sep-2009.)
|
| ⊢ ×t = (𝑟 ∈ V, 𝑠 ∈ V ↦ (topGen‘ran (𝑥 ∈ 𝑟, 𝑦 ∈ 𝑠 ↦ (𝑥 × 𝑦)))) |
| |
| Theorem | txvalex 14770 |
Existence of the binary topological product. If 𝑅 and 𝑆 are
known to be topologies, see txtop 14776. (Contributed by Jim Kingdon,
3-Aug-2023.)
|
| ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → (𝑅 ×t 𝑆) ∈ V) |
| |
| Theorem | txval 14771* |
Value of the binary topological product operation. (Contributed by Jeff
Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 30-Aug-2015.)
|
| ⊢ 𝐵 = ran (𝑥 ∈ 𝑅, 𝑦 ∈ 𝑆 ↦ (𝑥 × 𝑦)) ⇒ ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → (𝑅 ×t 𝑆) = (topGen‘𝐵)) |
| |
| Theorem | txuni2 14772* |
The underlying set of the product of two topologies. (Contributed by
Mario Carneiro, 31-Aug-2015.)
|
| ⊢ 𝐵 = ran (𝑥 ∈ 𝑅, 𝑦 ∈ 𝑆 ↦ (𝑥 × 𝑦))
& ⊢ 𝑋 = ∪ 𝑅 & ⊢ 𝑌 = ∪
𝑆
⇒ ⊢ (𝑋 × 𝑌) = ∪ 𝐵 |
| |
| Theorem | txbasex 14773* |
The basis for the product topology is a set. (Contributed by Mario
Carneiro, 2-Sep-2015.)
|
| ⊢ 𝐵 = ran (𝑥 ∈ 𝑅, 𝑦 ∈ 𝑆 ↦ (𝑥 × 𝑦)) ⇒ ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → 𝐵 ∈ V) |
| |
| Theorem | txbas 14774* |
The set of Cartesian products of elements from two topological bases is
a basis. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario
Carneiro, 31-Aug-2015.)
|
| ⊢ 𝐵 = ran (𝑥 ∈ 𝑅, 𝑦 ∈ 𝑆 ↦ (𝑥 × 𝑦)) ⇒ ⊢ ((𝑅 ∈ TopBases ∧ 𝑆 ∈ TopBases) → 𝐵 ∈ TopBases) |
| |
| Theorem | eltx 14775* |
A set in a product is open iff each point is surrounded by an open
rectangle. (Contributed by Stefan O'Rear, 25-Jan-2015.)
|
| ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐾 ∈ 𝑊) → (𝑆 ∈ (𝐽 ×t 𝐾) ↔ ∀𝑝 ∈ 𝑆 ∃𝑥 ∈ 𝐽 ∃𝑦 ∈ 𝐾 (𝑝 ∈ (𝑥 × 𝑦) ∧ (𝑥 × 𝑦) ⊆ 𝑆))) |
| |
| Theorem | txtop 14776 |
The product of two topologies is a topology. (Contributed by Jeff
Madsen, 2-Sep-2009.)
|
| ⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑅 ×t 𝑆) ∈ Top) |
| |
| Theorem | txtopi 14777 |
The product of two topologies is a topology. (Contributed by Jeff
Madsen, 15-Jun-2010.)
|
| ⊢ 𝑅 ∈ Top & ⊢ 𝑆 ∈
Top ⇒ ⊢ (𝑅 ×t 𝑆) ∈ Top |
| |
| Theorem | txtopon 14778 |
The underlying set of the product of two topologies. (Contributed by
Mario Carneiro, 22-Aug-2015.) (Revised by Mario Carneiro,
2-Sep-2015.)
|
| ⊢ ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → (𝑅 ×t 𝑆) ∈ (TopOn‘(𝑋 × 𝑌))) |
| |
| Theorem | txuni 14779 |
The underlying set of the product of two topologies. (Contributed by
Jeff Madsen, 2-Sep-2009.)
|
| ⊢ 𝑋 = ∪ 𝑅 & ⊢ 𝑌 = ∪
𝑆
⇒ ⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑋 × 𝑌) = ∪ (𝑅 ×t 𝑆)) |
| |
| Theorem | txunii 14780 |
The underlying set of the product of two topologies. (Contributed by
Jeff Madsen, 15-Jun-2010.)
|
| ⊢ 𝑅 ∈ Top & ⊢ 𝑆 ∈ Top & ⊢ 𝑋 = ∪
𝑅 & ⊢ 𝑌 = ∪
𝑆
⇒ ⊢ (𝑋 × 𝑌) = ∪ (𝑅 ×t 𝑆) |
| |
| Theorem | txopn 14781 |
The product of two open sets is open in the product topology.
(Contributed by Jeff Madsen, 2-Sep-2009.)
|
| ⊢ (((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) ∧ (𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆)) → (𝐴 × 𝐵) ∈ (𝑅 ×t 𝑆)) |
| |
| Theorem | txss12 14782 |
Subset property of the topological product. (Contributed by Mario
Carneiro, 2-Sep-2015.)
|
| ⊢ (((𝐵 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊) ∧ (𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷)) → (𝐴 ×t 𝐶) ⊆ (𝐵 ×t 𝐷)) |
| |
| Theorem | txbasval 14783 |
It is sufficient to consider products of the bases for the topologies in
the topological product. (Contributed by Mario Carneiro,
25-Aug-2014.)
|
| ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → ((topGen‘𝑅) ×t (topGen‘𝑆)) = (𝑅 ×t 𝑆)) |
| |
| Theorem | neitx 14784 |
The Cartesian product of two neighborhoods is a neighborhood in the
product topology. (Contributed by Thierry Arnoux, 13-Jan-2018.)
|
| ⊢ 𝑋 = ∪ 𝐽 & ⊢ 𝑌 = ∪
𝐾
⇒ ⊢ (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐴 ∈ ((nei‘𝐽)‘𝐶) ∧ 𝐵 ∈ ((nei‘𝐾)‘𝐷))) → (𝐴 × 𝐵) ∈ ((nei‘(𝐽 ×t 𝐾))‘(𝐶 × 𝐷))) |
| |
| Theorem | tx1cn 14785 |
Continuity of the first projection map of a topological product.
(Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario
Carneiro, 22-Aug-2015.)
|
| ⊢ ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → (1st ↾ (𝑋 × 𝑌)) ∈ ((𝑅 ×t 𝑆) Cn 𝑅)) |
| |
| Theorem | tx2cn 14786 |
Continuity of the second projection map of a topological product.
(Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario
Carneiro, 22-Aug-2015.)
|
| ⊢ ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑆 ∈ (TopOn‘𝑌)) → (2nd ↾ (𝑋 × 𝑌)) ∈ ((𝑅 ×t 𝑆) Cn 𝑆)) |
| |
| Theorem | txcnp 14787* |
If two functions are continuous at 𝐷, then the ordered pair of them
is continuous at 𝐷 into the product topology.
(Contributed by Mario
Carneiro, 9-Aug-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
|
| ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) & ⊢ (𝜑 → 𝐿 ∈ (TopOn‘𝑍)) & ⊢ (𝜑 → 𝐷 ∈ 𝑋)
& ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ ((𝐽 CnP 𝐾)‘𝐷)) & ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ ((𝐽 CnP 𝐿)‘𝐷)) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) ∈ ((𝐽 CnP (𝐾 ×t 𝐿))‘𝐷)) |
| |
| Theorem | upxp 14788* |
Universal property of the Cartesian product considered as a categorical
product in the category of sets. (Contributed by Jeff Madsen,
2-Sep-2009.) (Revised by Mario Carneiro, 27-Dec-2014.)
|
| ⊢ 𝑃 = (1st ↾ (𝐵 × 𝐶)) & ⊢ 𝑄 = (2nd ↾
(𝐵 × 𝐶))
⇒ ⊢ ((𝐴 ∈ 𝐷 ∧ 𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐴⟶𝐶) → ∃!ℎ(ℎ:𝐴⟶(𝐵 × 𝐶) ∧ 𝐹 = (𝑃 ∘ ℎ) ∧ 𝐺 = (𝑄 ∘ ℎ))) |
| |
| Theorem | txcnmpt 14789* |
A map into the product of two topological spaces is continuous if both
of its projections are continuous. (Contributed by Jeff Madsen,
2-Sep-2009.) (Revised by Mario Carneiro, 22-Aug-2015.)
|
| ⊢ 𝑊 = ∪ 𝑈 & ⊢ 𝐻 = (𝑥 ∈ 𝑊 ↦ 〈(𝐹‘𝑥), (𝐺‘𝑥)〉) ⇒ ⊢ ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → 𝐻 ∈ (𝑈 Cn (𝑅 ×t 𝑆))) |
| |
| Theorem | uptx 14790* |
Universal property of the binary topological product. (Contributed by
Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro,
22-Aug-2015.)
|
| ⊢ 𝑇 = (𝑅 ×t 𝑆)
& ⊢ 𝑋 = ∪ 𝑅 & ⊢ 𝑌 = ∪
𝑆 & ⊢ 𝑍 = (𝑋 × 𝑌)
& ⊢ 𝑃 = (1st ↾ 𝑍) & ⊢ 𝑄 = (2nd ↾
𝑍) ⇒ ⊢ ((𝐹 ∈ (𝑈 Cn 𝑅) ∧ 𝐺 ∈ (𝑈 Cn 𝑆)) → ∃!ℎ ∈ (𝑈 Cn 𝑇)(𝐹 = (𝑃 ∘ ℎ) ∧ 𝐺 = (𝑄 ∘ ℎ))) |
| |
| Theorem | txcn 14791 |
A map into the product of two topological spaces is continuous iff both
of its projections are continuous. (Contributed by Jeff Madsen,
2-Sep-2009.) (Proof shortened by Mario Carneiro, 22-Aug-2015.)
|
| ⊢ 𝑋 = ∪ 𝑅 & ⊢ 𝑌 = ∪
𝑆 & ⊢ 𝑍 = (𝑋 × 𝑌)
& ⊢ 𝑊 = ∪ 𝑈 & ⊢ 𝑃 = (1st ↾
𝑍) & ⊢ 𝑄 = (2nd ↾
𝑍) ⇒ ⊢ ((𝑅 ∈ Top ∧ 𝑆 ∈ Top ∧ 𝐹:𝑊⟶𝑍) → (𝐹 ∈ (𝑈 Cn (𝑅 ×t 𝑆)) ↔ ((𝑃 ∘ 𝐹) ∈ (𝑈 Cn 𝑅) ∧ (𝑄 ∘ 𝐹) ∈ (𝑈 Cn 𝑆)))) |
| |
| Theorem | txrest 14792 |
The subspace of a topological product space induced by a subset with a
Cartesian product representation is a topological product of the
subspaces induced by the subspaces of the terms of the products.
(Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario
Carneiro, 2-Sep-2015.)
|
| ⊢ (((𝑅 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌)) → ((𝑅 ×t 𝑆) ↾t (𝐴 × 𝐵)) = ((𝑅 ↾t 𝐴) ×t (𝑆 ↾t 𝐵))) |
| |
| Theorem | txdis 14793 |
The topological product of discrete spaces is discrete. (Contributed by
Mario Carneiro, 14-Aug-2015.)
|
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝒫 𝐴 ×t 𝒫 𝐵) = 𝒫 (𝐴 × 𝐵)) |
| |
| Theorem | txdis1cn 14794* |
A function is jointly continuous on a discrete left topology iff it is
continuous as a function of its right argument, for each fixed left
value. (Contributed by Mario Carneiro, 19-Sep-2015.)
