Theorem List for Intuitionistic Logic Explorer - 13601-13700   *Has distinct variable
 group(s)
| Type | Label | Description | 
| Statement | 
|   | 
| Theorem | ringlzd 13601 | 
The zero of a unital ring is a left-absorbing element.  (Contributed by
       SN, 7-Mar-2025.)
 | 
| ⊢ 𝐵 = (Base‘𝑅)   
 &   ⊢  · =
 (.r‘𝑅)   
 &   ⊢  0 =
 (0g‘𝑅)   
 &   ⊢ (𝜑 → 𝑅 ∈ Ring)    &   ⊢ (𝜑 → 𝑋 ∈ 𝐵)    ⇒   ⊢ (𝜑 → ( 0 · 𝑋) = 0 ) | 
|   | 
| Theorem | ringrzd 13602 | 
The zero of a unital ring is a right-absorbing element.  (Contributed by
       SN, 7-Mar-2025.)
 | 
| ⊢ 𝐵 = (Base‘𝑅)   
 &   ⊢  · =
 (.r‘𝑅)   
 &   ⊢  0 =
 (0g‘𝑅)   
 &   ⊢ (𝜑 → 𝑅 ∈ Ring)    &   ⊢ (𝜑 → 𝑋 ∈ 𝐵)    ⇒   ⊢ (𝜑 → (𝑋 · 0 ) = 0 ) | 
|   | 
| Theorem | ringsrg 13603 | 
Any ring is also a semiring.  (Contributed by Thierry Arnoux,
       1-Apr-2018.)
 | 
| ⊢ (𝑅 ∈ Ring → 𝑅 ∈ SRing) | 
|   | 
| Theorem | ring1eq0 13604 | 
If one and zero are equal, then any two elements of a ring are equal.
       Alternately, every ring has one distinct from zero except the zero ring
       containing the single element {0}.  (Contributed
by Mario
       Carneiro, 10-Sep-2014.)
 | 
| ⊢ 𝐵 = (Base‘𝑅)   
 &   ⊢  1 =
 (1r‘𝑅)   
 &   ⊢  0 =
 (0g‘𝑅)    ⇒   ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ( 1 = 0 → 𝑋 = 𝑌)) | 
|   | 
| Theorem | ringinvnz1ne0 13605* | 
In a unital ring, a left invertible element is different from zero iff
       1  ≠  0.  (Contributed by
FL, 18-Apr-2010.)  (Revised by AV,
       24-Aug-2021.)
 | 
| ⊢ 𝐵 = (Base‘𝑅)   
 &   ⊢  · =
 (.r‘𝑅)   
 &   ⊢  1 =
 (1r‘𝑅)   
 &   ⊢  0 =
 (0g‘𝑅)   
 &   ⊢ (𝜑 → 𝑅 ∈ Ring)    &   ⊢ (𝜑 → 𝑋 ∈ 𝐵)   
 &   ⊢ (𝜑 → ∃𝑎 ∈ 𝐵 (𝑎 · 𝑋) = 1
 )    ⇒   ⊢ (𝜑 → (𝑋 ≠ 0 ↔ 1 ≠ 0 )) | 
|   | 
| Theorem | ringinvnzdiv 13606* | 
In a unital ring, a left invertible element is not a zero divisor.
       (Contributed by FL, 18-Apr-2010.)  (Revised by Jeff Madsen,
       18-Apr-2010.)  (Revised by AV, 24-Aug-2021.)
 | 
| ⊢ 𝐵 = (Base‘𝑅)   
 &   ⊢  · =
 (.r‘𝑅)   
 &   ⊢  1 =
 (1r‘𝑅)   
 &   ⊢  0 =
 (0g‘𝑅)   
 &   ⊢ (𝜑 → 𝑅 ∈ Ring)    &   ⊢ (𝜑 → 𝑋 ∈ 𝐵)   
 &   ⊢ (𝜑 → ∃𝑎 ∈ 𝐵 (𝑎 · 𝑋) = 1 )    &   ⊢ (𝜑 → 𝑌 ∈ 𝐵)    ⇒   ⊢ (𝜑 → ((𝑋 · 𝑌) = 0 ↔ 𝑌 = 0 )) | 
|   | 
| Theorem | ringnegl 13607 | 
Negation in a ring is the same as left multiplication by -1.
       (Contributed by Jeff Madsen, 19-Jun-2010.)  (Revised by Mario Carneiro,
       2-Jul-2014.)
 | 
| ⊢ 𝐵 = (Base‘𝑅)   
 &   ⊢  · =
 (.r‘𝑅)   
 &   ⊢  1 =
 (1r‘𝑅)   
 &   ⊢ 𝑁 = (invg‘𝑅)   
 &   ⊢ (𝜑 → 𝑅 ∈ Ring)    &   ⊢ (𝜑 → 𝑋 ∈ 𝐵)    ⇒   ⊢ (𝜑 → ((𝑁‘ 1 ) · 𝑋) = (𝑁‘𝑋)) | 
|   | 
| Theorem | ringnegr 13608 | 
Negation in a ring is the same as right multiplication by -1.
       (Contributed by Jeff Madsen, 19-Jun-2010.)  (Revised by Mario Carneiro,
       2-Jul-2014.)
 | 
| ⊢ 𝐵 = (Base‘𝑅)   
 &   ⊢  · =
 (.r‘𝑅)   
 &   ⊢  1 =
 (1r‘𝑅)   
 &   ⊢ 𝑁 = (invg‘𝑅)   
 &   ⊢ (𝜑 → 𝑅 ∈ Ring)    &   ⊢ (𝜑 → 𝑋 ∈ 𝐵)    ⇒   ⊢ (𝜑 → (𝑋 · (𝑁‘ 1 )) = (𝑁‘𝑋)) | 
|   | 
| Theorem | ringmneg1 13609 | 
Negation of a product in a ring.  (mulneg1 8421 analog.)  (Contributed by
       Jeff Madsen, 19-Jun-2010.)  (Revised by Mario Carneiro, 2-Jul-2014.)
 | 
| ⊢ 𝐵 = (Base‘𝑅)   
 &   ⊢  · =
 (.r‘𝑅)   
 &   ⊢ 𝑁 = (invg‘𝑅)   
 &   ⊢ (𝜑 → 𝑅 ∈ Ring)    &   ⊢ (𝜑 → 𝑋 ∈ 𝐵)   
 &   ⊢ (𝜑 → 𝑌 ∈ 𝐵)    ⇒   ⊢ (𝜑 → ((𝑁‘𝑋) · 𝑌) = (𝑁‘(𝑋 · 𝑌))) | 
|   | 
| Theorem | ringmneg2 13610 | 
Negation of a product in a ring.  (mulneg2 8422 analog.)  (Contributed by
       Jeff Madsen, 19-Jun-2010.)  (Revised by Mario Carneiro, 2-Jul-2014.)
 | 
| ⊢ 𝐵 = (Base‘𝑅)   
 &   ⊢  · =
 (.r‘𝑅)   
 &   ⊢ 𝑁 = (invg‘𝑅)   
 &   ⊢ (𝜑 → 𝑅 ∈ Ring)    &   ⊢ (𝜑 → 𝑋 ∈ 𝐵)   
 &   ⊢ (𝜑 → 𝑌 ∈ 𝐵)    ⇒   ⊢ (𝜑 → (𝑋 · (𝑁‘𝑌)) = (𝑁‘(𝑋 · 𝑌))) | 
|   | 
| Theorem | ringm2neg 13611 | 
Double negation of a product in a ring.  (mul2neg 8424 analog.)
