Theorem List for Intuitionistic Logic Explorer - 13601-13700 *Has distinct variable
group(s)
Type | Label | Description |
Statement |
|
Theorem | blres 13601 |
A ball in a restricted metric space. (Contributed by Mario Carneiro,
5-Jan-2014.)
|
⊢ 𝐶 = (𝐷 ↾ (𝑌 × 𝑌)) ⇒ ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ (𝑋 ∩ 𝑌) ∧ 𝑅 ∈ ℝ*) → (𝑃(ball‘𝐶)𝑅) = ((𝑃(ball‘𝐷)𝑅) ∩ 𝑌)) |
|
Theorem | xmeterval 13602 |
Value of the "finitely separated" relation. (Contributed by Mario
Carneiro, 24-Aug-2015.)
|
⊢ ∼ = (◡𝐷 “ ℝ)
⇒ ⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝐴 ∼ 𝐵 ↔ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ (𝐴𝐷𝐵) ∈ ℝ))) |
|
Theorem | xmeter 13603 |
The "finitely separated" relation is an equivalence relation.
(Contributed by Mario Carneiro, 24-Aug-2015.)
|
⊢ ∼ = (◡𝐷 “ ℝ)
⇒ ⊢ (𝐷 ∈ (∞Met‘𝑋) → ∼ Er 𝑋) |
|
Theorem | xmetec 13604 |
The equivalence classes under the finite separation equivalence relation
are infinity balls. (Contributed by Mario Carneiro, 24-Aug-2015.)
|
⊢ ∼ = (◡𝐷 “ ℝ)
⇒ ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) → [𝑃] ∼ = (𝑃(ball‘𝐷)+∞)) |
|
Theorem | blssec 13605 |
A ball centered at 𝑃 is contained in the set of points
finitely
separated from 𝑃. This is just an application of ssbl 13593
to the
infinity ball. (Contributed by Mario Carneiro, 24-Aug-2015.)
|
⊢ ∼ = (◡𝐷 “ ℝ)
⇒ ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑆 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑆) ⊆ [𝑃] ∼ ) |
|
Theorem | blpnfctr 13606 |
The infinity ball in an extended metric acts like an ultrametric ball in
that every point in the ball is also its center. (Contributed by Mario
Carneiro, 21-Aug-2015.)
|
⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝐴 ∈ (𝑃(ball‘𝐷)+∞)) → (𝑃(ball‘𝐷)+∞) = (𝐴(ball‘𝐷)+∞)) |
|
Theorem | xmetresbl 13607 |
An extended metric restricted to any ball (in particular the infinity
ball) is a proper metric. Together with xmetec 13604, this shows that any
extended metric space can be "factored" into the disjoint
union of
proper metric spaces, with points in the same region measured by that
region's metric, and points in different regions being distance +∞
from each other. (Contributed by Mario Carneiro, 23-Aug-2015.)
|
⊢ 𝐵 = (𝑃(ball‘𝐷)𝑅) ⇒ ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) → (𝐷 ↾ (𝐵 × 𝐵)) ∈ (Met‘𝐵)) |
|
8.2.4 Open sets of a metric space
|
|
Theorem | mopnrel 13608 |
The class of open sets of a metric space is a relation. (Contributed by
Jim Kingdon, 5-May-2023.)
|
⊢ Rel MetOpen |
|
Theorem | mopnval 13609 |
An open set is a subset of a metric space which includes a ball around
each of its points. Definition 1.3-2 of [Kreyszig] p. 18. The object
(MetOpen‘𝐷) is the family of all open sets in
the metric space
determined by the metric 𝐷. By mopntop 13611, the open sets of a
metric space form a topology 𝐽, whose base set is ∪ 𝐽 by
mopnuni 13612. (Contributed by NM, 1-Sep-2006.) (Revised
by Mario
Carneiro, 12-Nov-2013.)
|
⊢ 𝐽 = (MetOpen‘𝐷) ⇒ ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐽 = (topGen‘ran (ball‘𝐷))) |
|
Theorem | mopntopon 13610 |
The set of open sets of a metric space 𝑋 is a topology on 𝑋.
Remark in [Kreyszig] p. 19. This
theorem connects the two concepts and
makes available the theorems for topologies for use with metric spaces.
(Contributed by Mario Carneiro, 24-Aug-2015.)
|
⊢ 𝐽 = (MetOpen‘𝐷) ⇒ ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ (TopOn‘𝑋)) |
|
Theorem | mopntop 13611 |
The set of open sets of a metric space is a topology. (Contributed by
NM, 28-Aug-2006.) (Revised by Mario Carneiro, 12-Nov-2013.)
|
⊢ 𝐽 = (MetOpen‘𝐷) ⇒ ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ Top) |
|
Theorem | mopnuni 13612 |
The union of all open sets in a metric space is its underlying set.
(Contributed by NM, 4-Sep-2006.) (Revised by Mario Carneiro,
12-Nov-2013.)
|
⊢ 𝐽 = (MetOpen‘𝐷) ⇒ ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝑋 = ∪ 𝐽) |
|
Theorem | elmopn 13613* |
The defining property of an open set of a metric space. (Contributed by
NM, 1-Sep-2006.) (Revised by Mario Carneiro, 12-Nov-2013.)
|
⊢ 𝐽 = (MetOpen‘𝐷) ⇒ ⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝐴 ∈ 𝐽 ↔ (𝐴 ⊆ 𝑋 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ ran (ball‘𝐷)(𝑥 ∈ 𝑦 ∧ 𝑦 ⊆ 𝐴)))) |
|
Theorem | mopnfss 13614 |
The family of open sets of a metric space is a collection of subsets of
the base set. (Contributed by NM, 3-Sep-2006.) (Revised by Mario
Carneiro, 12-Nov-2013.)
|
⊢ 𝐽 = (MetOpen‘𝐷) ⇒ ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ⊆ 𝒫 𝑋) |
|
Theorem | mopnm 13615 |
The base set of a metric space is open. Part of Theorem T1 of
[Kreyszig] p. 19. (Contributed by NM,
4-Sep-2006.) (Revised by Mario
Carneiro, 12-Nov-2013.)
|
⊢ 𝐽 = (MetOpen‘𝐷) ⇒ ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝑋 ∈ 𝐽) |
|
Theorem | elmopn2 13616* |
A defining property of an open set of a metric space. (Contributed by
NM, 5-May-2007.) (Revised by Mario Carneiro, 12-Nov-2013.)
|
⊢ 𝐽 = (MetOpen‘𝐷) ⇒ ⊢ (𝐷 ∈ (∞Met‘𝑋) → (𝐴 ∈ 𝐽 ↔ (𝐴 ⊆ 𝑋 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ ℝ+ (𝑥(ball‘𝐷)𝑦) ⊆ 𝐴))) |
|
Theorem | mopnss 13617 |
An open set of a metric space is a subspace of its base set.
(Contributed by NM, 3-Sep-2006.)
|
⊢ 𝐽 = (MetOpen‘𝐷) ⇒ ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ 𝐽) → 𝐴 ⊆ 𝑋) |
|
Theorem | isxms 13618 |
Express the predicate "〈𝑋, 𝐷〉 is an extended metric
space"
with underlying set 𝑋 and distance function 𝐷.
(Contributed by
Mario Carneiro, 2-Sep-2015.)
|
⊢ 𝐽 = (TopOpen‘𝐾)
& ⊢ 𝑋 = (Base‘𝐾)
& ⊢ 𝐷 = ((dist‘𝐾) ↾ (𝑋 × 𝑋)) ⇒ ⊢ (𝐾 ∈ ∞MetSp ↔ (𝐾 ∈ TopSp ∧ 𝐽 = (MetOpen‘𝐷))) |
|
Theorem | isxms2 13619 |
Express the predicate "〈𝑋, 𝐷〉 is an extended metric
space"
with underlying set 𝑋 and distance function 𝐷.
(Contributed by
Mario Carneiro, 2-Sep-2015.)
|
⊢ 𝐽 = (TopOpen‘𝐾)
& ⊢ 𝑋 = (Base‘𝐾)
& ⊢ 𝐷 = ((dist‘𝐾) ↾ (𝑋 × 𝑋)) ⇒ ⊢ (𝐾 ∈ ∞MetSp ↔ (𝐷 ∈ (∞Met‘𝑋) ∧ 𝐽 = (MetOpen‘𝐷))) |
|
Theorem | isms 13620 |
Express the predicate "〈𝑋, 𝐷〉 is a metric space" with
underlying set 𝑋 and distance function 𝐷.
(Contributed by NM,
27-Aug-2006.) (Revised by Mario Carneiro, 24-Aug-2015.)
|
⊢ 𝐽 = (TopOpen‘𝐾)
& ⊢ 𝑋 = (Base‘𝐾)
& ⊢ 𝐷 = ((dist‘𝐾) ↾ (𝑋 × 𝑋)) ⇒ ⊢ (𝐾 ∈ MetSp ↔ (𝐾 ∈ ∞MetSp ∧ 𝐷 ∈ (Met‘𝑋))) |
|
Theorem | isms2 13621 |
Express the predicate "〈𝑋, 𝐷〉 is a metric space" with
underlying set 𝑋 and distance function 𝐷.
(Contributed by NM,
27-Aug-2006.) (Revised by Mario Carneiro, 24-Aug-2015.)
|
⊢ 𝐽 = (TopOpen‘𝐾)
& ⊢ 𝑋 = (Base‘𝐾)
& ⊢ 𝐷 = ((dist‘𝐾) ↾ (𝑋 × 𝑋)) ⇒ ⊢ (𝐾 ∈ MetSp ↔ (𝐷 ∈ (Met‘𝑋) ∧ 𝐽 = (MetOpen‘𝐷))) |
|
Theorem | xmstopn 13622 |
The topology component of an extended metric space coincides with the
topology generated by the metric component. (Contributed by Mario
Carneiro, 26-Aug-2015.)
|
⊢ 𝐽 = (TopOpen‘𝐾)
& ⊢ 𝑋 = (Base‘𝐾)
& ⊢ 𝐷 = ((dist‘𝐾) ↾ (𝑋 × 𝑋)) ⇒ ⊢ (𝐾 ∈ ∞MetSp → 𝐽 = (MetOpen‘𝐷)) |
|
Theorem | mstopn 13623 |
The topology component of a metric space coincides with the topology
generated by the metric component. (Contributed by Mario Carneiro,
26-Aug-2015.)
|
⊢ 𝐽 = (TopOpen‘𝐾)
& ⊢ 𝑋 = (Base‘𝐾)
& ⊢ 𝐷 = ((dist‘𝐾) ↾ (𝑋 × 𝑋)) ⇒ ⊢ (𝐾 ∈ MetSp → 𝐽 = (MetOpen‘𝐷)) |
|
Theorem | xmstps 13624 |
An extended metric space is a topological space. (Contributed by Mario
Carneiro, 26-Aug-2015.)
|
⊢ (𝑀 ∈ ∞MetSp → 𝑀 ∈ TopSp) |
|
Theorem | msxms 13625 |
A metric space is an extended metric space. (Contributed by Mario
Carneiro, 26-Aug-2015.)
|
⊢ (𝑀 ∈ MetSp → 𝑀 ∈ ∞MetSp) |
|
Theorem | mstps 13626 |
A metric space is a topological space. (Contributed by Mario Carneiro,
26-Aug-2015.)
|
⊢ (𝑀 ∈ MetSp → 𝑀 ∈ TopSp) |
|
Theorem | xmsxmet 13627 |
The distance function, suitably truncated, is an extended metric on
𝑋. (Contributed by Mario Carneiro,
2-Sep-2015.)
|
⊢ 𝑋 = (Base‘𝑀)
& ⊢ 𝐷 = ((dist‘𝑀) ↾ (𝑋 × 𝑋)) ⇒ ⊢ (𝑀 ∈ ∞MetSp → 𝐷 ∈ (∞Met‘𝑋)) |
|
Theorem | msmet 13628 |
The distance function, suitably truncated, is a metric on 𝑋.
(Contributed by Mario Carneiro, 12-Nov-2013.)
|
⊢ 𝑋 = (Base‘𝑀)
& ⊢ 𝐷 = ((dist‘𝑀) ↾ (𝑋 × 𝑋)) ⇒ ⊢ (𝑀 ∈ MetSp → 𝐷 ∈ (Met‘𝑋)) |
|
Theorem | msf 13629 |
The distance function of a metric space is a function into the real
numbers. (Contributed by NM, 30-Aug-2006.) (Revised by Mario Carneiro,
12-Nov-2013.)
|
⊢ 𝑋 = (Base‘𝑀)
& ⊢ 𝐷 = ((dist‘𝑀) ↾ (𝑋 × 𝑋)) ⇒ ⊢ (𝑀 ∈ MetSp → 𝐷:(𝑋 × 𝑋)⟶ℝ) |
|
Theorem | xmsxmet2 13630 |
The distance function, suitably truncated, is an extended metric on
𝑋. (Contributed by Mario Carneiro,
2-Oct-2015.)
|
⊢ 𝑋 = (Base‘𝑀)
& ⊢ 𝐷 = (dist‘𝑀) ⇒ ⊢ (𝑀 ∈ ∞MetSp → (𝐷 ↾ (𝑋 × 𝑋)) ∈ (∞Met‘𝑋)) |
|
Theorem | msmet2 13631 |
The distance function, suitably truncated, is a metric on 𝑋.
