![]() |
Intuitionistic Logic Explorer Theorem List (p. 148 of 150) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > ILE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | bdss 14701 | The inclusion of a setvar in a bounded class is a bounded formula. Note: apparently, we cannot prove from the present axioms that equality of two bounded classes is a bounded formula. (Contributed by BJ, 3-Oct-2019.) |
⊢ BOUNDED 𝐴 ⇒ ⊢ BOUNDED 𝑥 ⊆ 𝐴 | ||
Theorem | bdcnul 14702 | The empty class is bounded. See also bdcnulALT 14703. (Contributed by BJ, 3-Oct-2019.) |
⊢ BOUNDED ∅ | ||
Theorem | bdcnulALT 14703 | Alternate proof of bdcnul 14702. Similarly, for the next few theorems proving boundedness of a class, one can either use their definition followed by bdceqir 14681, or use the corresponding characterizations of its elements followed by bdelir 14684. (Contributed by BJ, 3-Oct-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ BOUNDED ∅ | ||
Theorem | bdeq0 14704 | Boundedness of the formula expressing that a setvar is equal to the empty class. (Contributed by BJ, 21-Nov-2019.) |
⊢ BOUNDED 𝑥 = ∅ | ||
Theorem | bj-bd0el 14705 | Boundedness of the formula "the empty set belongs to the setvar 𝑥". (Contributed by BJ, 30-Nov-2019.) |
⊢ BOUNDED ∅ ∈ 𝑥 | ||
Theorem | bdcpw 14706 | The power class of a bounded class is bounded. (Contributed by BJ, 3-Oct-2019.) |
⊢ BOUNDED 𝐴 ⇒ ⊢ BOUNDED 𝒫 𝐴 | ||
Theorem | bdcsn 14707 | The singleton of a setvar is bounded. (Contributed by BJ, 16-Oct-2019.) |
⊢ BOUNDED {𝑥} | ||
Theorem | bdcpr 14708 | The pair of two setvars is bounded. (Contributed by BJ, 16-Oct-2019.) |
⊢ BOUNDED {𝑥, 𝑦} | ||
Theorem | bdctp 14709 | The unordered triple of three setvars is bounded. (Contributed by BJ, 16-Oct-2019.) |
⊢ BOUNDED {𝑥, 𝑦, 𝑧} | ||
Theorem | bdsnss 14710* | Inclusion of a singleton of a setvar in a bounded class is a bounded formula. (Contributed by BJ, 16-Oct-2019.) |
⊢ BOUNDED 𝐴 ⇒ ⊢ BOUNDED {𝑥} ⊆ 𝐴 | ||
Theorem | bdvsn 14711* | Equality of a setvar with a singleton of a setvar is a bounded formula. (Contributed by BJ, 16-Oct-2019.) |
⊢ BOUNDED 𝑥 = {𝑦} | ||
Theorem | bdop 14712 | The ordered pair of two setvars is a bounded class. (Contributed by BJ, 21-Nov-2019.) |
⊢ BOUNDED ⟨𝑥, 𝑦⟩ | ||
Theorem | bdcuni 14713 | The union of a setvar is a bounded class. (Contributed by BJ, 15-Oct-2019.) |
⊢ BOUNDED ∪ 𝑥 | ||
Theorem | bdcint 14714 | The intersection of a setvar is a bounded class. (Contributed by BJ, 16-Oct-2019.) |
⊢ BOUNDED ∩ 𝑥 | ||
Theorem | bdciun 14715* | The indexed union of a bounded class with a setvar indexing set is a bounded class. (Contributed by BJ, 16-Oct-2019.) |
⊢ BOUNDED 𝐴 ⇒ ⊢ BOUNDED ∪ 𝑥 ∈ 𝑦 𝐴 | ||
Theorem | bdciin 14716* | The indexed intersection of a bounded class with a setvar indexing set is a bounded class. (Contributed by BJ, 16-Oct-2019.) |
⊢ BOUNDED 𝐴 ⇒ ⊢ BOUNDED ∩ 𝑥 ∈ 𝑦 𝐴 | ||
