Detailed syntax breakdown of Definition df-nei
Step | Hyp | Ref
| Expression |
1 | | cnei 12932 |
. 2
class
nei |
2 | | vj |
. . 3
setvar 𝑗 |
3 | | ctop 12789 |
. . 3
class
Top |
4 | | vx |
. . . 4
setvar 𝑥 |
5 | 2 | cv 1347 |
. . . . . 6
class 𝑗 |
6 | 5 | cuni 3796 |
. . . . 5
class ∪ 𝑗 |
7 | 6 | cpw 3566 |
. . . 4
class 𝒫
∪ 𝑗 |
8 | 4 | cv 1347 |
. . . . . . . 8
class 𝑥 |
9 | | vg |
. . . . . . . . 9
setvar 𝑔 |
10 | 9 | cv 1347 |
. . . . . . . 8
class 𝑔 |
11 | 8, 10 | wss 3121 |
. . . . . . 7
wff 𝑥 ⊆ 𝑔 |
12 | | vy |
. . . . . . . . 9
setvar 𝑦 |
13 | 12 | cv 1347 |
. . . . . . . 8
class 𝑦 |
14 | 10, 13 | wss 3121 |
. . . . . . 7
wff 𝑔 ⊆ 𝑦 |
15 | 11, 14 | wa 103 |
. . . . . 6
wff (𝑥 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑦) |
16 | 15, 9, 5 | wrex 2449 |
. . . . 5
wff
∃𝑔 ∈
𝑗 (𝑥 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑦) |
17 | 16, 12, 7 | crab 2452 |
. . . 4
class {𝑦 ∈ 𝒫 ∪ 𝑗
∣ ∃𝑔 ∈
𝑗 (𝑥 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑦)} |
18 | 4, 7, 17 | cmpt 4050 |
. . 3
class (𝑥 ∈ 𝒫 ∪ 𝑗
↦ {𝑦 ∈ 𝒫
∪ 𝑗 ∣ ∃𝑔 ∈ 𝑗 (𝑥 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑦)}) |
19 | 2, 3, 18 | cmpt 4050 |
. 2
class (𝑗 ∈ Top ↦ (𝑥 ∈ 𝒫 ∪ 𝑗
↦ {𝑦 ∈ 𝒫
∪ 𝑗 ∣ ∃𝑔 ∈ 𝑗 (𝑥 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑦)})) |
20 | 1, 19 | wceq 1348 |
1
wff nei =
(𝑗 ∈ Top ↦
(𝑥 ∈ 𝒫 ∪ 𝑗
↦ {𝑦 ∈ 𝒫
∪ 𝑗 ∣ ∃𝑔 ∈ 𝑗 (𝑥 ⊆ 𝑔 ∧ 𝑔 ⊆ 𝑦)})) |