(Contributed by Mario Carneiro, 2-Oct-2015.)
|
⊢ 𝑋 = (Base‘𝑀)
& ⊢ 𝐷 = (dist‘𝑀) ⇒ ⊢ (𝑀 ∈ MetSp → (𝐷 ↾ (𝑋 × 𝑋)) ∈ (Met‘𝑋)) |
|
Theorem | mscl 13632 |
Closure of the distance function of a metric space. (Contributed by NM,
30-Aug-2006.) (Revised by Mario Carneiro, 2-Oct-2015.)
|
⊢ 𝑋 = (Base‘𝑀)
& ⊢ 𝐷 = (dist‘𝑀) ⇒ ⊢ ((𝑀 ∈ MetSp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐵) ∈ ℝ) |
|
Theorem | xmscl 13633 |
Closure of the distance function of an extended metric space.
(Contributed by Mario Carneiro, 2-Oct-2015.)
|
⊢ 𝑋 = (Base‘𝑀)
& ⊢ 𝐷 = (dist‘𝑀) ⇒ ⊢ ((𝑀 ∈ ∞MetSp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐵) ∈
ℝ*) |
|
Theorem | xmsge0 13634 |
The distance function in an extended metric space is nonnegative.
(Contributed by Mario Carneiro, 4-Oct-2015.)
|
⊢ 𝑋 = (Base‘𝑀)
& ⊢ 𝐷 = (dist‘𝑀) ⇒ ⊢ ((𝑀 ∈ ∞MetSp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → 0 ≤ (𝐴𝐷𝐵)) |
|
Theorem | xmseq0 13635 |
The distance between two points in an extended metric space is zero iff
the two points are identical. (Contributed by Mario Carneiro,
2-Oct-2015.)
|
⊢ 𝑋 = (Base‘𝑀)
& ⊢ 𝐷 = (dist‘𝑀) ⇒ ⊢ ((𝑀 ∈ ∞MetSp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐴𝐷𝐵) = 0 ↔ 𝐴 = 𝐵)) |
|
Theorem | xmssym 13636 |
The distance function in an extended metric space is symmetric.
(Contributed by Mario Carneiro, 2-Oct-2015.)
|
⊢ 𝑋 = (Base‘𝑀)
& ⊢ 𝐷 = (dist‘𝑀) ⇒ ⊢ ((𝑀 ∈ ∞MetSp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐵) = (𝐵𝐷𝐴)) |
|
Theorem | xmstri2 13637 |
Triangle inequality for the distance function of an extended metric.
(Contributed by Mario Carneiro, 2-Oct-2015.)
|
⊢ 𝑋 = (Base‘𝑀)
& ⊢ 𝐷 = (dist‘𝑀) ⇒ ⊢ ((𝑀 ∈ ∞MetSp ∧ (𝐶 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐴𝐷𝐵) ≤ ((𝐶𝐷𝐴) +𝑒 (𝐶𝐷𝐵))) |
|
Theorem | mstri2 13638 |
Triangle inequality for the distance function of a metric space.
(Contributed by Mario Carneiro, 2-Oct-2015.)
|
⊢ 𝑋 = (Base‘𝑀)
& ⊢ 𝐷 = (dist‘𝑀) ⇒ ⊢ ((𝑀 ∈ MetSp ∧ (𝐶 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐴𝐷𝐵) ≤ ((𝐶𝐷𝐴) + (𝐶𝐷𝐵))) |
|
Theorem | xmstri 13639 |
Triangle inequality for the distance function of a metric space.
Definition 14-1.1(d) of [Gleason] p.
223. (Contributed by Mario
Carneiro, 2-Oct-2015.)
|
⊢ 𝑋 = (Base‘𝑀)
& ⊢ 𝐷 = (dist‘𝑀) ⇒ ⊢ ((𝑀 ∈ ∞MetSp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴𝐷𝐵) ≤ ((𝐴𝐷𝐶) +𝑒 (𝐶𝐷𝐵))) |
|
Theorem | mstri 13640 |
Triangle inequality for the distance function of a metric space.
Definition 14-1.1(d) of [Gleason] p.
223. (Contributed by Mario
Carneiro, 2-Oct-2015.)
|
⊢ 𝑋 = (Base‘𝑀)
& ⊢ 𝐷 = (dist‘𝑀) ⇒ ⊢ ((𝑀 ∈ MetSp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴𝐷𝐵) ≤ ((𝐴𝐷𝐶) + (𝐶𝐷𝐵))) |
|
Theorem | xmstri3 13641 |
Triangle inequality for the distance function of an extended metric.
(Contributed by Mario Carneiro, 2-Oct-2015.)
|
⊢ 𝑋 = (Base‘𝑀)
& ⊢ 𝐷 = (dist‘𝑀) ⇒ ⊢ ((𝑀 ∈ ∞MetSp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴𝐷𝐵) ≤ ((𝐴𝐷𝐶) +𝑒 (𝐵𝐷𝐶))) |
|
Theorem | mstri3 13642 |
Triangle inequality for the distance function of a metric space.
(Contributed by Mario Carneiro, 2-Oct-2015.)
|
⊢ 𝑋 = (Base‘𝑀)
& ⊢ 𝐷 = (dist‘𝑀) ⇒ ⊢ ((𝑀 ∈ MetSp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴𝐷𝐵) ≤ ((𝐴𝐷𝐶) + (𝐵𝐷𝐶))) |
|
Theorem | msrtri 13643 |
Reverse triangle inequality for the distance function of a metric space.
(Contributed by Mario Carneiro, 4-Oct-2015.)
|
⊢ 𝑋 = (Base‘𝑀)
& ⊢ 𝐷 = (dist‘𝑀) ⇒ ⊢ ((𝑀 ∈ MetSp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (abs‘((𝐴𝐷𝐶) − (𝐵𝐷𝐶))) ≤ (𝐴𝐷𝐵)) |
|
Theorem | xmspropd 13644 |
Property deduction for an extended metric space. (Contributed by Mario
Carneiro, 4-Oct-2015.)
|
⊢ (𝜑 → 𝐵 = (Base‘𝐾)) & ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) & ⊢ (𝜑 → ((dist‘𝐾) ↾ (𝐵 × 𝐵)) = ((dist‘𝐿) ↾ (𝐵 × 𝐵))) & ⊢ (𝜑 → (TopOpen‘𝐾) = (TopOpen‘𝐿))
⇒ ⊢ (𝜑 → (𝐾 ∈ ∞MetSp ↔ 𝐿 ∈
∞MetSp)) |
|
Theorem | mspropd 13645 |
Property deduction for a metric space. (Contributed by Mario Carneiro,
4-Oct-2015.)
|
⊢ (𝜑 → 𝐵 = (Base‘𝐾)) & ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) & ⊢ (𝜑 → ((dist‘𝐾) ↾ (𝐵 × 𝐵)) = ((dist‘𝐿) ↾ (𝐵 × 𝐵))) & ⊢ (𝜑 → (TopOpen‘𝐾) = (TopOpen‘𝐿))
⇒ ⊢ (𝜑 → (𝐾 ∈ MetSp ↔ 𝐿 ∈ MetSp)) |
|
Theorem | setsmsbasg 13646 |
The base set of a constructed metric space. (Contributed by Mario
Carneiro, 28-Aug-2015.)
|
⊢ (𝜑 → 𝑋 = (Base‘𝑀)) & ⊢ (𝜑 → 𝐷 = ((dist‘𝑀) ↾ (𝑋 × 𝑋))) & ⊢ (𝜑 → 𝐾 = (𝑀 sSet 〈(TopSet‘ndx),
(MetOpen‘𝐷)〉)) & ⊢ (𝜑 → 𝑀 ∈ 𝑉)
& ⊢ (𝜑 → (MetOpen‘𝐷) ∈ 𝑊) ⇒ ⊢ (𝜑 → 𝑋 = (Base‘𝐾)) |
|
Theorem | setsmsdsg 13647 |
The distance function of a constructed metric space. (Contributed by
Mario Carneiro, 28-Aug-2015.)
|
⊢ (𝜑 → 𝑋 = (Base‘𝑀)) & ⊢ (𝜑 → 𝐷 = ((dist‘𝑀) ↾ (𝑋 × 𝑋))) & ⊢ (𝜑 → 𝐾 = (𝑀 sSet 〈(TopSet‘ndx),
(MetOpen‘𝐷)〉)) & ⊢ (𝜑 → 𝑀 ∈ 𝑉)
& ⊢ (𝜑 → (MetOpen‘𝐷) ∈ 𝑊) ⇒ ⊢ (𝜑 → (dist‘𝑀) = (dist‘𝐾)) |
|
Theorem | setsmstsetg 13648 |
The topology of a constructed metric space. (Contributed by Mario
Carneiro, 28-Aug-2015.) (Revised by Jim Kingdon, 7-May-2023.)
|
⊢ (𝜑 → 𝑋 = (Base‘𝑀)) & ⊢ (𝜑 → 𝐷 = ((dist‘𝑀) ↾ (𝑋 × 𝑋))) & ⊢ (𝜑 → 𝐾 = (𝑀 sSet 〈(TopSet‘ndx),
(MetOpen‘𝐷)〉)) & ⊢ (𝜑 → 𝑀 ∈ 𝑉)
& ⊢ (𝜑 → (MetOpen‘𝐷) ∈ 𝑊) ⇒ ⊢ (𝜑 → (MetOpen‘𝐷) = (TopSet‘𝐾)) |
|
Theorem | mopni 13649* |
An open set of a metric space includes a ball around each of its points.
(Contributed by NM, 3-Sep-2006.) (Revised by Mario Carneiro,
12-Nov-2013.)
|
⊢ 𝐽 = (MetOpen‘𝐷) ⇒ ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ 𝐽 ∧ 𝑃 ∈ 𝐴) → ∃𝑥 ∈ ran (ball‘𝐷)(𝑃 ∈ 𝑥 ∧ 𝑥 ⊆ 𝐴)) |
|
Theorem | mopni2 13650* |
An open set of a metric space includes a ball around each of its points.
(Contributed by NM, 2-May-2007.) (Revised by Mario Carneiro,
12-Nov-2013.)
|
⊢ 𝐽 = (MetOpen‘𝐷) ⇒ ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ 𝐽 ∧ 𝑃 ∈ 𝐴) → ∃𝑥 ∈ ℝ+ (𝑃(ball‘𝐷)𝑥) ⊆ 𝐴) |
|
Theorem | mopni3 13651* |
An open set of a metric space includes an arbitrarily small ball around
each of its points. (Contributed by NM, 20-Sep-2007.) (Revised by
Mario Carneiro, 12-Nov-2013.)
|
⊢ 𝐽 = (MetOpen‘𝐷) ⇒ ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ 𝐽 ∧ 𝑃 ∈ 𝐴) ∧ 𝑅 ∈ ℝ+) →
∃𝑥 ∈
ℝ+ (𝑥
< 𝑅 ∧ (𝑃(ball‘𝐷)𝑥) ⊆ 𝐴)) |
|
Theorem | blssopn 13652 |
The balls of a metric space are open sets. (Contributed by NM,
12-Sep-2006.) (Revised by Mario Carneiro, 23-Dec-2013.)
|
⊢ 𝐽 = (MetOpen‘𝐷) ⇒ ⊢ (𝐷 ∈ (∞Met‘𝑋) → ran (ball‘𝐷) ⊆ 𝐽) |
|
Theorem | unimopn 13653 |
The union of a collection of open sets of a metric space is open.
Theorem T2 of [Kreyszig] p. 19.
(Contributed by NM, 4-Sep-2006.)
(Revised by Mario Carneiro, 23-Dec-2013.)
|
⊢ 𝐽 = (MetOpen‘𝐷) ⇒ ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ⊆ 𝐽) → ∪ 𝐴 ∈ 𝐽) |
|
Theorem | mopnin 13654 |
The intersection of two open sets of a metric space is open.
(Contributed by NM, 4-Sep-2006.) (Revised by Mario Carneiro,
23-Dec-2013.)
|
⊢ 𝐽 = (MetOpen‘𝐷) ⇒ ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ 𝐽 ∧ 𝐵 ∈ 𝐽) → (𝐴 ∩ 𝐵) ∈ 𝐽) |
|
Theorem | mopn0 13655 |
The empty set is an open set of a metric space. Part of Theorem T1 of
[Kreyszig] p. 19. (Contributed by NM,
4-Sep-2006.)
|
⊢ 𝐽 = (MetOpen‘𝐷) ⇒ ⊢ (𝐷 ∈ (∞Met‘𝑋) → ∅ ∈ 𝐽) |
|
Theorem | rnblopn 13656 |
A ball of a metric space is an open set. (Contributed by NM,
12-Sep-2006.)
|
⊢ 𝐽 = (MetOpen‘𝐷) ⇒ ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵 ∈ ran (ball‘𝐷)) → 𝐵 ∈ 𝐽) |
|
Theorem | blopn 13657 |
A ball of a metric space is an open set. (Contributed by NM,
9-Mar-2007.) (Revised by Mario Carneiro, 12-Nov-2013.)
|
⊢ 𝐽 = (MetOpen‘𝐷) ⇒ ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑅) ∈ 𝐽) |
|
Theorem | neibl 13658* |
The neighborhoods around a point 𝑃 of a metric space are those
subsets containing a ball around 𝑃. Definition of neighborhood in
[Kreyszig] p. 19. (Contributed by NM,
8-Nov-2007.) (Revised by Mario
Carneiro, 23-Dec-2013.)
|
⊢ 𝐽 = (MetOpen‘𝐷) ⇒ ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) → (𝑁 ∈ ((nei‘𝐽)‘{𝑃}) ↔ (𝑁 ⊆ 𝑋 ∧ ∃𝑟 ∈ ℝ+ (𝑃(ball‘𝐷)𝑟) ⊆ 𝑁))) |
|
Theorem | blnei 13659 |
A ball around a point is a neighborhood of the point. (Contributed by
NM, 8-Nov-2007.) (Revised by Mario Carneiro, 24-Aug-2015.)
|
⊢ 𝐽 = (MetOpen‘𝐷) ⇒ ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ+) → (𝑃(ball‘𝐷)𝑅) ∈ ((nei‘𝐽)‘{𝑃})) |
|
Theorem | blsscls2 13660* |
A smaller closed ball is contained in a larger open ball. (Contributed
by Mario Carneiro, 10-Jan-2014.)
|
⊢ 𝐽 = (MetOpen‘𝐷)
& ⊢ 𝑆 = {𝑧 ∈ 𝑋 ∣ (𝑃𝐷𝑧) ≤ 𝑅} ⇒ ⊢ (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑃 ∈ 𝑋) ∧ (𝑅 ∈ ℝ* ∧ 𝑇 ∈ ℝ*
∧ 𝑅 < 𝑇)) → 𝑆 ⊆ (𝑃(ball‘𝐷)𝑇)) |
|
Theorem | metss 13661* |
Two ways of saying that metric 𝐷 generates a finer topology than
metric 𝐶. (Contributed by Mario Carneiro,
12-Nov-2013.) (Revised
by Mario Carneiro, 24-Aug-2015.)
|
⊢ 𝐽 = (MetOpen‘𝐶)
& ⊢ 𝐾 = (MetOpen‘𝐷) ⇒ ⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) → (𝐽 ⊆ 𝐾 ↔ ∀𝑥 ∈ 𝑋 ∀𝑟 ∈ ℝ+ ∃𝑠 ∈ ℝ+
(𝑥(ball‘𝐷)𝑠) ⊆ (𝑥(ball‘𝐶)𝑟))) |
|
Theorem | metequiv 13662* |
Two ways of saying that two metrics generate the same topology. Two
metrics satisfying the right-hand side are said to be (topologically)
equivalent. (Contributed by Jeff Hankins, 21-Jun-2009.) (Revised by
Mario Carneiro, 12-Nov-2013.)
|
⊢ 𝐽 = (MetOpen‘𝐶)
& ⊢ 𝐾 = (MetOpen‘𝐷) ⇒ ⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) → (𝐽 = 𝐾 ↔ ∀𝑥 ∈ 𝑋 (∀𝑟 ∈ ℝ+ ∃𝑠 ∈ ℝ+
(𝑥(ball‘𝐷)𝑠) ⊆ (𝑥(ball‘𝐶)𝑟) ∧ ∀𝑎 ∈ ℝ+ ∃𝑏 ∈ ℝ+
(𝑥(ball‘𝐶)𝑏) ⊆ (𝑥(ball‘𝐷)𝑎)))) |
|
Theorem | metequiv2 13663* |
If there is a sequence of radii approaching zero for which the balls of
both metrics coincide, then the generated topologies are equivalent.
(Contributed by Mario Carneiro, 26-Aug-2015.)
|
⊢ 𝐽 = (MetOpen‘𝐶)
& ⊢ 𝐾 = (MetOpen‘𝐷) ⇒ ⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑋)) → (∀𝑥 ∈ 𝑋 ∀𝑟 ∈ ℝ+ ∃𝑠 ∈ ℝ+
(𝑠 ≤ 𝑟 ∧ (𝑥(ball‘𝐶)𝑠) = (𝑥(ball‘𝐷)𝑠)) → 𝐽 = 𝐾)) |
|
Theorem | metss2lem 13664* |
Lemma for metss2 13665. (Contributed by Mario Carneiro,
14-Sep-2015.)
|
⊢ 𝐽 = (MetOpen‘𝐶)
& ⊢ 𝐾 = (MetOpen‘𝐷)
& ⊢ (𝜑 → 𝐶 ∈ (Met‘𝑋)) & ⊢ (𝜑 → 𝐷 ∈ (Met‘𝑋)) & ⊢ (𝜑 → 𝑅 ∈ ℝ+) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝑥𝐶𝑦) ≤ (𝑅 · (𝑥𝐷𝑦))) ⇒ ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑆 ∈ ℝ+)) → (𝑥(ball‘𝐷)(𝑆 / 𝑅)) ⊆ (𝑥(ball‘𝐶)𝑆)) |
|
Theorem | metss2 13665* |
If the metric 𝐷 is "strongly finer" than
𝐶
(meaning that there
is a positive real constant 𝑅 such that
𝐶(𝑥, 𝑦) ≤ 𝑅 · 𝐷(𝑥, 𝑦)), then 𝐷 generates a finer
topology. (Using this theorem twice in each direction states that if
two metrics are strongly equivalent, then they generate the same
topology.) (Contributed by Mario Carneiro, 14-Sep-2015.)
|
⊢ 𝐽 = (MetOpen‘𝐶)
& ⊢ 𝐾 = (MetOpen‘𝐷)
& ⊢ (𝜑 → 𝐶 ∈ (Met‘𝑋)) & ⊢ (𝜑 → 𝐷 ∈ (Met‘𝑋)) & ⊢ (𝜑 → 𝑅 ∈ ℝ+) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝑥𝐶𝑦) ≤ (𝑅 · (𝑥𝐷𝑦))) ⇒ ⊢ (𝜑 → 𝐽 ⊆ 𝐾) |
|
Theorem | comet 13666* |
The composition of an extended metric with a monotonic subadditive
function is an extended metric. (Contributed by Mario Carneiro,
21-Mar-2015.)
|
⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝑋)) & ⊢ (𝜑 → 𝐹:(0[,]+∞)⟶ℝ*) & ⊢ ((𝜑 ∧ 𝑥 ∈ (0[,]+∞)) → ((𝐹‘𝑥) = 0 ↔ 𝑥 = 0))
& ⊢ ((𝜑
∧ (𝑥 ∈ (0[,]+∞) ∧
𝑦 ∈ (0[,]+∞))) →
(𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≤ (𝐹‘𝑦)))
& ⊢ ((𝜑
∧ (𝑥 ∈ (0[,]+∞) ∧
𝑦 ∈ (0[,]+∞))) →
(𝐹‘(𝑥 +𝑒 𝑦)) ≤ ((𝐹‘𝑥) +𝑒 (𝐹‘𝑦))) ⇒ ⊢ (𝜑
→ (𝐹 ∘ 𝐷) ∈ (∞Met‘𝑋)) |
|
Theorem | bdmetval 13667* |
Value of the standard bounded metric. (Contributed by Mario Carneiro,
26-Aug-2015.) (Revised by Jim Kingdon, 9-May-2023.)
|
⊢ 𝐷 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ inf({(𝑥𝐶𝑦), 𝑅}, ℝ*, <
)) ⇒ ⊢ (((𝐶:(𝑋 × 𝑋)⟶ℝ* ∧ 𝑅 ∈ ℝ*)
∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐴𝐷𝐵) = inf({(𝐴𝐶𝐵), 𝑅}, ℝ*, <
)) |
|
Theorem | bdxmet 13668* |
The standard bounded metric is an extended metric given an extended
metric and a positive extended real cutoff. (Contributed by Mario
Carneiro, 26-Aug-2015.) (Revised by Jim Kingdon, 9-May-2023.)
|
⊢ 𝐷 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ inf({(𝑥𝐶𝑦), 𝑅}, ℝ*, <
)) ⇒ ⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) → 𝐷 ∈ (∞Met‘𝑋)) |
|
Theorem | bdmet 13669* |
The standard bounded metric is a proper metric given an extended metric
and a positive real cutoff. (Contributed by Mario Carneiro,
26-Aug-2015.) (Revised by Jim Kingdon, 19-May-2023.)
|
⊢ 𝐷 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ inf({(𝑥𝐶𝑦), 𝑅}, ℝ*, <
)) ⇒ ⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ+) → 𝐷 ∈ (Met‘𝑋)) |
|
Theorem | bdbl 13670* |
The standard bounded metric corresponding to 𝐶 generates the same
balls as 𝐶 for radii less than 𝑅.
(Contributed by Mario
Carneiro, 26-Aug-2015.) (Revised by Jim Kingdon, 19-May-2023.)
|
⊢ 𝐷 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ inf({(𝑥𝐶𝑦), 𝑅}, ℝ*, <
)) ⇒ ⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) ∧ (𝑃 ∈ 𝑋 ∧ 𝑆 ∈ ℝ* ∧ 𝑆 ≤ 𝑅)) → (𝑃(ball‘𝐷)𝑆) = (𝑃(ball‘𝐶)𝑆)) |
|
Theorem | bdmopn 13671* |
The standard bounded metric corresponding to 𝐶 generates the same
topology as 𝐶. (Contributed by Mario Carneiro,
26-Aug-2015.)
(Revised by Jim Kingdon, 19-May-2023.)
|
⊢ 𝐷 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ inf({(𝑥𝐶𝑦), 𝑅}, ℝ*, < )) & ⊢ 𝐽 = (MetOpen‘𝐶)
⇒ ⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑅 ∈ ℝ* ∧ 0 <
𝑅) → 𝐽 = (MetOpen‘𝐷)) |
|
Theorem | mopnex 13672* |
The topology generated by an extended metric can also be generated by a
true metric. Thus, "metrizable topologies" can equivalently
be defined
in terms of metrics or extended metrics. (Contributed by Mario
Carneiro, 26-Aug-2015.)
|
⊢ 𝐽 = (MetOpen‘𝐷) ⇒ ⊢ (𝐷 ∈ (∞Met‘𝑋) → ∃𝑑 ∈ (Met‘𝑋)𝐽 = (MetOpen‘𝑑)) |
|
Theorem | metrest 13673 |
Two alternate formulations of a subspace topology of a metric space
topology. (Contributed by Jeff Hankins, 19-Aug-2009.) (Proof shortened
by Mario Carneiro, 5-Jan-2014.)
|
⊢ 𝐷 = (𝐶 ↾ (𝑌 × 𝑌)) & ⊢ 𝐽 = (MetOpen‘𝐶) & ⊢ 𝐾 = (MetOpen‘𝐷)
⇒ ⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝑌 ⊆ 𝑋) → (𝐽 ↾t 𝑌) = 𝐾) |
|
Theorem | xmetxp 13674* |
The maximum metric (Chebyshev distance) on the product of two sets.
(Contributed by Jim Kingdon, 11-Oct-2023.)
|
⊢ 𝑃 = (𝑢 ∈ (𝑋 × 𝑌), 𝑣 ∈ (𝑋 × 𝑌) ↦ sup({((1st
‘𝑢)𝑀(1st ‘𝑣)), ((2nd ‘𝑢)𝑁(2nd ‘𝑣))}, ℝ*, <
))
& ⊢ (𝜑 → 𝑀 ∈ (∞Met‘𝑋)) & ⊢ (𝜑 → 𝑁 ∈ (∞Met‘𝑌)) ⇒ ⊢ (𝜑 → 𝑃 ∈ (∞Met‘(𝑋 × 𝑌))) |
|
Theorem | xmetxpbl 13675* |
The maximum metric (Chebyshev distance) on the product of two sets,
expressed in terms of balls centered on a point 𝐶 with radius
𝑅. (Contributed by Jim Kingdon,
22-Oct-2023.)
|
⊢ 𝑃 = (𝑢 ∈ (𝑋 × 𝑌), 𝑣 ∈ (𝑋 × 𝑌) ↦ sup({((1st
‘𝑢)𝑀(1st ‘𝑣)), ((2nd ‘𝑢)𝑁(2nd ‘𝑣))}, ℝ*, <
))
& ⊢ (𝜑 → 𝑀 ∈ (∞Met‘𝑋)) & ⊢ (𝜑 → 𝑁 ∈ (∞Met‘𝑌)) & ⊢ (𝜑 → 𝑅 ∈ ℝ*) & ⊢ (𝜑 → 𝐶 ∈ (𝑋 × 𝑌)) ⇒ ⊢ (𝜑 → (𝐶(ball‘𝑃)𝑅) = (((1st ‘𝐶)(ball‘𝑀)𝑅) × ((2nd ‘𝐶)(ball‘𝑁)𝑅))) |
|
Theorem | xmettxlem 13676* |
Lemma for xmettx 13677. (Contributed by Jim Kingdon, 15-Oct-2023.)
|
⊢ 𝑃 = (𝑢 ∈ (𝑋 × 𝑌), 𝑣 ∈ (𝑋 × 𝑌) ↦ sup({((1st
‘𝑢)𝑀(1st ‘𝑣)), ((2nd ‘𝑢)𝑁(2nd ‘𝑣))}, ℝ*, <
))
& ⊢ (𝜑 → 𝑀 ∈ (∞Met‘𝑋)) & ⊢ (𝜑 → 𝑁 ∈ (∞Met‘𝑌)) & ⊢ 𝐽 = (MetOpen‘𝑀) & ⊢ 𝐾 = (MetOpen‘𝑁) & ⊢ 𝐿 = (MetOpen‘𝑃)
⇒ ⊢ (𝜑 → 𝐿 ⊆ (𝐽 ×t 𝐾)) |
|
Theorem | xmettx 13677* |
The maximum metric (Chebyshev distance) on the product of two sets,
expressed as a binary topological product. (Contributed by Jim
Kingdon, 11-Oct-2023.)
|
⊢ 𝑃 = (𝑢 ∈ (𝑋 × 𝑌), 𝑣 ∈ (𝑋 × 𝑌) ↦ sup({((1st
‘𝑢)𝑀(1st ‘𝑣)), ((2nd ‘𝑢)𝑁(2nd ‘𝑣))}, ℝ*, <
))
& ⊢ (𝜑 → 𝑀 ∈ (∞Met‘𝑋)) & ⊢ (𝜑 → 𝑁 ∈ (∞Met‘𝑌)) & ⊢ 𝐽 = (MetOpen‘𝑀) & ⊢ 𝐾 = (MetOpen‘𝑁) & ⊢ 𝐿 = (MetOpen‘𝑃)
⇒ ⊢ (𝜑 → 𝐿 = (𝐽 ×t 𝐾)) |
|
8.2.5 Continuity in metric spaces
|
|
Theorem | metcnp3 13678* |
Two ways to express that 𝐹 is continuous at 𝑃 for
metric spaces.
Proposition 14-4.2 of [Gleason] p. 240.
(Contributed by NM,
17-May-2007.) (Revised by Mario Carneiro, 28-Aug-2015.)
|
⊢ 𝐽 = (MetOpen‘𝐶)
& ⊢ 𝐾 = (MetOpen‘𝐷) ⇒ ⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃 ∈ 𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+
(𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹‘𝑃)(ball‘𝐷)𝑦)))) |
|
Theorem | metcnp 13679* |
Two ways to say a mapping from metric 𝐶 to metric 𝐷 is
continuous at point 𝑃. (Contributed by NM, 11-May-2007.)
(Revised
by Mario Carneiro, 28-Aug-2015.)
|
⊢ 𝐽 = (MetOpen‘𝐶)
& ⊢ 𝐾 = (MetOpen‘𝐷) ⇒ ⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃 ∈ 𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+
∀𝑤 ∈ 𝑋 ((𝑃𝐶𝑤) < 𝑧 → ((𝐹‘𝑃)𝐷(𝐹‘𝑤)) < 𝑦)))) |
|
Theorem | metcnp2 13680* |
Two ways to say a mapping from metric 𝐶 to metric 𝐷 is
continuous at point 𝑃. The distance arguments are swapped
compared
to metcnp 13679 (and Munkres' metcn 13681) for compatibility with df-lm 13357.
Definition 1.3-3 of [Kreyszig] p. 20.
(Contributed by NM, 4-Jun-2007.)
(Revised by Mario Carneiro, 13-Nov-2013.)
|
⊢ 𝐽 = (MetOpen‘𝐶)
& ⊢ 𝐾 = (MetOpen‘𝐷) ⇒ ⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃 ∈ 𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+
∀𝑤 ∈ 𝑋 ((𝑤𝐶𝑃) < 𝑧 → ((𝐹‘𝑤)𝐷(𝐹‘𝑃)) < 𝑦)))) |
|
Theorem | metcn 13681* |
Two ways to say a mapping from metric 𝐶 to metric 𝐷 is
continuous. Theorem 10.1 of [Munkres]
p. 127. The second biconditional
argument says that for every positive "epsilon" 𝑦 there
is a
positive "delta" 𝑧 such that a distance less than delta
in 𝐶
maps to a distance less than epsilon in 𝐷. (Contributed by NM,
15-May-2007.) (Revised by Mario Carneiro, 28-Aug-2015.)
|
⊢ 𝐽 = (MetOpen‘𝐶)
& ⊢ 𝐾 = (MetOpen‘𝐷) ⇒ ⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+
∀𝑤 ∈ 𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝐹‘𝑥)𝐷(𝐹‘𝑤)) < 𝑦)))) |
|
Theorem | metcnpi 13682* |
Epsilon-delta property of a continuous metric space function, with
function arguments as in metcnp 13679. (Contributed by NM, 17-Dec-2007.)
(Revised by Mario Carneiro, 13-Nov-2013.)
|
⊢ 𝐽 = (MetOpen‘𝐶)
& ⊢ 𝐾 = (MetOpen‘𝐷) ⇒ ⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴 ∈ ℝ+)) →
∃𝑥 ∈
ℝ+ ∀𝑦 ∈ 𝑋 ((𝑃𝐶𝑦) < 𝑥 → ((𝐹‘𝑃)𝐷(𝐹‘𝑦)) < 𝐴)) |
|
Theorem | metcnpi2 13683* |
Epsilon-delta property of a continuous metric space function, with
swapped distance function arguments as in metcnp2 13680. (Contributed by
NM, 16-Dec-2007.) (Revised by Mario Carneiro, 13-Nov-2013.)
|
⊢ 𝐽 = (MetOpen‘𝐶)
& ⊢ 𝐾 = (MetOpen‘𝐷) ⇒ ⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴 ∈ ℝ+)) →
∃𝑥 ∈
ℝ+ ∀𝑦 ∈ 𝑋 ((𝑦𝐶𝑃) < 𝑥 → ((𝐹‘𝑦)𝐷(𝐹‘𝑃)) < 𝐴)) |
|
Theorem | metcnpi3 13684* |
Epsilon-delta property of a metric space function continuous at 𝑃.
A variation of metcnpi2 13683 with non-strict ordering. (Contributed by
NM,
16-Dec-2007.) (Revised by Mario Carneiro, 13-Nov-2013.)
|
⊢ 𝐽 = (MetOpen‘𝐶)
& ⊢ 𝐾 = (MetOpen‘𝐷) ⇒ ⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴 ∈ ℝ+)) →
∃𝑥 ∈
ℝ+ ∀𝑦 ∈ 𝑋 ((𝑦𝐶𝑃) ≤ 𝑥 → ((𝐹‘𝑦)𝐷(𝐹‘𝑃)) ≤ 𝐴)) |
|
Theorem | txmetcnp 13685* |
Continuity of a binary operation on metric spaces. (Contributed by
Mario Carneiro, 2-Sep-2015.) (Revised by Jim Kingdon, 22-Oct-2023.)
|
⊢ 𝐽 = (MetOpen‘𝐶)
& ⊢ 𝐾 = (MetOpen‘𝐷)
& ⊢ 𝐿 = (MetOpen‘𝐸) ⇒ ⊢ (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌)) → (𝐹 ∈ (((𝐽 ×t 𝐾) CnP 𝐿)‘〈𝐴, 𝐵〉) ↔ (𝐹:(𝑋 × 𝑌)⟶𝑍 ∧ ∀𝑧 ∈ ℝ+ ∃𝑤 ∈ ℝ+
∀𝑢 ∈ 𝑋 ∀𝑣 ∈ 𝑌 (((𝐴𝐶𝑢) < 𝑤 ∧ (𝐵𝐷𝑣) < 𝑤) → ((𝐴𝐹𝐵)𝐸(𝑢𝐹𝑣)) < 𝑧)))) |
|
Theorem | txmetcn 13686* |
Continuity of a binary operation on metric spaces. (Contributed by
Mario Carneiro, 2-Sep-2015.)
|
⊢ 𝐽 = (MetOpen‘𝐶)
& ⊢ 𝐾 = (MetOpen‘𝐷)
& ⊢ 𝐿 = (MetOpen‘𝐸) ⇒ ⊢ ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) → (𝐹 ∈ ((𝐽 ×t 𝐾) Cn 𝐿) ↔ (𝐹:(𝑋 × 𝑌)⟶𝑍 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑌 ∀𝑧 ∈ ℝ+ ∃𝑤 ∈ ℝ+
∀𝑢 ∈ 𝑋 ∀𝑣 ∈ 𝑌 (((𝑥𝐶𝑢) < 𝑤 ∧ (𝑦𝐷𝑣) < 𝑤) → ((𝑥𝐹𝑦)𝐸(𝑢𝐹𝑣)) < 𝑧)))) |
|
Theorem | metcnpd 13687* |
Two ways to say a mapping from metric 𝐶 to metric 𝐷 is
continuous at point 𝑃. (Contributed by Jim Kingdon,
14-Jun-2023.)
|
⊢ (𝜑 → 𝐽 = (MetOpen‘𝐶)) & ⊢ (𝜑 → 𝐾 = (MetOpen‘𝐷)) & ⊢ (𝜑 → 𝐶 ∈ (∞Met‘𝑋)) & ⊢ (𝜑 → 𝐷 ∈ (∞Met‘𝑌)) & ⊢ (𝜑 → 𝑃 ∈ 𝑋) ⇒ ⊢ (𝜑 → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+
∀𝑤 ∈ 𝑋 ((𝑃𝐶𝑤) < 𝑧 → ((𝐹‘𝑃)𝐷(𝐹‘𝑤)) < 𝑦)))) |
|
8.2.6 Topology on the reals
|
|
Theorem | qtopbasss 13688* |
The set of open intervals with endpoints in a subset forms a basis for a
topology. (Contributed by Mario Carneiro, 17-Jun-2014.) (Revised by
Jim Kingdon, 22-May-2023.)
|
⊢ 𝑆 ⊆ ℝ* & ⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → sup({𝑥, 𝑦}, ℝ*, < ) ∈ 𝑆) & ⊢ ((𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → inf({𝑥, 𝑦}, ℝ*, < ) ∈ 𝑆)
⇒ ⊢ ((,) “ (𝑆 × 𝑆)) ∈ TopBases |
|
Theorem | qtopbas 13689 |
The set of open intervals with rational endpoints forms a basis for a
topology. (Contributed by NM, 8-Mar-2007.)
|
⊢ ((,) “ (ℚ × ℚ))
∈ TopBases |
|
Theorem | retopbas 13690 |
A basis for the standard topology on the reals. (Contributed by NM,
6-Feb-2007.) (Proof shortened by Mario Carneiro, 17-Jun-2014.)
|
⊢ ran (,) ∈ TopBases |
|
Theorem | retop 13691 |
The standard topology on the reals. (Contributed by FL, 4-Jun-2007.)
|
⊢ (topGen‘ran (,)) ∈
Top |
|
Theorem | uniretop 13692 |
The underlying set of the standard topology on the reals is the reals.
(Contributed by FL, 4-Jun-2007.)
|
⊢ ℝ = ∪
(topGen‘ran (,)) |
|
Theorem | retopon 13693 |
The standard topology on the reals is a topology on the reals.
(Contributed by Mario Carneiro, 28-Aug-2015.)
|
⊢ (topGen‘ran (,)) ∈
(TopOn‘ℝ) |
|
Theorem | retps 13694 |
The standard topological space on the reals. (Contributed by NM,
19-Oct-2012.)
|
⊢ 𝐾 = {〈(Base‘ndx), ℝ〉,
〈(TopSet‘ndx), (topGen‘ran
(,))〉} ⇒ ⊢ 𝐾 ∈ TopSp |
|
Theorem | iooretopg 13695 |
Open intervals are open sets of the standard topology on the reals .
(Contributed by FL, 18-Jun-2007.) (Revised by Jim Kingdon,
23-May-2023.)
|
⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*)
→ (𝐴(,)𝐵) ∈ (topGen‘ran
(,))) |
|
Theorem | cnmetdval 13696 |
Value of the distance function of the metric space of complex numbers.
(Contributed by NM, 9-Dec-2006.) (Revised by Mario Carneiro,
27-Dec-2014.)
|
⊢ 𝐷 = (abs ∘ −
) ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝐷𝐵) = (abs‘(𝐴 − 𝐵))) |
|
Theorem | cnmet 13697 |
The absolute value metric determines a metric space on the complex
numbers. This theorem provides a link between complex numbers and
metrics spaces, making metric space theorems available for use with
complex numbers. (Contributed by FL, 9-Oct-2006.)
|
⊢ (abs ∘ − ) ∈
(Met‘ℂ) |
|
Theorem | cnxmet 13698 |
The absolute value metric is an extended metric. (Contributed by Mario
Carneiro, 28-Aug-2015.)
|
⊢ (abs ∘ − ) ∈
(∞Met‘ℂ) |
|
Theorem | cntoptopon 13699 |
The topology of the complex numbers is a topology. (Contributed by Jim
Kingdon, 6-Jun-2023.)
|
⊢ 𝐽 = (MetOpen‘(abs ∘ −
)) ⇒ ⊢ 𝐽 ∈
(TopOn‘ℂ) |
|
Theorem | cntoptop 13700 |
The topology of the complex numbers is a topology. (Contributed by Jim
Kingdon, 6-Jun-2023.)
|
⊢ 𝐽 = (MetOpen‘(abs ∘ −
)) ⇒ ⊢ 𝐽 ∈ Top |