HomeHome Intuitionistic Logic Explorer
Theorem List (p. 137 of 149)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 13601-13700   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremntrcls0 13601 A subset whose closure has an empty interior also has an empty interior. (Contributed by NM, 4-Oct-2007.)
𝑋 = βˆͺ 𝐽    β‡’   ((𝐽 ∈ Top ∧ 𝑆 βŠ† 𝑋 ∧ ((intβ€˜π½)β€˜((clsβ€˜π½)β€˜π‘†)) = βˆ…) β†’ ((intβ€˜π½)β€˜π‘†) = βˆ…)
 
Theoremntreq0 13602* Two ways to say that a subset has an empty interior. (Contributed by NM, 3-Oct-2007.) (Revised by Jim Kingdon, 11-Mar-2023.)
𝑋 = βˆͺ 𝐽    β‡’   ((𝐽 ∈ Top ∧ 𝑆 βŠ† 𝑋) β†’ (((intβ€˜π½)β€˜π‘†) = βˆ… ↔ βˆ€π‘₯ ∈ 𝐽 (π‘₯ βŠ† 𝑆 β†’ π‘₯ = βˆ…)))
 
Theoremcls0 13603 The closure of the empty set. (Contributed by NM, 2-Oct-2007.) (Proof shortened by Jim Kingdon, 12-Mar-2023.)
(𝐽 ∈ Top β†’ ((clsβ€˜π½)β€˜βˆ…) = βˆ…)
 
Theoremntr0 13604 The interior of the empty set. (Contributed by NM, 2-Oct-2007.)
(𝐽 ∈ Top β†’ ((intβ€˜π½)β€˜βˆ…) = βˆ…)
 
Theoremisopn3i 13605 An open subset equals its own interior. (Contributed by Mario Carneiro, 30-Dec-2016.)
((𝐽 ∈ Top ∧ 𝑆 ∈ 𝐽) β†’ ((intβ€˜π½)β€˜π‘†) = 𝑆)
 
Theoremdiscld 13606 The open sets of a discrete topology are closed and its closed sets are open. (Contributed by FL, 7-Jun-2007.) (Revised by Mario Carneiro, 7-Apr-2015.)
(𝐴 ∈ 𝑉 β†’ (Clsdβ€˜π’« 𝐴) = 𝒫 𝐴)
 
Theoremsn0cld 13607 The closed sets of the topology {βˆ…}. (Contributed by FL, 5-Jan-2009.)
(Clsdβ€˜{βˆ…}) = {βˆ…}
 
8.1.5  Neighborhoods
 
Syntaxcnei 13608 Extend class notation with neighborhood relation for topologies.
class nei
 
Definitiondf-nei 13609* Define a function on topologies whose value is a map from a subset to its neighborhoods. (Contributed by NM, 11-Feb-2007.)
nei = (𝑗 ∈ Top ↦ (π‘₯ ∈ 𝒫 βˆͺ 𝑗 ↦ {𝑦 ∈ 𝒫 βˆͺ 𝑗 ∣ βˆƒπ‘” ∈ 𝑗 (π‘₯ βŠ† 𝑔 ∧ 𝑔 βŠ† 𝑦)}))
 
Theoremneifval 13610* Value of the neighborhood function on the subsets of the base set of a topology. (Contributed by NM, 11-Feb-2007.) (Revised by Mario Carneiro, 11-Nov-2013.)
𝑋 = βˆͺ 𝐽    β‡’   (𝐽 ∈ Top β†’ (neiβ€˜π½) = (π‘₯ ∈ 𝒫 𝑋 ↦ {𝑣 ∈ 𝒫 𝑋 ∣ βˆƒπ‘” ∈ 𝐽 (π‘₯ βŠ† 𝑔 ∧ 𝑔 βŠ† 𝑣)}))
 
Theoremneif 13611 The neighborhood function is a function from the set of the subsets of the base set of a topology. (Contributed by NM, 12-Feb-2007.) (Revised by Mario Carneiro, 11-Nov-2013.)
𝑋 = βˆͺ 𝐽    β‡’   (𝐽 ∈ Top β†’ (neiβ€˜π½) Fn 𝒫 𝑋)
 
Theoremneiss2 13612 A set with a neighborhood is a subset of the base set of a topology. (This theorem depends on a function's value being empty outside of its domain, but it will make later theorems simpler to state.) (Contributed by NM, 12-Feb-2007.)
𝑋 = βˆͺ 𝐽    β‡’   ((𝐽 ∈ Top ∧ 𝑁 ∈ ((neiβ€˜π½)β€˜π‘†)) β†’ 𝑆 βŠ† 𝑋)
 
Theoremneival 13613* Value of the set of neighborhoods of a subset of the base set of a topology. (Contributed by NM, 11-Feb-2007.) (Revised by Mario Carneiro, 11-Nov-2013.)
𝑋 = βˆͺ 𝐽    β‡’   ((𝐽 ∈ Top ∧ 𝑆 βŠ† 𝑋) β†’ ((neiβ€˜π½)β€˜π‘†) = {𝑣 ∈ 𝒫 𝑋 ∣ βˆƒπ‘” ∈ 𝐽 (𝑆 βŠ† 𝑔 ∧ 𝑔 βŠ† 𝑣)})
 
Theoremisnei 13614* The predicate "the class 𝑁 is a neighborhood of 𝑆". (Contributed by FL, 25-Sep-2006.) (Revised by Mario Carneiro, 11-Nov-2013.)
𝑋 = βˆͺ 𝐽    β‡’   ((𝐽 ∈ Top ∧ 𝑆 βŠ† 𝑋) β†’ (𝑁 ∈ ((neiβ€˜π½)β€˜π‘†) ↔ (𝑁 βŠ† 𝑋 ∧ βˆƒπ‘” ∈ 𝐽 (𝑆 βŠ† 𝑔 ∧ 𝑔 βŠ† 𝑁))))
 
