Users' Mathboxes Mathbox for David A. Wheeler < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  alsconv GIF version

Theorem alsconv 15570
Description: There is an equivalence between the two "all some" forms. (Contributed by David A. Wheeler, 22-Oct-2018.)
Assertion
Ref Expression
alsconv (∀!𝑥(𝑥𝐴𝜑) ↔ ∀!𝑥𝐴𝜑)

Proof of Theorem alsconv
StepHypRef Expression
1 df-ral 2477 . . 3 (∀𝑥𝐴 𝜑 ↔ ∀𝑥(𝑥𝐴𝜑))
21anbi1i 458 . 2 ((∀𝑥𝐴 𝜑 ∧ ∃𝑥 𝑥𝐴) ↔ (∀𝑥(𝑥𝐴𝜑) ∧ ∃𝑥 𝑥𝐴))
3 df-alsc 15569 . 2 (∀!𝑥𝐴𝜑 ↔ (∀𝑥𝐴 𝜑 ∧ ∃𝑥 𝑥𝐴))
4 df-alsi 15568 . 2 (∀!𝑥(𝑥𝐴𝜑) ↔ (∀𝑥(𝑥𝐴𝜑) ∧ ∃𝑥 𝑥𝐴))
52, 3, 43bitr4ri 213 1 (∀!𝑥(𝑥𝐴𝜑) ↔ ∀!𝑥𝐴𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wal 1362  wex 1503  wcel 2164  wral 2472  ∀!walsi 15566  ∀!walsc 15567
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-ral 2477  df-alsi 15568  df-alsc 15569
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator