HomeHome Intuitionistic Logic Explorer
Theorem List (p. 134 of 142)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 13301-13400   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremxmetxp 13301* The maximum metric (Chebyshev distance) on the product of two sets. (Contributed by Jim Kingdon, 11-Oct-2023.)
𝑃 = (𝑢 ∈ (𝑋 × 𝑌), 𝑣 ∈ (𝑋 × 𝑌) ↦ sup({((1st𝑢)𝑀(1st𝑣)), ((2nd𝑢)𝑁(2nd𝑣))}, ℝ*, < ))    &   (𝜑𝑀 ∈ (∞Met‘𝑋))    &   (𝜑𝑁 ∈ (∞Met‘𝑌))       (𝜑𝑃 ∈ (∞Met‘(𝑋 × 𝑌)))
 
Theoremxmetxpbl 13302* The maximum metric (Chebyshev distance) on the product of two sets, expressed in terms of balls centered on a point 𝐶 with radius 𝑅. (Contributed by Jim Kingdon, 22-Oct-2023.)
𝑃 = (𝑢 ∈ (𝑋 × 𝑌), 𝑣 ∈ (𝑋 × 𝑌) ↦ sup({((1st𝑢)𝑀(1st𝑣)), ((2nd𝑢)𝑁(2nd𝑣))}, ℝ*, < ))    &   (𝜑𝑀 ∈ (∞Met‘𝑋))    &   (𝜑𝑁 ∈ (∞Met‘𝑌))    &   (𝜑𝑅 ∈ ℝ*)    &   (𝜑𝐶 ∈ (𝑋 × 𝑌))       (𝜑 → (𝐶(ball‘𝑃)𝑅) = (((1st𝐶)(ball‘𝑀)𝑅) × ((2nd𝐶)(ball‘𝑁)𝑅)))
 
Theoremxmettxlem 13303* Lemma for xmettx 13304. (Contributed by Jim Kingdon, 15-Oct-2023.)
𝑃 = (𝑢 ∈ (𝑋 × 𝑌), 𝑣 ∈ (𝑋 × 𝑌) ↦ sup({((1st𝑢)𝑀(1st𝑣)), ((2nd𝑢)𝑁(2nd𝑣))}, ℝ*, < ))    &   (𝜑𝑀 ∈ (∞Met‘𝑋))    &   (𝜑𝑁 ∈ (∞Met‘𝑌))    &   𝐽 = (MetOpen‘𝑀)    &   𝐾 = (MetOpen‘𝑁)    &   𝐿 = (MetOpen‘𝑃)       (𝜑𝐿 ⊆ (𝐽 ×t 𝐾))
 
Theoremxmettx 13304* The maximum metric (Chebyshev distance) on the product of two sets, expressed as a binary topological product. (Contributed by Jim Kingdon, 11-Oct-2023.)
𝑃 = (𝑢 ∈ (𝑋 × 𝑌), 𝑣 ∈ (𝑋 × 𝑌) ↦ sup({((1st𝑢)𝑀(1st𝑣)), ((2nd𝑢)𝑁(2nd𝑣))}, ℝ*, < ))    &   (𝜑𝑀 ∈ (∞Met‘𝑋))    &   (𝜑𝑁 ∈ (∞Met‘𝑌))    &   𝐽 = (MetOpen‘𝑀)    &   𝐾 = (MetOpen‘𝑁)    &   𝐿 = (MetOpen‘𝑃)       (𝜑𝐿 = (𝐽 ×t 𝐾))
 
8.2.5  Continuity in metric spaces
 
Theoremmetcnp3 13305* Two ways to express that 𝐹 is continuous at 𝑃 for metric spaces. Proposition 14-4.2 of [Gleason] p. 240. (Contributed by NM, 17-May-2007.) (Revised by Mario Carneiro, 28-Aug-2015.)
𝐽 = (MetOpen‘𝐶)    &   𝐾 = (MetOpen‘𝐷)       ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+ (𝐹 “ (𝑃(ball‘𝐶)𝑧)) ⊆ ((𝐹𝑃)(ball‘𝐷)𝑦))))
 
Theoremmetcnp 13306* Two ways to say a mapping from metric 𝐶 to metric 𝐷 is continuous at point 𝑃. (Contributed by NM, 11-May-2007.) (Revised by Mario Carneiro, 28-Aug-2015.)
𝐽 = (MetOpen‘𝐶)    &   𝐾 = (MetOpen‘𝐷)       ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝑋 ((𝑃𝐶𝑤) < 𝑧 → ((𝐹𝑃)𝐷(𝐹𝑤)) < 𝑦))))
 
Theoremmetcnp2 13307* Two ways to say a mapping from metric 𝐶 to metric 𝐷 is continuous at point 𝑃. The distance arguments are swapped compared to metcnp 13306 (and Munkres' metcn 13308) for compatibility with df-lm 12984. Definition 1.3-3 of [Kreyszig] p. 20. (Contributed by NM, 4-Jun-2007.) (Revised by Mario Carneiro, 13-Nov-2013.)
𝐽 = (MetOpen‘𝐶)    &   𝐾 = (MetOpen‘𝐷)       ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝑃𝑋) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝑋 ((𝑤𝐶𝑃) < 𝑧 → ((𝐹𝑤)𝐷(𝐹𝑃)) < 𝑦))))
 
Theoremmetcn 13308* Two ways to say a mapping from metric 𝐶 to metric 𝐷 is continuous. Theorem 10.1 of [Munkres] p. 127. The second biconditional argument says that for every positive "epsilon" 𝑦 there is a positive "delta" 𝑧 such that a distance less than delta in 𝐶 maps to a distance less than epsilon in 𝐷. (Contributed by NM, 15-May-2007.) (Revised by Mario Carneiro, 28-Aug-2015.)
𝐽 = (MetOpen‘𝐶)    &   𝐾 = (MetOpen‘𝐷)       ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑥𝑋𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝑋 ((𝑥𝐶𝑤) < 𝑧 → ((𝐹𝑥)𝐷(𝐹𝑤)) < 𝑦))))
 
Theoremmetcnpi 13309* Epsilon-delta property of a continuous metric space function, with function arguments as in metcnp 13306. (Contributed by NM, 17-Dec-2007.) (Revised by Mario Carneiro, 13-Nov-2013.)
𝐽 = (MetOpen‘𝐶)    &   𝐾 = (MetOpen‘𝐷)       (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴 ∈ ℝ+)) → ∃𝑥 ∈ ℝ+𝑦𝑋 ((𝑃𝐶𝑦) < 𝑥 → ((𝐹𝑃)𝐷(𝐹𝑦)) < 𝐴))
 