       (Contributed by Mario Carneiro, 4-Dec-2014.)
 | 
| ⊢ 𝐵 = (Base‘𝑅)   
 &   ⊢  · =
 (.r‘𝑅)   
 &   ⊢ 𝑁 = (invg‘𝑅)   
 &   ⊢ (𝜑 → 𝑅 ∈ Ring)    &   ⊢ (𝜑 → 𝑋 ∈ 𝐵)   
 &   ⊢ (𝜑 → 𝑌 ∈ 𝐵)    ⇒   ⊢ (𝜑 → ((𝑁‘𝑋) · (𝑁‘𝑌)) = (𝑋 · 𝑌)) | 
|   | 
| Theorem | ringsubdi 13612 | 
Ring multiplication distributes over subtraction.  (subdi 8411 analog.)
       (Contributed by Jeff Madsen, 19-Jun-2010.)  (Revised by Mario Carneiro,
       2-Jul-2014.)
 | 
| ⊢ 𝐵 = (Base‘𝑅)   
 &   ⊢  · =
 (.r‘𝑅)   
 &   ⊢  − =
 (-g‘𝑅)   
 &   ⊢ (𝜑 → 𝑅 ∈ Ring)    &   ⊢ (𝜑 → 𝑋 ∈ 𝐵)   
 &   ⊢ (𝜑 → 𝑌 ∈ 𝐵)   
 &   ⊢ (𝜑 → 𝑍 ∈ 𝐵)    ⇒   ⊢ (𝜑 → (𝑋 · (𝑌 − 𝑍)) = ((𝑋 · 𝑌) − (𝑋 · 𝑍))) | 
|   | 
| Theorem | ringsubdir 13613 | 
Ring multiplication distributes over subtraction.  (subdir 8412 analog.)
       (Contributed by Jeff Madsen, 19-Jun-2010.)  (Revised by Mario Carneiro,
       2-Jul-2014.)
 | 
| ⊢ 𝐵 = (Base‘𝑅)   
 &   ⊢  · =
 (.r‘𝑅)   
 &   ⊢  − =
 (-g‘𝑅)   
 &   ⊢ (𝜑 → 𝑅 ∈ Ring)    &   ⊢ (𝜑 → 𝑋 ∈ 𝐵)   
 &   ⊢ (𝜑 → 𝑌 ∈ 𝐵)   
 &   ⊢ (𝜑 → 𝑍 ∈ 𝐵)    ⇒   ⊢ (𝜑 → ((𝑋 − 𝑌) · 𝑍) = ((𝑋 · 𝑍) − (𝑌 · 𝑍))) | 
|   | 
| Theorem | mulgass2 13614 | 
An associative property between group multiple and ring multiplication.
       (Contributed by Mario Carneiro, 14-Jun-2015.)
 | 
| ⊢ 𝐵 = (Base‘𝑅)   
 &   ⊢  · =
 (.g‘𝑅)   
 &   ⊢  × =
 (.r‘𝑅)    ⇒   ⊢ ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → ((𝑁 · 𝑋) × 𝑌) = (𝑁 · (𝑋 × 𝑌))) | 
|   | 
| Theorem | ring1 13615 | 
The (smallest) structure representing a zero ring.  (Contributed by
       AV, 28-Apr-2019.)
 | 
| ⊢ 𝑀 = {〈(Base‘ndx), {𝑍}〉,
 〈(+g‘ndx), {〈〈𝑍, 𝑍〉, 𝑍〉}〉,
 〈(.r‘ndx), {〈〈𝑍, 𝑍〉, 𝑍〉}〉}   
 ⇒   ⊢ (𝑍 ∈ 𝑉 → 𝑀 ∈ Ring) | 
|   | 
| Theorem | ringn0 13616 | 
The class of rings is not empty (it is also inhabited, as shown at
     ring1 13615).  (Contributed by AV, 29-Apr-2019.)
 | 
| ⊢ Ring ≠ ∅ | 
|   | 
| Theorem | ringlghm 13617* | 
Left-multiplication in a ring by a fixed element of the ring is a group
       homomorphism.  (It is not usually a ring homomorphism.)  (Contributed by
       Mario Carneiro, 4-May-2015.)
 | 
| ⊢ 𝐵 = (Base‘𝑅)   
 &   ⊢  · =
 (.r‘𝑅)    ⇒   ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → (𝑥 ∈ 𝐵 ↦ (𝑋 · 𝑥)) ∈ (𝑅 GrpHom 𝑅)) | 
|   | 
| Theorem | ringrghm 13618* | 
Right-multiplication in a ring by a fixed element of the ring is a group
       homomorphism.  (It is not usually a ring homomorphism.)  (Contributed by
       Mario Carneiro, 4-May-2015.)
 | 
| ⊢ 𝐵 = (Base‘𝑅)   
 &   ⊢  · =
 (.r‘𝑅)    ⇒   ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → (𝑥 ∈ 𝐵 ↦ (𝑥 · 𝑋)) ∈ (𝑅 GrpHom 𝑅)) | 
|   | 
| Theorem | ringressid 13619 | 
A ring restricted to its base set is a ring.  It will usually be the
       original ring exactly, of course, but to show that needs additional
       conditions such as those in strressid 12749.  (Contributed by Jim Kingdon,
       28-Feb-2025.)
 | 
| ⊢ 𝐵 = (Base‘𝐺)    ⇒   ⊢ (𝐺 ∈ Ring → (𝐺 ↾s 𝐵) ∈ Ring) | 
|   | 
| Theorem | imasring 13620* | 
The image structure of a ring is a ring.  (Contributed by Mario
       Carneiro, 14-Jun-2015.)