Theoremneiint 13615 An intuitive definition of a neighborhood in terms of interior. (Contributed by Szymon Jaroszewicz, 18-Dec-2007.) (Revised by Mario Carneiro, 11-Nov-2013.)
𝑋 = βˆͺ 𝐽    β‡’   ((𝐽 ∈ Top ∧ 𝑆 βŠ† 𝑋 ∧ 𝑁 βŠ† 𝑋) β†’ (𝑁 ∈ ((neiβ€˜π½)β€˜π‘†) ↔ 𝑆 βŠ† ((intβ€˜π½)β€˜π‘)))
 
Theoremisneip 13616* The predicate "the class 𝑁 is a neighborhood of point 𝑃". (Contributed by NM, 26-Feb-2007.)
𝑋 = βˆͺ 𝐽    β‡’   ((𝐽 ∈ Top ∧ 𝑃 ∈ 𝑋) β†’ (𝑁 ∈ ((neiβ€˜π½)β€˜{𝑃}) ↔ (𝑁 βŠ† 𝑋 ∧ βˆƒπ‘” ∈ 𝐽 (𝑃 ∈ 𝑔 ∧ 𝑔 βŠ† 𝑁))))
 
Theoremneii1 13617 A neighborhood is included in the topology's base set. (Contributed by NM, 12-Feb-2007.)
𝑋 = βˆͺ 𝐽    β‡’   ((𝐽 ∈ Top ∧ 𝑁 ∈ ((neiβ€˜π½)β€˜π‘†)) β†’ 𝑁 βŠ† 𝑋)
 
Theoremneisspw 13618 The neighborhoods of any set are subsets of the base set. (Contributed by Stefan O'Rear, 6-Aug-2015.)
𝑋 = βˆͺ 𝐽    β‡’   (𝐽 ∈ Top β†’ ((neiβ€˜π½)β€˜π‘†) βŠ† 𝒫 𝑋)
 
Theoremneii2 13619* Property of a neighborhood. (Contributed by NM, 12-Feb-2007.)
((𝐽 ∈ Top ∧ 𝑁 ∈ ((neiβ€˜π½)β€˜π‘†)) β†’ βˆƒπ‘” ∈ 𝐽 (𝑆 βŠ† 𝑔 ∧ 𝑔 βŠ† 𝑁))
 
Theoremneiss 13620 Any neighborhood of a set 𝑆 is also a neighborhood of any subset 𝑅 βŠ† 𝑆. Similar to Proposition 1 of [BourbakiTop1] p. I.2. (Contributed by FL, 25-Sep-2006.)
((𝐽 ∈ Top ∧ 𝑁 ∈ ((neiβ€˜π½)β€˜π‘†) ∧ 𝑅 βŠ† 𝑆) β†’ 𝑁 ∈ ((neiβ€˜π½)β€˜π‘…))
 
Theoremssnei 13621 A set is included in any of its neighborhoods. Generalization to subsets of elnei 13622. (Contributed by FL, 16-Nov-2006.)
((𝐽 ∈ Top ∧ 𝑁 ∈ ((neiβ€˜π½)β€˜π‘†)) β†’ 𝑆 βŠ† 𝑁)
 
Theoremelnei 13622 A point belongs to any of its neighborhoods. Property Viii of [BourbakiTop1] p. I.3. (Contributed by FL, 28-Sep-2006.)
((𝐽 ∈ Top ∧ 𝑃 ∈ 𝐴 ∧ 𝑁 ∈ ((neiβ€˜π½)β€˜{𝑃})) β†’ 𝑃 ∈ 𝑁)
 
Theorem0nnei 13623 The empty set is not a neighborhood of a nonempty set. (Contributed by FL, 18-Sep-2007.)
((𝐽 ∈ Top ∧ 𝑆 β‰  βˆ…) β†’ Β¬ βˆ… ∈ ((neiβ€˜π½)β€˜π‘†))
 
Theoremneipsm 13624* A neighborhood of a set is a neighborhood of every point in the set. Proposition 1 of [BourbakiTop1] p. I.2. (Contributed by FL, 16-Nov-2006.) (Revised by Jim Kingdon, 22-Mar-2023.)
𝑋 = βˆͺ 𝐽    β‡’   ((𝐽 ∈ Top ∧ 𝑆 βŠ† 𝑋 ∧ βˆƒπ‘₯ π‘₯ ∈ 𝑆) β†’ (𝑁 ∈ ((neiβ€˜π½)β€˜π‘†) ↔ βˆ€π‘ ∈ 𝑆 𝑁 ∈ ((neiβ€˜π½)β€˜{𝑝})))
 
Theoremopnneissb 13625 An open set is a neighborhood of any of its subsets. (Contributed by FL, 2-Oct-2006.)
𝑋 = βˆͺ 𝐽    β‡’   ((𝐽 ∈ Top ∧ 𝑁 ∈ 𝐽 ∧ 𝑆 βŠ† 𝑋) β†’ (𝑆 βŠ† 𝑁 ↔ 𝑁 ∈ ((neiβ€˜π½)β€˜π‘†)))
 
Theoremopnssneib 13626 Any superset of an open set is a neighborhood of it. (Contributed by NM, 14-Feb-2007.)
𝑋 = βˆͺ 𝐽    β‡’   ((𝐽 ∈ Top ∧ 𝑆 ∈ 𝐽 ∧ 𝑁 βŠ† 𝑋) β†’ (𝑆 βŠ† 𝑁 ↔ 𝑁 ∈ ((neiβ€˜π½)β€˜π‘†)))
 
Theoremssnei2 13627 Any subset 𝑀 of 𝑋 containing a neighborhood 𝑁 of a set 𝑆 is a neighborhood of this set. Generalization to subsets of Property Vi of [BourbakiTop1] p. I.3. (Contributed by FL, 2-Oct-2006.)
𝑋 = βˆͺ 𝐽    β‡’   (((𝐽 ∈ Top ∧ 𝑁 ∈ ((neiβ€˜π½)β€˜π‘†)) ∧ (𝑁 βŠ† 𝑀 ∧ 𝑀 βŠ† 𝑋)) β†’ 𝑀 ∈ ((neiβ€˜π½)β€˜π‘†))
 
Theoremopnneiss 13628 An open set is a neighborhood of any of its subsets. (Contributed by NM, 13-Feb-2007.)
((𝐽 ∈ Top ∧ 𝑁 ∈ 𝐽 ∧ 𝑆 βŠ† 𝑁) β†’ 𝑁 ∈ ((neiβ€˜π½)β€˜π‘†))
 
Theoremopnneip 13629 An open set is a neighborhood of any of its members. (Contributed by NM, 8-Mar-2007.)
((𝐽 ∈ Top ∧ 𝑁 ∈ 𝐽 ∧ 𝑃 ∈ 𝑁) β†’ 𝑁 ∈ ((neiβ€˜π½)β€˜{𝑃}))
 
Theoremtpnei 13630 The underlying set of a topology is a neighborhood of any of its subsets. Special case of opnneiss 13628. (Contributed by FL, 2-Oct-2006.)
𝑋 = βˆͺ 𝐽    β‡’   (𝐽 ∈ Top β†’ (𝑆 βŠ† 𝑋 ↔ 𝑋 ∈ ((neiβ€˜π½)β€˜π‘†)))
 
Theoremneiuni 13631 The union of the neighborhoods of a set equals the topology's underlying set. (Contributed by FL, 18-Sep-2007.) (Revised by Mario Carneiro, 9-Apr-2015.)
𝑋 = βˆͺ 𝐽    β‡’   ((𝐽 ∈ Top ∧ 𝑆 βŠ† 𝑋) β†’ 𝑋 = βˆͺ ((neiβ€˜π½)β€˜π‘†))
 
Theoremtopssnei 13632 A finer topology has more neighborhoods. (Contributed by Mario Carneiro, 9-Apr-2015.)
𝑋 = βˆͺ 𝐽    &   π‘Œ = βˆͺ 𝐾    β‡’   (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝑋 = π‘Œ) ∧ 𝐽 βŠ† 𝐾) β†’ ((neiβ€˜π½)β€˜π‘†) βŠ† ((neiβ€˜πΎ)β€˜π‘†))
 
Theoreminnei 13633 The intersection of two neighborhoods of a set is also a neighborhood of the set. Generalization to subsets of Property Vii of [BourbakiTop1] p. I.3 for binary intersections. (Contributed by FL, 28-Sep-2006.)
((𝐽 ∈ Top ∧ 𝑁 ∈ ((neiβ€˜π½)β€˜π‘†) ∧ 𝑀 ∈ ((neiβ€˜π½)β€˜π‘†)) β†’ (𝑁 ∩ 𝑀) ∈ ((neiβ€˜π½)β€˜π‘†))
 
Theoremopnneiid 13634 Only an open set is a neighborhood of itself. (Contributed by FL, 2-Oct-2006.)
(𝐽 ∈ Top β†’ (𝑁 ∈ ((neiβ€˜π½)β€˜π‘) ↔ 𝑁 ∈ 𝐽))
 
Theoremneissex 13635* For any neighborhood 𝑁 of 𝑆, there is a neighborhood π‘₯ of 𝑆 such that 𝑁 is a neighborhood of all subsets of π‘₯. Generalization to subsets of Property Viv of [BourbakiTop1] p. I.3. (Contributed by FL, 2-Oct-2006.)
((𝐽 ∈ Top ∧ 𝑁 ∈ ((neiβ€˜π½)β€˜π‘†)) β†’ βˆƒπ‘₯ ∈ ((neiβ€˜π½)β€˜π‘†)βˆ€π‘¦(𝑦 βŠ† π‘₯ β†’ 𝑁 ∈ ((neiβ€˜π½)β€˜π‘¦)))
 
Theorem0nei 13636 The empty set is a neighborhood of itself. (Contributed by FL, 10-Dec-2006.)
(𝐽 ∈ Top β†’ βˆ… ∈ ((neiβ€˜π½)β€˜βˆ…))
 
8.1.6  Subspace topologies
 
Theoremrestrcl 13637 Reverse closure for the subspace topology. (Contributed by Mario Carneiro, 19-Mar-2015.) (Proof shortened by Jim Kingdon, 23-Mar-2023.)
((𝐽 β†Ύt 𝐴) ∈ Top β†’ (𝐽 ∈ V ∧ 𝐴 ∈ V))
 
Theoremrestbasg 13638 A subspace topology basis is a basis. (Contributed by Mario Carneiro, 19-Mar-2015.)
((𝐡 ∈ TopBases ∧ 𝐴 ∈ 𝑉) β†’ (𝐡 β†Ύt 𝐴) ∈ TopBases)
 
Theoremtgrest 13639 A subspace can be generated by restricted sets from a basis for the original topology. (Contributed by Mario Carneiro, 19-Mar-2015.) (Proof shortened by Mario Carneiro, 30-Aug-2015.)
((𝐡 ∈ 𝑉 ∧ 𝐴 ∈ π‘Š) β†’ (topGenβ€˜(𝐡 β†Ύt 𝐴)) = ((topGenβ€˜π΅) β†Ύt 𝐴))
 
Theoremresttop 13640 A subspace topology is a topology. Definition of subspace topology in [Munkres] p. 89. 𝐴 is normally a subset of the base set of 𝐽. (Contributed by FL, 15-Apr-2007.) (Revised by Mario Carneiro, 1-May-2015.)
((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉) β†’ (𝐽 β†Ύt 𝐴) ∈ Top)
 
Theoremresttopon 13641 A subspace topology is a topology on the base set. (Contributed by Mario Carneiro, 13-Aug-2015.)
((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐴 βŠ† 𝑋) β†’ (𝐽 β†Ύt 𝐴) ∈ (TopOnβ€˜π΄))
 
Theoremrestuni 13642 The underlying set of a subspace topology. (Contributed by FL, 5-Jan-2009.) (Revised by Mario Carneiro, 13-Aug-2015.)
𝑋 = βˆͺ 𝐽    β‡’   ((𝐽 ∈ Top ∧ 𝐴 βŠ† 𝑋) β†’ 𝐴 = βˆͺ (𝐽 β†Ύt 𝐴))
 
Theoremstoig 13643 The topological space built with a subspace topology. (Contributed by FL, 5-Jan-2009.) (Proof shortened by Mario Carneiro, 1-May-2015.)
𝑋 = βˆͺ 𝐽    β‡’   ((𝐽 ∈ Top ∧ 𝐴 βŠ† 𝑋) β†’ {⟨(Baseβ€˜ndx), 𝐴⟩, ⟨(TopSetβ€˜ndx), (𝐽 β†Ύt 𝐴)⟩} ∈ TopSp)
 
Theoremrestco 13644 Composition of subspaces. (Contributed by Mario Carneiro, 15-Dec-2013.) (Revised by Mario Carneiro, 1-May-2015.)
((𝐽 ∈ 𝑉 ∧ 𝐴 ∈ π‘Š ∧ 𝐡 ∈ 𝑋) β†’ ((𝐽 β†Ύt 𝐴) β†Ύt 𝐡) = (𝐽 β†Ύt (𝐴 ∩ 𝐡)))
 
Theoremrestabs 13645 Equivalence of being a subspace of a subspace and being a subspace of the original. (Contributed by Jeff Hankins, 11-Jul-2009.) (Proof shortened by Mario Carneiro, 1-May-2015.)
((𝐽 ∈ 𝑉 ∧ 𝑆 βŠ† 𝑇 ∧ 𝑇 ∈ π‘Š) β†’ ((𝐽 β†Ύt 𝑇) β†Ύt 𝑆) = (𝐽 β†Ύt 𝑆))
 
Theoremrestin 13646 When the subspace region is not a subset of the base of the topology, the resulting set is the same as the subspace restricted to the base. (Contributed by Mario Carneiro, 15-Dec-2013.)
𝑋 = βˆͺ 𝐽    β‡’   ((𝐽 ∈ 𝑉 ∧ 𝐴 ∈ π‘Š) β†’ (𝐽 β†Ύt 𝐴) = (𝐽 β†Ύt (𝐴 ∩ 𝑋)))
 
Theoremrestuni2 13647 The underlying set of a subspace topology. (Contributed by Mario Carneiro, 21-Mar-2015.)
𝑋 = βˆͺ 𝐽    β‡’   ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉) β†’ (𝐴 ∩ 𝑋) = βˆͺ (𝐽 β†Ύt 𝐴))
 
Theoremresttopon2 13648 The underlying set of a subspace topology. (Contributed by Mario Carneiro, 13-Aug-2015.)
((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐴 ∈ 𝑉) β†’ (𝐽 β†Ύt 𝐴) ∈ (TopOnβ€˜(𝐴 ∩ 𝑋)))
 
Theoremrest0 13649 The subspace topology induced by the topology 𝐽 on the empty set. (Contributed by FL, 22-Dec-2008.) (Revised by Mario Carneiro, 1-May-2015.)
(𝐽 ∈ Top β†’ (𝐽 β†Ύt βˆ…) = {βˆ…})
 
Theoremrestsn 13650 The only subspace topology induced by the topology {βˆ…}. (Contributed by FL, 5-Jan-2009.) (Revised by Mario Carneiro, 15-Dec-2013.)
(𝐴 ∈ 𝑉 β†’ ({βˆ…} β†Ύt 𝐴) = {βˆ…})
 
Theoremrestopnb 13651 If 𝐡 is an open subset of the subspace base set 𝐴, then any subset of 𝐡 is open iff it is open in 𝐴. (Contributed by Mario Carneiro, 2-Mar-2015.)
(((𝐽 ∈ Top ∧ 𝐴 ∈ 𝑉) ∧ (𝐡 ∈ 𝐽 ∧ 𝐡 βŠ† 𝐴 ∧ 𝐢 βŠ† 𝐡)) β†’ (𝐢 ∈ 𝐽 ↔ 𝐢 ∈ (𝐽 β†Ύt 𝐴)))
 
Theoremssrest 13652 If 𝐾 is a finer topology than 𝐽, then the subspace topologies induced by 𝐴 maintain this relationship. (Contributed by Mario Carneiro, 21-Mar-2015.) (Revised by Mario Carneiro, 1-May-2015.)
((𝐾 ∈ 𝑉 ∧ 𝐽 βŠ† 𝐾) β†’ (𝐽 β†Ύt 𝐴) βŠ† (𝐾 β†Ύt 𝐴))
 
Theoremrestopn2 13653 If 𝐴 is open, then 𝐡 is open in 𝐴 iff it is an open subset of 𝐴. (Contributed by Mario Carneiro, 2-Mar-2015.)
((𝐽 ∈ Top ∧ 𝐴 ∈ 𝐽) β†’ (𝐡 ∈ (𝐽 β†Ύt 𝐴) ↔ (𝐡 ∈ 𝐽 ∧ 𝐡 βŠ† 𝐴)))
 
Theoremrestdis 13654 A subspace of a discrete topology is discrete. (Contributed by Mario Carneiro, 19-Mar-2015.)
((𝐴 ∈ 𝑉 ∧ 𝐡 βŠ† 𝐴) β†’ (𝒫 𝐴 β†Ύt 𝐡) = 𝒫 𝐡)
 
8.1.7  Limits and continuity in topological spaces
 
Syntaxccn 13655 Extend class notation with the class of continuous functions between topologies.
class Cn
 
Syntaxccnp 13656 Extend class notation with the class of functions between topologies continuous at a given point.
class CnP
 
Syntaxclm 13657 Extend class notation with a function on topological spaces whose value is the convergence relation for limit sequences in the space.
class ⇝𝑑
 
Definitiondf-cn 13658* Define a function on two topologies whose value is the set of continuous mappings from the first topology to the second. Based on definition of continuous function in [Munkres] p. 102. See iscn 13667 for the predicate form. (Contributed by NM, 17-Oct-2006.)
Cn = (𝑗 ∈ Top, π‘˜ ∈ Top ↦ {𝑓 ∈ (βˆͺ π‘˜ β†‘π‘š βˆͺ 𝑗) ∣ βˆ€π‘¦ ∈ π‘˜ (◑𝑓 β€œ 𝑦) ∈ 𝑗})
 
Definitiondf-cnp 13659* Define a function on two topologies whose value is the set of continuous mappings at a specified point in the first topology. Based on Theorem 7.2(g) of [Munkres] p. 107. (Contributed by NM, 17-Oct-2006.)
CnP = (𝑗 ∈ Top, π‘˜ ∈ Top ↦ (π‘₯ ∈ βˆͺ 𝑗 ↦ {𝑓 ∈ (βˆͺ π‘˜ β†‘π‘š βˆͺ 𝑗) ∣ βˆ€π‘¦ ∈ π‘˜ ((π‘“β€˜π‘₯) ∈ 𝑦 β†’ βˆƒπ‘” ∈ 𝑗 (π‘₯ ∈ 𝑔 ∧ (𝑓 β€œ 𝑔) βŠ† 𝑦))}))
 
Definitiondf-lm 13660* Define a function on topologies whose value is the convergence relation for sequences into the given topological space. Although 𝑓 is typically a sequence (a function from an upperset of integers) with values in the topological space, it need not be. Note, however, that the limit property concerns only values at integers, so that the real-valued function (π‘₯ ∈ ℝ ↦ (sinβ€˜(Ο€ Β· π‘₯))) converges to zero (in the standard topology on the reals) with this definition. (Contributed by NM, 7-Sep-2006.)
⇝𝑑 = (𝑗 ∈ Top ↦ {βŸ¨π‘“, π‘₯⟩ ∣ (𝑓 ∈ (βˆͺ 𝑗 ↑pm β„‚) ∧ π‘₯ ∈ βˆͺ 𝑗 ∧ βˆ€π‘’ ∈ 𝑗 (π‘₯ ∈ 𝑒 β†’ βˆƒπ‘¦ ∈ ran β„€β‰₯(𝑓 β†Ύ 𝑦):π‘¦βŸΆπ‘’))})
 
Theoremlmrcl 13661 Reverse closure for the convergence relation. (Contributed by Mario Carneiro, 7-Sep-2015.)
(𝐹(β‡π‘‘β€˜π½)𝑃 β†’ 𝐽 ∈ Top)
 
Theoremlmfval 13662* The relation "sequence 𝑓 converges to point 𝑦 " in a metric space. (Contributed by NM, 7-Sep-2006.) (Revised by Mario Carneiro, 21-Aug-2015.)
(𝐽 ∈ (TopOnβ€˜π‘‹) β†’ (β‡π‘‘β€˜π½) = {βŸ¨π‘“, π‘₯⟩ ∣ (𝑓 ∈ (𝑋 ↑pm β„‚) ∧ π‘₯ ∈ 𝑋 ∧ βˆ€π‘’ ∈ 𝐽 (π‘₯ ∈ 𝑒 β†’ βˆƒπ‘¦ ∈ ran β„€β‰₯(𝑓 β†Ύ 𝑦):π‘¦βŸΆπ‘’))})
 
Theoremlmreltop 13663 The topological space convergence relation is a relation. (Contributed by Jim Kingdon, 25-Mar-2023.)
(𝐽 ∈ Top β†’ Rel (β‡π‘‘β€˜π½))
 
Theoremcnfval 13664* The set of all continuous functions from topology 𝐽 to topology 𝐾. (Contributed by NM, 17-Oct-2006.) (Revised by Mario Carneiro, 21-Aug-2015.)
((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ)) β†’ (𝐽 Cn 𝐾) = {𝑓 ∈ (π‘Œ β†‘π‘š 𝑋) ∣ βˆ€π‘¦ ∈ 𝐾 (◑𝑓 β€œ 𝑦) ∈ 𝐽})
 
Theoremcnpfval 13665* The function mapping the points in a topology 𝐽 to the set of all functions from 𝐽 to topology 𝐾 continuous at that point. (Contributed by NM, 17-Oct-2006.) (Revised by Mario Carneiro, 21-Aug-2015.)
((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ)) β†’ (𝐽 CnP 𝐾) = (π‘₯ ∈ 𝑋 ↦ {𝑓 ∈ (π‘Œ β†‘π‘š 𝑋) ∣ βˆ€π‘€ ∈ 𝐾 ((π‘“β€˜π‘₯) ∈ 𝑀 β†’ βˆƒπ‘£ ∈ 𝐽 (π‘₯ ∈ 𝑣 ∧ (𝑓 β€œ 𝑣) βŠ† 𝑀))}))
 
Theoremcnovex 13666 The class of all continuous functions from a topology to another is a set. (Contributed by Jim Kingdon, 14-Dec-2023.)
((𝐽 ∈ Top ∧ 𝐾 ∈ Top) β†’ (𝐽 Cn 𝐾) ∈ V)
 
Theoremiscn 13667* The predicate "the class 𝐹 is a continuous function from topology 𝐽 to topology 𝐾". Definition of continuous function in [Munkres] p. 102. (Contributed by NM, 17-Oct-2006.) (Revised by Mario Carneiro, 21-Aug-2015.)
((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ)) β†’ (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:π‘‹βŸΆπ‘Œ ∧ βˆ€π‘¦ ∈ 𝐾 (◑𝐹 β€œ 𝑦) ∈ 𝐽)))
 
Theoremcnpval 13668* The set of all functions from topology 𝐽 to topology 𝐾 that are continuous at a point 𝑃. (Contributed by NM, 17-Oct-2006.) (Revised by Mario Carneiro, 11-Nov-2013.)
((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) β†’ ((𝐽 CnP 𝐾)β€˜π‘ƒ) = {𝑓 ∈ (π‘Œ β†‘π‘š 𝑋) ∣ βˆ€π‘¦ ∈ 𝐾 ((π‘“β€˜π‘ƒ) ∈ 𝑦 β†’ βˆƒπ‘₯ ∈ 𝐽 (𝑃 ∈ π‘₯ ∧ (𝑓 β€œ π‘₯) βŠ† 𝑦))})
 
Theoremiscnp 13669* The predicate "the class 𝐹 is a continuous function from topology 𝐽 to topology 𝐾 at point 𝑃". Based on Theorem 7.2(g) of [Munkres] p. 107. (Contributed by NM, 17-Oct-2006.) (Revised by Mario Carneiro, 21-Aug-2015.)
((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) β†’ (𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘ƒ) ↔ (𝐹:π‘‹βŸΆπ‘Œ ∧ βˆ€π‘¦ ∈ 𝐾 ((πΉβ€˜π‘ƒ) ∈ 𝑦 β†’ βˆƒπ‘₯ ∈ 𝐽 (𝑃 ∈ π‘₯ ∧ (𝐹 β€œ π‘₯) βŠ† 𝑦)))))
 
Theoremiscn2 13670* The predicate "the class 𝐹 is a continuous function from topology 𝐽 to topology 𝐾". Definition of continuous function in [Munkres] p. 102. (Contributed by Mario Carneiro, 21-Aug-2015.)
𝑋 = βˆͺ 𝐽    &   π‘Œ = βˆͺ 𝐾    β‡’   (𝐹 ∈ (𝐽 Cn 𝐾) ↔ ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝐹:π‘‹βŸΆπ‘Œ ∧ βˆ€π‘¦ ∈ 𝐾 (◑𝐹 β€œ 𝑦) ∈ 𝐽)))
 
Theoremcntop1 13671 Reverse closure for a continuous function. (Contributed by Mario Carneiro, 21-Aug-2015.)
(𝐹 ∈ (𝐽 Cn 𝐾) β†’ 𝐽 ∈ Top)
 
Theoremcntop2 13672 Reverse closure for a continuous function. (Contributed by Mario Carneiro, 21-Aug-2015.)
(𝐹 ∈ (𝐽 Cn 𝐾) β†’ 𝐾 ∈ Top)
 
Theoremiscnp3 13673* The predicate "the class 𝐹 is a continuous function from topology 𝐽 to topology 𝐾 at point 𝑃". (Contributed by NM, 15-May-2007.)
((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) β†’ (𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘ƒ) ↔ (𝐹:π‘‹βŸΆπ‘Œ ∧ βˆ€π‘¦ ∈ 𝐾 ((πΉβ€˜π‘ƒ) ∈ 𝑦 β†’ βˆƒπ‘₯ ∈ 𝐽 (𝑃 ∈ π‘₯ ∧ π‘₯ βŠ† (◑𝐹 β€œ 𝑦))))))
 
Theoremcnf 13674 A continuous function is a mapping. (Contributed by FL, 8-Dec-2006.) (Revised by Mario Carneiro, 21-Aug-2015.)
𝑋 = βˆͺ 𝐽    &   π‘Œ = βˆͺ 𝐾    β‡’   (𝐹 ∈ (𝐽 Cn 𝐾) β†’ 𝐹:π‘‹βŸΆπ‘Œ)
 
Theoremcnf2 13675 A continuous function is a mapping. (Contributed by Mario Carneiro, 21-Aug-2015.)
((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) β†’ 𝐹:π‘‹βŸΆπ‘Œ)
 
Theoremcnprcl2k 13676 Reverse closure for a function continuous at a point. (Contributed by Mario Carneiro, 21-Aug-2015.) (Revised by Jim Kingdon, 28-Mar-2023.)
((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ Top ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘ƒ)) β†’ 𝑃 ∈ 𝑋)
 
Theoremcnpf2 13677 A continuous function at point 𝑃 is a mapping. (Contributed by Mario Carneiro, 21-Aug-2015.) (Revised by Jim Kingdon, 28-Mar-2023.)
((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ) ∧ 𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘ƒ)) β†’ 𝐹:π‘‹βŸΆπ‘Œ)
 
Theoremtgcn 13678* The continuity predicate when the range is given by a basis for a topology. (Contributed by Mario Carneiro, 7-Feb-2015.) (Revised by Mario Carneiro, 22-Aug-2015.)
(πœ‘ β†’ 𝐽 ∈ (TopOnβ€˜π‘‹))    &   (πœ‘ β†’ 𝐾 = (topGenβ€˜π΅))    &   (πœ‘ β†’ 𝐾 ∈ (TopOnβ€˜π‘Œ))    β‡’   (πœ‘ β†’ (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:π‘‹βŸΆπ‘Œ ∧ βˆ€π‘¦ ∈ 𝐡 (◑𝐹 β€œ 𝑦) ∈ 𝐽)))
 
Theoremtgcnp 13679* The "continuous at a point" predicate when the range is given by a basis for a topology. (Contributed by Mario Carneiro, 3-Feb-2015.) (Revised by Mario Carneiro, 22-Aug-2015.)
(πœ‘ β†’ 𝐽 ∈ (TopOnβ€˜π‘‹))    &   (πœ‘ β†’ 𝐾 = (topGenβ€˜π΅))    &   (πœ‘ β†’ 𝐾 ∈ (TopOnβ€˜π‘Œ))    &   (πœ‘ β†’ 𝑃 ∈ 𝑋)    β‡’   (πœ‘ β†’ (𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘ƒ) ↔ (𝐹:π‘‹βŸΆπ‘Œ ∧ βˆ€π‘¦ ∈ 𝐡 ((πΉβ€˜π‘ƒ) ∈ 𝑦 β†’ βˆƒπ‘₯ ∈ 𝐽 (𝑃 ∈ π‘₯ ∧ (𝐹 β€œ π‘₯) βŠ† 𝑦)))))
 
Theoremssidcn 13680 The identity function is a continuous function from one topology to another topology on the same set iff the domain is finer than the codomain. (Contributed by Mario Carneiro, 21-Mar-2015.) (Revised by Mario Carneiro, 21-Aug-2015.)
((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘‹)) β†’ (( I β†Ύ 𝑋) ∈ (𝐽 Cn 𝐾) ↔ 𝐾 βŠ† 𝐽))
 
Theoremicnpimaex 13681* Property of a function continuous at a point. (Contributed by FL, 31-Dec-2006.) (Revised by Jim Kingdon, 28-Mar-2023.)
(((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘ƒ) ∧ 𝐴 ∈ 𝐾 ∧ (πΉβ€˜π‘ƒ) ∈ 𝐴)) β†’ βˆƒπ‘₯ ∈ 𝐽 (𝑃 ∈ π‘₯ ∧ (𝐹 β€œ π‘₯) βŠ† 𝐴))
 
Theoremidcn 13682 A restricted identity function is a continuous function. (Contributed by FL, 27-Dec-2006.) (Proof shortened by Mario Carneiro, 21-Mar-2015.)
(𝐽 ∈ (TopOnβ€˜π‘‹) β†’ ( I β†Ύ 𝑋) ∈ (𝐽 Cn 𝐽))
 
Theoremlmbr 13683* Express the binary relation "sequence 𝐹 converges to point 𝑃 " in a topological space. Definition 1.4-1 of [Kreyszig] p. 25. The condition 𝐹 βŠ† (β„‚ Γ— 𝑋) allows us to use objects more general than sequences when convenient; see the comment in df-lm 13660. (Contributed by Mario Carneiro, 14-Nov-2013.)
(πœ‘ β†’ 𝐽 ∈ (TopOnβ€˜π‘‹))    β‡’   (πœ‘ β†’ (𝐹(β‡π‘‘β€˜π½)𝑃 ↔ (𝐹 ∈ (𝑋 ↑pm β„‚) ∧ 𝑃 ∈ 𝑋 ∧ βˆ€π‘’ ∈ 𝐽 (𝑃 ∈ 𝑒 β†’ βˆƒπ‘¦ ∈ ran β„€β‰₯(𝐹 β†Ύ 𝑦):π‘¦βŸΆπ‘’))))
 
Theoremlmbr2 13684* Express the binary relation "sequence 𝐹 converges to point 𝑃 " in a metric space using an arbitrary upper set of integers. (Contributed by Mario Carneiro, 14-Nov-2013.)
(πœ‘ β†’ 𝐽 ∈ (TopOnβ€˜π‘‹))    &   π‘ = (β„€β‰₯β€˜π‘€)    &   (πœ‘ β†’ 𝑀 ∈ β„€)    β‡’   (πœ‘ β†’ (𝐹(β‡π‘‘β€˜π½)𝑃 ↔ (𝐹 ∈ (𝑋 ↑pm β„‚) ∧ 𝑃 ∈ 𝑋 ∧ βˆ€π‘’ ∈ 𝐽 (𝑃 ∈ 𝑒 β†’ βˆƒπ‘— ∈ 𝑍 βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)(π‘˜ ∈ dom 𝐹 ∧ (πΉβ€˜π‘˜) ∈ 𝑒)))))
 
Theoremlmbrf 13685* Express the binary relation "sequence 𝐹 converges to point 𝑃 " in a metric space using an arbitrary upper set of integers. This version of lmbr2 13684 presupposes that 𝐹 is a function. (Contributed by Mario Carneiro, 14-Nov-2013.)
(πœ‘ β†’ 𝐽 ∈ (TopOnβ€˜π‘‹))    &   π‘ = (β„€β‰₯β€˜π‘€)    &   (πœ‘ β†’ 𝑀 ∈ β„€)    &   (πœ‘ β†’ 𝐹:π‘βŸΆπ‘‹)    &   ((πœ‘ ∧ π‘˜ ∈ 𝑍) β†’ (πΉβ€˜π‘˜) = 𝐴)    β‡’   (πœ‘ β†’ (𝐹(β‡π‘‘β€˜π½)𝑃 ↔ (𝑃 ∈ 𝑋 ∧ βˆ€π‘’ ∈ 𝐽 (𝑃 ∈ 𝑒 β†’ βˆƒπ‘— ∈ 𝑍 βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)𝐴 ∈ 𝑒))))
 
Theoremlmconst 13686 A constant sequence converges to its value. (Contributed by NM, 8-Nov-2007.) (Revised by Mario Carneiro, 14-Nov-2013.)
𝑍 = (β„€β‰₯β€˜π‘€)    β‡’   ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝑃 ∈ 𝑋 ∧ 𝑀 ∈ β„€) β†’ (𝑍 Γ— {𝑃})(β‡π‘‘β€˜π½)𝑃)
 
Theoremlmcvg 13687* Convergence property of a converging sequence. (Contributed by Mario Carneiro, 14-Nov-2013.)
𝑍 = (β„€β‰₯β€˜π‘€)    &   (πœ‘ β†’ 𝑃 ∈ π‘ˆ)    &   (πœ‘ β†’ 𝑀 ∈ β„€)    &   (πœ‘ β†’ 𝐹(β‡π‘‘β€˜π½)𝑃)    &   (πœ‘ β†’ π‘ˆ ∈ 𝐽)    β‡’   (πœ‘ β†’ βˆƒπ‘— ∈ 𝑍 βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)(πΉβ€˜π‘˜) ∈ π‘ˆ)
 
Theoremiscnp4 13688* The predicate "the class 𝐹 is a continuous function from topology 𝐽 to topology 𝐾 at point 𝑃 " in terms of neighborhoods. (Contributed by FL, 18-Jul-2011.) (Revised by Mario Carneiro, 10-Sep-2015.)
((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ) ∧ 𝑃 ∈ 𝑋) β†’ (𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘ƒ) ↔ (𝐹:π‘‹βŸΆπ‘Œ ∧ βˆ€π‘¦ ∈ ((neiβ€˜πΎ)β€˜{(πΉβ€˜π‘ƒ)})βˆƒπ‘₯ ∈ ((neiβ€˜π½)β€˜{𝑃})(𝐹 β€œ π‘₯) βŠ† 𝑦)))
 
Theoremcnpnei 13689* A condition for continuity at a point in terms of neighborhoods. (Contributed by Jeff Hankins, 7-Sep-2009.)
𝑋 = βˆͺ 𝐽    &   π‘Œ = βˆͺ 𝐾    β‡’   (((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐹:π‘‹βŸΆπ‘Œ) ∧ 𝐴 ∈ 𝑋) β†’ (𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π΄) ↔ βˆ€π‘¦ ∈ ((neiβ€˜πΎ)β€˜{(πΉβ€˜π΄)})(◑𝐹 β€œ 𝑦) ∈ ((neiβ€˜π½)β€˜{𝐴})))
 
Theoremcnima 13690 An open subset of the codomain of a continuous function has an open preimage. (Contributed by FL, 15-Dec-2006.)
((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ∈ 𝐾) β†’ (◑𝐹 β€œ 𝐴) ∈ 𝐽)
 
Theoremcnco 13691 The composition of two continuous functions is a continuous function. (Contributed by FL, 8-Dec-2006.) (Revised by Mario Carneiro, 21-Aug-2015.)
((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐺 ∈ (𝐾 Cn 𝐿)) β†’ (𝐺 ∘ 𝐹) ∈ (𝐽 Cn 𝐿))
 
Theoremcnptopco 13692 The composition of a function 𝐹 continuous at 𝑃 with a function continuous at (πΉβ€˜π‘ƒ) is continuous at 𝑃. Proposition 2 of [BourbakiTop1] p. I.9. (Contributed by FL, 16-Nov-2006.) (Proof shortened by Mario Carneiro, 27-Dec-2014.)
(((𝐽 ∈ Top ∧ 𝐾 ∈ Top ∧ 𝐿 ∈ Top) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘ƒ) ∧ 𝐺 ∈ ((𝐾 CnP 𝐿)β€˜(πΉβ€˜π‘ƒ)))) β†’ (𝐺 ∘ 𝐹) ∈ ((𝐽 CnP 𝐿)β€˜π‘ƒ))
 
Theoremcnclima 13693 A closed subset of the codomain of a continuous function has a closed preimage. (Contributed by NM, 15-Mar-2007.) (Revised by Mario Carneiro, 21-Aug-2015.)
((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ∈ (Clsdβ€˜πΎ)) β†’ (◑𝐹 β€œ 𝐴) ∈ (Clsdβ€˜π½))
 
Theoremcnntri 13694 Property of the preimage of an interior. (Contributed by Mario Carneiro, 25-Aug-2015.)
π‘Œ = βˆͺ 𝐾    β‡’   ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆 βŠ† π‘Œ) β†’ (◑𝐹 β€œ ((intβ€˜πΎ)β€˜π‘†)) βŠ† ((intβ€˜π½)β€˜(◑𝐹 β€œ 𝑆)))
 
Theoremcnntr 13695* Continuity in terms of interior. (Contributed by Jeff Hankins, 2-Oct-2009.) (Proof shortened by Mario Carneiro, 25-Aug-2015.)
((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ)) β†’ (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:π‘‹βŸΆπ‘Œ ∧ βˆ€π‘₯ ∈ 𝒫 π‘Œ(◑𝐹 β€œ ((intβ€˜πΎ)β€˜π‘₯)) βŠ† ((intβ€˜π½)β€˜(◑𝐹 β€œ π‘₯)))))
 
Theoremcnss1 13696 If the topology 𝐾 is finer than 𝐽, then there are more continuous functions from 𝐾 than from 𝐽. (Contributed by Mario Carneiro, 19-Mar-2015.) (Revised by Mario Carneiro, 21-Aug-2015.)
𝑋 = βˆͺ 𝐽    β‡’   ((𝐾 ∈ (TopOnβ€˜π‘‹) ∧ 𝐽 βŠ† 𝐾) β†’ (𝐽 Cn 𝐿) βŠ† (𝐾 Cn 𝐿))
 
Theoremcnss2 13697 If the topology 𝐾 is finer than 𝐽, then there are fewer continuous functions into 𝐾 than into 𝐽 from some other space. (Contributed by Mario Carneiro, 19-Mar-2015.) (Revised by Mario Carneiro, 21-Aug-2015.)
π‘Œ = βˆͺ 𝐾    β‡’   ((𝐿 ∈ (TopOnβ€˜π‘Œ) ∧ 𝐿 βŠ† 𝐾) β†’ (𝐽 Cn 𝐾) βŠ† (𝐽 Cn 𝐿))
 
Theoremcncnpi 13698 A continuous function is continuous at all points. One direction of Theorem 7.2(g) of [Munkres] p. 107. (Contributed by Raph Levien, 20-Nov-2006.) (Proof shortened by Mario Carneiro, 21-Aug-2015.)
𝑋 = βˆͺ 𝐽    β‡’   ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝐴 ∈ 𝑋) β†’ 𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π΄))
 
Theoremcnsscnp 13699 The set of continuous functions is a subset of the set of continuous functions at a point. (Contributed by Raph Levien, 21-Oct-2006.) (Revised by Mario Carneiro, 21-Aug-2015.)
𝑋 = βˆͺ 𝐽    β‡’   (𝑃 ∈ 𝑋 β†’ (𝐽 Cn 𝐾) βŠ† ((𝐽 CnP 𝐾)β€˜π‘ƒ))
 
Theoremcncnp 13700* A continuous function is continuous at all points. Theorem 7.2(g) of [Munkres] p. 107. (Contributed by NM, 15-May-2007.) (Proof shortened by Mario Carneiro, 21-Aug-2015.)
((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ)) β†’ (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:π‘‹βŸΆπ‘Œ ∧ βˆ€π‘₯ ∈ 𝑋 𝐹 ∈ ((𝐽 CnP 𝐾)β€˜π‘₯))))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14801
  Copyright terms: Public domain < Previous  Next >