Theoremmetcnpi2 13310* Epsilon-delta property of a continuous metric space function, with swapped distance function arguments as in metcnp2 13307. (Contributed by NM, 16-Dec-2007.) (Revised by Mario Carneiro, 13-Nov-2013.)
𝐽 = (MetOpen‘𝐶)    &   𝐾 = (MetOpen‘𝐷)       (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴 ∈ ℝ+)) → ∃𝑥 ∈ ℝ+𝑦𝑋 ((𝑦𝐶𝑃) < 𝑥 → ((𝐹𝑦)𝐷(𝐹𝑃)) < 𝐴))
 
Theoremmetcnpi3 13311* Epsilon-delta property of a metric space function continuous at 𝑃. A variation of metcnpi2 13310 with non-strict ordering. (Contributed by NM, 16-Dec-2007.) (Revised by Mario Carneiro, 13-Nov-2013.)
𝐽 = (MetOpen‘𝐶)    &   𝐾 = (MetOpen‘𝐷)       (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌)) ∧ (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ∧ 𝐴 ∈ ℝ+)) → ∃𝑥 ∈ ℝ+𝑦𝑋 ((𝑦𝐶𝑃) ≤ 𝑥 → ((𝐹𝑦)𝐷(𝐹𝑃)) ≤ 𝐴))
 
Theoremtxmetcnp 13312* Continuity of a binary operation on metric spaces. (Contributed by Mario Carneiro, 2-Sep-2015.) (Revised by Jim Kingdon, 22-Oct-2023.)
𝐽 = (MetOpen‘𝐶)    &   𝐾 = (MetOpen‘𝐷)    &   𝐿 = (MetOpen‘𝐸)       (((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) ∧ (𝐴𝑋𝐵𝑌)) → (𝐹 ∈ (((𝐽 ×t 𝐾) CnP 𝐿)‘⟨𝐴, 𝐵⟩) ↔ (𝐹:(𝑋 × 𝑌)⟶𝑍 ∧ ∀𝑧 ∈ ℝ+𝑤 ∈ ℝ+𝑢𝑋𝑣𝑌 (((𝐴𝐶𝑢) < 𝑤 ∧ (𝐵𝐷𝑣) < 𝑤) → ((𝐴𝐹𝐵)𝐸(𝑢𝐹𝑣)) < 𝑧))))
 
Theoremtxmetcn 13313* Continuity of a binary operation on metric spaces. (Contributed by Mario Carneiro, 2-Sep-2015.)
𝐽 = (MetOpen‘𝐶)    &   𝐾 = (MetOpen‘𝐷)    &   𝐿 = (MetOpen‘𝐸)       ((𝐶 ∈ (∞Met‘𝑋) ∧ 𝐷 ∈ (∞Met‘𝑌) ∧ 𝐸 ∈ (∞Met‘𝑍)) → (𝐹 ∈ ((𝐽 ×t 𝐾) Cn 𝐿) ↔ (𝐹:(𝑋 × 𝑌)⟶𝑍 ∧ ∀𝑥𝑋𝑦𝑌𝑧 ∈ ℝ+𝑤 ∈ ℝ+𝑢𝑋𝑣𝑌 (((𝑥𝐶𝑢) < 𝑤 ∧ (𝑦𝐷𝑣) < 𝑤) → ((𝑥𝐹𝑦)𝐸(𝑢𝐹𝑣)) < 𝑧))))
 
Theoremmetcnpd 13314* Two ways to say a mapping from metric 𝐶 to metric 𝐷 is continuous at point 𝑃. (Contributed by Jim Kingdon, 14-Jun-2023.)
(𝜑𝐽 = (MetOpen‘𝐶))    &   (𝜑𝐾 = (MetOpen‘𝐷))    &   (𝜑𝐶 ∈ (∞Met‘𝑋))    &   (𝜑𝐷 ∈ (∞Met‘𝑌))    &   (𝜑𝑃𝑋)       (𝜑 → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝑃) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝑋 ((𝑃𝐶𝑤) < 𝑧 → ((𝐹𝑃)𝐷(𝐹𝑤)) < 𝑦))))
 
8.2.6  Topology on the reals
 
Theoremqtopbasss 13315* The set of open intervals with endpoints in a subset forms a basis for a topology. (Contributed by Mario Carneiro, 17-Jun-2014.) (Revised by Jim Kingdon, 22-May-2023.)
𝑆 ⊆ ℝ*    &   ((𝑥𝑆𝑦𝑆) → sup({𝑥, 𝑦}, ℝ*, < ) ∈ 𝑆)    &   ((𝑥𝑆𝑦𝑆) → inf({𝑥, 𝑦}, ℝ*, < ) ∈ 𝑆)       ((,) “ (𝑆 × 𝑆)) ∈ TopBases
 
Theoremqtopbas 13316 The set of open intervals with rational endpoints forms a basis for a topology. (Contributed by NM, 8-Mar-2007.)
((,) “ (ℚ × ℚ)) ∈ TopBases
 
Theoremretopbas 13317 A basis for the standard topology on the reals. (Contributed by NM, 6-Feb-2007.) (Proof shortened by Mario Carneiro, 17-Jun-2014.)
ran (,) ∈ TopBases
 
Theoremretop 13318 The standard topology on the reals. (Contributed by FL, 4-Jun-2007.)
(topGen‘ran (,)) ∈ Top
 
Theoremuniretop 13319 The underlying set of the standard topology on the reals is the reals. (Contributed by FL, 4-Jun-2007.)
ℝ = (topGen‘ran (,))
 
Theoremretopon 13320 The standard topology on the reals is a topology on the reals. (Contributed by Mario Carneiro, 28-Aug-2015.)
(topGen‘ran (,)) ∈ (TopOn‘ℝ)
 
Theoremretps 13321 The standard topological space on the reals. (Contributed by NM, 19-Oct-2012.)
𝐾 = {⟨(Base‘ndx), ℝ⟩, ⟨(TopSet‘ndx), (topGen‘ran (,))⟩}       𝐾 ∈ TopSp
 
Theoremiooretopg 13322 Open intervals are open sets of the standard topology on the reals . (Contributed by FL, 18-Jun-2007.) (Revised by Jim Kingdon, 23-May-2023.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴(,)𝐵) ∈ (topGen‘ran (,)))
 
Theoremcnmetdval 13323 Value of the distance function of the metric space of complex numbers. (Contributed by NM, 9-Dec-2006.) (Revised by Mario Carneiro, 27-Dec-2014.)
𝐷 = (abs ∘ − )       ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴𝐷𝐵) = (abs‘(𝐴𝐵)))
 
Theoremcnmet 13324 The absolute value metric determines a metric space on the complex numbers. This theorem provides a link between complex numbers and metrics spaces, making metric space theorems available for use with complex numbers. (Contributed by FL, 9-Oct-2006.)
(abs ∘ − ) ∈ (Met‘ℂ)
 
Theoremcnxmet 13325 The absolute value metric is an extended metric. (Contributed by Mario Carneiro, 28-Aug-2015.)
(abs ∘ − ) ∈ (∞Met‘ℂ)
 
Theoremcntoptopon 13326 The topology of the complex numbers is a topology. (Contributed by Jim Kingdon, 6-Jun-2023.)
𝐽 = (MetOpen‘(abs ∘ − ))       𝐽 ∈ (TopOn‘ℂ)
 
Theoremcntoptop 13327 The topology of the complex numbers is a topology. (Contributed by Jim Kingdon, 6-Jun-2023.)
𝐽 = (MetOpen‘(abs ∘ − ))       𝐽 ∈ Top
 
Theoremcnbl0 13328 Two ways to write the open ball centered at zero. (Contributed by Mario Carneiro, 8-Sep-2015.)
𝐷 = (abs ∘ − )       (𝑅 ∈ ℝ* → (abs “ (0[,)𝑅)) = (0(ball‘𝐷)𝑅))
 
Theoremcnblcld 13329* Two ways to write the closed ball centered at zero. (Contributed by Mario Carneiro, 8-Sep-2015.)
𝐷 = (abs ∘ − )       (𝑅 ∈ ℝ* → (abs “ (0[,]𝑅)) = {𝑥 ∈ ℂ ∣ (0𝐷𝑥) ≤ 𝑅})
 
Theoremunicntopcntop 13330 The underlying set of the standard topology on the complex numbers is the set of complex numbers. (Contributed by Glauco Siliprandi, 11-Dec-2019.) (Revised by Jim Kingdon, 12-Dec-2023.)
ℂ = (MetOpen‘(abs ∘ − ))
 
Theoremcnopncntop 13331 The set of complex numbers is open with respect to the standard topology on complex numbers. (Contributed by Glauco Siliprandi, 11-Dec-2019.) (Revised by Jim Kingdon, 12-Dec-2023.)
ℂ ∈ (MetOpen‘(abs ∘ − ))
 
Theoremreopnap 13332* The real numbers apart from a given real number form an open set. (Contributed by Jim Kingdon, 13-Dec-2023.)
(𝐴 ∈ ℝ → {𝑤 ∈ ℝ ∣ 𝑤 # 𝐴} ∈ (topGen‘ran (,)))
 
Theoremremetdval 13333 Value of the distance function of the metric space of real numbers. (Contributed by NM, 16-May-2007.)
𝐷 = ((abs ∘ − ) ↾ (ℝ × ℝ))       ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴𝐷𝐵) = (abs‘(𝐴𝐵)))
 
Theoremremet 13334 The absolute value metric determines a metric space on the reals. (Contributed by NM, 10-Feb-2007.)
𝐷 = ((abs ∘ − ) ↾ (ℝ × ℝ))       𝐷 ∈ (Met‘ℝ)
 
Theoremrexmet 13335 The absolute value metric is an extended metric. (Contributed by Mario Carneiro, 28-Aug-2015.)
𝐷 = ((abs ∘ − ) ↾ (ℝ × ℝ))       𝐷 ∈ (∞Met‘ℝ)
 
Theorembl2ioo 13336 A ball in terms of an open interval of reals. (Contributed by NM, 18-May-2007.) (Revised by Mario Carneiro, 13-Nov-2013.)
𝐷 = ((abs ∘ − ) ↾ (ℝ × ℝ))       ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴(ball‘𝐷)𝐵) = ((𝐴𝐵)(,)(𝐴 + 𝐵)))
 
Theoremioo2bl 13337 An open interval of reals in terms of a ball. (Contributed by NM, 18-May-2007.) (Revised by Mario Carneiro, 28-Aug-2015.)
𝐷 = ((abs ∘ − ) ↾ (ℝ × ℝ))       ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴(,)𝐵) = (((𝐴 + 𝐵) / 2)(ball‘𝐷)((𝐵𝐴) / 2)))
 
Theoremioo2blex 13338 An open interval of reals in terms of a ball. (Contributed by Mario Carneiro, 14-Nov-2013.)
𝐷 = ((abs ∘ − ) ↾ (ℝ × ℝ))       ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴(,)𝐵) ∈ ran (ball‘𝐷))
 
Theoremblssioo 13339 The balls of the standard real metric space are included in the open real intervals. (Contributed by NM, 8-May-2007.) (Revised by Mario Carneiro, 13-Nov-2013.)
𝐷 = ((abs ∘ − ) ↾ (ℝ × ℝ))       ran (ball‘𝐷) ⊆ ran (,)
 
Theoremtgioo 13340 The topology generated by open intervals of reals is the same as the open sets of the standard metric space on the reals. (Contributed by NM, 7-May-2007.) (Revised by Mario Carneiro, 13-Nov-2013.)
𝐷 = ((abs ∘ − ) ↾ (ℝ × ℝ))    &   𝐽 = (MetOpen‘𝐷)       (topGen‘ran (,)) = 𝐽
 
Theoremtgqioo 13341 The topology generated by open intervals of reals with rational endpoints is the same as the open sets of the standard metric space on the reals. In particular, this proves that the standard topology on the reals is second-countable. (Contributed by Mario Carneiro, 17-Jun-2014.)
𝑄 = (topGen‘((,) “ (ℚ × ℚ)))       (topGen‘ran (,)) = 𝑄
 
Theoremresubmet 13342 The subspace topology induced by a subset of the reals. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 13-Aug-2014.)
𝑅 = (topGen‘ran (,))    &   𝐽 = (MetOpen‘((abs ∘ − ) ↾ (𝐴 × 𝐴)))       (𝐴 ⊆ ℝ → 𝐽 = (𝑅t 𝐴))
 
Theoremtgioo2cntop 13343 The standard topology on the reals is a subspace of the complex metric topology. (Contributed by Mario Carneiro, 13-Aug-2014.) (Revised by Jim Kingdon, 6-Aug-2023.)
𝐽 = (MetOpen‘(abs ∘ − ))       (topGen‘ran (,)) = (𝐽t ℝ)
 
Theoremrerestcntop 13344 The subspace topology induced by a subset of the reals. (Contributed by Mario Carneiro, 13-Aug-2014.) (Revised by Jim Kingdon, 6-Aug-2023.)
𝐽 = (MetOpen‘(abs ∘ − ))    &   𝑅 = (topGen‘ran (,))       (𝐴 ⊆ ℝ → (𝐽t 𝐴) = (𝑅t 𝐴))
 
