| Intuitionistic Logic Explorer Theorem List (p. 137 of 164) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > ILE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | grplactcnv 13601* | The left group action of element 𝐴 of group 𝐺 maps the underlying set 𝑋 of 𝐺 one-to-one onto itself. (Contributed by Paul Chapman, 18-Mar-2008.) (Proof shortened by Mario Carneiro, 14-Aug-2015.) |
| ⊢ 𝐹 = (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔 + 𝑎))) & ⊢ 𝑋 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ 𝐼 = (invg‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → ((𝐹‘𝐴):𝑋–1-1-onto→𝑋 ∧ ◡(𝐹‘𝐴) = (𝐹‘(𝐼‘𝐴)))) | ||
| Theorem | grplactf1o 13602* | The left group action of element 𝐴 of group 𝐺 maps the underlying set 𝑋 of 𝐺 one-to-one onto itself. (Contributed by Paul Chapman, 18-Mar-2008.) (Proof shortened by Mario Carneiro, 14-Aug-2015.) |
| ⊢ 𝐹 = (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔 + 𝑎))) & ⊢ 𝑋 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → (𝐹‘𝐴):𝑋–1-1-onto→𝑋) | ||
| Theorem | grpsubpropdg 13603 | Weak property deduction for the group subtraction operation. (Contributed by Mario Carneiro, 27-Mar-2015.) |
| ⊢ (𝜑 → (Base‘𝐺) = (Base‘𝐻)) & ⊢ (𝜑 → (+g‘𝐺) = (+g‘𝐻)) & ⊢ (𝜑 → 𝐺 ∈ 𝑉) & ⊢ (𝜑 → 𝐻 ∈ 𝑊) ⇒ ⊢ (𝜑 → (-g‘𝐺) = (-g‘𝐻)) | ||
| Theorem | grpsubpropd2 13604* | Strong property deduction for the group subtraction operation. (Contributed by Mario Carneiro, 4-Oct-2015.) |
| ⊢ (𝜑 → 𝐵 = (Base‘𝐺)) & ⊢ (𝜑 → 𝐵 = (Base‘𝐻)) & ⊢ (𝜑 → 𝐺 ∈ Grp) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐺)𝑦) = (𝑥(+g‘𝐻)𝑦)) ⇒ ⊢ (𝜑 → (-g‘𝐺) = (-g‘𝐻)) | ||
| Theorem | grp1 13605 | The (smallest) structure representing a trivial group. According to Wikipedia ("Trivial group", 28-Apr-2019, https://en.wikipedia.org/wiki/Trivial_group) "In mathematics, a trivial group is a group consisting of a single element. All such groups are isomorphic, so one often speaks of the trivial group. The single element of the trivial group is the identity element". (Contributed by AV, 28-Apr-2019.) |
| ⊢ 𝑀 = {〈(Base‘ndx), {𝐼}〉, 〈(+g‘ndx), {〈〈𝐼, 𝐼〉, 𝐼〉}〉} ⇒ ⊢ (𝐼 ∈ 𝑉 → 𝑀 ∈ Grp) | ||
| Theorem | grp1inv 13606 | The inverse function of the trivial group. (Contributed by FL, 21-Jun-2010.) (Revised by AV, 26-Aug-2021.) |
| ⊢ 𝑀 = {〈(Base‘ndx), {𝐼}〉, 〈(+g‘ndx), {〈〈𝐼, 𝐼〉, 𝐼〉}〉} ⇒ ⊢ (𝐼 ∈ 𝑉 → (invg‘𝑀) = ( I ↾ {𝐼})) | ||
| Theorem | prdsinvlem 13607* | Characterization of inverses in a structure product. (Contributed by Mario Carneiro, 10-Jan-2015.) |
| ⊢ 𝑌 = (𝑆Xs𝑅) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ + = (+g‘𝑌) & ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝑅:𝐼⟶Grp) & ⊢ (𝜑 → 𝐹 ∈ 𝐵) & ⊢ 0 = (0g ∘ 𝑅) & ⊢ 𝑁 = (𝑦 ∈ 𝐼 ↦ ((invg‘(𝑅‘𝑦))‘(𝐹‘𝑦))) ⇒ ⊢ (𝜑 → (𝑁 ∈ 𝐵 ∧ (𝑁 + 𝐹) = 0 )) | ||
| Theorem | prdsgrpd 13608 | The product of a family of groups is a group. (Contributed by Stefan O'Rear, 10-Jan-2015.) |
| ⊢ 𝑌 = (𝑆Xs𝑅) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → 𝑅:𝐼⟶Grp) ⇒ ⊢ (𝜑 → 𝑌 ∈ Grp) | ||
| Theorem | prdsinvgd 13609* | Negation in a product of groups. (Contributed by Stefan O'Rear, 10-Jan-2015.) |
| ⊢ 𝑌 = (𝑆Xs𝑅) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → 𝑅:𝐼⟶Grp) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ 𝑁 = (invg‘𝑌) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑁‘𝑋) = (𝑥 ∈ 𝐼 ↦ ((invg‘(𝑅‘𝑥))‘(𝑋‘𝑥)))) | ||
| Theorem | pwsgrp 13610 | A structure power of a group is a group. (Contributed by Mario Carneiro, 11-Jan-2015.) |
| ⊢ 𝑌 = (𝑅 ↑s 𝐼) ⇒ ⊢ ((𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉) → 𝑌 ∈ Grp) | ||
| Theorem | pwsinvg 13611 | Negation in a group power. (Contributed by Mario Carneiro, 11-Jan-2015.) |
| ⊢ 𝑌 = (𝑅 ↑s 𝐼) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ 𝑀 = (invg‘𝑅) & ⊢ 𝑁 = (invg‘𝑌) ⇒ ⊢ ((𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵) → (𝑁‘𝑋) = (𝑀 ∘ 𝑋)) | ||
| Theorem | pwssub 13612 | Subtraction in a group power. (Contributed by Mario Carneiro, 12-Jan-2015.) |
| ⊢ 𝑌 = (𝑅 ↑s 𝐼) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ 𝑀 = (-g‘𝑅) & ⊢ − = (-g‘𝑌) ⇒ ⊢ (((𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉) ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) → (𝐹 − 𝐺) = (𝐹 ∘𝑓 𝑀𝐺)) | ||
| Theorem | imasgrp2 13613* | The image structure of a group is a group. (Contributed by Mario Carneiro, 24-Feb-2015.) (Revised by Mario Carneiro, 5-Sep-2015.) |
| ⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) & ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) & ⊢ (𝜑 → + = (+g‘𝑅)) & ⊢ (𝜑 → 𝐹:𝑉–onto→𝐵) & ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → (((𝐹‘𝑎) = (𝐹‘𝑝) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → (𝐹‘(𝑎 + 𝑏)) = (𝐹‘(𝑝 + 𝑞)))) & ⊢ (𝜑 → 𝑅 ∈ 𝑊) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) → (𝑥 + 𝑦) ∈ 𝑉) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → (𝐹‘((𝑥 + 𝑦) + 𝑧)) = (𝐹‘(𝑥 + (𝑦 + 𝑧)))) & ⊢ (𝜑 → 0 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → (𝐹‘( 0 + 𝑥)) = (𝐹‘𝑥)) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → 𝑁 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → (𝐹‘(𝑁 + 𝑥)) = (𝐹‘ 0 )) ⇒ ⊢ (𝜑 → (𝑈 ∈ Grp ∧ (𝐹‘ 0 ) = (0g‘𝑈))) | ||
| Theorem | imasgrp 13614* | The image structure of a group is a group. (Contributed by Mario Carneiro, 24-Feb-2015.) (Revised by Mario Carneiro, 5-Sep-2015.) |
| ⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) & ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) & ⊢ (𝜑 → + = (+g‘𝑅)) & ⊢ (𝜑 → 𝐹:𝑉–onto→𝐵) & ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → (((𝐹‘𝑎) = (𝐹‘𝑝) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → (𝐹‘(𝑎 + 𝑏)) = (𝐹‘(𝑝 + 𝑞)))) & ⊢ (𝜑 → 𝑅 ∈ Grp) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ (𝜑 → (𝑈 ∈ Grp ∧ (𝐹‘ 0 ) = (0g‘𝑈))) | ||
| Theorem | imasgrpf1 13615 | The image of a group under an injection is a group. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ 𝑈 = (𝐹 “s 𝑅) & ⊢ 𝑉 = (Base‘𝑅) ⇒ ⊢ ((𝐹:𝑉–1-1→𝐵 ∧ 𝑅 ∈ Grp) → 𝑈 ∈ Grp) | ||
| Theorem | qusgrp2 13616* | Prove that a quotient structure is a group. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by Mario Carneiro, 12-Aug-2015.) |
| ⊢ (𝜑 → 𝑈 = (𝑅 /s ∼ )) & ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) & ⊢ (𝜑 → + = (+g‘𝑅)) & ⊢ (𝜑 → ∼ Er 𝑉) & ⊢ (𝜑 → 𝑅 ∈ 𝑋) & ⊢ (𝜑 → ((𝑎 ∼ 𝑝 ∧ 𝑏 ∼ 𝑞) → (𝑎 + 𝑏) ∼ (𝑝 + 𝑞))) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) → (𝑥 + 𝑦) ∈ 𝑉) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → ((𝑥 + 𝑦) + 𝑧) ∼ (𝑥 + (𝑦 + 𝑧))) & ⊢ (𝜑 → 0 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → ( 0 + 𝑥) ∼ 𝑥) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → 𝑁 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → (𝑁 + 𝑥) ∼ 0 ) ⇒ ⊢ (𝜑 → (𝑈 ∈ Grp ∧ [ 0 ] ∼ = (0g‘𝑈))) | ||
| Theorem | mhmlem 13617* | Lemma for mhmmnd 13619 and ghmgrp 13621. (Contributed by Paul Chapman, 25-Apr-2008.) (Revised by Mario Carneiro, 12-May-2014.) (Revised by Thierry Arnoux, 25-Jan-2020.) |
| ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦))) & ⊢ (𝜑 → 𝐴 ∈ 𝑋) & ⊢ (𝜑 → 𝐵 ∈ 𝑋) ⇒ ⊢ (𝜑 → (𝐹‘(𝐴 + 𝐵)) = ((𝐹‘𝐴) ⨣ (𝐹‘𝐵))) | ||
| Theorem | mhmid 13618* | A surjective monoid morphism preserves identity element. (Contributed by Thierry Arnoux, 25-Jan-2020.) |
| ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦))) & ⊢ 𝑋 = (Base‘𝐺) & ⊢ 𝑌 = (Base‘𝐻) & ⊢ + = (+g‘𝐺) & ⊢ ⨣ = (+g‘𝐻) & ⊢ (𝜑 → 𝐹:𝑋–onto→𝑌) & ⊢ (𝜑 → 𝐺 ∈ Mnd) & ⊢ 0 = (0g‘𝐺) ⇒ ⊢ (𝜑 → (𝐹‘ 0 ) = (0g‘𝐻)) | ||
| Theorem | mhmmnd 13619* | The image of a monoid 𝐺 under a monoid homomorphism 𝐹 is a monoid. (Contributed by Thierry Arnoux, 25-Jan-2020.) |
| ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦))) & ⊢ 𝑋 = (Base‘𝐺) & ⊢ 𝑌 = (Base‘𝐻) & ⊢ + = (+g‘𝐺) & ⊢ ⨣ = (+g‘𝐻) & ⊢ (𝜑 → 𝐹:𝑋–onto→𝑌) & ⊢ (𝜑 → 𝐺 ∈ Mnd) ⇒ ⊢ (𝜑 → 𝐻 ∈ Mnd) | ||
| Theorem | mhmfmhm 13620* | The function fulfilling the conditions of mhmmnd 13619 is a monoid homomorphism. (Contributed by Thierry Arnoux, 26-Jan-2020.) |
| ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦))) & ⊢ 𝑋 = (Base‘𝐺) & ⊢ 𝑌 = (Base‘𝐻) & ⊢ + = (+g‘𝐺) & ⊢ ⨣ = (+g‘𝐻) & ⊢ (𝜑 → 𝐹:𝑋–onto→𝑌) & ⊢ (𝜑 → 𝐺 ∈ Mnd) ⇒ ⊢ (𝜑 → 𝐹 ∈ (𝐺 MndHom 𝐻)) | ||
