ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-rngiso GIF version

Definition df-rngiso 13320
Description: Define the set of ring isomorphisms from 𝑟 to 𝑠. (Contributed by Stefan O'Rear, 7-Mar-2015.)
Assertion
Ref Expression
df-rngiso RingIso = (𝑟 ∈ V, 𝑠 ∈ V ↦ {𝑓 ∈ (𝑟 RingHom 𝑠) ∣ 𝑓 ∈ (𝑠 RingHom 𝑟)})
Distinct variable group:   𝑠,𝑟,𝑓

Detailed syntax breakdown of Definition df-rngiso
StepHypRef Expression
1 crs 13318 . 2 class RingIso
2 vr . . 3 setvar 𝑟
3 vs . . 3 setvar 𝑠
4 cvv 2737 . . 3 class V
5 vf . . . . . . 7 setvar 𝑓
65cv 1352 . . . . . 6 class 𝑓
76ccnv 4625 . . . . 5 class 𝑓
83cv 1352 . . . . . 6 class 𝑠
92cv 1352 . . . . . 6 class 𝑟
10 crh 13317 . . . . . 6 class RingHom
118, 9, 10co 5874 . . . . 5 class (𝑠 RingHom 𝑟)
127, 11wcel 2148 . . . 4 wff 𝑓 ∈ (𝑠 RingHom 𝑟)
139, 8, 10co 5874 . . . 4 class (𝑟 RingHom 𝑠)
1412, 5, 13crab 2459 . . 3 class {𝑓 ∈ (𝑟 RingHom 𝑠) ∣ 𝑓 ∈ (𝑠 RingHom 𝑟)}
152, 3, 4, 4, 14cmpo 5876 . 2 class (𝑟 ∈ V, 𝑠 ∈ V ↦ {𝑓 ∈ (𝑟 RingHom 𝑠) ∣ 𝑓 ∈ (𝑠 RingHom 𝑟)})
161, 15wceq 1353 1 wff RingIso = (𝑟 ∈ V, 𝑠 ∈ V ↦ {𝑓 ∈ (𝑟 RingHom 𝑠) ∣ 𝑓 ∈ (𝑠 RingHom 𝑟)})
Colors of variables: wff set class
This definition is referenced by: (None)
  Copyright terms: Public domain W3C validator