Theoremaddcncntoplem 13345* Lemma for addcncntop 13346, subcncntop 13347, and mulcncntop 13348. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Jim Kingdon, 22-Oct-2023.)
𝐽 = (MetOpen‘(abs ∘ − ))    &    + :(ℂ × ℂ)⟶ℂ    &   ((𝑎 ∈ ℝ+𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ) → ∃𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((abs‘(𝑢𝑏)) < 𝑦 ∧ (abs‘(𝑣𝑐)) < 𝑧) → (abs‘((𝑢 + 𝑣) − (𝑏 + 𝑐))) < 𝑎))        + ∈ ((𝐽 ×t 𝐽) Cn 𝐽)
 
Theoremaddcncntop 13346 Complex number addition is a continuous function. Part of Proposition 14-4.16 of [Gleason] p. 243. (Contributed by NM, 30-Jul-2007.) (Proof shortened by Mario Carneiro, 5-May-2014.)
𝐽 = (MetOpen‘(abs ∘ − ))        + ∈ ((𝐽 ×t 𝐽) Cn 𝐽)
 
Theoremsubcncntop 13347 Complex number subtraction is a continuous function. Part of Proposition 14-4.16 of [Gleason] p. 243. (Contributed by NM, 4-Aug-2007.) (Proof shortened by Mario Carneiro, 5-May-2014.)
𝐽 = (MetOpen‘(abs ∘ − ))        − ∈ ((𝐽 ×t 𝐽) Cn 𝐽)
 
Theoremmulcncntop 13348 Complex number multiplication is a continuous function. Part of Proposition 14-4.16 of [Gleason] p. 243. (Contributed by NM, 30-Jul-2007.) (Proof shortened by Mario Carneiro, 5-May-2014.)
𝐽 = (MetOpen‘(abs ∘ − ))        · ∈ ((𝐽 ×t 𝐽) Cn 𝐽)
 
Theoremdivcnap 13349* Complex number division is a continuous function, when the second argument is apart from zero. (Contributed by Mario Carneiro, 12-Aug-2014.) (Revised by Jim Kingdon, 25-Oct-2023.)
𝐽 = (MetOpen‘(abs ∘ − ))    &   𝐾 = (𝐽t {𝑥 ∈ ℂ ∣ 𝑥 # 0})       (𝑦 ∈ ℂ, 𝑧 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (𝑦 / 𝑧)) ∈ ((𝐽 ×t 𝐾) Cn 𝐽)
 
Theoremfsumcncntop 13350* A finite sum of functions to complex numbers from a common topological space is continuous. The class expression for 𝐵 normally contains free variables 𝑘 and 𝑥 to index it. (Contributed by NM, 8-Aug-2007.) (Revised by Mario Carneiro, 23-Aug-2014.)
𝐾 = (MetOpen‘(abs ∘ − ))    &   (𝜑𝐽 ∈ (TopOn‘𝑋))    &   (𝜑𝐴 ∈ Fin)    &   ((𝜑𝑘𝐴) → (𝑥𝑋𝐵) ∈ (𝐽 Cn 𝐾))       (𝜑 → (𝑥𝑋 ↦ Σ𝑘𝐴 𝐵) ∈ (𝐽 Cn 𝐾))
 
8.2.7  Topological definitions using the reals
 
Syntaxccncf 13351 Extend class notation to include the operation which returns a class of continuous complex functions.
class cn
 
Definitiondf-cncf 13352* Define the operation whose value is a class of continuous complex functions. (Contributed by Paul Chapman, 11-Oct-2007.)
cn→ = (𝑎 ∈ 𝒫 ℂ, 𝑏 ∈ 𝒫 ℂ ↦ {𝑓 ∈ (𝑏𝑚 𝑎) ∣ ∀𝑥𝑎𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑦𝑎 ((abs‘(𝑥𝑦)) < 𝑑 → (abs‘((𝑓𝑥) − (𝑓𝑦))) < 𝑒)})
 
Theoremcncfval 13353* The value of the continuous complex function operation is the set of continuous functions from 𝐴 to 𝐵. (Contributed by Paul Chapman, 11-Oct-2007.) (Revised by Mario Carneiro, 9-Nov-2013.)
((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → (𝐴cn𝐵) = {𝑓 ∈ (𝐵𝑚 𝐴) ∣ ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝑓𝑥) − (𝑓𝑤))) < 𝑦)})
 
Theoremelcncf 13354* Membership in the set of continuous complex functions from 𝐴 to 𝐵. (Contributed by Paul Chapman, 11-Oct-2007.) (Revised by Mario Carneiro, 9-Nov-2013.)
((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → (𝐹 ∈ (𝐴cn𝐵) ↔ (𝐹:𝐴𝐵 ∧ ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑥𝑤)) < 𝑧 → (abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦))))
 
Theoremelcncf2 13355* Version of elcncf 13354 with arguments commuted. (Contributed by Mario Carneiro, 28-Apr-2014.)
((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → (𝐹 ∈ (𝐴cn𝐵) ↔ (𝐹:𝐴𝐵 ∧ ∀𝑥𝐴𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑤𝑥)) < 𝑧 → (abs‘((𝐹𝑤) − (𝐹𝑥))) < 𝑦))))
 
Theoremcncfrss 13356 Reverse closure of the continuous function predicate. (Contributed by Mario Carneiro, 25-Aug-2014.)
(𝐹 ∈ (𝐴cn𝐵) → 𝐴 ⊆ ℂ)
 
Theoremcncfrss2 13357 Reverse closure of the continuous function predicate. (Contributed by Mario Carneiro, 25-Aug-2014.)
(𝐹 ∈ (𝐴cn𝐵) → 𝐵 ⊆ ℂ)
 
Theoremcncff 13358 A continuous complex function's domain and codomain. (Contributed by Paul Chapman, 17-Jan-2008.) (Revised by Mario Carneiro, 25-Aug-2014.)
(𝐹 ∈ (𝐴cn𝐵) → 𝐹:𝐴𝐵)
 
Theoremcncfi 13359* Defining property of a continuous function. (Contributed by Mario Carneiro, 30-Apr-2014.) (Revised by Mario Carneiro, 25-Aug-2014.)
((𝐹 ∈ (𝐴cn𝐵) ∧ 𝐶𝐴𝑅 ∈ ℝ+) → ∃𝑧 ∈ ℝ+𝑤𝐴 ((abs‘(𝑤𝐶)) < 𝑧 → (abs‘((𝐹𝑤) − (𝐹𝐶))) < 𝑅))
 
Theoremelcncf1di 13360* Membership in the set of continuous complex functions from 𝐴 to 𝐵. (Contributed by Paul Chapman, 26-Nov-2007.)
(𝜑𝐹:𝐴𝐵)    &   (𝜑 → ((𝑥𝐴𝑦 ∈ ℝ+) → 𝑍 ∈ ℝ+))    &   (𝜑 → (((𝑥𝐴𝑤𝐴) ∧ 𝑦 ∈ ℝ+) → ((abs‘(𝑥𝑤)) < 𝑍 → (abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦)))       (𝜑 → ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → 𝐹 ∈ (𝐴cn𝐵)))
 