| Theorem | ghmgrp 13621* | The image of a group 𝐺 under a group homomorphism 𝐹 is a group. This is a stronger result than that usually found in the literature, since the target of the homomorphism (operator 𝑂 in our model) need not have any of the properties of a group as a prerequisite. (Contributed by Paul Chapman, 25-Apr-2008.) (Revised by Mario Carneiro, 12-May-2014.) (Revised by Thierry Arnoux, 25-Jan-2020.) |
| ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦))) & ⊢ 𝑋 = (Base‘𝐺) & ⊢ 𝑌 = (Base‘𝐻) & ⊢ + = (+g‘𝐺) & ⊢ ⨣ = (+g‘𝐻) & ⊢ (𝜑 → 𝐹:𝑋–onto→𝑌) & ⊢ (𝜑 → 𝐺 ∈ Grp) ⇒ ⊢ (𝜑 → 𝐻 ∈ Grp) | ||
The "group multiple" operation (if the group is multiplicative, also called "group power" or "group exponentiation" operation), can be defined for arbitrary magmas, if the multiplier/exponent is a nonnegative integer. See also the definition in [Lang] p. 6, where an element 𝑥(of a monoid) to the power of a nonnegative integer 𝑛 is defined and denoted by 𝑥↑𝑛. Definition df-mulg 13623, however, defines the group multiple for arbitrary (i.e. also negative) integers. This is meaningful for groups only, and requires Definition df-minusg 13503 of the inverse operation invg. | ||
| Syntax | cmg 13622 | Extend class notation with a function mapping a group operation to the multiple/power operation for the magma/group. |
| class .g | ||
| Definition | df-mulg 13623* | Define the group multiple function, also known as group exponentiation when viewed multiplicatively. (Contributed by Mario Carneiro, 11-Dec-2014.) |
| ⊢ .g = (𝑔 ∈ V ↦ (𝑛 ∈ ℤ, 𝑥 ∈ (Base‘𝑔) ↦ if(𝑛 = 0, (0g‘𝑔), ⦋seq1((+g‘𝑔), (ℕ × {𝑥})) / 𝑠⦌if(0 < 𝑛, (𝑠‘𝑛), ((invg‘𝑔)‘(𝑠‘-𝑛)))))) | ||
| Theorem | mulgfvalg 13624* | Group multiple (exponentiation) operation. (Contributed by Mario Carneiro, 11-Dec-2014.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ 𝐼 = (invg‘𝐺) & ⊢ · = (.g‘𝐺) ⇒ ⊢ (𝐺 ∈ 𝑉 → · = (𝑛 ∈ ℤ, 𝑥 ∈ 𝐵 ↦ if(𝑛 = 0, 0 , if(0 < 𝑛, (seq1( + , (ℕ × {𝑥}))‘𝑛), (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛)))))) | ||
| Theorem | mulgval 13625 | Value of the group multiple (exponentiation) operation. (Contributed by Mario Carneiro, 11-Dec-2014.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ 𝐼 = (invg‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ 𝑆 = seq1( + , (ℕ × {𝑋})) ⇒ ⊢ ((𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → (𝑁 · 𝑋) = if(𝑁 = 0, 0 , if(0 < 𝑁, (𝑆‘𝑁), (𝐼‘(𝑆‘-𝑁))))) | ||
| Theorem | mulgex 13626 | Existence of the group multiple operation. (Contributed by Jim Kingdon, 22-Apr-2025.) |
| ⊢ (𝐺 ∈ 𝑉 → (.g‘𝐺) ∈ V) | ||
| Theorem | mulgfng 13627 | Functionality of the group multiple operation. (Contributed by Mario Carneiro, 21-Mar-2015.) (Revised by Mario Carneiro, 2-Oct-2015.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ · = (.g‘𝐺) ⇒ ⊢ (𝐺 ∈ 𝑉 → · Fn (ℤ × 𝐵)) | ||
| Theorem | mulg0 13628 | Group multiple (exponentiation) operation at zero. (Contributed by Mario Carneiro, 11-Dec-2014.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ · = (.g‘𝐺) ⇒ ⊢ (𝑋 ∈ 𝐵 → (0 · 𝑋) = 0 ) | ||
| Theorem | mulgnn 13629 | Group multiple (exponentiation) operation at a positive integer. (Contributed by Mario Carneiro, 11-Dec-2014.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ 𝑆 = seq1( + , (ℕ × {𝑋})) ⇒ ⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) → (𝑁 · 𝑋) = (𝑆‘𝑁)) | ||
| Theorem | mulgnngsum 13630* | Group multiple (exponentiation) operation at a positive integer expressed by a group sum. (Contributed by AV, 28-Dec-2023.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ 𝐹 = (𝑥 ∈ (1...𝑁) ↦ 𝑋) ⇒ ⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) → (𝑁 · 𝑋) = (𝐺 Σg 𝐹)) | ||
| Theorem | mulgnn0gsum 13631* | Group multiple (exponentiation) operation at a nonnegative integer expressed by a group sum. This corresponds to the definition in [Lang] p. 6, second formula. (Contributed by AV, 28-Dec-2023.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ 𝐹 = (𝑥 ∈ (1...𝑁) ↦ 𝑋) ⇒ ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵) → (𝑁 · 𝑋) = (𝐺 Σg 𝐹)) | ||
| Theorem | mulg1 13632 | Group multiple (exponentiation) operation at one. (Contributed by Mario Carneiro, 11-Dec-2014.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ · = (.g‘𝐺) ⇒ ⊢ (𝑋 ∈ 𝐵 → (1 · 𝑋) = 𝑋) | ||
| Theorem | mulgnnp1 13633 | Group multiple (exponentiation) operation at a successor. (Contributed by Mario Carneiro, 11-Dec-2014.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ + = (+g‘𝐺) ⇒ ⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) → ((𝑁 + 1) · 𝑋) = ((𝑁 · 𝑋) + 𝑋)) | ||
| Theorem | mulg2 13634 | Group multiple (exponentiation) operation at two. (Contributed by Mario Carneiro, 15-Oct-2015.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ + = (+g‘𝐺) ⇒ ⊢ (𝑋 ∈ 𝐵 → (2 · 𝑋) = (𝑋 + 𝑋)) | ||
| Theorem | mulgnegnn 13635 | Group multiple (exponentiation) operation at a negative integer. (Contributed by Mario Carneiro, 11-Dec-2014.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ 𝐼 = (invg‘𝐺) ⇒ ⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) → (-𝑁 · 𝑋) = (𝐼‘(𝑁 · 𝑋))) | ||
| Theorem | mulgnn0p1 13636 | Group multiple (exponentiation) operation at a successor, extended to ℕ0. (Contributed by Mario Carneiro, 11-Dec-2014.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ + = (+g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵) → ((𝑁 + 1) · 𝑋) = ((𝑁 · 𝑋) + 𝑋)) | ||
| Theorem | mulgnnsubcl 13637* | Closure of the group multiple (exponentiation) operation in a subsemigroup. (Contributed by Mario Carneiro, 10-Jan-2015.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ 𝑉) & ⊢ (𝜑 → 𝑆 ⊆ 𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → (𝑥 + 𝑦) ∈ 𝑆) ⇒ ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝑆) → (𝑁 · 𝑋) ∈ 𝑆) | ||
| Theorem | mulgnn0subcl 13638* | Closure of the group multiple (exponentiation) operation in a submonoid. (Contributed by Mario Carneiro, 10-Jan-2015.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ 𝑉) & ⊢ (𝜑 → 𝑆 ⊆ 𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → (𝑥 + 𝑦) ∈ 𝑆) & ⊢ 0 = (0g‘𝐺) & ⊢ (𝜑 → 0 ∈ 𝑆) ⇒ ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑆) → (𝑁 · 𝑋) ∈ 𝑆) | ||
| Theorem | mulgsubcl 13639* | Closure of the group multiple (exponentiation) operation in a subgroup. (Contributed by Mario Carneiro, 10-Jan-2015.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ 𝑉) & ⊢ (𝜑 → 𝑆 ⊆ 𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → (𝑥 + 𝑦) ∈ 𝑆) & ⊢ 0 = (0g‘𝐺) & ⊢ (𝜑 → 0 ∈ 𝑆) & ⊢ 𝐼 = (invg‘𝐺) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → (𝐼‘𝑥) ∈ 𝑆) ⇒ ⊢ ((𝜑 ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆) → (𝑁 · 𝑋) ∈ 𝑆) | ||
| Theorem | mulgnncl 13640 | Closure of the group multiple (exponentiation) operation for a positive multiplier in a magma. (Contributed by Mario Carneiro, 11-Dec-2014.) (Revised by AV, 29-Aug-2021.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ · = (.g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Mgm ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) → (𝑁 · 𝑋) ∈ 𝐵) | ||
| Theorem | mulgnn0cl 13641 | Closure of the group multiple (exponentiation) operation for a nonnegative multiplier in a monoid. (Contributed by Mario Carneiro, 11-Dec-2014.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ · = (.g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵) → (𝑁 · 𝑋) ∈ 𝐵) | ||
| Theorem | mulgcl 13642 | Closure of the group multiple (exponentiation) operation. (Contributed by Mario Carneiro, 11-Dec-2014.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ · = (.g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → (𝑁 · 𝑋) ∈ 𝐵) | ||
| Theorem | mulgneg 13643 | Group multiple (exponentiation) operation at a negative integer. (Contributed by Paul Chapman, 17-Apr-2009.) (Revised by Mario Carneiro, 11-Dec-2014.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ 𝐼 = (invg‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → (-𝑁 · 𝑋) = (𝐼‘(𝑁 · 𝑋))) | ||
| Theorem | mulgnegneg 13644 | The inverse of a negative group multiple is the positive group multiple. (Contributed by Paul Chapman, 17-Apr-2009.) (Revised by AV, 30-Aug-2021.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ 𝐼 = (invg‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → (𝐼‘(-𝑁 · 𝑋)) = (𝑁 · 𝑋)) | ||
| Theorem | mulgm1 13645 | Group multiple (exponentiation) operation at negative one. (Contributed by Paul Chapman, 17-Apr-2009.) (Revised by Mario Carneiro, 20-Dec-2014.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ 𝐼 = (invg‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (-1 · 𝑋) = (𝐼‘𝑋)) | ||
| Theorem | mulgnn0cld 13646 | Closure of the group multiple (exponentiation) operation for a nonnegative multiplier in a monoid. Deduction associated with mulgnn0cl 13641. (Contributed by SN, 1-Feb-2025.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Mnd) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑁 · 𝑋) ∈ 𝐵) | ||
| Theorem | mulgcld 13647 | Deduction associated with mulgcl 13642. (Contributed by Rohan Ridenour, 3-Aug-2023.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Grp) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑁 · 𝑋) ∈ 𝐵) | ||
| Theorem | mulgaddcomlem 13648 | Lemma for mulgaddcom 13649. (Contributed by Paul Chapman, 17-Apr-2009.) (Revised by AV, 31-Aug-2021.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ + = (+g‘𝐺) ⇒ ⊢ (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵) ∧ ((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋))) → ((-𝑦 · 𝑋) + 𝑋) = (𝑋 + (-𝑦 · 𝑋))) | ||
| Theorem | mulgaddcom 13649 | The group multiple operator commutes with the group operation. (Contributed by Paul Chapman, 17-Apr-2009.) (Revised by AV, 31-Aug-2021.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ + = (+g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → ((𝑁 · 𝑋) + 𝑋) = (𝑋 + (𝑁 · 𝑋))) | ||
| Theorem | mulginvcom 13650 | The group multiple operator commutes with the group inverse function. (Contributed by Paul Chapman, 17-Apr-2009.) (Revised by AV, 31-Aug-2021.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ 𝐼 = (invg‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → (𝑁 · (𝐼‘𝑋)) = (𝐼‘(𝑁 · 𝑋))) | ||
| Theorem | mulginvinv 13651 | The group multiple operator commutes with the group inverse function. (Contributed by Paul Chapman, 17-Apr-2009.) (Revised by AV, 31-Aug-2021.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ 𝐼 = (invg‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → (𝐼‘(𝑁 · (𝐼‘𝑋))) = (𝑁 · 𝑋)) | ||
| Theorem | mulgnn0z 13652 | A group multiple of the identity, for nonnegative multiple. (Contributed by Mario Carneiro, 13-Dec-2014.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ 0 = (0g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0) → (𝑁 · 0 ) = 0 ) | ||
| Theorem | mulgz 13653 | A group multiple of the identity, for integer multiple. (Contributed by Mario Carneiro, 13-Dec-2014.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ 0 = (0g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) → (𝑁 · 0 ) = 0 ) | ||
| Theorem | mulgnndir 13654 | Sum of group multiples, for positive multiples. (Contributed by Mario Carneiro, 11-Dec-2014.) (Revised by AV, 29-Aug-2021.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ + = (+g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵)) → ((𝑀 + 𝑁) · 𝑋) = ((𝑀 · 𝑋) + (𝑁 · 𝑋))) | ||
| Theorem | mulgnn0dir 13655 | Sum of group multiples, generalized to ℕ0. (Contributed by Mario Carneiro, 11-Dec-2014.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ + = (+g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵)) → ((𝑀 + 𝑁) · 𝑋) = ((𝑀 · 𝑋) + (𝑁 · 𝑋))) | ||
| Theorem | mulgdirlem 13656 | Lemma for mulgdir 13657. (Contributed by Mario Carneiro, 13-Dec-2014.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ + = (+g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) → ((𝑀 + 𝑁) · 𝑋) = ((𝑀 · 𝑋) + (𝑁 · 𝑋))) | ||
| Theorem | mulgdir 13657 | Sum of group multiples, generalized to ℤ. (Contributed by Mario Carneiro, 13-Dec-2014.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ + = (+g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵)) → ((𝑀 + 𝑁) · 𝑋) = ((𝑀 · 𝑋) + (𝑁 · 𝑋))) | ||
| Theorem | mulgp1 13658 | Group multiple (exponentiation) operation at a successor, extended to ℤ. (Contributed by Mario Carneiro, 11-Dec-2014.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ + = (+g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → ((𝑁 + 1) · 𝑋) = ((𝑁 · 𝑋) + 𝑋)) | ||