Theorem | bdcsuc 14717 | The successor of a setvar is a bounded class. (Contributed by BJ, 16-Oct-2019.) |
⊢ BOUNDED suc 𝑥 | ||
Theorem | bdeqsuc 14718* | Boundedness of the formula expressing that a setvar is equal to the successor of another. (Contributed by BJ, 21-Nov-2019.) |
⊢ BOUNDED 𝑥 = suc 𝑦 | ||
Theorem | bj-bdsucel 14719 | Boundedness of the formula "the successor of the setvar 𝑥 belongs to the setvar 𝑦". (Contributed by BJ, 30-Nov-2019.) |
⊢ BOUNDED suc 𝑥 ∈ 𝑦 | ||
Theorem | bdcriota 14720* | A class given by a restricted definition binder is bounded, under the given hypotheses. (Contributed by BJ, 24-Nov-2019.) |
⊢ BOUNDED 𝜑 & ⊢ ∃!𝑥 ∈ 𝑦 𝜑 ⇒ ⊢ BOUNDED (℩𝑥 ∈ 𝑦 𝜑) | ||
In this section, we state the axiom scheme of bounded separation, which is part of CZF set theory. | ||
Axiom | ax-bdsep 14721* | Axiom scheme of bounded (or restricted, or Δ0) separation. It is stated with all possible disjoint variable conditions, to show that this weak form is sufficient. For the full axiom of separation, see ax-sep 4123. (Contributed by BJ, 5-Oct-2019.) |
⊢ BOUNDED 𝜑 ⇒ ⊢ ∀𝑎∃𝑏∀𝑥(𝑥 ∈ 𝑏 ↔ (𝑥 ∈ 𝑎 ∧ 𝜑)) | ||
Theorem | bdsep1 14722* | Version of ax-bdsep 14721 without initial universal quantifier. (Contributed by BJ, 5-Oct-2019.) |
⊢ BOUNDED 𝜑 ⇒ ⊢ ∃𝑏∀𝑥(𝑥 ∈ 𝑏 ↔ (𝑥 ∈ 𝑎 ∧ 𝜑)) | ||
Theorem | bdsep2 14723* | Version of ax-bdsep 14721 with one disjoint variable condition removed and without initial universal quantifier. Use bdsep1 14722 when sufficient. (Contributed by BJ, 5-Oct-2019.) |
⊢ BOUNDED 𝜑 ⇒ ⊢ ∃𝑏∀𝑥(𝑥 ∈ 𝑏 ↔ (𝑥 ∈ 𝑎 ∧ 𝜑)) | ||
Theorem | bdsepnft 14724* | Closed form of bdsepnf 14725. Version of ax-bdsep 14721 with one disjoint variable condition removed, the other disjoint variable condition replaced by a nonfreeness antecedent, and without initial universal quantifier. Use bdsep1 14722 when sufficient. (Contributed by BJ, 19-Oct-2019.) |
⊢ BOUNDED 𝜑 ⇒ ⊢ (∀𝑥Ⅎ𝑏𝜑 → ∃𝑏∀𝑥(𝑥 ∈ 𝑏 ↔ (𝑥 ∈ 𝑎 ∧ 𝜑))) | ||
Theorem | bdsepnf 14725* | Version of ax-bdsep 14721 with one disjoint variable condition removed, the other disjoint variable condition replaced by a nonfreeness hypothesis, and without initial universal quantifier. See also bdsepnfALT 14726. Use bdsep1 14722 when sufficient. (Contributed by BJ, 5-Oct-2019.) |
⊢ Ⅎ𝑏𝜑 & ⊢ BOUNDED 𝜑 ⇒ ⊢ ∃𝑏∀𝑥(𝑥 ∈ 𝑏 ↔ (𝑥 ∈ 𝑎 ∧ 𝜑)) | ||
Theorem | bdsepnfALT 14726* | Alternate proof of bdsepnf 14725, not using bdsepnft 14724. (Contributed by BJ, 5-Oct-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ Ⅎ𝑏𝜑 & ⊢ BOUNDED 𝜑 ⇒ ⊢ ∃𝑏∀𝑥(𝑥 ∈ 𝑏 ↔ (𝑥 ∈ 𝑎 ∧ 𝜑)) | ||
Theorem | bdzfauscl 14727* | Closed form of the version of zfauscl 4125 for bounded formulas using bounded separation. (Contributed by BJ, 13-Nov-2019.) |
⊢ BOUNDED 𝜑 ⇒ ⊢ (𝐴 ∈ 𝑉 → ∃𝑦∀𝑥(𝑥 ∈ 𝑦 ↔ (𝑥 ∈ 𝐴 ∧ 𝜑))) | ||
Theorem | bdbm1.3ii 14728* | Bounded version of bm1.3ii 4126. (Contributed by BJ, 5-Oct-2019.) (Proof modification is discouraged.) |
⊢ BOUNDED 𝜑 & ⊢ ∃𝑥∀𝑦(𝜑 → 𝑦 ∈ 𝑥) ⇒ ⊢ ∃𝑥∀𝑦(𝑦 ∈ 𝑥 ↔ 𝜑) | ||