Theoremelcncf1ii 13361* Membership in the set of continuous complex functions from 𝐴 to 𝐵. (Contributed by Paul Chapman, 26-Nov-2007.)
𝐹:𝐴𝐵    &   ((𝑥𝐴𝑦 ∈ ℝ+) → 𝑍 ∈ ℝ+)    &   (((𝑥𝐴𝑤𝐴) ∧ 𝑦 ∈ ℝ+) → ((abs‘(𝑥𝑤)) < 𝑍 → (abs‘((𝐹𝑥) − (𝐹𝑤))) < 𝑦))       ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → 𝐹 ∈ (𝐴cn𝐵))
 
Theoremrescncf 13362 A continuous complex function restricted to a subset is continuous. (Contributed by Paul Chapman, 18-Oct-2007.) (Revised by Mario Carneiro, 25-Aug-2014.)
(𝐶𝐴 → (𝐹 ∈ (𝐴cn𝐵) → (𝐹𝐶) ∈ (𝐶cn𝐵)))
 
Theoremcncffvrn 13363 Change the codomain of a continuous complex function. (Contributed by Paul Chapman, 18-Oct-2007.) (Revised by Mario Carneiro, 1-May-2015.)
((𝐶 ⊆ ℂ ∧ 𝐹 ∈ (𝐴cn𝐵)) → (𝐹 ∈ (𝐴cn𝐶) ↔ 𝐹:𝐴𝐶))
 
Theoremcncfss 13364 The set of continuous functions is expanded when the range is expanded. (Contributed by Mario Carneiro, 30-Aug-2014.)
((𝐵𝐶𝐶 ⊆ ℂ) → (𝐴cn𝐵) ⊆ (𝐴cn𝐶))
 
Theoremclimcncf 13365 Image of a limit under a continuous map. (Contributed by Mario Carneiro, 7-Apr-2015.)
𝑍 = (ℤ𝑀)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝐹 ∈ (𝐴cn𝐵))    &   (𝜑𝐺:𝑍𝐴)    &   (𝜑𝐺𝐷)    &   (𝜑𝐷𝐴)       (𝜑 → (𝐹𝐺) ⇝ (𝐹𝐷))
 
Theoremabscncf 13366 Absolute value is continuous. (Contributed by Paul Chapman, 21-Oct-2007.) (Revised by Mario Carneiro, 28-Apr-2014.)
abs ∈ (ℂ–cn→ℝ)
 
Theoremrecncf 13367 Real part is continuous. (Contributed by Paul Chapman, 21-Oct-2007.) (Revised by Mario Carneiro, 28-Apr-2014.)
ℜ ∈ (ℂ–cn→ℝ)
 
Theoremimcncf 13368 Imaginary part is continuous. (Contributed by Paul Chapman, 21-Oct-2007.) (Revised by Mario Carneiro, 28-Apr-2014.)
ℑ ∈ (ℂ–cn→ℝ)
 
Theoremcjcncf 13369 Complex conjugate is continuous. (Contributed by Paul Chapman, 21-Oct-2007.) (Revised by Mario Carneiro, 28-Apr-2014.)
∗ ∈ (ℂ–cn→ℂ)
 
Theoremmulc1cncf 13370* Multiplication by a constant is continuous. (Contributed by Paul Chapman, 28-Nov-2007.) (Revised by Mario Carneiro, 30-Apr-2014.)
𝐹 = (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥))       (𝐴 ∈ ℂ → 𝐹 ∈ (ℂ–cn→ℂ))
 
Theoremdivccncfap 13371* Division by a constant is continuous. (Contributed by Paul Chapman, 28-Nov-2007.) (Revised by Jim Kingdon, 9-Jan-2023.)
𝐹 = (𝑥 ∈ ℂ ↦ (𝑥 / 𝐴))       ((𝐴 ∈ ℂ ∧ 𝐴 # 0) → 𝐹 ∈ (ℂ–cn→ℂ))
 
Theoremcncfco 13372 The composition of two continuous maps on complex numbers is also continuous. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 25-Aug-2014.)
(𝜑𝐹 ∈ (𝐴cn𝐵))    &   (𝜑𝐺 ∈ (𝐵cn𝐶))       (𝜑 → (𝐺𝐹) ∈ (𝐴cn𝐶))
 
Theoremcncfmet 13373 Relate complex function continuity to metric space continuity. (Contributed by Paul Chapman, 26-Nov-2007.) (Revised by Mario Carneiro, 7-Sep-2015.)
𝐶 = ((abs ∘ − ) ↾ (𝐴 × 𝐴))    &   𝐷 = ((abs ∘ − ) ↾ (𝐵 × 𝐵))    &   𝐽 = (MetOpen‘𝐶)    &   𝐾 = (MetOpen‘𝐷)       ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → (𝐴cn𝐵) = (𝐽 Cn 𝐾))
 
Theoremcncfcncntop 13374 Relate complex function continuity to topological continuity. (Contributed by Mario Carneiro, 17-Feb-2015.)
𝐽 = (MetOpen‘(abs ∘ − ))    &   𝐾 = (𝐽t 𝐴)    &   𝐿 = (𝐽t 𝐵)       ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → (𝐴cn𝐵) = (𝐾 Cn 𝐿))
 
Theoremcncfcn1cntop 13375 Relate complex function continuity to topological continuity. (Contributed by Paul Chapman, 28-Nov-2007.) (Revised by Mario Carneiro, 7-Sep-2015.) (Revised by Jim Kingdon, 16-Jun-2023.)
𝐽 = (MetOpen‘(abs ∘ − ))       (ℂ–cn→ℂ) = (𝐽 Cn 𝐽)
 
Theoremcncfmptc 13376* A constant function is a continuous function on . (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 7-Sep-2015.)
((𝐴𝑇𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) → (𝑥𝑆𝐴) ∈ (𝑆cn𝑇))
 
Theoremcncfmptid 13377* The identity function is a continuous function on . (Contributed by Jeff Madsen, 11-Jun-2010.) (Revised by Mario Carneiro, 17-May-2016.)
((𝑆𝑇𝑇 ⊆ ℂ) → (𝑥𝑆𝑥) ∈ (𝑆cn𝑇))
 
Theoremcncfmpt1f 13378* Composition of continuous functions. cn analogue of cnmpt11f 13078. (Contributed by Mario Carneiro, 3-Sep-2014.)
(𝜑𝐹 ∈ (ℂ–cn→ℂ))    &   (𝜑 → (𝑥𝑋𝐴) ∈ (𝑋cn→ℂ))       (𝜑 → (𝑥𝑋 ↦ (𝐹𝐴)) ∈ (𝑋cn→ℂ))
 
Theoremcncfmpt2fcntop 13379* Composition of continuous functions. cn analogue of cnmpt12f 13080. (Contributed by Mario Carneiro, 3-Sep-2014.)
𝐽 = (MetOpen‘(abs ∘ − ))    &   (𝜑𝐹 ∈ ((𝐽 ×t 𝐽) Cn 𝐽))    &   (𝜑 → (𝑥𝑋𝐴) ∈ (𝑋cn→ℂ))    &   (𝜑 → (𝑥𝑋𝐵) ∈ (𝑋cn→ℂ))       (𝜑 → (𝑥𝑋 ↦ (𝐴𝐹𝐵)) ∈ (𝑋cn→ℂ))
 
Theoremaddccncf 13380* Adding a constant is a continuous function. (Contributed by Jeff Madsen, 2-Sep-2009.)
𝐹 = (𝑥 ∈ ℂ ↦ (𝑥 + 𝐴))       (𝐴 ∈ ℂ → 𝐹 ∈ (ℂ–cn→ℂ))
 
Theoremcdivcncfap 13381* Division with a constant numerator is continuous. (Contributed by Mario Carneiro, 28-Dec-2016.) (Revised by Jim Kingdon, 26-May-2023.)
𝐹 = (𝑥 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (𝐴 / 𝑥))       (𝐴 ∈ ℂ → 𝐹 ∈ ({𝑦 ∈ ℂ ∣ 𝑦 # 0}–cn→ℂ))
 
Theoremnegcncf 13382* The negative function is continuous. (Contributed by Mario Carneiro, 30-Dec-2016.)
𝐹 = (𝑥𝐴 ↦ -𝑥)       (𝐴 ⊆ ℂ → 𝐹 ∈ (𝐴cn→ℂ))
 
Theoremnegfcncf 13383* The negative of a continuous complex function is continuous. (Contributed by Paul Chapman, 21-Jan-2008.) (Revised by Mario Carneiro, 25-Aug-2014.)
𝐺 = (𝑥𝐴 ↦ -(𝐹𝑥))       (𝐹 ∈ (𝐴cn→ℂ) → 𝐺 ∈ (𝐴cn→ℂ))
 
Theoremmulcncflem 13384* Lemma for mulcncf 13385. (Contributed by Jim Kingdon, 29-May-2023.)
(𝜑 → (𝑥𝑋𝐴) ∈ (𝑋cn→ℂ))    &   (𝜑 → (𝑥𝑋𝐵) ∈ (𝑋cn→ℂ))    &   (𝜑𝑉𝑋)    &   (𝜑𝐸 ∈ ℝ+)    &   (𝜑𝐹 ∈ ℝ+)    &   (𝜑𝐺 ∈ ℝ+)    &   (𝜑𝑆 ∈ ℝ+)    &   (𝜑𝑇 ∈ ℝ+)    &   (𝜑 → ∀𝑢𝑋 ((abs‘(𝑢𝑉)) < 𝑆 → (abs‘(((𝑥𝑋𝐴)‘𝑢) − ((𝑥𝑋𝐴)‘𝑉))) < 𝐹))    &   (𝜑 → ∀𝑢𝑋 ((abs‘(𝑢𝑉)) < 𝑇 → (abs‘(((𝑥𝑋𝐵)‘𝑢) − ((𝑥𝑋𝐵)‘𝑉))) < 𝐺))    &   (𝜑 → ∀𝑢𝑋 (((abs‘(𝑢 / 𝑥𝐴𝑉 / 𝑥𝐴)) < 𝐹 ∧ (abs‘(𝑢 / 𝑥𝐵𝑉 / 𝑥𝐵)) < 𝐺) → (abs‘((𝑢 / 𝑥𝐴 · 𝑢 / 𝑥𝐵) − (𝑉 / 𝑥𝐴 · 𝑉 / 𝑥𝐵))) < 𝐸))       (𝜑 → ∃𝑑 ∈ ℝ+𝑢𝑋 ((abs‘(𝑢𝑉)) < 𝑑 → (abs‘(((𝑥𝑋 ↦ (𝐴 · 𝐵))‘𝑢) − ((𝑥𝑋 ↦ (𝐴 · 𝐵))‘𝑉))) < 𝐸))
 
Theoremmulcncf 13385* The multiplication of two continuous complex functions is continuous. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
(𝜑 → (𝑥𝑋𝐴) ∈ (𝑋cn→ℂ))    &   (𝜑 → (𝑥𝑋𝐵) ∈ (𝑋cn→ℂ))       (𝜑 → (𝑥𝑋 ↦ (𝐴 · 𝐵)) ∈ (𝑋cn→ℂ))
 
Theoremexpcncf 13386* The power function on complex numbers, for fixed exponent N, is continuous. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
(𝑁 ∈ ℕ0 → (𝑥 ∈ ℂ ↦ (𝑥𝑁)) ∈ (ℂ–cn→ℂ))
 
Theoremcnrehmeocntop 13387* The canonical bijection from (ℝ × ℝ) to described in cnref1o 9609 is in fact a homeomorphism of the usual topologies on these sets. (It is also an isometry, if (ℝ × ℝ) is metrized with the l<SUP>2</SUP> norm.) (Contributed by Mario Carneiro, 25-Aug-2014.)
𝐹 = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + (i · 𝑦)))    &   𝐽 = (topGen‘ran (,))    &   𝐾 = (MetOpen‘(abs ∘ − ))       𝐹 ∈ ((𝐽 ×t 𝐽)Homeo𝐾)
 
Theoremcnopnap 13388* The complex numbers apart from a given complex number form an open set. (Contributed by Jim Kingdon, 14-Dec-2023.)
(𝐴 ∈ ℂ → {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴} ∈ (MetOpen‘(abs ∘ − )))
 
PART 9  BASIC REAL AND COMPLEX ANALYSIS
 
9.0.1  Dedekind cuts
 
Theoremdedekindeulemuub 13389* Lemma for dedekindeu 13395. Any element of the upper cut is an upper bound for the lower cut. (Contributed by Jim Kingdon, 2-Feb-2024.)
(𝜑𝐿 ⊆ ℝ)    &   (𝜑𝑈 ⊆ ℝ)    &   (𝜑 → ∃𝑞 ∈ ℝ 𝑞𝐿)    &   (𝜑 → ∃𝑟 ∈ ℝ 𝑟𝑈)    &   (𝜑 → ∀𝑞 ∈ ℝ (𝑞𝐿 ↔ ∃𝑟𝐿 𝑞 < 𝑟))    &   (𝜑 → ∀𝑟 ∈ ℝ (𝑟𝑈 ↔ ∃𝑞𝑈 𝑞 < 𝑟))    &   (𝜑 → (𝐿𝑈) = ∅)    &   (𝜑 → ∀𝑞 ∈ ℝ ∀𝑟 ∈ ℝ (𝑞 < 𝑟 → (𝑞𝐿𝑟𝑈)))    &   (𝜑𝐴𝑈)       (𝜑 → ∀𝑧𝐿 𝑧 < 𝐴)
 
Theoremdedekindeulemub 13390* Lemma for dedekindeu 13395. The lower cut has an upper bound. (Contributed by Jim Kingdon, 31-Jan-2024.)
(𝜑𝐿 ⊆ ℝ)    &   (𝜑𝑈 ⊆ ℝ)    &   (𝜑 → ∃𝑞 ∈ ℝ 𝑞𝐿)    &   (𝜑 → ∃𝑟 ∈ ℝ 𝑟𝑈)    &   (𝜑 → ∀𝑞 ∈ ℝ (𝑞𝐿 ↔ ∃𝑟𝐿 𝑞 < 𝑟))    &   (𝜑 → ∀𝑟 ∈ ℝ (𝑟𝑈 ↔ ∃𝑞𝑈 𝑞 < 𝑟))    &   (𝜑 → (𝐿𝑈) = ∅)    &   (𝜑 → ∀𝑞 ∈ ℝ ∀𝑟 ∈ ℝ (𝑞 < 𝑟 → (𝑞𝐿𝑟𝑈)))       (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦𝐿 𝑦 < 𝑥)
 
Theoremdedekindeulemloc 13391* Lemma for dedekindeu 13395. The set L is located. (Contributed by Jim Kingdon, 31-Jan-2024.)
(𝜑𝐿 ⊆ ℝ)    &   (𝜑𝑈 ⊆ ℝ)    &   (𝜑 → ∃𝑞 ∈ ℝ 𝑞𝐿)    &   (𝜑 → ∃𝑟 ∈ ℝ 𝑟𝑈)    &   (𝜑 → ∀𝑞 ∈ ℝ (𝑞𝐿 ↔ ∃𝑟𝐿 𝑞 < 𝑟))    &   (𝜑 → ∀𝑟 ∈ ℝ (𝑟𝑈 ↔ ∃𝑞𝑈 𝑞 < 𝑟))    &   (𝜑 → (𝐿𝑈) = ∅)    &   (𝜑 → ∀𝑞 ∈ ℝ ∀𝑟 ∈ ℝ (𝑞 < 𝑟 → (𝑞𝐿𝑟𝑈)))       (𝜑 → ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → (∃𝑧𝐿 𝑥 < 𝑧 ∨ ∀𝑧𝐿 𝑧 < 𝑦)))
 
Theoremdedekindeulemlub 13392* Lemma for dedekindeu 13395. The set L has a least upper bound. (Contributed by Jim Kingdon, 31-Jan-2024.)
(𝜑𝐿 ⊆ ℝ)    &   (𝜑𝑈 ⊆ ℝ)    &   (𝜑 → ∃𝑞 ∈ ℝ 𝑞𝐿)    &   (𝜑 → ∃𝑟 ∈ ℝ 𝑟𝑈)    &   (𝜑 → ∀𝑞 ∈ ℝ (𝑞𝐿 ↔ ∃𝑟𝐿 𝑞 < 𝑟))    &   (𝜑 → ∀𝑟 ∈ ℝ (𝑟𝑈 ↔ ∃𝑞𝑈 𝑞 < 𝑟))    &   (𝜑 → (𝐿𝑈) = ∅)    &   (𝜑 → ∀𝑞 ∈ ℝ ∀𝑟 ∈ ℝ (𝑞 < 𝑟 → (𝑞𝐿𝑟𝑈)))       (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐿 𝑦 < 𝑧)))
 
Theoremdedekindeulemlu 13393* Lemma for dedekindeu 13395. There is a number which separates the lower and upper cuts. (Contributed by Jim Kingdon, 31-Jan-2024.)
(𝜑𝐿 ⊆ ℝ)    &   (𝜑𝑈 ⊆ ℝ)    &   (𝜑 → ∃𝑞 ∈ ℝ 𝑞𝐿)    &   (𝜑 → ∃𝑟 ∈ ℝ 𝑟𝑈)    &   (𝜑 → ∀𝑞 ∈ ℝ (𝑞𝐿 ↔ ∃𝑟𝐿 𝑞 < 𝑟))    &   (𝜑 → ∀𝑟 ∈ ℝ (𝑟𝑈 ↔ ∃𝑞𝑈 𝑞 < 𝑟))    &   (𝜑 → (𝐿𝑈) = ∅)    &   (𝜑 → ∀𝑞 ∈ ℝ ∀𝑟 ∈ ℝ (𝑞 < 𝑟 → (𝑞𝐿𝑟𝑈)))       (𝜑 → ∃𝑥 ∈ ℝ (∀𝑞𝐿 𝑞 < 𝑥 ∧ ∀𝑟𝑈 𝑥 < 𝑟))
 
Theoremdedekindeulemeu 13394* Lemma for dedekindeu 13395. Part of proving uniqueness. (Contributed by Jim Kingdon, 31-Jan-2024.)
(𝜑𝐿 ⊆ ℝ)    &   (𝜑𝑈 ⊆ ℝ)    &   (𝜑 → ∃𝑞 ∈ ℝ 𝑞𝐿)    &   (𝜑 → ∃𝑟 ∈ ℝ 𝑟𝑈)    &   (𝜑 → ∀𝑞 ∈ ℝ (𝑞𝐿 ↔ ∃𝑟𝐿 𝑞 < 𝑟))    &   (𝜑 → ∀𝑟 ∈ ℝ (𝑟𝑈 ↔ ∃𝑞𝑈 𝑞 < 𝑟))    &   (𝜑 → (𝐿𝑈) = ∅)    &   (𝜑 → ∀𝑞 ∈ ℝ ∀𝑟 ∈ ℝ (𝑞 < 𝑟 → (𝑞𝐿𝑟𝑈)))    &   (𝜑𝐴 ∈ ℝ)    &   (𝜑 → (∀𝑞𝐿 𝑞 < 𝐴 ∧ ∀𝑟𝑈 𝐴 < 𝑟))    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑 → (∀𝑞𝐿 𝑞 < 𝐵 ∧ ∀𝑟𝑈 𝐵 < 𝑟))    &   (𝜑𝐴 < 𝐵)       (𝜑 → ⊥)
 
Theoremdedekindeu 13395* A Dedekind cut identifies a unique real number. Similar to df-inp 7428 except that the the Dedekind cut is formed by sets of reals (rather than positive rationals). But in both cases the defining property of a Dedekind cut is that it is inhabited (bounded), rounded, disjoint, and located. (Contributed by Jim Kingdon, 5-Jan-2024.)
(𝜑𝐿 ⊆ ℝ)    &   (𝜑𝑈 ⊆ ℝ)    &   (𝜑 → ∃𝑞 ∈ ℝ 𝑞𝐿)    &   (𝜑 → ∃𝑟 ∈ ℝ 𝑟𝑈)    &   (𝜑 → ∀𝑞 ∈ ℝ (𝑞𝐿 ↔ ∃𝑟𝐿 𝑞 < 𝑟))    &   (𝜑 → ∀𝑟 ∈ ℝ (𝑟𝑈 ↔ ∃𝑞𝑈 𝑞 < 𝑟))    &   (𝜑 → (𝐿𝑈) = ∅)    &   (𝜑 → ∀𝑞 ∈ ℝ ∀𝑟 ∈ ℝ (𝑞 < 𝑟 → (𝑞𝐿𝑟𝑈)))       (𝜑 → ∃!𝑥 ∈ ℝ (∀𝑞𝐿 𝑞 < 𝑥 ∧ ∀𝑟𝑈 𝑥 < 𝑟))
 
Theoremsuplociccreex 13396* An inhabited, bounded-above, located set of reals in a closed interval has a supremum. A similar theorem is axsuploc 7992 but that one is for the entire real line rather than a closed interval. (Contributed by Jim Kingdon, 14-Feb-2024.)
(𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ)    &   (𝜑𝐵 < 𝐶)    &   (𝜑𝐴 ⊆ (𝐵[,]𝐶))    &   (𝜑 → ∃𝑥 𝑥𝐴)    &   (𝜑 → ∀𝑥 ∈ (𝐵[,]𝐶)∀𝑦 ∈ (𝐵[,]𝐶)(𝑥 < 𝑦 → (∃𝑧𝐴 𝑥 < 𝑧 ∨ ∀𝑧𝐴 𝑧 < 𝑦)))       (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
 
Theoremsuplociccex 13397* An inhabited, bounded-above, located set of reals in a closed interval has a supremum. A similar theorem is axsuploc 7992 but that one is for the entire real line rather than a closed interval. (Contributed by Jim Kingdon, 14-Feb-2024.)
(𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ)    &   (𝜑𝐵 < 𝐶)    &   (𝜑𝐴 ⊆ (𝐵[,]𝐶))    &   (𝜑 → ∃𝑥 𝑥𝐴)    &   (𝜑 → ∀𝑥 ∈ (𝐵[,]𝐶)∀𝑦 ∈ (𝐵[,]𝐶)(𝑥 < 𝑦 → (∃𝑧𝐴 𝑥 < 𝑧 ∨ ∀𝑧𝐴 𝑧 < 𝑦)))       (𝜑 → ∃𝑥 ∈ (𝐵[,]𝐶)(∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐵[,]𝐶)(𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
 
Theoremdedekindicclemuub 13398* Lemma for dedekindicc 13405. Any element of the upper cut is an upper bound for the lower cut. (Contributed by Jim Kingdon, 15-Feb-2024.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐿 ⊆ (𝐴[,]𝐵))    &   (𝜑𝑈 ⊆ (𝐴[,]𝐵))    &   (𝜑 → ∃𝑞 ∈ (𝐴[,]𝐵)𝑞𝐿)    &   (𝜑 → ∃𝑟 ∈ (𝐴[,]𝐵)𝑟𝑈)    &   (𝜑 → ∀𝑞 ∈ (𝐴[,]𝐵)(𝑞𝐿 ↔ ∃𝑟𝐿 𝑞 < 𝑟))    &   (𝜑 → ∀𝑟 ∈ (𝐴[,]𝐵)(𝑟𝑈 ↔ ∃𝑞𝑈 𝑞 < 𝑟))    &   (𝜑 → (𝐿𝑈) = ∅)    &   (𝜑 → ∀𝑞 ∈ (𝐴[,]𝐵)∀𝑟 ∈ (𝐴[,]𝐵)(𝑞 < 𝑟 → (𝑞𝐿𝑟𝑈)))    &   (𝜑𝐶𝑈)       (𝜑 → ∀𝑧𝐿 𝑧 < 𝐶)
 
Theoremdedekindicclemub 13399* Lemma for dedekindicc 13405. The lower cut has an upper bound. (Contributed by Jim Kingdon, 15-Feb-2024.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐿 ⊆ (𝐴[,]𝐵))    &   (𝜑𝑈 ⊆ (𝐴[,]𝐵))    &   (𝜑 → ∃𝑞 ∈ (𝐴[,]𝐵)𝑞𝐿)    &   (𝜑 → ∃𝑟 ∈ (𝐴[,]𝐵)𝑟𝑈)    &   (𝜑 → ∀𝑞 ∈ (𝐴[,]𝐵)(𝑞𝐿 ↔ ∃𝑟𝐿 𝑞 < 𝑟))    &   (𝜑 → ∀𝑟 ∈ (𝐴[,]𝐵)(𝑟𝑈 ↔ ∃𝑞𝑈 𝑞 < 𝑟))    &   (𝜑 → (𝐿𝑈) = ∅)    &   (𝜑 → ∀𝑞 ∈ (𝐴[,]𝐵)∀𝑟 ∈ (𝐴[,]𝐵)(𝑞 < 𝑟 → (𝑞𝐿𝑟𝑈)))       (𝜑 → ∃𝑥 ∈ (𝐴[,]𝐵)∀𝑦𝐿 𝑦 < 𝑥)
 
Theoremdedekindicclemloc 13400* Lemma for dedekindicc 13405. The set L is located. (Contributed by Jim Kingdon, 15-Feb-2024.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐿 ⊆ (𝐴[,]𝐵))    &   (𝜑𝑈 ⊆ (𝐴[,]𝐵))    &   (𝜑 → ∃𝑞 ∈ (𝐴[,]𝐵)𝑞𝐿)    &   (𝜑 → ∃𝑟 ∈ (𝐴[,]𝐵)𝑟𝑈)    &   (𝜑 → ∀𝑞 ∈ (𝐴[,]𝐵)(𝑞𝐿 ↔ ∃𝑟𝐿 𝑞 < 𝑟))    &   (𝜑 → ∀𝑟 ∈ (𝐴[,]𝐵)(𝑟𝑈 ↔ ∃𝑞𝑈 𝑞 < 𝑟))    &   (𝜑 → (𝐿𝑈) = ∅)    &   (𝜑 → ∀𝑞 ∈ (𝐴[,]𝐵)∀𝑟 ∈ (𝐴[,]𝐵)(𝑞 < 𝑟 → (𝑞𝐿𝑟𝑈)))       (𝜑 → ∀𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(𝑥 < 𝑦 → (∃𝑧𝐿 𝑥 < 𝑧 ∨ ∀𝑧𝐿 𝑧 < 𝑦)))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14113
  Copyright terms: Public domain < Previous  Next >