| Theorem | mulgneg2 13659 | Group multiple (exponentiation) operation at a negative integer. (Contributed by Mario Carneiro, 13-Dec-2014.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ 𝐼 = (invg‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → (-𝑁 · 𝑋) = (𝑁 · (𝐼‘𝑋))) | ||
| Theorem | mulgnnass 13660 | Product of group multiples, for positive multiples in a semigroup. (Contributed by Mario Carneiro, 13-Dec-2014.) (Revised by AV, 29-Aug-2021.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ · = (.g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵)) → ((𝑀 · 𝑁) · 𝑋) = (𝑀 · (𝑁 · 𝑋))) | ||
| Theorem | mulgnn0ass 13661 | Product of group multiples, generalized to ℕ0. (Contributed by Mario Carneiro, 13-Dec-2014.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ · = (.g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵)) → ((𝑀 · 𝑁) · 𝑋) = (𝑀 · (𝑁 · 𝑋))) | ||
| Theorem | mulgass 13662 | Product of group multiples, generalized to ℤ. (Contributed by Mario Carneiro, 13-Dec-2014.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ · = (.g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵)) → ((𝑀 · 𝑁) · 𝑋) = (𝑀 · (𝑁 · 𝑋))) | ||
| Theorem | mulgassr 13663 | Reversed product of group multiples. (Contributed by Paul Chapman, 17-Apr-2009.) (Revised by AV, 30-Aug-2021.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ · = (.g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵)) → ((𝑁 · 𝑀) · 𝑋) = (𝑀 · (𝑁 · 𝑋))) | ||
| Theorem | mulgmodid 13664 | Casting out multiples of the identity element leaves the group multiple unchanged. (Contributed by Paul Chapman, 17-Apr-2009.) (Revised by AV, 30-Aug-2021.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ · = (.g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ (𝑋 ∈ 𝐵 ∧ (𝑀 · 𝑋) = 0 )) → ((𝑁 mod 𝑀) · 𝑋) = (𝑁 · 𝑋)) | ||
| Theorem | mulgsubdir 13665 | Distribution of group multiples over subtraction for group elements, subdir 8500 analog. (Contributed by Mario Carneiro, 13-Dec-2014.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ − = (-g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵)) → ((𝑀 − 𝑁) · 𝑋) = ((𝑀 · 𝑋) − (𝑁 · 𝑋))) | ||
| Theorem | mhmmulg 13666 | A homomorphism of monoids preserves group multiples. (Contributed by Mario Carneiro, 14-Jun-2015.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ × = (.g‘𝐻) ⇒ ⊢ ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵) → (𝐹‘(𝑁 · 𝑋)) = (𝑁 × (𝐹‘𝑋))) | ||
| Theorem | mulgpropdg 13667* | Two structures with the same group-nature have the same group multiple function. 𝐾 is expected to either be V (when strong equality is available) or 𝐵 (when closure is available). (Contributed by Stefan O'Rear, 21-Mar-2015.) (Revised by Mario Carneiro, 2-Oct-2015.) |
| ⊢ (𝜑 → · = (.g‘𝐺)) & ⊢ (𝜑 → × = (.g‘𝐻)) & ⊢ (𝜑 → 𝐺 ∈ 𝑉) & ⊢ (𝜑 → 𝐻 ∈ 𝑊) & ⊢ (𝜑 → 𝐵 = (Base‘𝐺)) & ⊢ (𝜑 → 𝐵 = (Base‘𝐻)) & ⊢ (𝜑 → 𝐵 ⊆ 𝐾) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾)) → (𝑥(+g‘𝐺)𝑦) ∈ 𝐾) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾)) → (𝑥(+g‘𝐺)𝑦) = (𝑥(+g‘𝐻)𝑦)) ⇒ ⊢ (𝜑 → · = × ) | ||
| Theorem | submmulgcl 13668 | Closure of the group multiple (exponentiation) operation in a submonoid. (Contributed by Mario Carneiro, 13-Jan-2015.) |
| ⊢ ∙ = (.g‘𝐺) ⇒ ⊢ ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑆) → (𝑁 ∙ 𝑋) ∈ 𝑆) | ||
| Theorem | submmulg 13669 | A group multiple is the same if evaluated in a submonoid. (Contributed by Mario Carneiro, 15-Jun-2015.) |
| ⊢ ∙ = (.g‘𝐺) & ⊢ 𝐻 = (𝐺 ↾s 𝑆) & ⊢ · = (.g‘𝐻) ⇒ ⊢ ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑆) → (𝑁 ∙ 𝑋) = (𝑁 · 𝑋)) | ||
| Syntax | csubg 13670 | Extend class notation with all subgroups of a group. |
| class SubGrp | ||
| Syntax | cnsg 13671 | Extend class notation with all normal subgroups of a group. |
| class NrmSGrp | ||
| Syntax | cqg 13672 | Quotient group equivalence class. |
| class ~QG | ||
| Definition | df-subg 13673* | Define a subgroup of a group as a set of elements that is a group in its own right. Equivalently (issubg2m 13692), a subgroup is a subset of the group that is closed for the group internal operation (see subgcl 13687), contains the neutral element of the group (see subg0 13683) and contains the inverses for all of its elements (see subginvcl 13686). (Contributed by Mario Carneiro, 2-Dec-2014.) |
| ⊢ SubGrp = (𝑤 ∈ Grp ↦ {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ (𝑤 ↾s 𝑠) ∈ Grp}) | ||
| Definition | df-nsg 13674* | Define the equivalence relation in a quotient ring or quotient group (where 𝑖 is a two-sided ideal or a normal subgroup). For non-normal subgroups this generates the left cosets. (Contributed by Mario Carneiro, 15-Jun-2015.) |
| ⊢ NrmSGrp = (𝑤 ∈ Grp ↦ {𝑠 ∈ (SubGrp‘𝑤) ∣ [(Base‘𝑤) / 𝑏][(+g‘𝑤) / 𝑝]∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 ((𝑥𝑝𝑦) ∈ 𝑠 ↔ (𝑦𝑝𝑥) ∈ 𝑠)}) | ||
| Definition | df-eqg 13675* | Define the equivalence relation in a group generated by a subgroup. More precisely, if 𝐺 is a group and 𝐻 is a subgroup, then 𝐺 ~QG 𝐻 is the equivalence relation on 𝐺 associated with the left cosets of 𝐻. A typical application of this definition is the construction of the quotient group (resp. ring) of a group (resp. ring) by a normal subgroup (resp. two-sided ideal). (Contributed by Mario Carneiro, 15-Jun-2015.) |
| ⊢ ~QG = (𝑟 ∈ V, 𝑖 ∈ V ↦ {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ (Base‘𝑟) ∧ (((invg‘𝑟)‘𝑥)(+g‘𝑟)𝑦) ∈ 𝑖)}) | ||
| Theorem | issubg 13676 | The subgroup predicate. (Contributed by Mario Carneiro, 2-Dec-2014.) |
| ⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝐺 ∈ Grp ∧ 𝑆 ⊆ 𝐵 ∧ (𝐺 ↾s 𝑆) ∈ Grp)) | ||
| Theorem | subgss 13677 | A subgroup is a subset. (Contributed by Mario Carneiro, 2-Dec-2014.) |
| ⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ⊆ 𝐵) | ||
| Theorem | subgid 13678 | A group is a subgroup of itself. (Contributed by Mario Carneiro, 7-Dec-2014.) |
| ⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ (𝐺 ∈ Grp → 𝐵 ∈ (SubGrp‘𝐺)) | ||
| Theorem | subgex 13679 | The class of subgroups of a group is a set. (Contributed by Jim Kingdon, 8-Mar-2025.) |
| ⊢ (𝐺 ∈ Grp → (SubGrp‘𝐺) ∈ V) | ||
| Theorem | subggrp 13680 | A subgroup is a group. (Contributed by Mario Carneiro, 2-Dec-2014.) |
| ⊢ 𝐻 = (𝐺 ↾s 𝑆) ⇒ ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝐻 ∈ Grp) | ||
| Theorem | subgbas 13681 | The base of the restricted group in a subgroup. (Contributed by Mario Carneiro, 2-Dec-2014.) |
| ⊢ 𝐻 = (𝐺 ↾s 𝑆) ⇒ ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 = (Base‘𝐻)) | ||
| Theorem | subgrcl 13682 | Reverse closure for the subgroup predicate. (Contributed by Mario Carneiro, 2-Dec-2014.) |
| ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp) | ||
| Theorem | subg0 13683 | A subgroup of a group must have the same identity as the group. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 30-Apr-2015.) |
| ⊢ 𝐻 = (𝐺 ↾s 𝑆) & ⊢ 0 = (0g‘𝐺) ⇒ ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 0 = (0g‘𝐻)) | ||
| Theorem | subginv 13684 | The inverse of an element in a subgroup is the same as the inverse in the larger group. (Contributed by Mario Carneiro, 2-Dec-2014.) |
| ⊢ 𝐻 = (𝐺 ↾s 𝑆) & ⊢ 𝐼 = (invg‘𝐺) & ⊢ 𝐽 = (invg‘𝐻) ⇒ ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝑆) → (𝐼‘𝑋) = (𝐽‘𝑋)) | ||
| Theorem | subg0cl 13685 | The group identity is an element of any subgroup. (Contributed by Mario Carneiro, 2-Dec-2014.) |
| ⊢ 0 = (0g‘𝐺) ⇒ ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 0 ∈ 𝑆) | ||
| Theorem | subginvcl 13686 | The inverse of an element is closed in a subgroup. (Contributed by Mario Carneiro, 2-Dec-2014.) |
| ⊢ 𝐼 = (invg‘𝐺) ⇒ ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝑆) → (𝐼‘𝑋) ∈ 𝑆) | ||
| Theorem | subgcl 13687 | A subgroup is closed under group operation. (Contributed by Mario Carneiro, 2-Dec-2014.) |
| ⊢ + = (+g‘𝐺) ⇒ ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) → (𝑋 + 𝑌) ∈ 𝑆) | ||
| Theorem | subgsubcl 13688 | A subgroup is closed under group subtraction. (Contributed by Mario Carneiro, 18-Jan-2015.) |
| ⊢ − = (-g‘𝐺) ⇒ ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) → (𝑋 − 𝑌) ∈ 𝑆) | ||
| Theorem | subgsub 13689 | The subtraction of elements in a subgroup is the same as subtraction in the group. (Contributed by Mario Carneiro, 15-Jun-2015.) |
| ⊢ − = (-g‘𝐺) & ⊢ 𝐻 = (𝐺 ↾s 𝑆) & ⊢ 𝑁 = (-g‘𝐻) ⇒ ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) → (𝑋 − 𝑌) = (𝑋𝑁𝑌)) | ||
| Theorem | subgmulgcl 13690 | Closure of the group multiple (exponentiation) operation in a subgroup. (Contributed by Mario Carneiro, 13-Jan-2015.) |
| ⊢ · = (.g‘𝐺) ⇒ ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆) → (𝑁 · 𝑋) ∈ 𝑆) | ||
| Theorem | subgmulg 13691 | A group multiple is the same if evaluated in a subgroup. (Contributed by Mario Carneiro, 15-Jan-2015.) |
| ⊢ · = (.g‘𝐺) & ⊢ 𝐻 = (𝐺 ↾s 𝑆) & ⊢ ∙ = (.g‘𝐻) ⇒ ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆) → (𝑁 · 𝑋) = (𝑁 ∙ 𝑋)) | ||
| Theorem | issubg2m 13692* | Characterize the subgroups of a group by closure properties. (Contributed by Mario Carneiro, 2-Dec-2014.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ 𝐼 = (invg‘𝐺) ⇒ ⊢ (𝐺 ∈ Grp → (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝑆 ⊆ 𝐵 ∧ ∃𝑢 𝑢 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 (∀𝑦 ∈ 𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼‘𝑥) ∈ 𝑆)))) | ||
| Theorem | issubgrpd2 13693* | Prove a subgroup by closure (definition version). (Contributed by Stefan O'Rear, 7-Dec-2014.) |
| ⊢ (𝜑 → 𝑆 = (𝐼 ↾s 𝐷)) & ⊢ (𝜑 → 0 = (0g‘𝐼)) & ⊢ (𝜑 → + = (+g‘𝐼)) & ⊢ (𝜑 → 𝐷 ⊆ (Base‘𝐼)) & ⊢ (𝜑 → 0 ∈ 𝐷) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷) → (𝑥 + 𝑦) ∈ 𝐷) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → ((invg‘𝐼)‘𝑥) ∈ 𝐷) & ⊢ (𝜑 → 𝐼 ∈ Grp) ⇒ ⊢ (𝜑 → 𝐷 ∈ (SubGrp‘𝐼)) | ||
| Theorem | issubgrpd 13694* | Prove a subgroup by closure. (Contributed by Stefan O'Rear, 7-Dec-2014.) |
| ⊢ (𝜑 → 𝑆 = (𝐼 ↾s 𝐷)) & ⊢ (𝜑 → 0 = (0g‘𝐼)) & ⊢ (𝜑 → + = (+g‘𝐼)) & ⊢ (𝜑 → 𝐷 ⊆ (Base‘𝐼)) & ⊢ (𝜑 → 0 ∈ 𝐷) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷) → (𝑥 + 𝑦) ∈ 𝐷) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → ((invg‘𝐼)‘𝑥) ∈ 𝐷) & ⊢ (𝜑 → 𝐼 ∈ Grp) ⇒ ⊢ (𝜑 → 𝑆 ∈ Grp) | ||
| Theorem | issubg3 13695* | A subgroup is a symmetric submonoid. (Contributed by Mario Carneiro, 7-Mar-2015.) |
| ⊢ 𝐼 = (invg‘𝐺) ⇒ ⊢ (𝐺 ∈ Grp → (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝑆 ∈ (SubMnd‘𝐺) ∧ ∀𝑥 ∈ 𝑆 (𝐼‘𝑥) ∈ 𝑆))) | ||
| Theorem | issubg4m 13696* | A subgroup is an inhabited subset of the group closed under subtraction. (Contributed by Mario Carneiro, 17-Sep-2015.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ − = (-g‘𝐺) ⇒ ⊢ (𝐺 ∈ Grp → (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝑆 ⊆ 𝐵 ∧ ∃𝑤 𝑤 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥 − 𝑦) ∈ 𝑆))) | ||
| Theorem | grpissubg 13697 | If the base set of a group is contained in the base set of another group, and the group operation of the group is the restriction of the group operation of the other group to its base set, then the (base set of the) group is subgroup of the other group. (Contributed by AV, 14-Mar-2019.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝑆 = (Base‘𝐻) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) → ((𝑆 ⊆ 𝐵 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆))) → 𝑆 ∈ (SubGrp‘𝐺))) | ||
| Theorem | resgrpisgrp 13698 | If the base set of a group is contained in the base set of another group, and the group operation of the group is the restriction of the group operation of the other group to its base set, then the other group restricted to the base set of the group is a group. (Contributed by AV, 14-Mar-2019.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝑆 = (Base‘𝐻) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) → ((𝑆 ⊆ 𝐵 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆))) → (𝐺 ↾s 𝑆) ∈ Grp)) | ||
| Theorem | subgsubm 13699 | A subgroup is a submonoid. (Contributed by Mario Carneiro, 18-Jun-2015.) |
| ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ∈ (SubMnd‘𝐺)) | ||
| Theorem | subsubg 13700 | A subgroup of a subgroup is a subgroup. (Contributed by Mario Carneiro, 19-Jan-2015.) |
| ⊢ 𝐻 = (𝐺 ↾s 𝑆) ⇒ ⊢ (𝑆 ∈ (SubGrp‘𝐺) → (𝐴 ∈ (SubGrp‘𝐻) ↔ (𝐴 ∈ (SubGrp‘𝐺) ∧ 𝐴 ⊆ 𝑆))) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |