HomeHome Intuitionistic Logic Explorer
Theorem List (p. 137 of 159)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 13601-13700   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremsrgmnd 13601 A semiring is a monoid. (Contributed by Thierry Arnoux, 21-Mar-2018.)
(𝑅 ∈ SRing → 𝑅 ∈ Mnd)
 
Theoremsrgmgp 13602 A semiring is a monoid under multiplication. (Contributed by Thierry Arnoux, 21-Mar-2018.)
𝐺 = (mulGrp‘𝑅)       (𝑅 ∈ SRing → 𝐺 ∈ Mnd)
 
Theoremsrgdilem 13603 Lemma for srgdi 13608 and srgdir 13609. (Contributed by NM, 26-Aug-2011.) (Revised by Mario Carneiro, 6-Jan-2015.) (Revised by Thierry Arnoux, 1-Apr-2018.)
𝐵 = (Base‘𝑅)    &    + = (+g𝑅)    &    · = (.r𝑅)       ((𝑅 ∈ SRing ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 · (𝑌 + 𝑍)) = ((𝑋 · 𝑌) + (𝑋 · 𝑍)) ∧ ((𝑋 + 𝑌) · 𝑍) = ((𝑋 · 𝑍) + (𝑌 · 𝑍))))
 
Theoremsrgcl 13604 Closure of the multiplication operation of a semiring. (Contributed by NM, 26-Aug-2011.) (Revised by Mario Carneiro, 6-Jan-2015.) (Revised by Thierry Arnoux, 1-Apr-2018.)
𝐵 = (Base‘𝑅)    &    · = (.r𝑅)       ((𝑅 ∈ SRing ∧ 𝑋𝐵𝑌𝐵) → (𝑋 · 𝑌) ∈ 𝐵)
 
Theoremsrgass 13605 Associative law for the multiplication operation of a semiring. (Contributed by NM, 27-Aug-2011.) (Revised by Mario Carneiro, 6-Jan-2015.) (Revised by Thierry Arnoux, 1-Apr-2018.)
𝐵 = (Base‘𝑅)    &    · = (.r𝑅)       ((𝑅 ∈ SRing ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 · 𝑌) · 𝑍) = (𝑋 · (𝑌 · 𝑍)))
 
Theoremsrgideu 13606* The unity element of a semiring is unique. (Contributed by NM, 27-Aug-2011.) (Revised by Mario Carneiro, 6-Jan-2015.) (Revised by Thierry Arnoux, 1-Apr-2018.)
𝐵 = (Base‘𝑅)    &    · = (.r𝑅)       (𝑅 ∈ SRing → ∃!𝑢𝐵𝑥𝐵 ((𝑢 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑢) = 𝑥))
 
Theoremsrgfcl 13607 Functionality of the multiplication operation of a ring. (Contributed by Steve Rodriguez, 9-Sep-2007.) (Revised by AV, 24-Aug-2021.)
𝐵 = (Base‘𝑅)    &    · = (.r𝑅)       ((𝑅 ∈ SRing ∧ · Fn (𝐵 × 𝐵)) → · :(𝐵 × 𝐵)⟶𝐵)
 
Theoremsrgdi 13608 Distributive law for the multiplication operation of a semiring. (Contributed by Steve Rodriguez, 9-Sep-2007.) (Revised by Thierry Arnoux, 1-Apr-2018.)
𝐵 = (Base‘𝑅)    &    + = (+g𝑅)    &    · = (.r𝑅)       ((𝑅 ∈ SRing ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 · (𝑌 + 𝑍)) = ((𝑋 · 𝑌) + (𝑋 · 𝑍)))
 
Theoremsrgdir 13609 Distributive law for the multiplication operation of a semiring. (Contributed by Steve Rodriguez, 9-Sep-2007.) (Revised by Thierry Arnoux, 1-Apr-2018.)
𝐵 = (Base‘𝑅)    &    + = (+g𝑅)    &    · = (.r𝑅)       ((𝑅 ∈ SRing ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 + 𝑌) · 𝑍) = ((𝑋 · 𝑍) + (𝑌 · 𝑍)))
 
Theoremsrgidcl 13610 The unity element of a semiring belongs to the base set of the semiring. (Contributed by NM, 27-Aug-2011.) (Revised by Mario Carneiro, 27-Dec-2014.) (Revised by Thierry Arnoux, 1-Apr-2018.)
𝐵 = (Base‘𝑅)    &    1 = (1r𝑅)       (𝑅 ∈ SRing → 1𝐵)
 
Theoremsrg0cl 13611 The zero element of a semiring belongs to its base set. (Contributed by Mario Carneiro, 12-Jan-2014.) (Revised by Thierry Arnoux, 1-Apr-2018.)
𝐵 = (Base‘𝑅)    &    0 = (0g𝑅)       (𝑅 ∈ SRing → 0𝐵)
 
Theoremsrgidmlem 13612 Lemma for srglidm 13613 and srgridm 13614. (Contributed by NM, 15-Sep-2011.) (Revised by Mario Carneiro, 27-Dec-2014.) (Revised by Thierry Arnoux, 1-Apr-2018.)
𝐵 = (Base‘𝑅)    &    · = (.r𝑅)    &    1 = (1r𝑅)       ((𝑅 ∈ SRing ∧ 𝑋𝐵) → (( 1 · 𝑋) = 𝑋 ∧ (𝑋 · 1 ) = 𝑋))
 
Theoremsrglidm 13613 The unity element of a semiring is a left multiplicative identity. (Contributed by NM, 15-Sep-2011.) (Revised by Thierry Arnoux, 1-Apr-2018.)
𝐵 = (Base‘𝑅)    &    · = (.r𝑅)    &    1 = (1r𝑅)       ((𝑅 ∈ SRing ∧ 𝑋𝐵) → ( 1 · 𝑋) = 𝑋)
 
Theoremsrgridm 13614 The unity element of a semiring is a right multiplicative identity. (Contributed by NM, 15-Sep-2011.) (Revised by Thierry Arnoux, 1-Apr-2018.)
𝐵 = (Base‘𝑅)    &    · = (.r𝑅)    &    1 = (1r𝑅)       ((𝑅 ∈ SRing ∧ 𝑋𝐵) → (𝑋 · 1 ) = 𝑋)
 
Theoremissrgid 13615* Properties showing that an element 𝐼 is the unity element of a semiring. (Contributed by NM, 7-Aug-2013.) (Revised by Thierry Arnoux, 1-Apr-2018.)
𝐵 = (Base‘𝑅)    &    · = (.r𝑅)    &    1 = (1r𝑅)       (𝑅 ∈ SRing → ((𝐼𝐵 ∧ ∀𝑥𝐵 ((𝐼 · 𝑥) = 𝑥 ∧ (𝑥 · 𝐼) = 𝑥)) ↔ 1 = 𝐼))
 
Theoremsrgacl 13616 Closure of the addition operation of a semiring. (Contributed by Mario Carneiro, 14-Jan-2014.) (Revised by Thierry Arnoux, 1-Apr-2018.)
𝐵 = (Base‘𝑅)    &    + = (+g𝑅)       ((𝑅 ∈ SRing ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + 𝑌) ∈ 𝐵)
 
Theoremsrgcom 13617 Commutativity of the additive group of a semiring. (Contributed by Thierry Arnoux, 1-Apr-2018.)
𝐵 = (Base‘𝑅)    &    + = (+g𝑅)       ((𝑅 ∈ SRing ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + 𝑌) = (𝑌 + 𝑋))
 
Theoremsrgrz 13618 The zero of a semiring is a right-absorbing element. (Contributed by Thierry Arnoux, 1-Apr-2018.)
𝐵 = (Base‘𝑅)    &    · = (.r𝑅)    &    0 = (0g𝑅)       ((𝑅 ∈ SRing ∧ 𝑋𝐵) → (𝑋 · 0 ) = 0 )
 
Theoremsrglz 13619 The zero of a semiring is a left-absorbing element. (Contributed by AV, 23-Aug-2019.)
𝐵 = (Base‘𝑅)    &    · = (.r𝑅)    &    0 = (0g𝑅)       ((𝑅 ∈ SRing ∧ 𝑋𝐵) → ( 0 · 𝑋) = 0 )
 
Theoremsrgisid 13620* In a semiring, the only left-absorbing element is the additive identity. Remark in [Golan] p. 1. (Contributed by Thierry Arnoux, 1-May-2018.)
𝐵 = (Base‘𝑅)    &    · = (.r𝑅)    &    0 = (0g𝑅)    &   (𝜑𝑅 ∈ SRing)    &   (𝜑𝑍𝐵)    &   ((𝜑𝑥𝐵) → (𝑍 · 𝑥) = 𝑍)       (𝜑𝑍 = 0 )
 
Theoremsrg1zr 13621 The only semiring with a base set consisting of one element is the zero ring (at least if its operations are internal binary operations). (Contributed by FL, 13-Feb-2010.) (Revised by AV, 25-Jan-2020.)
𝐵 = (Base‘𝑅)    &    + = (+g𝑅)    &    = (.r𝑅)       (((𝑅 ∈ SRing ∧ + Fn (𝐵 × 𝐵) ∧ Fn (𝐵 × 𝐵)) ∧ 𝑍𝐵) → (𝐵 = {𝑍} ↔ ( + = {⟨⟨𝑍, 𝑍⟩, 𝑍⟩} ∧ = {⟨⟨𝑍, 𝑍⟩, 𝑍⟩})))
 
Theoremsrgen1zr 13622 The only semiring with one element is the zero ring (at least if its operations are internal binary operations). (Contributed by FL, 14-Feb-2010.) (Revised by AV, 25-Jan-2020.)
𝐵 = (Base‘𝑅)    &    + = (+g𝑅)    &    = (.r𝑅)    &   𝑍 = (0g𝑅)       ((𝑅 ∈ SRing ∧ + Fn (𝐵 × 𝐵) ∧ Fn (𝐵 × 𝐵)) → (𝐵 ≈ 1o ↔ ( + = {⟨⟨𝑍, 𝑍⟩, 𝑍⟩} ∧ = {⟨⟨𝑍, 𝑍⟩, 𝑍⟩})))
 
Theoremsrgmulgass 13623 An associative property between group multiple and ring multiplication for semirings. (Contributed by AV, 23-Aug-2019.)
𝐵 = (Base‘𝑅)    &    · = (.g𝑅)    &    × = (.r𝑅)       ((𝑅 ∈ SRing ∧ (𝑁 ∈ ℕ0𝑋𝐵𝑌𝐵)) → ((𝑁 · 𝑋) × 𝑌) = (𝑁 · (𝑋 × 𝑌)))
 
Theoremsrgpcomp 13624 If two elements of a semiring commute, they also commute if one of the elements is raised to a higher power. (Contributed by AV, 23-Aug-2019.)
𝑆 = (Base‘𝑅)    &    × = (.r𝑅)    &   𝐺 = (mulGrp‘𝑅)    &    = (.g𝐺)    &   (𝜑𝑅 ∈ SRing)    &   (𝜑𝐴𝑆)    &   (𝜑𝐵𝑆)    &   (𝜑𝐾 ∈ ℕ0)    &   (𝜑 → (𝐴 × 𝐵) = (𝐵 × 𝐴))       (𝜑 → ((𝐾 𝐵) × 𝐴) = (𝐴 × (𝐾 𝐵)))
 