|
| ⊢ (𝜑 → 𝑋 ∈ 𝑉)
& ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑌)) & ⊢ (𝜑 → 𝐾 ∈ Top) & ⊢ (𝜑 → 𝐹 Fn (𝑋 × 𝑌)) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝑦 ∈ 𝑌 ↦ (𝑥𝐹𝑦)) ∈ (𝐽 Cn 𝐾)) ⇒ ⊢ (𝜑 → 𝐹 ∈ ((𝒫 𝑋 ×t 𝐽) Cn 𝐾)) |
| |
| Theorem | txlm 14795* |
Two sequences converge iff the sequence of their ordered pairs
converges. Proposition 14-2.6 of [Gleason] p. 230. (Contributed by
NM, 16-Jul-2007.) (Revised by Mario Carneiro, 5-May-2014.)
|
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) & ⊢ (𝜑 → 𝐹:𝑍⟶𝑋)
& ⊢ (𝜑 → 𝐺:𝑍⟶𝑌)
& ⊢ 𝐻 = (𝑛 ∈ 𝑍 ↦ 〈(𝐹‘𝑛), (𝐺‘𝑛)〉) ⇒ ⊢ (𝜑 → ((𝐹(⇝𝑡‘𝐽)𝑅 ∧ 𝐺(⇝𝑡‘𝐾)𝑆) ↔ 𝐻(⇝𝑡‘(𝐽 ×t 𝐾))〈𝑅, 𝑆〉)) |
| |
| Theorem | lmcn2 14796* |
The image of a convergent sequence under a continuous map is convergent
to the image of the original point. Binary operation version.
(Contributed by Mario Carneiro, 15-May-2014.)
|
| ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) & ⊢ (𝜑 → 𝐹:𝑍⟶𝑋)
& ⊢ (𝜑 → 𝐺:𝑍⟶𝑌)
& ⊢ (𝜑 → 𝐹(⇝𝑡‘𝐽)𝑅)
& ⊢ (𝜑 → 𝐺(⇝𝑡‘𝐾)𝑆)
& ⊢ (𝜑 → 𝑂 ∈ ((𝐽 ×t 𝐾) Cn 𝑁)) & ⊢ 𝐻 = (𝑛 ∈ 𝑍 ↦ ((𝐹‘𝑛)𝑂(𝐺‘𝑛))) ⇒ ⊢ (𝜑 → 𝐻(⇝𝑡‘𝑁)(𝑅𝑂𝑆)) |
| |
| 9.1.9 Continuous function-builders
|
| |
| Theorem | cnmptid 14797* |
The identity function is continuous. (Contributed by Mario Carneiro,
5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
|
| ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝑥) ∈ (𝐽 Cn 𝐽)) |
| |
| Theorem | cnmptc 14798* |
A constant function is continuous. (Contributed by Mario Carneiro,
5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
|
| ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) & ⊢ (𝜑 → 𝑃 ∈ 𝑌) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝑃) ∈ (𝐽 Cn 𝐾)) |
| |
| Theorem | cnmpt11 14799* |
The composition of continuous functions is continuous. (Contributed
by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro,
22-Aug-2015.)
|
| ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝐽 Cn 𝐾)) & ⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) & ⊢ (𝜑 → (𝑦 ∈ 𝑌 ↦ 𝐵) ∈ (𝐾 Cn 𝐿)) & ⊢ (𝑦 = 𝐴 → 𝐵 = 𝐶) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐶) ∈ (𝐽 Cn 𝐿)) |
| |
| Theorem | cnmpt11f 14800* |
The composition of continuous functions is continuous. (Contributed
by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro,
22-Aug-2015.)
|
| ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝐽 Cn 𝐾)) & ⊢ (𝜑 → 𝐹 ∈ (𝐾 Cn 𝐿)) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝐹‘𝐴)) ∈ (𝐽 Cn 𝐿)) |