Theorem | bj-axemptylem 14729* | Lemma for bj-axempty 14730 and bj-axempty2 14731. (Contributed by BJ, 25-Oct-2020.) (Proof modification is discouraged.) Use ax-nul 4131 instead. (New usage is discouraged.) |
⊢ ∃𝑥∀𝑦(𝑦 ∈ 𝑥 → ⊥) | ||
Theorem | bj-axempty 14730* | Axiom of the empty set from bounded separation. It is provable from bounded separation since the intuitionistic FOL used in iset.mm assumes a nonempty universe. See axnul 4130. (Contributed by BJ, 25-Oct-2020.) (Proof modification is discouraged.) Use ax-nul 4131 instead. (New usage is discouraged.) |
⊢ ∃𝑥∀𝑦 ∈ 𝑥 ⊥ | ||
Theorem | bj-axempty2 14731* | Axiom of the empty set from bounded separation, alternate version to bj-axempty 14730. (Contributed by BJ, 27-Oct-2020.) (Proof modification is discouraged.) Use ax-nul 4131 instead. (New usage is discouraged.) |
⊢ ∃𝑥∀𝑦 ¬ 𝑦 ∈ 𝑥 | ||
Theorem | bj-nalset 14732* | nalset 4135 from bounded separation. (Contributed by BJ, 18-Nov-2019.) (Proof modification is discouraged.) |
⊢ ¬ ∃𝑥∀𝑦 𝑦 ∈ 𝑥 | ||
Theorem | bj-vprc 14733 | vprc 4137 from bounded separation. (Contributed by BJ, 18-Nov-2019.) (Proof modification is discouraged.) |
⊢ ¬ V ∈ V | ||
Theorem | bj-nvel 14734 | nvel 4138 from bounded separation. (Contributed by BJ, 18-Nov-2019.) (Proof modification is discouraged.) |
⊢ ¬ V ∈ 𝐴 | ||
Theorem | bj-vnex 14735 | vnex 4136 from bounded separation. (Contributed by BJ, 18-Nov-2019.) (Proof modification is discouraged.) |
⊢ ¬ ∃𝑥 𝑥 = V | ||
Theorem | bdinex1 14736 | Bounded version of inex1 4139. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.) |
⊢ BOUNDED 𝐵 & ⊢ 𝐴 ∈ V ⇒ ⊢ (𝐴 ∩ 𝐵) ∈ V | ||
Theorem | bdinex2 14737 | Bounded version of inex2 4140. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.) |
⊢ BOUNDED 𝐵 & ⊢ 𝐴 ∈ V ⇒ ⊢ (𝐵 ∩ 𝐴) ∈ V | ||
Theorem | bdinex1g 14738 | Bounded version of inex1g 4141. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.) |
⊢ BOUNDED 𝐵 ⇒ ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∩ 𝐵) ∈ V) | ||
Theorem | bdssex 14739 | Bounded version of ssex 4142. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.) |
⊢ BOUNDED 𝐴 & ⊢ 𝐵 ∈ V ⇒ ⊢ (𝐴 ⊆ 𝐵 → 𝐴 ∈ V) | ||
Theorem | bdssexi 14740 | Bounded version of ssexi 4143. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.) |
⊢ BOUNDED 𝐴 & ⊢ 𝐵 ∈ V & ⊢ 𝐴 ⊆ 𝐵 ⇒ ⊢ 𝐴 ∈ V | ||
Theorem | bdssexg 14741 | Bounded version of ssexg 4144. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.) |
⊢ BOUNDED 𝐴 ⇒ ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ V) | ||
Theorem | bdssexd 14742 | Bounded version of ssexd 4145. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.) |
⊢ (𝜑 → 𝐵 ∈ 𝐶) & ⊢ (𝜑 → 𝐴 ⊆ 𝐵) & ⊢ BOUNDED 𝐴 ⇒ ⊢ (𝜑 → 𝐴 ∈ V) | ||
Theorem | bdrabexg 14743* | Bounded version of rabexg 4148. (Contributed by BJ, 19-Nov-2019.) (Proof modification is discouraged.) |
⊢ BOUNDED 𝜑 & ⊢ BOUNDED 𝐴 ⇒ ⊢ (𝐴 ∈ 𝑉 → {𝑥 ∈ 𝐴 ∣ 𝜑} ∈ V) | ||
Theorem | bj-inex 14744 | The intersection of two sets is a set, from bounded separation. (Contributed by BJ, 19-Nov-2019.) (Proof modification is discouraged.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∩ 𝐵) ∈ V) | ||
Theorem | bj-intexr 14745 | intexr 4152 from bounded separation. (Contributed by BJ, 18-Nov-2019.) (Proof modification is discouraged.) |
⊢ (∩ 𝐴 ∈ V → 𝐴 ≠ ∅) | ||
Theorem | bj-intnexr 14746 | intnexr 4153 from bounded separation. (Contributed by BJ, 18-Nov-2019.) (Proof modification is discouraged.) |
⊢ (∩ 𝐴 = V → ¬ ∩ 𝐴 ∈ V) | ||
Theorem | bj-zfpair2 14747 | Proof of zfpair2 4212 using only bounded separation. (Contributed by BJ, 5-Oct-2019.) (Proof modification is discouraged.) |
⊢ {𝑥, 𝑦} ∈ V | ||
Theorem | bj-prexg 14748 | Proof of prexg 4213 using only bounded separation. (Contributed by BJ, 5-Oct-2019.) (Proof modification is discouraged.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → {𝐴, 𝐵} ∈ V) | ||
Theorem | bj-snexg 14749 | snexg 4186 from bounded separation. (Contributed by BJ, 5-Oct-2019.) (Proof modification is discouraged.) |
⊢ (𝐴 ∈ 𝑉 → {𝐴} ∈ V) | ||
Theorem | bj-snex 14750 | snex 4187 from bounded separation. (Contributed by BJ, 5-Oct-2019.) (Proof modification is discouraged.) |
⊢ 𝐴 ∈ V ⇒ ⊢ {𝐴} ∈ V | ||
Theorem | bj-sels 14751* | If a class is a set, then it is a member of a set. (Copied from set.mm.) (Contributed by BJ, 3-Apr-2019.) |
⊢ (𝐴 ∈ 𝑉 → ∃𝑥 𝐴 ∈ 𝑥) | ||
Theorem | bj-axun2 14752* | axun2 4437 from bounded separation. (Contributed by BJ, 15-Oct-2019.) (Proof modification is discouraged.) |
⊢ ∃𝑦∀𝑧(𝑧 ∈ 𝑦 ↔ ∃𝑤(𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥)) | ||
Theorem | bj-uniex2 14753* | uniex2 4438 from bounded separation. (Contributed by BJ, 15-Oct-2019.) (Proof modification is discouraged.) |
⊢ ∃𝑦 𝑦 = ∪ 𝑥 | ||
Theorem | bj-uniex 14754 | uniex 4439 from bounded separation. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.) |
⊢ 𝐴 ∈ V ⇒ ⊢ ∪ 𝐴 ∈ V | ||
Theorem | bj-uniexg 14755 | uniexg 4441 from bounded separation. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.) |
⊢ (𝐴 ∈ 𝑉 → ∪ 𝐴 ∈ V) | ||
Theorem | bj-unex 14756 | unex 4443 from bounded separation. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (𝐴 ∪ 𝐵) ∈ V | ||
Theorem | bdunexb 14757 | Bounded version of unexb 4444. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.) |
⊢ BOUNDED 𝐴 & ⊢ BOUNDED 𝐵 ⇒ ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ↔ (𝐴 ∪ 𝐵) ∈ V) | ||
Theorem | bj-unexg 14758 | unexg 4445 from bounded separation. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∪ 𝐵) ∈ V) | ||
Theorem | bj-sucexg 14759 | sucexg 4499 from bounded separation. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.) |
⊢ (𝐴 ∈ 𝑉 → suc 𝐴 ∈ V) | ||
Theorem | bj-sucex 14760 | sucex 4500 from bounded separation. (Contributed by BJ, 13-Nov-2019.) (Proof modification is discouraged.) |
⊢ 𝐴 ∈ V ⇒ ⊢ suc 𝐴 ∈ V | ||
Axiom | ax-bj-d0cl 14761 | Axiom for Δ0-classical logic. (Contributed by BJ, 2-Jan-2020.) |
⊢ BOUNDED 𝜑 ⇒ ⊢ DECID 𝜑 | ||