Theoremsrgpcompp 13625 If two elements of a semiring commute, they also commute if the elements are raised to a higher power. (Contributed by AV, 23-Aug-2019.)
𝑆 = (Base‘𝑅)    &    × = (.r𝑅)    &   𝐺 = (mulGrp‘𝑅)    &    = (.g𝐺)    &   (𝜑𝑅 ∈ SRing)    &   (𝜑𝐴𝑆)    &   (𝜑𝐵𝑆)    &   (𝜑𝐾 ∈ ℕ0)    &   (𝜑 → (𝐴 × 𝐵) = (𝐵 × 𝐴))    &   (𝜑𝑁 ∈ ℕ0)       (𝜑 → (((𝑁 𝐴) × (𝐾 𝐵)) × 𝐴) = (((𝑁 + 1) 𝐴) × (𝐾 𝐵)))
 
Theoremsrgpcomppsc 13626 If two elements of a semiring commute, they also commute if the elements are raised to a higher power and a scalar multiplication is involved. (Contributed by AV, 23-Aug-2019.)
𝑆 = (Base‘𝑅)    &    × = (.r𝑅)    &   𝐺 = (mulGrp‘𝑅)    &    = (.g𝐺)    &   (𝜑𝑅 ∈ SRing)    &   (𝜑𝐴𝑆)    &   (𝜑𝐵𝑆)    &   (𝜑𝐾 ∈ ℕ0)    &   (𝜑 → (𝐴 × 𝐵) = (𝐵 × 𝐴))    &   (𝜑𝑁 ∈ ℕ0)    &    · = (.g𝑅)    &   (𝜑𝐶 ∈ ℕ0)       (𝜑 → ((𝐶 · ((𝑁 𝐴) × (𝐾 𝐵))) × 𝐴) = (𝐶 · (((𝑁 + 1) 𝐴) × (𝐾 𝐵))))
 
Theoremsrglmhm 13627* Left-multiplication in a semiring by a fixed element of the ring is a monoid homomorphism. (Contributed by AV, 23-Aug-2019.)
𝐵 = (Base‘𝑅)    &    · = (.r𝑅)       ((𝑅 ∈ SRing ∧ 𝑋𝐵) → (𝑥𝐵 ↦ (𝑋 · 𝑥)) ∈ (𝑅 MndHom 𝑅))
 
Theoremsrgrmhm 13628* Right-multiplication in a semiring by a fixed element of the ring is a monoid homomorphism. (Contributed by AV, 23-Aug-2019.)
𝐵 = (Base‘𝑅)    &    · = (.r𝑅)       ((𝑅 ∈ SRing ∧ 𝑋𝐵) → (𝑥𝐵 ↦ (𝑥 · 𝑋)) ∈ (𝑅 MndHom 𝑅))
 
Theoremsrg1expzeq1 13629 The exponentiation (by a nonnegative integer) of the multiplicative identity of a semiring, analogous to mulgnn0z 13357. (Contributed by AV, 25-Nov-2019.)
𝐺 = (mulGrp‘𝑅)    &    · = (.g𝐺)    &    1 = (1r𝑅)       ((𝑅 ∈ SRing ∧ 𝑁 ∈ ℕ0) → (𝑁 · 1 ) = 1 )
 
7.3.5  Definition and basic properties of unital rings
 
Syntaxcrg 13630 Extend class notation with class of all (unital) rings.
class Ring
 
Syntaxccrg 13631 Extend class notation with class of all (unital) commutative rings.
class CRing
 
Definitiondf-ring 13632* Define class of all (unital) rings. A unital ring is a set equipped with two everywhere-defined internal operations, whose first one is an additive group structure and the second one is a multiplicative monoid structure, and where the addition is left- and right-distributive for the multiplication. Definition 1 in [BourbakiAlg1] p. 92 or definition of a ring with identity in part Preliminaries of [Roman] p. 19. So that the additive structure must be abelian (see ringcom 13665), care must be taken that in the case of a non-unital ring, the commutativity of addition must be postulated and cannot be proved from the other conditions. (Contributed by NM, 18-Oct-2012.) (Revised by Mario Carneiro, 27-Dec-2014.)
Ring = {𝑓 ∈ Grp ∣ ((mulGrp‘𝑓) ∈ Mnd ∧ [(Base‘𝑓) / 𝑟][(+g𝑓) / 𝑝][(.r𝑓) / 𝑡]𝑥𝑟𝑦𝑟𝑧𝑟 ((𝑥𝑡(𝑦𝑝𝑧)) = ((𝑥𝑡𝑦)𝑝(𝑥𝑡𝑧)) ∧ ((𝑥𝑝𝑦)𝑡𝑧) = ((𝑥𝑡𝑧)𝑝(𝑦𝑡𝑧))))}
 
Definitiondf-cring 13633 Define class of all commutative rings. (Contributed by Mario Carneiro, 7-Jan-2015.)
CRing = {𝑓 ∈ Ring ∣ (mulGrp‘𝑓) ∈ CMnd}
 