 | 
| ⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅))    &   ⊢ (𝜑 → 𝑉 = (Base‘𝑅))    &   ⊢  + =
 (+g‘𝑅)   
 &   ⊢  · =
 (.r‘𝑅)   
 &   ⊢  1 =
 (1r‘𝑅)   
 &   ⊢ (𝜑 → 𝐹:𝑉–onto→𝐵)   
 &   ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → (((𝐹‘𝑎) = (𝐹‘𝑝) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → (𝐹‘(𝑎 + 𝑏)) = (𝐹‘(𝑝 + 𝑞))))    &   ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → (((𝐹‘𝑎) = (𝐹‘𝑝) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → (𝐹‘(𝑎 · 𝑏)) = (𝐹‘(𝑝 · 𝑞))))    &   ⊢ (𝜑 → 𝑅 ∈ Ring)   
 ⇒   ⊢ (𝜑 → (𝑈 ∈ Ring ∧ (𝐹‘ 1 ) =
 (1r‘𝑈))) | 
|   | 
| Theorem | imasringf1 13621 | 
The image of a ring under an injection is a ring.  (Contributed by AV,
       27-Feb-2025.)
 | 
| ⊢ 𝑈 = (𝐹 “s 𝑅)    &   ⊢ 𝑉 = (Base‘𝑅)   
 ⇒   ⊢ ((𝐹:𝑉–1-1→𝐵 ∧ 𝑅 ∈ Ring) → 𝑈 ∈ Ring) | 
|   | 
| Theorem | qusring2 13622* | 
The quotient structure of a ring is a ring.  (Contributed by Mario
       Carneiro, 14-Jun-2015.)
 | 
| ⊢ (𝜑 → 𝑈 = (𝑅 /s ∼ ))    &   ⊢ (𝜑 → 𝑉 = (Base‘𝑅))    &   ⊢  + =
 (+g‘𝑅)   
 &   ⊢  · =
 (.r‘𝑅)   
 &   ⊢  1 =
 (1r‘𝑅)   
 &   ⊢ (𝜑 → ∼ Er 𝑉)    &   ⊢ (𝜑 → ((𝑎 ∼ 𝑝 ∧ 𝑏 ∼ 𝑞) → (𝑎 + 𝑏) ∼ (𝑝 + 𝑞)))    &   ⊢ (𝜑 → ((𝑎 ∼ 𝑝 ∧ 𝑏 ∼ 𝑞) → (𝑎 · 𝑏) ∼ (𝑝 · 𝑞)))    &   ⊢ (𝜑 → 𝑅 ∈ Ring)   
 ⇒   ⊢ (𝜑 → (𝑈 ∈ Ring ∧ [ 1 ] ∼ =
 (1r‘𝑈))) | 
|   | 
| 7.3.6  Opposite ring
 | 
|   | 
| Syntax | coppr 13623 | 
The opposite ring operation.
 | 
| class oppr | 
|   | 
| Definition | df-oppr 13624 | 
Define an opposite ring, which is the same as the original ring but with
     multiplication written the other way around.  (Contributed by Mario
     Carneiro, 1-Dec-2014.)
 | 
| ⊢ oppr = (𝑓 ∈ V ↦ (𝑓 sSet 〈(.r‘ndx), tpos
 (.r‘𝑓)〉)) | 
|   | 
| Theorem | opprvalg 13625 | 
Value of the opposite ring.  (Contributed by Mario Carneiro,
       1-Dec-2014.)
 | 
| ⊢ 𝐵 = (Base‘𝑅)   
 &   ⊢  · =
 (.r‘𝑅)   
 &   ⊢ 𝑂 = (oppr‘𝑅)   
 ⇒   ⊢ (𝑅 ∈ 𝑉 → 𝑂 = (𝑅 sSet 〈(.r‘ndx), tpos
 ·
 〉)) | 
|   | 
| Theorem | opprmulfvalg 13626 | 
Value of the multiplication operation of an opposite ring.  (Contributed
       by Mario Carneiro, 1-Dec-2014.)
 | 
| ⊢ 𝐵 = (Base‘𝑅)   
 &   ⊢  · =
 (.r‘𝑅)   
 &   ⊢ 𝑂 = (oppr‘𝑅)    &   ⊢  ∙ =
 (.r‘𝑂)    ⇒   ⊢ (𝑅 ∈ 𝑉 → ∙ = tpos ·
 ) | 
|   | 
| Theorem | opprmulg 13627 | 
Value of the multiplication operation of an opposite ring.  Hypotheses
       eliminated by a suggestion of Stefan O'Rear, 30-Aug-2015.  (Contributed
       by Mario Carneiro, 1-Dec-2014.)  (Revised by Mario Carneiro,
       30-Aug-2015.)
 | 
| ⊢ 𝐵 = (Base‘𝑅)   
 &   ⊢  · =
 (.r‘𝑅)   
 &   ⊢ 𝑂 = (oppr‘𝑅)    &   ⊢  ∙ =
 (.r‘𝑂)    ⇒   ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑋 ∈ 𝑊 ∧ 𝑌 ∈ 𝑈) → (𝑋 ∙ 𝑌) = (𝑌 · 𝑋)) | 
|   | 
| Theorem | crngoppr 13628 | 
In a commutative ring, the opposite ring is equivalent to the original
       ring.  (Contributed by Mario Carneiro, 14-Jun-2015.)
 | 
| ⊢ 𝐵 = (Base‘𝑅)   
 &   ⊢  · =
 (.r‘𝑅)   
 &   ⊢ 𝑂 = (oppr‘𝑅)    &   ⊢  ∙ =
 (.r‘𝑂)    ⇒   ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 · 𝑌) = (𝑋 ∙ 𝑌)) | 
|   | 
| Theorem | opprex 13629 | 
Existence of the opposite ring.  If you know that 𝑅 is a ring, see
       opprring 13635.  (Contributed by Jim Kingdon, 10-Jan-2025.)
 | 
| ⊢ 𝑂 = (oppr‘𝑅)   
 ⇒   ⊢ (𝑅 ∈ 𝑉 → 𝑂 ∈ V) | 
|   | 
| Theorem | opprsllem 13630 | 
Lemma for opprbasg 13631 and oppraddg 13632.  (Contributed by Mario Carneiro,
         1-Dec-2014.)  (Revised by AV, 6-Nov-2024.)
 | 
| ⊢ 𝑂 = (oppr‘𝑅)    &   ⊢ (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ)    &   ⊢ (𝐸‘ndx) ≠
 (.r‘ndx)    ⇒   ⊢ (𝑅 ∈ 𝑉 → (𝐸‘𝑅) = (𝐸‘𝑂)) | 
|   | 
| Theorem | opprbasg 13631 | 
Base set of an opposite ring.  (Contributed by Mario Carneiro,
         1-Dec-2014.)  (Proof shortened by AV, 6-Nov-2024.)
 | 
| ⊢ 𝑂 = (oppr‘𝑅)    &   ⊢ 𝐵 = (Base‘𝑅)   
 ⇒   ⊢ (𝑅 ∈ 𝑉 → 𝐵 = (Base‘𝑂)) | 
|   | 
| Theorem | oppraddg 13632 | 
Addition operation of an opposite ring.  (Contributed by Mario
         Carneiro, 1-Dec-2014.)  (Proof shortened by AV, 6-Nov-2024.)
 | 
| ⊢ 𝑂 = (oppr‘𝑅)    &   ⊢  + =
 (+g‘𝑅)    ⇒   ⊢ (𝑅 ∈ 𝑉 → + =
 (+g‘𝑂)) | 
|   | 
| Theorem | opprrng 13633 | 
An opposite non-unital ring is a non-unital ring.  (Contributed by AV,
       15-Feb-2025.)
 | 
| ⊢ 𝑂 = (oppr‘𝑅)   
 ⇒   ⊢ (𝑅 ∈ Rng → 𝑂 ∈ Rng) | 
|   | 
| Theorem | opprrngbg 13634 | 
A set is a non-unital ring if and only if its opposite is a non-unital
         ring.  Bidirectional form of opprrng 13633.  (Contributed by AV,
         15-Feb-2025.)
 | 
| ⊢ 𝑂 = (oppr‘𝑅)   
 ⇒   ⊢ (𝑅 ∈ 𝑉 → (𝑅 ∈ Rng ↔ 𝑂 ∈ Rng)) | 
|   | 
| Theorem | opprring 13635 | 
An opposite ring is a ring.  (Contributed by Mario Carneiro,
       1-Dec-2014.)  (Revised by Mario Carneiro, 30-Aug-2015.)
 | 
| ⊢ 𝑂 = (oppr‘𝑅)   
 ⇒   ⊢ (𝑅 ∈ Ring → 𝑂 ∈ Ring) | 
|   | 
| Theorem | opprringbg 13636 | 
Bidirectional form of opprring 13635.  (Contributed by Mario Carneiro,
         6-Dec-2014.)
 | 
| ⊢ 𝑂 = (oppr‘𝑅)   
 ⇒   ⊢ (𝑅 ∈ 𝑉 → (𝑅 ∈ Ring ↔ 𝑂 ∈ Ring)) | 
|   | 
| Theorem | oppr0g 13637 | 
Additive identity of an opposite ring.  (Contributed by Mario
         Carneiro, 1-Dec-2014.)
 | 
| ⊢ 𝑂 = (oppr‘𝑅)    &   ⊢  0 =
 (0g‘𝑅)    ⇒   ⊢ (𝑅 ∈ 𝑉 → 0 =
 (0g‘𝑂)) | 
|   | 
| Theorem | oppr1g 13638 | 
Multiplicative identity of an opposite ring.  (Contributed by Mario
         Carneiro, 1-Dec-2014.)
 | 
| ⊢ 𝑂 = (oppr‘𝑅)    &   ⊢  1 =
 (1r‘𝑅)    ⇒   ⊢ (𝑅 ∈ 𝑉 → 1 =
 (1r‘𝑂)) | 
|   | 
| Theorem | opprnegg 13639 | 
The negative function in an opposite ring.  (Contributed by Mario
         Carneiro, 5-Dec-2014.)  (Revised by Mario Carneiro, 2-Oct-2015.)
 | 
| ⊢ 𝑂 = (oppr‘𝑅)    &   ⊢ 𝑁 = (invg‘𝑅)   
 ⇒   ⊢ (𝑅 ∈ 𝑉 → 𝑁 = (invg‘𝑂)) | 
|   | 
| Theorem | opprsubgg 13640 | 
Being a subgroup is a symmetric property.  (Contributed by Mario
         Carneiro, 6-Dec-2014.)
 | 
| ⊢ 𝑂 = (oppr‘𝑅)   
 ⇒   ⊢ (𝑅 ∈ 𝑉 → (SubGrp‘𝑅) = (SubGrp‘𝑂)) | 
|   | 
| Theorem | mulgass3 13641 | 
An associative property between group multiple and ring multiplication.
       (Contributed by Mario Carneiro, 14-Jun-2015.)
 | 
| ⊢ 𝐵 = (Base‘𝑅)   
 &   ⊢  · =
 (.g‘𝑅)   
 &   ⊢  × =
 (.r‘𝑅)    ⇒   ⊢ ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋 × (𝑁 · 𝑌)) = (𝑁 · (𝑋 × 𝑌))) | 
|   | 
| 7.3.7  Divisibility
 | 
|   | 
| Syntax | cdsr 13642 | 
Ring divisibility relation.
 | 
| class ∥r | 
|   | 
| Syntax | cui 13643 | 
Units in a ring.
 | 
| class Unit | 
|   | 
| Syntax | cir 13644 | 
Ring irreducibles.
 | 
| class Irred | 
|   | 
| Definition | df-dvdsr 13645* | 
Define the (right) divisibility relation in a ring.  Access to the left
       divisibility relation is available through
       (∥r‘(oppr‘𝑅)).  (Contributed by
Mario Carneiro,
       1-Dec-2014.)
 | 
| ⊢ ∥r = (𝑤 ∈ V ↦ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ (Base‘𝑤) ∧ ∃𝑧 ∈ (Base‘𝑤)(𝑧(.r‘𝑤)𝑥) = 𝑦)}) | 
|   | 
| Definition | df-unit 13646 | 
Define the set of units in a ring, that is, all elements with a left and
       right multiplicative inverse.  (Contributed by Mario Carneiro,
       1-Dec-2014.)
 | 
| ⊢ Unit = (𝑤 ∈ V ↦ (◡((∥r‘𝑤) ∩
 (∥r‘(oppr‘𝑤))) “ {(1r‘𝑤)})) | 
|   | 
| Definition | df-irred 13647* | 
Define the set of irreducible elements in a ring.  (Contributed by Mario
       Carneiro, 4-Dec-2014.)
 | 
| ⊢ Irred = (𝑤 ∈ V ↦
 ⦋((Base‘𝑤) ∖ (Unit‘𝑤)) / 𝑏⦌{𝑧 ∈ 𝑏 ∣ ∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 (𝑥(.r‘𝑤)𝑦) ≠ 𝑧}) | 
|   | 
| Theorem | reldvdsrsrg 13648 | 
The divides relation is a relation.  (Contributed by Mario Carneiro,
       1-Dec-2014.)  (Revised by Jim Kingdon, 24-Jan-2025.)
 | 
| ⊢ (𝑅 ∈ SRing → Rel
 (∥r‘𝑅)) | 
|   | 
| Theorem | dvdsrvald 13649* | 
Value of the divides relation.  (Contributed by Mario Carneiro,
         1-Dec-2014.)  (Revised by Mario Carneiro, 6-Jan-2015.)
 | 
| ⊢ (𝜑 → 𝐵 = (Base‘𝑅))    &   ⊢ (𝜑 → ∥ =
 (∥r‘𝑅))    &   ⊢ (𝜑 → 𝑅 ∈ SRing)    &   ⊢ (𝜑 → · =
 (.r‘𝑅))    ⇒   ⊢ (𝜑 → ∥ = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐵 ∧ ∃𝑧 ∈ 𝐵 (𝑧 · 𝑥) = 𝑦)}) | 
|   | 
| Theorem | dvdsrd 13650* | 
Value of the divides relation.  (Contributed by Mario Carneiro,
         1-Dec-2014.)
 | 
| ⊢ (𝜑 → 𝐵 = (Base‘𝑅))    &   ⊢ (𝜑 → ∥ =
 (∥r‘𝑅))    &   ⊢ (𝜑 → 𝑅 ∈ SRing)    &   ⊢ (𝜑 → · =
 (.r‘𝑅))    ⇒   ⊢ (𝜑 → (𝑋 ∥ 𝑌 ↔ (𝑋 ∈ 𝐵 ∧ ∃𝑧 ∈ 𝐵 (𝑧 · 𝑋) = 𝑌))) | 
|   | 
| Theorem | dvdsr2d 13651* | 
Value of the divides relation.  (Contributed by Mario Carneiro,
           1-Dec-2014.)
 | 
| ⊢ (𝜑 → 𝐵 = (Base‘𝑅))    &   ⊢ (𝜑 → ∥ =
 (∥r‘𝑅))    &   ⊢ (𝜑 → 𝑅 ∈ SRing)    &   ⊢ (𝜑 → · =
 (.r‘𝑅))    &   ⊢ (𝜑 → 𝑋 ∈ 𝐵)    ⇒   ⊢ (𝜑 → (𝑋 ∥ 𝑌 ↔ ∃𝑧 ∈ 𝐵 (𝑧 · 𝑋) = 𝑌)) | 
|   | 
| Theorem | dvdsrmuld 13652 | 
A left-multiple of 𝑋 is divisible by 𝑋. 
(Contributed by
           Mario Carneiro, 1-Dec-2014.)
 | 
| ⊢ (𝜑 → 𝐵 = (Base‘𝑅))    &   ⊢ (𝜑 → ∥ =
 (∥r‘𝑅))    &   ⊢ (𝜑 → 𝑅 ∈ SRing)    &   ⊢ (𝜑 → · =
 (.r‘𝑅))    &   ⊢ (𝜑 → 𝑋 ∈ 𝐵)   
 &   ⊢ (𝜑 → 𝑌 ∈ 𝐵)    ⇒   ⊢ (𝜑 → 𝑋 ∥ (𝑌 · 𝑋)) | 
|   | 
| Theorem | dvdsrcld 13653 | 
Closure of a dividing element.  (Contributed by Mario Carneiro,
         5-Dec-2014.)
 | 
| ⊢ (𝜑 → 𝐵 = (Base‘𝑅))    &   ⊢ (𝜑 → ∥ =
 (∥r‘𝑅))    &   ⊢ (𝜑 → 𝑅 ∈ SRing)    &   ⊢ (𝜑 → 𝑋 ∥ 𝑌)    ⇒   ⊢ (𝜑 → 𝑋 ∈ 𝐵) | 
|   | 
| Theorem | dvdsrex 13654 | 
Existence of the divisibility relation.  (Contributed by Jim Kingdon,
       28-Jan-2025.)
 | 
| ⊢ (𝑅 ∈ SRing →
 (∥r‘𝑅) ∈ V) | 
|   | 
| Theorem | dvdsrcl2 13655 | 
Closure of a dividing element.  (Contributed by Mario Carneiro,
       5-Dec-2014.)
 | 
| ⊢ 𝐵 = (Base‘𝑅)   
 &   ⊢  ∥ =
 (∥r‘𝑅)    ⇒   ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∥ 𝑌) → 𝑌 ∈ 𝐵) | 
|   | 
| Theorem | dvdsrid 13656 | 
An element in a (unital) ring divides itself.  (Contributed by Mario
       Carneiro, 1-Dec-2014.)  (Revised by Mario Carneiro, 30-Apr-2015.)
 | 
| ⊢ 𝐵 = (Base‘𝑅)   
 &   ⊢  ∥ =
 (∥r‘𝑅)    ⇒   ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → 𝑋 ∥ 𝑋) | 
|   | 
| Theorem | dvdsrtr 13657 | 
Divisibility is transitive.  (Contributed by Mario Carneiro,
       1-Dec-2014.)
 | 
| ⊢ 𝐵 = (Base‘𝑅)   
 &   ⊢  ∥ =
 (∥r‘𝑅)    ⇒   ⊢ ((𝑅 ∈ Ring ∧ 𝑌 ∥ 𝑍 ∧ 𝑍 ∥ 𝑋) → 𝑌 ∥ 𝑋) | 
|   | 
| Theorem | dvdsrmul1 13658 | 
The divisibility relation is preserved under right-multiplication.
         (Contributed by Mario Carneiro, 1-Dec-2014.)
 | 
| ⊢ 𝐵 = (Base‘𝑅)   
 &   ⊢  ∥ =
 (∥r‘𝑅)   
 &   ⊢  · =
 (.r‘𝑅)    ⇒   ⊢ ((𝑅 ∈ Ring ∧ 𝑍 ∈ 𝐵 ∧ 𝑋 ∥ 𝑌) → (𝑋 · 𝑍) ∥ (𝑌 · 𝑍)) | 
|   | 
| Theorem | dvdsrneg 13659 | 
An element divides its negative.  (Contributed by Mario Carneiro,
       1-Dec-2014.)
 | 
| ⊢ 𝐵 = (Base‘𝑅)   
 &   ⊢  ∥ =
 (∥r‘𝑅)   
 &   ⊢ 𝑁 = (invg‘𝑅)    ⇒   ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → 𝑋 ∥ (𝑁‘𝑋)) | 
|   | 
| Theorem | dvdsr01 13660 | 
In a ring, zero is divisible by all elements.  ("Zero divisor" as a
term
       has a somewhat different meaning.)  (Contributed by Stefan O'Rear,
       29-Mar-2015.)
 | 
| ⊢ 𝐵 = (Base‘𝑅)   
 &   ⊢  ∥ =
 (∥r‘𝑅)   
 &   ⊢  0 =
 (0g‘𝑅)    ⇒   ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → 𝑋 ∥ 0 ) | 
|   | 
| Theorem | dvdsr02 13661 | 
Only zero is divisible by zero.  (Contributed by Stefan O'Rear,
       29-Mar-2015.)
 | 
| ⊢ 𝐵 = (Base‘𝑅)   
 &   ⊢  ∥ =
 (∥r‘𝑅)   
 &   ⊢  0 =
 (0g‘𝑅)    ⇒   ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → ( 0 ∥ 𝑋 ↔ 𝑋 = 0 )) | 
|   | 
| Theorem | isunitd 13662 | 
Property of being a unit of a ring.  A unit is an element that left-
         and right-divides one.  (Contributed by Mario Carneiro, 1-Dec-2014.)
         (Revised by Mario Carneiro, 8-Dec-2015.)
 | 
| ⊢ (𝜑 → 𝑈 = (Unit‘𝑅))    &   ⊢ (𝜑 → 1 =
 (1r‘𝑅))    &   ⊢ (𝜑 → ∥ =
 (∥r‘𝑅))    &   ⊢ (𝜑 → 𝑆 = (oppr‘𝑅))    &   ⊢ (𝜑 → 𝐸 = (∥r‘𝑆))    &   ⊢ (𝜑 → 𝑅 ∈ SRing)   
 ⇒   ⊢ (𝜑 → (𝑋 ∈ 𝑈 ↔ (𝑋 ∥ 1 ∧ 𝑋𝐸 1 ))) | 
|   | 
| Theorem | 1unit 13663 | 
The multiplicative identity is a unit.  (Contributed by Mario Carneiro,
       1-Dec-2014.)
 | 
| ⊢ 𝑈 = (Unit‘𝑅)   
 &   ⊢  1 =
 (1r‘𝑅)    ⇒   ⊢ (𝑅 ∈ Ring → 1 ∈ 𝑈) | 
|   | 
| Theorem | unitcld 13664 | 
A unit is an element of the base set.  (Contributed by Mario Carneiro,
         1-Dec-2014.)
 | 
| ⊢ (𝜑 → 𝐵 = (Base‘𝑅))    &   ⊢ (𝜑 → 𝑈 = (Unit‘𝑅))    &   ⊢ (𝜑 → 𝑅 ∈ SRing)    &   ⊢ (𝜑 → 𝑋 ∈ 𝑈)    ⇒   ⊢ (𝜑 → 𝑋 ∈ 𝐵) | 
|   | 
| Theorem | unitssd 13665 | 
The set of units is contained in the base set.  (Contributed by Mario
       Carneiro, 5-Oct-2015.)
 | 
| ⊢ (𝜑 → 𝐵 = (Base‘𝑅))    &   ⊢ (𝜑 → 𝑈 = (Unit‘𝑅))    &   ⊢ (𝜑 → 𝑅 ∈ SRing)   
 ⇒   ⊢ (𝜑 → 𝑈 ⊆ 𝐵) | 
|   | 
| Theorem | opprunitd 13666 | 
Being a unit is a symmetric property, so it transfers to the opposite
       ring.  (Contributed by Mario Carneiro, 4-Dec-2014.)
 | 
| ⊢ (𝜑 → 𝑈 = (Unit‘𝑅))    &   ⊢ (𝜑 → 𝑆 = (oppr‘𝑅))    &   ⊢ (𝜑 → 𝑅 ∈ Ring)   
 ⇒   ⊢ (𝜑 → 𝑈 = (Unit‘𝑆)) | 
|   | 
| Theorem | crngunit 13667 | 
Property of being a unit in a commutative ring.  (Contributed by Mario
       Carneiro, 18-Apr-2016.)
 | 
| ⊢ 𝑈 = (Unit‘𝑅)   
 &   ⊢  1 =
 (1r‘𝑅)   
 &   ⊢  ∥ =
 (∥r‘𝑅)    ⇒   ⊢ (𝑅 ∈ CRing → (𝑋 ∈ 𝑈 ↔ 𝑋 ∥ 1 )) | 
|   | 
| Theorem | dvdsunit 13668 | 
A divisor of a unit is a unit.  (Contributed by Mario Carneiro,
       18-Apr-2016.)
 | 
| ⊢ 𝑈 = (Unit‘𝑅)   
 &   ⊢  ∥ =
 (∥r‘𝑅)    ⇒   ⊢ ((𝑅 ∈ CRing ∧ 𝑌 ∥ 𝑋 ∧ 𝑋 ∈ 𝑈) → 𝑌 ∈ 𝑈) | 
|   | 
| Theorem | unitmulcl 13669 | 
The product of units is a unit.  (Contributed by Mario Carneiro,
         2-Dec-2014.)
 | 
| ⊢ 𝑈 = (Unit‘𝑅)   
 &   ⊢  · =
 (.r‘𝑅)    ⇒   ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈) → (𝑋 · 𝑌) ∈ 𝑈) | 
|   | 
| Theorem | unitmulclb 13670 | 
Reversal of unitmulcl 13669 in a commutative ring.  (Contributed by
Mario
         Carneiro, 18-Apr-2016.)
 | 
| ⊢ 𝑈 = (Unit‘𝑅)   
 &   ⊢  · =
 (.r‘𝑅)   
 &   ⊢ 𝐵 = (Base‘𝑅)    ⇒   ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 · 𝑌) ∈ 𝑈 ↔ (𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈))) | 
|   | 
| Theorem | unitgrpbasd 13671 | 
The base set of the group of units.  (Contributed by Mario Carneiro,
       25-Dec-2014.)
 | 
| ⊢ (𝜑 → 𝑈 = (Unit‘𝑅))    &   ⊢ (𝜑 → 𝐺 = ((mulGrp‘𝑅) ↾s 𝑈))    &   ⊢ (𝜑 → 𝑅 ∈ SRing)   
 ⇒   ⊢ (𝜑 → 𝑈 = (Base‘𝐺)) | 
|   | 
| Theorem | unitgrp 13672 | 
The group of units is a group under multiplication.  (Contributed by
       Mario Carneiro, 2-Dec-2014.)
 | 
| ⊢ 𝑈 = (Unit‘𝑅)   
 &   ⊢ 𝐺 = ((mulGrp‘𝑅) ↾s 𝑈)    ⇒   ⊢ (𝑅 ∈ Ring → 𝐺 ∈ Grp) | 
|   | 
| Theorem | unitabl 13673 | 
The group of units of a commutative ring is abelian.  (Contributed by
       Mario Carneiro, 19-Apr-2016.)
 | 
| ⊢ 𝑈 = (Unit‘𝑅)   
 &   ⊢ 𝐺 = ((mulGrp‘𝑅) ↾s 𝑈)    ⇒   ⊢ (𝑅 ∈ CRing → 𝐺 ∈ Abel) | 
|   | 
| Theorem | unitgrpid 13674 | 
The identity of the group of units of a ring is the ring unity.
       (Contributed by Mario Carneiro, 2-Dec-2014.)
 | 
| ⊢ 𝑈 = (Unit‘𝑅)   
 &   ⊢ 𝐺 = ((mulGrp‘𝑅) ↾s 𝑈)   
 &   ⊢  1 =
 (1r‘𝑅)    ⇒   ⊢ (𝑅 ∈ Ring → 1 =
 (0g‘𝐺)) | 
|   | 
| Theorem | unitsubm 13675 | 
The group of units is a submonoid of the multiplicative monoid of the
       ring.  (Contributed by Mario Carneiro, 18-Jun-2015.)
 | 
| ⊢ 𝑈 = (Unit‘𝑅)   
 &   ⊢ 𝑀 = (mulGrp‘𝑅)    ⇒   ⊢ (𝑅 ∈ Ring → 𝑈 ∈ (SubMnd‘𝑀)) | 
|   | 
| Syntax | cinvr 13676 | 
Extend class notation with multiplicative inverse.
 | 
| class invr | 
|   | 
| Definition | df-invr 13677 | 
Define multiplicative inverse.  (Contributed by NM, 21-Sep-2011.)
 | 
| ⊢ invr = (𝑟 ∈ V ↦
 (invg‘((mulGrp‘𝑟) ↾s (Unit‘𝑟)))) | 
|   | 
| Theorem | invrfvald 13678 | 
Multiplicative inverse function for a ring.  (Contributed by NM,
       21-Sep-2011.)  (Revised by Mario Carneiro, 25-Dec-2014.)
 | 
| ⊢ (𝜑 → 𝑈 = (Unit‘𝑅))    &   ⊢ (𝜑 → 𝐺 = ((mulGrp‘𝑅) ↾s 𝑈))    &   ⊢ (𝜑 → 𝐼 = (invr‘𝑅))    &   ⊢ (𝜑 → 𝑅 ∈ Ring)   
 ⇒   ⊢ (𝜑 → 𝐼 = (invg‘𝐺)) | 
|   | 
| Theorem | unitinvcl 13679 | 
The inverse of a unit exists and is a unit.  (Contributed by Mario
       Carneiro, 2-Dec-2014.)
 | 
| ⊢ 𝑈 = (Unit‘𝑅)   
 &   ⊢ 𝐼 = (invr‘𝑅)    ⇒   ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈) → (𝐼‘𝑋) ∈ 𝑈) | 
|   | 
| Theorem | unitinvinv 13680 | 
The inverse of the inverse of a unit is the same element.  (Contributed
       by Mario Carneiro, 4-Dec-2014.)
 | 
| ⊢ 𝑈 = (Unit‘𝑅)   
 &   ⊢ 𝐼 = (invr‘𝑅)    ⇒   ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈) → (𝐼‘(𝐼‘𝑋)) = 𝑋) | 
|   | 
| Theorem | ringinvcl 13681 | 
The inverse of a unit is an element of the ring.  (Contributed by
         Mario Carneiro, 2-Dec-2014.)
 | 
| ⊢ 𝑈 = (Unit‘𝑅)   
 &   ⊢ 𝐼 = (invr‘𝑅)   
 &   ⊢ 𝐵 = (Base‘𝑅)    ⇒   ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈) → (𝐼‘𝑋) ∈ 𝐵) | 
|   | 
| Theorem | unitlinv 13682 | 
A unit times its inverse is the ring unity.  (Contributed by Mario
       Carneiro, 2-Dec-2014.)
 | 
| ⊢ 𝑈 = (Unit‘𝑅)   
 &   ⊢ 𝐼 = (invr‘𝑅)   
 &   ⊢  · =
 (.r‘𝑅)   
 &   ⊢  1 =
 (1r‘𝑅)    ⇒   ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈) → ((𝐼‘𝑋) · 𝑋) = 1 ) | 
|   | 
| Theorem | unitrinv 13683 | 
A unit times its inverse is the ring unity.  (Contributed by Mario
       Carneiro, 2-Dec-2014.)
 | 
| ⊢ 𝑈 = (Unit‘𝑅)   
 &   ⊢ 𝐼 = (invr‘𝑅)   
 &   ⊢  · =
 (.r‘𝑅)   
 &   ⊢  1 =
 (1r‘𝑅)    ⇒   ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈) → (𝑋 · (𝐼‘𝑋)) = 1 ) | 
|   | 
| Theorem | 1rinv 13684 | 
The inverse of the ring unity is the ring unity.  (Contributed by Mario
       Carneiro, 18-Jun-2015.)
 | 
| ⊢ 𝐼 = (invr‘𝑅)   
 &   ⊢  1 =
 (1r‘𝑅)    ⇒   ⊢ (𝑅 ∈ Ring → (𝐼‘ 1 ) = 1 ) | 
|   | 
| Theorem | 0unit 13685 | 
The additive identity is a unit if and only if 1 = 0,
i.e. we are
       in the zero ring.  (Contributed by Mario Carneiro, 4-Dec-2014.)
 | 
| ⊢ 𝑈 = (Unit‘𝑅)   
 &   ⊢  0 =
 (0g‘𝑅)   
 &   ⊢  1 =
 (1r‘𝑅)    ⇒   ⊢ (𝑅 ∈ Ring → ( 0 ∈ 𝑈 ↔ 1 = 0 )) | 
|   | 
| Theorem | unitnegcl 13686 | 
The negative of a unit is a unit.  (Contributed by Mario Carneiro,
       4-Dec-2014.)
 | 
| ⊢ 𝑈 = (Unit‘𝑅)   
 &   ⊢ 𝑁 = (invg‘𝑅)    ⇒   ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈) → (𝑁‘𝑋) ∈ 𝑈) | 
|   | 
| Syntax | cdvr 13687 | 
Extend class notation with ring division.
 | 
| class /r | 
|   | 
| Definition | df-dvr 13688* | 
Define ring division.  (Contributed by Mario Carneiro, 2-Jul-2014.)
 | 
| ⊢ /r = (𝑟 ∈ V ↦ (𝑥 ∈ (Base‘𝑟), 𝑦 ∈ (Unit‘𝑟) ↦ (𝑥(.r‘𝑟)((invr‘𝑟)‘𝑦)))) | 
|   | 
| Theorem | dvrfvald 13689* | 
Division operation in a ring.  (Contributed by Mario Carneiro,
       2-Jul-2014.)  (Revised by Mario Carneiro, 2-Dec-2014.)  (Proof shortened
       by AV, 2-Mar-2024.)
 | 
| ⊢ (𝜑 → 𝐵 = (Base‘𝑅))    &   ⊢ (𝜑 → · =
 (.r‘𝑅))    &   ⊢ (𝜑 → 𝑈 = (Unit‘𝑅))    &   ⊢ (𝜑 → 𝐼 = (invr‘𝑅))    &   ⊢ (𝜑 → / =
 (/r‘𝑅))    &   ⊢ (𝜑 → 𝑅 ∈ SRing)   
 ⇒   ⊢ (𝜑 → / = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝑈 ↦ (𝑥 · (𝐼‘𝑦)))) | 
|   | 
| Theorem | dvrvald 13690 | 
Division operation in a ring.  (Contributed by Mario Carneiro,
       2-Jul-2014.)  (Revised by Mario Carneiro, 2-Dec-2014.)
 | 
| ⊢ (𝜑 → 𝐵 = (Base‘𝑅))    &   ⊢ (𝜑 → · =
 (.r‘𝑅))    &   ⊢ (𝜑 → 𝑈 = (Unit‘𝑅))    &   ⊢ (𝜑 → 𝐼 = (invr‘𝑅))    &   ⊢ (𝜑 → / =
 (/r‘𝑅))    &   ⊢ (𝜑 → 𝑅 ∈ Ring)    &   ⊢ (𝜑 → 𝑋 ∈ 𝐵)   
 &   ⊢ (𝜑 → 𝑌 ∈ 𝑈)    ⇒   ⊢ (𝜑 → (𝑋 / 𝑌) = (𝑋 · (𝐼‘𝑌))) | 
|   | 
| Theorem | dvrcl 13691 | 
Closure of division operation.  (Contributed by Mario Carneiro,
       2-Jul-2014.)
 | 
| ⊢ 𝐵 = (Base‘𝑅)   
 &   ⊢ 𝑈 = (Unit‘𝑅)   
 &   ⊢  / =
 (/r‘𝑅)    ⇒   ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈) → (𝑋 / 𝑌) ∈ 𝐵) | 
|   | 
| Theorem | unitdvcl 13692 | 
The units are closed under division.  (Contributed by Mario Carneiro,
       2-Jul-2014.)
 | 
| ⊢ 𝑈 = (Unit‘𝑅)   
 &   ⊢  / =
 (/r‘𝑅)    ⇒   ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈 ∧ 𝑌 ∈ 𝑈) → (𝑋 / 𝑌) ∈ 𝑈) | 
|   | 
| Theorem | dvrid 13693 | 
A ring element divided by itself is the ring unity.  (dividap 8728
       analog.)  (Contributed by Mario Carneiro, 18-Jun-2015.)
 | 
| ⊢ 𝑈 = (Unit‘𝑅)   
 &   ⊢  / =
 (/r‘𝑅)   
 &   ⊢  1 =
 (1r‘𝑅)    ⇒   ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝑈) → (𝑋 / 𝑋) = 1 ) | 
|   | 
| Theorem | dvr1 13694 | 
A ring element divided by the ring unity is itself.  (div1 8730
analog.)
       (Contributed by Mario Carneiro, 18-Jun-2015.)
 | 
| ⊢ 𝐵 = (Base‘𝑅)   
 &   ⊢  / =
 (/r‘𝑅)   
 &   ⊢  1 =
 (1r‘𝑅)    ⇒   ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → (𝑋 / 1 ) = 𝑋) | 
|   | 
| Theorem | dvrass 13695 | 
An associative law for division.  (divassap 8717 analog.)  (Contributed by
       Mario Carneiro, 4-Dec-2014.)
 | 
| ⊢ 𝐵 = (Base‘𝑅)   
 &   ⊢ 𝑈 = (Unit‘𝑅)   
 &   ⊢  / =
 (/r‘𝑅)   
 &   ⊢  · =
 (.r‘𝑅)    ⇒   ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝑈)) → ((𝑋 · 𝑌) / 𝑍) = (𝑋 · (𝑌 / 𝑍))) | 
|   | 
| Theorem | dvrcan1 13696 | 
A cancellation law for division.  (divcanap1 8708 analog.)  (Contributed
       by Mario Carneiro, 2-Jul-2014.)  (Revised by Mario Carneiro,
       2-Dec-2014.)
 | 
| ⊢ 𝐵 = (Base‘𝑅)   
 &   ⊢ 𝑈 = (Unit‘𝑅)   
 &   ⊢  / =
 (/r‘𝑅)   
 &   ⊢  · =
 (.r‘𝑅)    ⇒   ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈) → ((𝑋 / 𝑌) · 𝑌) = 𝑋) | 
|   | 
| Theorem | dvrcan3 13697 | 
A cancellation law for division.  (divcanap3 8725 analog.)  (Contributed
       by Mario Carneiro, 2-Jul-2014.)  (Revised by Mario Carneiro,
       18-Jun-2015.)
 | 
| ⊢ 𝐵 = (Base‘𝑅)   
 &   ⊢ 𝑈 = (Unit‘𝑅)   
 &   ⊢  / =
 (/r‘𝑅)   
 &   ⊢  · =
 (.r‘𝑅)    ⇒   ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈) → ((𝑋 · 𝑌) / 𝑌) = 𝑋) | 
|   | 
| Theorem | dvreq1 13698 | 
Equality in terms of ratio equal to ring unity.  (diveqap1 8732 analog.)
       (Contributed by Mario Carneiro, 28-Apr-2016.)
 | 
| ⊢ 𝐵 = (Base‘𝑅)   
 &   ⊢ 𝑈 = (Unit‘𝑅)   
 &   ⊢  / =
 (/r‘𝑅)   
 &   ⊢  1 =
 (1r‘𝑅)    ⇒   ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈) → ((𝑋 / 𝑌) = 1 ↔ 𝑋 = 𝑌)) | 
|   | 
| Theorem | dvrdir 13699 | 
Distributive law for the division operation of a ring.  (Contributed by
       Thierry Arnoux, 30-Oct-2017.)
 | 
| ⊢ 𝐵 = (Base‘𝑅)   
 &   ⊢ 𝑈 = (Unit‘𝑅)   
 &   ⊢  + =
 (+g‘𝑅)   
 &   ⊢  / =
 (/r‘𝑅)    ⇒   ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝑈)) → ((𝑋 + 𝑌) / 𝑍) = ((𝑋 / 𝑍) + (𝑌 / 𝑍))) | 
|   | 
| Theorem | rdivmuldivd 13700 | 
Multiplication of two ratios.  Theorem I.14 of [Apostol] p. 18.
       (Contributed by Thierry Arnoux, 30-Oct-2017.)
 | 
| ⊢ 𝐵 = (Base‘𝑅)   
 &   ⊢ 𝑈 = (Unit‘𝑅)   
 &   ⊢  + =
 (+g‘𝑅)   
 &   ⊢  / =
 (/r‘𝑅)   
 &   ⊢  · =
 (.r‘𝑅)   
 &   ⊢ (𝜑 → 𝑅 ∈ CRing)    &   ⊢ (𝜑 → 𝑋 ∈ 𝐵)   
 &   ⊢ (𝜑 → 𝑌 ∈ 𝑈)   
 &   ⊢ (𝜑 → 𝑍 ∈ 𝐵)   
 &   ⊢ (𝜑 → 𝑊 ∈ 𝑈)    ⇒   ⊢ (𝜑 → ((𝑋 / 𝑌) · (𝑍 / 𝑊)) = ((𝑋 · 𝑍) / (𝑌 · 𝑊))) |