Theorem | bj-d0clsepcl 14762 | Δ0-classical logic and separation implies classical logic. (Contributed by BJ, 2-Jan-2020.) (Proof modification is discouraged.) |
⊢ DECID 𝜑 | ||
Syntax | wind 14763 | Syntax for inductive classes. |
wff Ind 𝐴 | ||
Definition | df-bj-ind 14764* | Define the property of being an inductive class. (Contributed by BJ, 30-Nov-2019.) |
⊢ (Ind 𝐴 ↔ (∅ ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 suc 𝑥 ∈ 𝐴)) | ||
Theorem | bj-indsuc 14765 | A direct consequence of the definition of Ind. (Contributed by BJ, 30-Nov-2019.) |
⊢ (Ind 𝐴 → (𝐵 ∈ 𝐴 → suc 𝐵 ∈ 𝐴)) | ||
Theorem | bj-indeq 14766 | Equality property for Ind. (Contributed by BJ, 30-Nov-2019.) |
⊢ (𝐴 = 𝐵 → (Ind 𝐴 ↔ Ind 𝐵)) | ||
Theorem | bj-bdind 14767 | Boundedness of the formula "the setvar 𝑥 is an inductive class". (Contributed by BJ, 30-Nov-2019.) |
⊢ BOUNDED Ind 𝑥 | ||
Theorem | bj-indint 14768* | The property of being an inductive class is closed under intersections. (Contributed by BJ, 30-Nov-2019.) |
⊢ Ind ∩ {𝑥 ∈ 𝐴 ∣ Ind 𝑥} | ||
Theorem | bj-indind 14769* | If 𝐴 is inductive and 𝐵 is "inductive in 𝐴", then (𝐴 ∩ 𝐵) is inductive. (Contributed by BJ, 25-Oct-2020.) |
⊢ ((Ind 𝐴 ∧ (∅ ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐴 (𝑥 ∈ 𝐵 → suc 𝑥 ∈ 𝐵))) → Ind (𝐴 ∩ 𝐵)) | ||
Theorem | bj-dfom 14770 | Alternate definition of ω, as the intersection of all the inductive sets. Proposal: make this the definition. (Contributed by BJ, 30-Nov-2019.) |
⊢ ω = ∩ {𝑥 ∣ Ind 𝑥} | ||
Theorem | bj-omind 14771 | ω is an inductive class. (Contributed by BJ, 30-Nov-2019.) |
⊢ Ind ω | ||
Theorem | bj-omssind 14772 | ω is included in all the inductive sets (but for the moment, we cannot prove that it is included in all the inductive classes). (Contributed by BJ, 30-Nov-2019.) (Proof modification is discouraged.) |
⊢ (𝐴 ∈ 𝑉 → (Ind 𝐴 → ω ⊆ 𝐴)) | ||
Theorem | bj-ssom 14773* | A characterization of subclasses of ω. (Contributed by BJ, 30-Nov-2019.) (Proof modification is discouraged.) |
⊢ (∀𝑥(Ind 𝑥 → 𝐴 ⊆ 𝑥) ↔ 𝐴 ⊆ ω) | ||
Theorem | bj-om 14774* | A set is equal to ω if and only if it is the smallest inductive set. (Contributed by BJ, 30-Nov-2019.) (Proof modification is discouraged.) |
⊢ (𝐴 ∈ 𝑉 → (𝐴 = ω ↔ (Ind 𝐴 ∧ ∀𝑥(Ind 𝑥 → 𝐴 ⊆ 𝑥)))) | ||
Theorem | bj-2inf 14775* | Two formulations of the axiom of infinity (see ax-infvn 14778 and bj-omex 14779) . (Contributed by BJ, 30-Nov-2019.) (Proof modification is discouraged.) |
⊢ (ω ∈ V ↔ ∃𝑥(Ind 𝑥 ∧ ∀𝑦(Ind 𝑦 → 𝑥 ⊆ 𝑦))) | ||
The first three Peano postulates follow from constructive set theory (actually, from its core axioms). The proofs peano1 4595 and peano3 4597 already show this. In this section, we prove bj-peano2 14776 to complete this program. We also prove a preliminary version of the fifth Peano postulate from the core axioms. | ||
Theorem | bj-peano2 14776 | Constructive proof of peano2 4596. Temporary note: another possibility is to simply replace sucexg 4499 with bj-sucexg 14759 in the proof of peano2 4596. (Contributed by BJ, 18-Nov-2019.) (Proof modification is discouraged.) |
⊢ (𝐴 ∈ ω → suc 𝐴 ∈ ω) | ||
Theorem | peano5set 14777* | Version of peano5 4599 when ω ∩ 𝐴 is assumed to be a set, allowing a proof from the core axioms of CZF. (Contributed by BJ, 19-Nov-2019.) (Proof modification is discouraged.) |
⊢ ((ω ∩ 𝐴) ∈ 𝑉 → ((∅ ∈ 𝐴 ∧ ∀𝑥 ∈ ω (𝑥 ∈ 𝐴 → suc 𝑥 ∈ 𝐴)) → ω ⊆ 𝐴)) | ||
In the absence of full separation, the axiom of infinity has to be stated more precisely, as the existence of the smallest class containing the empty set and the successor of each of its elements. | ||
In this section, we introduce the axiom of infinity in a constructive setting (ax-infvn 14778) and deduce that the class ω of natural number ordinals is a set (bj-omex 14779). | ||
Axiom | ax-infvn 14778* | Axiom of infinity in a constructive setting. This asserts the existence of the special set we want (the set of natural numbers), instead of the existence of a set with some properties (ax-iinf 4589) from which one then proves, using full separation, that the wanted set exists (omex 4594). "vn" is for "von Neumann". (Contributed by BJ, 14-Nov-2019.) |
⊢ ∃𝑥(Ind 𝑥 ∧ ∀𝑦(Ind 𝑦 → 𝑥 ⊆ 𝑦)) | ||
Theorem | bj-omex 14779 | Proof of omex 4594 from ax-infvn 14778. (Contributed by BJ, 14-Nov-2019.) (Proof modification is discouraged.) |
⊢ ω ∈ V | ||
In this section, we give constructive proofs of two versions of Peano's fifth postulate. | ||
Theorem | bdpeano5 14780* | Bounded version of peano5 4599. (Contributed by BJ, 19-Nov-2019.) (Proof modification is discouraged.) |
⊢ BOUNDED 𝐴 ⇒ ⊢ ((∅ ∈ 𝐴 ∧ ∀𝑥 ∈ ω (𝑥 ∈ 𝐴 → suc 𝑥 ∈ 𝐴)) → ω ⊆ 𝐴) | ||
Theorem | speano5 14781* | Version of peano5 4599 when 𝐴 is assumed to be a set, allowing a proof from the core axioms of CZF. (Contributed by BJ, 19-Nov-2019.) (Proof modification is discouraged.) |
⊢ ((𝐴 ∈ 𝑉 ∧ ∅ ∈ 𝐴 ∧ ∀𝑥 ∈ ω (𝑥 ∈ 𝐴 → suc 𝑥 ∈ 𝐴)) → ω ⊆ 𝐴) | ||
In this section, we prove various versions of bounded induction from the basic axioms of CZF (in particular, without the axiom of set induction). We also prove Peano's fourth postulate. Together with the results from the previous sections, this proves from the core axioms of CZF (with infinity) that the set of natural number ordinals satisfies the five Peano postulates and thus provides a model for the set of natural numbers. | ||
Theorem | findset 14782* | Bounded induction (principle of induction when 𝐴 is assumed to be a set) allowing a proof from basic constructive axioms. See find 4600 for a nonconstructive proof of the general case. See bdfind 14783 for a proof when 𝐴 is assumed to be bounded. (Contributed by BJ, 22-Nov-2019.) (Proof modification is discouraged.) |
⊢ (𝐴 ∈ 𝑉 → ((𝐴 ⊆ ω ∧ ∅ ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 suc 𝑥 ∈ 𝐴) → 𝐴 = ω)) | ||