Theoremisring 13634* The predicate "is a (unital) ring". Definition of "ring with unit" in [Schechter] p. 187. (Contributed by NM, 18-Oct-2012.) (Revised by Mario Carneiro, 6-Jan-2015.)
𝐵 = (Base‘𝑅)    &   𝐺 = (mulGrp‘𝑅)    &    + = (+g𝑅)    &    · = (.r𝑅)       (𝑅 ∈ Ring ↔ (𝑅 ∈ Grp ∧ 𝐺 ∈ Mnd ∧ ∀𝑥𝐵𝑦𝐵𝑧𝐵 ((𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)) ∧ ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧)))))
 
Theoremringgrp 13635 A ring is a group. (Contributed by NM, 15-Sep-2011.)
(𝑅 ∈ Ring → 𝑅 ∈ Grp)
 
Theoremringmgp 13636 A ring is a monoid under multiplication. (Contributed by Mario Carneiro, 6-Jan-2015.)
𝐺 = (mulGrp‘𝑅)       (𝑅 ∈ Ring → 𝐺 ∈ Mnd)
 
Theoremiscrng 13637 A commutative ring is a ring whose multiplication is a commutative monoid. (Contributed by Mario Carneiro, 7-Jan-2015.)
𝐺 = (mulGrp‘𝑅)       (𝑅 ∈ CRing ↔ (𝑅 ∈ Ring ∧ 𝐺 ∈ CMnd))
 
Theoremcrngmgp 13638 A commutative ring's multiplication operation is commutative. (Contributed by Mario Carneiro, 7-Jan-2015.)
𝐺 = (mulGrp‘𝑅)       (𝑅 ∈ CRing → 𝐺 ∈ CMnd)
 
Theoremringgrpd 13639 A ring is a group. (Contributed by SN, 16-May-2024.)
(𝜑𝑅 ∈ Ring)       (𝜑𝑅 ∈ Grp)
 
Theoremringmnd 13640 A ring is a monoid under addition. (Contributed by Mario Carneiro, 7-Jan-2015.)
(𝑅 ∈ Ring → 𝑅 ∈ Mnd)
 
Theoremringmgm 13641 A ring is a magma. (Contributed by AV, 31-Jan-2020.)
(𝑅 ∈ Ring → 𝑅 ∈ Mgm)
 
Theoremcrngring 13642 A commutative ring is a ring. (Contributed by Mario Carneiro, 7-Jan-2015.)
(𝑅 ∈ CRing → 𝑅 ∈ Ring)
 
Theoremcrngringd 13643 A commutative ring is a ring. (Contributed by SN, 16-May-2024.)
(𝜑𝑅 ∈ CRing)       (𝜑𝑅 ∈ Ring)
 
Theoremcrnggrpd 13644 A commutative ring is a group. (Contributed by SN, 16-May-2024.)
(𝜑𝑅 ∈ CRing)       (𝜑𝑅 ∈ Grp)
 
Theoremmgpf 13645 Restricted functionality of the multiplicative group on rings. (Contributed by Mario Carneiro, 11-Mar-2015.)
(mulGrp ↾ Ring):Ring⟶Mnd
 
Theoremringdilem 13646 Properties of a unital ring. (Contributed by NM, 26-Aug-2011.) (Revised by Mario Carneiro, 6-Jan-2015.)
𝐵 = (Base‘𝑅)    &    + = (+g𝑅)    &    · = (.r𝑅)       ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 · (𝑌 + 𝑍)) = ((𝑋 · 𝑌) + (𝑋 · 𝑍)) ∧ ((𝑋 + 𝑌) · 𝑍) = ((𝑋 · 𝑍) + (𝑌 · 𝑍))))
 
Theoremringcl 13647 Closure of the multiplication operation of a ring. (Contributed by NM, 26-Aug-2011.) (Revised by Mario Carneiro, 6-Jan-2015.)
𝐵 = (Base‘𝑅)    &    · = (.r𝑅)       ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → (𝑋 · 𝑌) ∈ 𝐵)
 
Theoremcrngcom 13648 A commutative ring's multiplication operation is commutative. (Contributed by Mario Carneiro, 7-Jan-2015.)
𝐵 = (Base‘𝑅)    &    · = (.r𝑅)       ((𝑅 ∈ CRing ∧ 𝑋𝐵𝑌𝐵) → (𝑋 · 𝑌) = (𝑌 · 𝑋))
 
Theoremiscrng2 13649* A commutative ring is a ring whose multiplication is a commutative monoid. (Contributed by Mario Carneiro, 15-Jun-2015.)
𝐵 = (Base‘𝑅)    &    · = (.r𝑅)       (𝑅 ∈ CRing ↔ (𝑅 ∈ Ring ∧ ∀𝑥𝐵𝑦𝐵 (𝑥 · 𝑦) = (𝑦 · 𝑥)))
 
Theoremringass 13650 Associative law for multiplication in a ring. (Contributed by NM, 27-Aug-2011.) (Revised by Mario Carneiro, 6-Jan-2015.)
𝐵 = (Base‘𝑅)    &    · = (.r𝑅)       ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 · 𝑌) · 𝑍) = (𝑋 · (𝑌 · 𝑍)))
 
Theoremringideu 13651* The unity element of a ring is unique. (Contributed by NM, 27-Aug-2011.) (Revised by Mario Carneiro, 6-Jan-2015.)
𝐵 = (Base‘𝑅)    &    · = (.r𝑅)       (𝑅 ∈ Ring → ∃!𝑢𝐵𝑥𝐵 ((𝑢 · 𝑥) = 𝑥 ∧ (𝑥 · 𝑢) = 𝑥))
 
Theoremringdi 13652 Distributive law for the multiplication operation of a ring (left-distributivity). (Contributed by Steve Rodriguez, 9-Sep-2007.)
𝐵 = (Base‘𝑅)    &    + = (+g𝑅)    &    · = (.r𝑅)       ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → (𝑋 · (𝑌 + 𝑍)) = ((𝑋 · 𝑌) + (𝑋 · 𝑍)))
 
Theoremringdir 13653 Distributive law for the multiplication operation of a ring (right-distributivity). (Contributed by Steve Rodriguez, 9-Sep-2007.)
𝐵 = (Base‘𝑅)    &    + = (+g𝑅)    &    · = (.r𝑅)       ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 + 𝑌) · 𝑍) = ((𝑋 · 𝑍) + (𝑌 · 𝑍)))
 
Theoremringidcl 13654 The unity element of a ring belongs to the base set of the ring. (Contributed by NM, 27-Aug-2011.) (Revised by Mario Carneiro, 27-Dec-2014.)
𝐵 = (Base‘𝑅)    &    1 = (1r𝑅)       (𝑅 ∈ Ring → 1𝐵)
 
Theoremring0cl 13655 The zero element of a ring belongs to its base set. (Contributed by Mario Carneiro, 12-Jan-2014.)
𝐵 = (Base‘𝑅)    &    0 = (0g𝑅)       (𝑅 ∈ Ring → 0𝐵)
 
Theoremringidmlem 13656 Lemma for ringlidm 13657 and ringridm 13658. (Contributed by NM, 15-Sep-2011.) (Revised by Mario Carneiro, 27-Dec-2014.)
𝐵 = (Base‘𝑅)    &    · = (.r𝑅)    &    1 = (1r𝑅)       ((𝑅 ∈ Ring ∧ 𝑋𝐵) → (( 1 · 𝑋) = 𝑋 ∧ (𝑋 · 1 ) = 𝑋))
 
Theoremringlidm 13657 The unity element of a ring is a left multiplicative identity. (Contributed by NM, 15-Sep-2011.)
𝐵 = (Base‘𝑅)    &    · = (.r𝑅)    &    1 = (1r𝑅)       ((𝑅 ∈ Ring ∧ 𝑋𝐵) → ( 1 · 𝑋) = 𝑋)
 
Theoremringridm 13658 The unity element of a ring is a right multiplicative identity. (Contributed by NM, 15-Sep-2011.)
𝐵 = (Base‘𝑅)    &    · = (.r𝑅)    &    1 = (1r𝑅)       ((𝑅 ∈ Ring ∧ 𝑋𝐵) → (𝑋 · 1 ) = 𝑋)
 
Theoremisringid 13659* Properties showing that an element 𝐼 is the unity element of a ring. (Contributed by NM, 7-Aug-2013.)
𝐵 = (Base‘𝑅)    &    · = (.r𝑅)    &    1 = (1r𝑅)       (𝑅 ∈ Ring → ((𝐼𝐵 ∧ ∀𝑥𝐵 ((𝐼 · 𝑥) = 𝑥 ∧ (𝑥 · 𝐼) = 𝑥)) ↔ 1 = 𝐼))
 
Theoremringid 13660* The multiplication operation of a unital ring has (one or more) identity elements. (Contributed by Steve Rodriguez, 9-Sep-2007.) (Revised by Mario Carneiro, 22-Dec-2013.) (Revised by AV, 24-Aug-2021.)
𝐵 = (Base‘𝑅)    &    · = (.r𝑅)       ((𝑅 ∈ Ring ∧ 𝑋𝐵) → ∃𝑢𝐵 ((𝑢 · 𝑋) = 𝑋 ∧ (𝑋 · 𝑢) = 𝑋))
 
Theoremringadd2 13661* A ring element plus itself is two times the element. (Contributed by Steve Rodriguez, 9-Sep-2007.) (Revised by Mario Carneiro, 22-Dec-2013.) (Revised by AV, 24-Aug-2021.)
𝐵 = (Base‘𝑅)    &    + = (+g𝑅)    &    · = (.r𝑅)       ((𝑅 ∈ Ring ∧ 𝑋𝐵) → ∃𝑥𝐵 (𝑋 + 𝑋) = ((𝑥 + 𝑥) · 𝑋))
 
Theoremringo2times 13662 A ring element plus itself is two times the element. "Two" in an arbitrary unital ring is the sum of the unity element with itself. (Contributed by AV, 24-Aug-2021.)
𝐵 = (Base‘𝑅)    &    + = (+g𝑅)    &    · = (.r𝑅)    &    1 = (1r𝑅)       ((𝑅 ∈ Ring ∧ 𝐴𝐵) → (𝐴 + 𝐴) = (( 1 + 1 ) · 𝐴))
 
Theoremringidss 13663 A subset of the multiplicative group has the multiplicative identity as its identity if the identity is in the subset. (Contributed by Mario Carneiro, 27-Dec-2014.) (Revised by Mario Carneiro, 30-Apr-2015.)
𝑀 = ((mulGrp‘𝑅) ↾s 𝐴)    &   𝐵 = (Base‘𝑅)    &    1 = (1r𝑅)       ((𝑅 ∈ Ring ∧ 𝐴𝐵1𝐴) → 1 = (0g𝑀))
 
Theoremringacl 13664 Closure of the addition operation of a ring. (Contributed by Mario Carneiro, 14-Jan-2014.)
𝐵 = (Base‘𝑅)    &    + = (+g𝑅)       ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + 𝑌) ∈ 𝐵)
 
Theoremringcom 13665 Commutativity of the additive group of a ring. (Contributed by Gérard Lang, 4-Dec-2014.)
𝐵 = (Base‘𝑅)    &    + = (+g𝑅)       ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + 𝑌) = (𝑌 + 𝑋))
 
Theoremringabl 13666 A ring is an Abelian group. (Contributed by NM, 26-Aug-2011.)
(𝑅 ∈ Ring → 𝑅 ∈ Abel)
 
Theoremringcmn 13667 A ring is a commutative monoid. (Contributed by Mario Carneiro, 7-Jan-2015.)
(𝑅 ∈ Ring → 𝑅 ∈ CMnd)
 
Theoremringabld 13668 A ring is an Abelian group. (Contributed by SN, 1-Jun-2024.)
(𝜑𝑅 ∈ Ring)       (𝜑𝑅 ∈ Abel)
 
Theoremringcmnd 13669 A ring is a commutative monoid. (Contributed by SN, 1-Jun-2024.)
(𝜑𝑅 ∈ Ring)       (𝜑𝑅 ∈ CMnd)
 
Theoremringrng 13670 A unital ring is a non-unital ring. (Contributed by AV, 6-Jan-2020.)
(𝑅 ∈ Ring → 𝑅 ∈ Rng)
 
Theoremringssrng 13671 The unital rings are non-unital rings. (Contributed by AV, 20-Mar-2020.)
Ring ⊆ Rng
 
Theoremringpropd 13672* If two structures have the same group components (properties), one is a ring iff the other one is. (Contributed by Mario Carneiro, 6-Dec-2014.) (Revised by Mario Carneiro, 6-Jan-2015.)
(𝜑𝐵 = (Base‘𝐾))    &   (𝜑𝐵 = (Base‘𝐿))    &   ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))    &   ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦))       (𝜑 → (𝐾 ∈ Ring ↔ 𝐿 ∈ Ring))
 
Theoremcrngpropd 13673* If two structures have the same group components (properties), one is a commutative ring iff the other one is. (Contributed by Mario Carneiro, 8-Feb-2015.)
(𝜑𝐵 = (Base‘𝐾))    &   (𝜑𝐵 = (Base‘𝐿))    &   ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))    &   ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦))       (𝜑 → (𝐾 ∈ CRing ↔ 𝐿 ∈ CRing))
 
Theoremringprop 13674 If two structures have the same ring components (properties), one is a ring iff the other one is. (Contributed by Mario Carneiro, 11-Oct-2013.)
(Base‘𝐾) = (Base‘𝐿)    &   (+g𝐾) = (+g𝐿)    &   (.r𝐾) = (.r𝐿)       (𝐾 ∈ Ring ↔ 𝐿 ∈ Ring)
 
Theoremisringd 13675* Properties that determine a ring. (Contributed by NM, 2-Aug-2013.)
(𝜑𝐵 = (Base‘𝑅))    &   (𝜑+ = (+g𝑅))    &   (𝜑· = (.r𝑅))    &   (𝜑𝑅 ∈ Grp)    &   ((𝜑𝑥𝐵𝑦𝐵) → (𝑥 · 𝑦) ∈ 𝐵)    &   ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 · 𝑦) · 𝑧) = (𝑥 · (𝑦 · 𝑧)))    &   ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → (𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)))    &   ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧)))    &   (𝜑1𝐵)    &   ((𝜑𝑥𝐵) → ( 1 · 𝑥) = 𝑥)    &   ((𝜑𝑥𝐵) → (𝑥 · 1 ) = 𝑥)       (𝜑𝑅 ∈ Ring)
 
Theoremiscrngd 13676* Properties that determine a commutative ring. (Contributed by Mario Carneiro, 7-Jan-2015.)
(𝜑𝐵 = (Base‘𝑅))    &   (𝜑+ = (+g𝑅))    &   (𝜑· = (.r𝑅))    &   (𝜑𝑅 ∈ Grp)    &   ((𝜑𝑥𝐵𝑦𝐵) → (𝑥 · 𝑦) ∈ 𝐵)    &   ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 · 𝑦) · 𝑧) = (𝑥 · (𝑦 · 𝑧)))    &   ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → (𝑥 · (𝑦 + 𝑧)) = ((𝑥 · 𝑦) + (𝑥 · 𝑧)))    &   ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 + 𝑦) · 𝑧) = ((𝑥 · 𝑧) + (𝑦 · 𝑧)))    &   (𝜑1𝐵)    &   ((𝜑𝑥𝐵) → ( 1 · 𝑥) = 𝑥)    &   ((𝜑𝑥𝐵) → (𝑥 · 1 ) = 𝑥)    &   ((𝜑𝑥𝐵𝑦𝐵) → (𝑥 · 𝑦) = (𝑦 · 𝑥))       (𝜑𝑅 ∈ CRing)
 
Theoremringlz 13677 The zero of a unital ring is a left-absorbing element. (Contributed by FL, 31-Aug-2009.)
𝐵 = (Base‘𝑅)    &    · = (.r𝑅)    &    0 = (0g𝑅)       ((𝑅 ∈ Ring ∧ 𝑋𝐵) → ( 0 · 𝑋) = 0 )
 
Theoremringrz 13678 The zero of a unital ring is a right-absorbing element. (Contributed by FL, 31-Aug-2009.)
𝐵 = (Base‘𝑅)    &    · = (.r𝑅)    &    0 = (0g𝑅)       ((𝑅 ∈ Ring ∧ 𝑋𝐵) → (𝑋 · 0 ) = 0 )
 
Theoremringlzd 13679 The zero of a unital ring is a left-absorbing element. (Contributed by SN, 7-Mar-2025.)
𝐵 = (Base‘𝑅)    &    · = (.r𝑅)    &    0 = (0g𝑅)    &   (𝜑𝑅 ∈ Ring)    &   (𝜑𝑋𝐵)       (𝜑 → ( 0 · 𝑋) = 0 )
 
Theoremringrzd 13680 The zero of a unital ring is a right-absorbing element. (Contributed by SN, 7-Mar-2025.)
𝐵 = (Base‘𝑅)    &    · = (.r𝑅)    &    0 = (0g𝑅)    &   (𝜑𝑅 ∈ Ring)    &   (𝜑𝑋𝐵)       (𝜑 → (𝑋 · 0 ) = 0 )
 
Theoremringsrg 13681 Any ring is also a semiring. (Contributed by Thierry Arnoux, 1-Apr-2018.)
(𝑅 ∈ Ring → 𝑅 ∈ SRing)
 
Theoremring1eq0 13682 If one and zero are equal, then any two elements of a ring are equal. Alternately, every ring has one distinct from zero except the zero ring containing the single element {0}. (Contributed by Mario Carneiro, 10-Sep-2014.)
𝐵 = (Base‘𝑅)    &    1 = (1r𝑅)    &    0 = (0g𝑅)       ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝐵) → ( 1 = 0𝑋 = 𝑌))
 
Theoremringinvnz1ne0 13683* In a unital ring, a left invertible element is different from zero iff 10. (Contributed by FL, 18-Apr-2010.) (Revised by AV, 24-Aug-2021.)
𝐵 = (Base‘𝑅)    &    · = (.r𝑅)    &    1 = (1r𝑅)    &    0 = (0g𝑅)    &   (𝜑𝑅 ∈ Ring)    &   (𝜑𝑋𝐵)    &   (𝜑 → ∃𝑎𝐵 (𝑎 · 𝑋) = 1 )       (𝜑 → (𝑋010 ))
 
Theoremringinvnzdiv 13684* In a unital ring, a left invertible element is not a zero divisor. (Contributed by FL, 18-Apr-2010.) (Revised by Jeff Madsen, 18-Apr-2010.) (Revised by AV, 24-Aug-2021.)
𝐵 = (Base‘𝑅)    &    · = (.r𝑅)    &    1 = (1r𝑅)    &    0 = (0g𝑅)    &   (𝜑𝑅 ∈ Ring)    &   (𝜑𝑋𝐵)    &   (𝜑 → ∃𝑎𝐵 (𝑎 · 𝑋) = 1 )    &   (𝜑𝑌𝐵)       (𝜑 → ((𝑋 · 𝑌) = 0𝑌 = 0 ))
 
Theoremringnegl 13685 Negation in a ring is the same as left multiplication by -1. (Contributed by Jeff Madsen, 19-Jun-2010.) (Revised by Mario Carneiro, 2-Jul-2014.)
𝐵 = (Base‘𝑅)    &    · = (.r𝑅)    &    1 = (1r𝑅)    &   𝑁 = (invg𝑅)    &   (𝜑𝑅 ∈ Ring)    &   (𝜑𝑋𝐵)       (𝜑 → ((𝑁1 ) · 𝑋) = (𝑁𝑋))
 
Theoremringnegr 13686 Negation in a ring is the same as right multiplication by -1. (Contributed by Jeff Madsen, 19-Jun-2010.) (Revised by Mario Carneiro, 2-Jul-2014.)
𝐵 = (Base‘𝑅)    &    · = (.r𝑅)    &    1 = (1r𝑅)    &   𝑁 = (invg𝑅)    &   (𝜑𝑅 ∈ Ring)    &   (𝜑𝑋𝐵)       (𝜑 → (𝑋 · (𝑁1 )) = (𝑁𝑋))
 
Theoremringmneg1 13687 Negation of a product in a ring. (mulneg1 8440 analog.) (Contributed by Jeff Madsen, 19-Jun-2010.) (Revised by Mario Carneiro, 2-Jul-2014.)
𝐵 = (Base‘𝑅)    &    · = (.r𝑅)    &   𝑁 = (invg𝑅)    &   (𝜑𝑅 ∈ Ring)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)       (𝜑 → ((𝑁𝑋) · 𝑌) = (𝑁‘(𝑋 · 𝑌)))
 
Theoremringmneg2 13688 Negation of a product in a ring. (mulneg2 8441 analog.) (Contributed by Jeff Madsen, 19-Jun-2010.) (Revised by Mario Carneiro, 2-Jul-2014.)
𝐵 = (Base‘𝑅)    &    · = (.r𝑅)    &   𝑁 = (invg𝑅)    &   (𝜑𝑅 ∈ Ring)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)       (𝜑 → (𝑋 · (𝑁𝑌)) = (𝑁‘(𝑋 · 𝑌)))
 
Theoremringm2neg 13689 Double negation of a product in a ring. (mul2neg 8443 analog.) (Contributed by Mario Carneiro, 4-Dec-2014.)
𝐵 = (Base‘𝑅)    &    · = (.r𝑅)    &   𝑁 = (invg𝑅)    &   (𝜑𝑅 ∈ Ring)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)       (𝜑 → ((𝑁𝑋) · (𝑁𝑌)) = (𝑋 · 𝑌))
 
Theoremringsubdi 13690 Ring multiplication distributes over subtraction. (subdi 8430 analog.) (Contributed by Jeff Madsen, 19-Jun-2010.) (Revised by Mario Carneiro, 2-Jul-2014.)
𝐵 = (Base‘𝑅)    &    · = (.r𝑅)    &    = (-g𝑅)    &   (𝜑𝑅 ∈ Ring)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   (𝜑𝑍𝐵)       (𝜑 → (𝑋 · (𝑌 𝑍)) = ((𝑋 · 𝑌) (𝑋 · 𝑍)))
 
Theoremringsubdir 13691 Ring multiplication distributes over subtraction. (subdir 8431 analog.) (Contributed by Jeff Madsen, 19-Jun-2010.) (Revised by Mario Carneiro, 2-Jul-2014.)
𝐵 = (Base‘𝑅)    &    · = (.r𝑅)    &    = (-g𝑅)    &   (𝜑𝑅 ∈ Ring)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   (𝜑𝑍𝐵)       (𝜑 → ((𝑋 𝑌) · 𝑍) = ((𝑋 · 𝑍) (𝑌 · 𝑍)))
 
Theoremmulgass2 13692 An associative property between group multiple and ring multiplication. (Contributed by Mario Carneiro, 14-Jun-2015.)
𝐵 = (Base‘𝑅)    &    · = (.g𝑅)    &    × = (.r𝑅)       ((𝑅 ∈ Ring ∧ (𝑁 ∈ ℤ ∧ 𝑋𝐵𝑌𝐵)) → ((𝑁 · 𝑋) × 𝑌) = (𝑁 · (𝑋 × 𝑌)))
 
Theoremring1 13693 The (smallest) structure representing a zero ring. (Contributed by AV, 28-Apr-2019.)
𝑀 = {⟨(Base‘ndx), {𝑍}⟩, ⟨(+g‘ndx), {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}⟩, ⟨(.r‘ndx), {⟨⟨𝑍, 𝑍⟩, 𝑍⟩}⟩}       (𝑍𝑉𝑀 ∈ Ring)
 
Theoremringn0 13694 The class of rings is not empty (it is also inhabited, as shown at ring1 13693). (Contributed by AV, 29-Apr-2019.)
Ring ≠ ∅
 
Theoremringlghm 13695* Left-multiplication in a ring by a fixed element of the ring is a group homomorphism. (It is not usually a ring homomorphism.) (Contributed by Mario Carneiro, 4-May-2015.)
𝐵 = (Base‘𝑅)    &    · = (.r𝑅)       ((𝑅 ∈ Ring ∧ 𝑋𝐵) → (𝑥𝐵 ↦ (𝑋 · 𝑥)) ∈ (𝑅 GrpHom 𝑅))
 
Theoremringrghm 13696* Right-multiplication in a ring by a fixed element of the ring is a group homomorphism. (It is not usually a ring homomorphism.) (Contributed by Mario Carneiro, 4-May-2015.)
𝐵 = (Base‘𝑅)    &    · = (.r𝑅)       ((𝑅 ∈ Ring ∧ 𝑋𝐵) → (𝑥𝐵 ↦ (𝑥 · 𝑋)) ∈ (𝑅 GrpHom 𝑅))
 
Theoremringressid 13697 A ring restricted to its base set is a ring. It will usually be the original ring exactly, of course, but to show that needs additional conditions such as those in strressid 12776. (Contributed by Jim Kingdon, 28-Feb-2025.)
𝐵 = (Base‘𝐺)       (𝐺 ∈ Ring → (𝐺s 𝐵) ∈ Ring)
 
Theoremimasring 13698* The image structure of a ring is a ring. (Contributed by Mario Carneiro, 14-Jun-2015.)
(𝜑𝑈 = (𝐹s 𝑅))    &   (𝜑𝑉 = (Base‘𝑅))    &    + = (+g𝑅)    &    · = (.r𝑅)    &    1 = (1r𝑅)    &   (𝜑𝐹:𝑉onto𝐵)    &   ((𝜑 ∧ (𝑎𝑉𝑏𝑉) ∧ (𝑝𝑉𝑞𝑉)) → (((𝐹𝑎) = (𝐹𝑝) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝐹‘(𝑎 + 𝑏)) = (𝐹‘(𝑝 + 𝑞))))    &   ((𝜑 ∧ (𝑎𝑉𝑏𝑉) ∧ (𝑝𝑉𝑞𝑉)) → (((𝐹𝑎) = (𝐹𝑝) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝐹‘(𝑎 · 𝑏)) = (𝐹‘(𝑝 · 𝑞))))    &   (𝜑𝑅 ∈ Ring)       (𝜑 → (𝑈 ∈ Ring ∧ (𝐹1 ) = (1r𝑈)))
 
Theoremimasringf1 13699 The image of a ring under an injection is a ring. (Contributed by AV, 27-Feb-2025.)
𝑈 = (𝐹s 𝑅)    &   𝑉 = (Base‘𝑅)       ((𝐹:𝑉1-1𝐵𝑅 ∈ Ring) → 𝑈 ∈ Ring)
 
Theoremqusring2 13700* The quotient structure of a ring is a ring. (Contributed by Mario Carneiro, 14-Jun-2015.)
(𝜑𝑈 = (𝑅 /s ))    &   (𝜑𝑉 = (Base‘𝑅))    &    + = (+g𝑅)    &    · = (.r𝑅)    &    1 = (1r𝑅)    &   (𝜑 Er 𝑉)    &   (𝜑 → ((𝑎 𝑝𝑏 𝑞) → (𝑎 + 𝑏) (𝑝 + 𝑞)))    &   (𝜑 → ((𝑎 𝑝𝑏 𝑞) → (𝑎 · 𝑏) (𝑝 · 𝑞)))    &   (𝜑𝑅 ∈ Ring)       (𝜑 → (𝑈 ∈ Ring ∧ [ 1 ] = (1r𝑈)))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15819
  Copyright terms: Public domain < Previous  Next >