Theorem | bdfind 14783* | Bounded induction (principle of induction when 𝐴 is assumed to be bounded), proved from basic constructive axioms. See find 4600 for a nonconstructive proof of the general case. See findset 14782 for a proof when 𝐴 is assumed to be a set. (Contributed by BJ, 22-Nov-2019.) (Proof modification is discouraged.) |
⊢ BOUNDED 𝐴 ⇒ ⊢ ((𝐴 ⊆ ω ∧ ∅ ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 suc 𝑥 ∈ 𝐴) → 𝐴 = ω) | ||
Theorem | bj-bdfindis 14784* | Bounded induction (principle of induction for bounded formulas), using implicit substitutions (the biconditional versions of the hypotheses are implicit substitutions, and we have weakened them to implications). Constructive proof (from CZF). See finds 4601 for a proof of full induction in IZF. From this version, it is easy to prove bounded versions of finds 4601, finds2 4602, finds1 4603. (Contributed by BJ, 21-Nov-2019.) (Proof modification is discouraged.) |
⊢ BOUNDED 𝜑 & ⊢ Ⅎ𝑥𝜓 & ⊢ Ⅎ𝑥𝜒 & ⊢ Ⅎ𝑥𝜃 & ⊢ (𝑥 = ∅ → (𝜓 → 𝜑)) & ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜒)) & ⊢ (𝑥 = suc 𝑦 → (𝜃 → 𝜑)) ⇒ ⊢ ((𝜓 ∧ ∀𝑦 ∈ ω (𝜒 → 𝜃)) → ∀𝑥 ∈ ω 𝜑) | ||
Theorem | bj-bdfindisg 14785* | Version of bj-bdfindis 14784 using a class term in the consequent. Constructive proof (from CZF). See the comment of bj-bdfindis 14784 for explanations. (Contributed by BJ, 21-Nov-2019.) (Proof modification is discouraged.) |
⊢ BOUNDED 𝜑 & ⊢ Ⅎ𝑥𝜓 & ⊢ Ⅎ𝑥𝜒 & ⊢ Ⅎ𝑥𝜃 & ⊢ (𝑥 = ∅ → (𝜓 → 𝜑)) & ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜒)) & ⊢ (𝑥 = suc 𝑦 → (𝜃 → 𝜑)) & ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝜏 & ⊢ (𝑥 = 𝐴 → (𝜑 → 𝜏)) ⇒ ⊢ ((𝜓 ∧ ∀𝑦 ∈ ω (𝜒 → 𝜃)) → (𝐴 ∈ ω → 𝜏)) | ||
Theorem | bj-bdfindes 14786 | Bounded induction (principle of induction for bounded formulas), using explicit substitutions. Constructive proof (from CZF). See the comment of bj-bdfindis 14784 for explanations. From this version, it is easy to prove the bounded version of findes 4604. (Contributed by BJ, 21-Nov-2019.) (Proof modification is discouraged.) |
⊢ BOUNDED 𝜑 ⇒ ⊢ (([∅ / 𝑥]𝜑 ∧ ∀𝑥 ∈ ω (𝜑 → [suc 𝑥 / 𝑥]𝜑)) → ∀𝑥 ∈ ω 𝜑) | ||
Theorem | bj-nn0suc0 14787* | Constructive proof of a variant of nn0suc 4605. For a constructive proof of nn0suc 4605, see bj-nn0suc 14801. (Contributed by BJ, 19-Nov-2019.) (Proof modification is discouraged.) |
⊢ (𝐴 ∈ ω → (𝐴 = ∅ ∨ ∃𝑥 ∈ 𝐴 𝐴 = suc 𝑥)) | ||
Theorem | bj-nntrans 14788 | A natural number is a transitive set. (Contributed by BJ, 22-Nov-2019.) (Proof modification is discouraged.) |
⊢ (𝐴 ∈ ω → (𝐵 ∈ 𝐴 → 𝐵 ⊆ 𝐴)) | ||
Theorem | bj-nntrans2 14789 | A natural number is a transitive set. (Contributed by BJ, 22-Nov-2019.) (Proof modification is discouraged.) |
⊢ (𝐴 ∈ ω → Tr 𝐴) | ||
Theorem | bj-nnelirr 14790 | A natural number does not belong to itself. Version of elirr 4542 for natural numbers, which does not require ax-setind 4538. (Contributed by BJ, 24-Nov-2019.) (Proof modification is discouraged.) |
⊢ (𝐴 ∈ ω → ¬ 𝐴 ∈ 𝐴) | ||
Theorem | bj-nnen2lp 14791 |
A version of en2lp 4555 for natural numbers, which does not require
ax-setind 4538.
Note: using this theorem and bj-nnelirr 14790, one can remove dependency on ax-setind 4538 from nntri2 6497 and nndcel 6503; one can actually remove more dependencies from these. (Contributed by BJ, 28-Nov-2019.) (Proof modification is discouraged.) |
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ¬ (𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐴)) | ||
Theorem | bj-peano4 14792 | Remove from peano4 4598 dependency on ax-setind 4538. Therefore, it only requires core constructive axioms (albeit more of them). (Contributed by BJ, 28-Nov-2019.) (Proof modification is discouraged.) |
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (suc 𝐴 = suc 𝐵 ↔ 𝐴 = 𝐵)) | ||
Theorem | bj-omtrans 14793 |
The set ω is transitive. A natural number is
included in
ω. Constructive proof of elnn 4607.
The idea is to use bounded induction with the formula 𝑥 ⊆ ω. This formula, in a logic with terms, is bounded. So in our logic without terms, we need to temporarily replace it with 𝑥 ⊆ 𝑎 and then deduce the original claim. (Contributed by BJ, 29-Dec-2019.) (Proof modification is discouraged.) |
⊢ (𝐴 ∈ ω → 𝐴 ⊆ ω) | ||
Theorem | bj-omtrans2 14794 | The set ω is transitive. (Contributed by BJ, 29-Dec-2019.) (Proof modification is discouraged.) |
⊢ Tr ω | ||
Theorem | bj-nnord 14795 | A natural number is an ordinal class. Constructive proof of nnord 4613. Can also be proved from bj-nnelon 14796 if the latter is proved from bj-omssonALT 14800. (Contributed by BJ, 27-Oct-2020.) (Proof modification is discouraged.) |
⊢ (𝐴 ∈ ω → Ord 𝐴) | ||
Theorem | bj-nnelon 14796 | A natural number is an ordinal. Constructive proof of nnon 4611. Can also be proved from bj-omssonALT 14800. (Contributed by BJ, 27-Oct-2020.) (Proof modification is discouraged.) |
⊢ (𝐴 ∈ ω → 𝐴 ∈ On) | ||
Theorem | bj-omord 14797 | The set ω is an ordinal class. Constructive proof of ordom 4608. (Contributed by BJ, 29-Dec-2019.) (Proof modification is discouraged.) |
⊢ Ord ω | ||
Theorem | bj-omelon 14798 | The set ω is an ordinal. Constructive proof of omelon 4610. (Contributed by BJ, 29-Dec-2019.) (Proof modification is discouraged.) |
⊢ ω ∈ On | ||
Theorem | bj-omsson 14799 | Constructive proof of omsson 4614. See also bj-omssonALT 14800. (Contributed by BJ, 27-Oct-2020.) (Proof modification is discouraged.) (New usage is discouraged. |
⊢ ω ⊆ On | ||
Theorem | bj-omssonALT 14800 | Alternate proof of bj-omsson 14799. (Contributed by BJ, 27-Oct-2020.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ω ⊆ On |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |