HomeHome Intuitionistic Logic Explorer
Theorem List (p. 134 of 150)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 13301-13400   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremunitrinv 13301 A unit times its inverse is the ring unity. (Contributed by Mario Carneiro, 2-Dec-2014.)
π‘ˆ = (Unitβ€˜π‘…)    &   πΌ = (invrβ€˜π‘…)    &    Β· = (.rβ€˜π‘…)    &    1 = (1rβ€˜π‘…)    β‡’   ((𝑅 ∈ Ring ∧ 𝑋 ∈ π‘ˆ) β†’ (𝑋 Β· (πΌβ€˜π‘‹)) = 1 )
 
Theorem1rinv 13302 The inverse of the ring unity is the ring unity. (Contributed by Mario Carneiro, 18-Jun-2015.)
𝐼 = (invrβ€˜π‘…)    &    1 = (1rβ€˜π‘…)    β‡’   (𝑅 ∈ Ring β†’ (πΌβ€˜ 1 ) = 1 )
 
Theorem0unit 13303 The additive identity is a unit if and only if 1 = 0, i.e. we are in the zero ring. (Contributed by Mario Carneiro, 4-Dec-2014.)
π‘ˆ = (Unitβ€˜π‘…)    &    0 = (0gβ€˜π‘…)    &    1 = (1rβ€˜π‘…)    β‡’   (𝑅 ∈ Ring β†’ ( 0 ∈ π‘ˆ ↔ 1 = 0 ))
 
Theoremunitnegcl 13304 The negative of a unit is a unit. (Contributed by Mario Carneiro, 4-Dec-2014.)
π‘ˆ = (Unitβ€˜π‘…)    &   π‘ = (invgβ€˜π‘…)    β‡’   ((𝑅 ∈ Ring ∧ 𝑋 ∈ π‘ˆ) β†’ (π‘β€˜π‘‹) ∈ π‘ˆ)
 
Syntaxcdvr 13305 Extend class notation with ring division.
class /r
 
Definitiondf-dvr 13306* Define ring division. (Contributed by Mario Carneiro, 2-Jul-2014.)
/r = (π‘Ÿ ∈ V ↦ (π‘₯ ∈ (Baseβ€˜π‘Ÿ), 𝑦 ∈ (Unitβ€˜π‘Ÿ) ↦ (π‘₯(.rβ€˜π‘Ÿ)((invrβ€˜π‘Ÿ)β€˜π‘¦))))
 
Theoremdvrfvald 13307* Division operation in a ring. (Contributed by Mario Carneiro, 2-Jul-2014.) (Revised by Mario Carneiro, 2-Dec-2014.) (Proof shortened by AV, 2-Mar-2024.)
(πœ‘ β†’ 𝐡 = (Baseβ€˜π‘…))    &   (πœ‘ β†’ Β· = (.rβ€˜π‘…))    &   (πœ‘ β†’ π‘ˆ = (Unitβ€˜π‘…))    &   (πœ‘ β†’ 𝐼 = (invrβ€˜π‘…))    &   (πœ‘ β†’ / = (/rβ€˜π‘…))    &   (πœ‘ β†’ 𝑅 ∈ SRing)    β‡’   (πœ‘ β†’ / = (π‘₯ ∈ 𝐡, 𝑦 ∈ π‘ˆ ↦ (π‘₯ Β· (πΌβ€˜π‘¦))))
 
Theoremdvrvald 13308 Division operation in a ring. (Contributed by Mario Carneiro, 2-Jul-2014.) (Revised by Mario Carneiro, 2-Dec-2014.)
(πœ‘ β†’ 𝐡 = (Baseβ€˜π‘…))    &   (πœ‘ β†’ Β· = (.rβ€˜π‘…))    &   (πœ‘ β†’ π‘ˆ = (Unitβ€˜π‘…))    &   (πœ‘ β†’ 𝐼 = (invrβ€˜π‘…))    &   (πœ‘ β†’ / = (/rβ€˜π‘…))    &   (πœ‘ β†’ 𝑅 ∈ Ring)    &   (πœ‘ β†’ 𝑋 ∈ 𝐡)    &   (πœ‘ β†’ π‘Œ ∈ π‘ˆ)    β‡’   (πœ‘ β†’ (𝑋 / π‘Œ) = (𝑋 Β· (πΌβ€˜π‘Œ)))
 
Theoremdvrcl 13309 Closure of division operation. (Contributed by Mario Carneiro, 2-Jul-2014.)
𝐡 = (Baseβ€˜π‘…)    &   π‘ˆ = (Unitβ€˜π‘…)    &    / = (/rβ€˜π‘…)    β‡’   ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ π‘ˆ) β†’ (𝑋 / π‘Œ) ∈ 𝐡)
 
Theoremunitdvcl 13310 The units are closed under division. (Contributed by Mario Carneiro, 2-Jul-2014.)
π‘ˆ = (Unitβ€˜π‘…)    &    / = (/rβ€˜π‘…)    β‡’   ((𝑅 ∈ Ring ∧ 𝑋 ∈ π‘ˆ ∧ π‘Œ ∈ π‘ˆ) β†’ (𝑋 / π‘Œ) ∈ π‘ˆ)
 
Theoremdvrid 13311 A ring element divided by itself is the ring unity. (dividap 8660 analog.) (Contributed by Mario Carneiro, 18-Jun-2015.)
π‘ˆ = (Unitβ€˜π‘…)    &    / = (/rβ€˜π‘…)    &    1 = (1rβ€˜π‘…)    β‡’   ((𝑅 ∈ Ring ∧ 𝑋 ∈ π‘ˆ) β†’ (𝑋 / 𝑋) = 1 )
 
Theoremdvr1 13312 A ring element divided by the ring unity is itself. (div1 8662 analog.) (Contributed by Mario Carneiro, 18-Jun-2015.)
𝐡 = (Baseβ€˜π‘…)    &    / = (/rβ€˜π‘…)    &    1 = (1rβ€˜π‘…)    β‡’   ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐡) β†’ (𝑋 / 1 ) = 𝑋)
 
Theoremdvrass 13313 An associative law for division. (divassap 8649 analog.) (Contributed by Mario Carneiro, 4-Dec-2014.)
𝐡 = (Baseβ€˜π‘…)    &   π‘ˆ = (Unitβ€˜π‘…)    &    / = (/rβ€˜π‘…)    &    Β· = (.rβ€˜π‘…)    β‡’   ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡 ∧ 𝑍 ∈ π‘ˆ)) β†’ ((𝑋 Β· π‘Œ) / 𝑍) = (𝑋 Β· (π‘Œ / 𝑍)))
 
Theoremdvrcan1 13314 A cancellation law for division. (divcanap1 8640 analog.) (Contributed by Mario Carneiro, 2-Jul-2014.) (Revised by Mario Carneiro, 2-Dec-2014.)
𝐡 = (Baseβ€˜π‘…)    &   π‘ˆ = (Unitβ€˜π‘…)    &    / = (/rβ€˜π‘…)    &    Β· = (.rβ€˜π‘…)    β‡’   ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ π‘ˆ) β†’ ((𝑋 / π‘Œ) Β· π‘Œ) = 𝑋)
 
Theoremdvrcan3 13315 A cancellation law for division. (divcanap3 8657 analog.) (Contributed by Mario Carneiro, 2-Jul-2014.) (Revised by Mario Carneiro, 18-Jun-2015.)
𝐡 = (Baseβ€˜π‘…)    &   π‘ˆ = (Unitβ€˜π‘…)    &    / = (/rβ€˜π‘…)    &    Β· = (.rβ€˜π‘…)    β‡’   ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ π‘ˆ) β†’ ((𝑋 Β· π‘Œ) / π‘Œ) = 𝑋)
 
Theoremdvreq1 13316 Equality in terms of ratio equal to ring unity. (diveqap1 8664 analog.) (Contributed by Mario Carneiro, 28-Apr-2016.)
𝐡 = (Baseβ€˜π‘…)    &   π‘ˆ = (Unitβ€˜π‘…)    &    / = (/rβ€˜π‘…)    &    1 = (1rβ€˜π‘…)    β‡’   ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ π‘ˆ) β†’ ((𝑋 / π‘Œ) = 1 ↔ 𝑋 = π‘Œ))
 
Theoremdvrdir 13317 Distributive law for the division operation of a ring. (Contributed by Thierry Arnoux, 30-Oct-2017.)
𝐡 = (Baseβ€˜π‘…)    &   π‘ˆ = (Unitβ€˜π‘…)    &    + = (+gβ€˜π‘…)    &    / = (/rβ€˜π‘…)    β‡’   ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡 ∧ 𝑍 ∈ π‘ˆ)) β†’ ((𝑋 + π‘Œ) / 𝑍) = ((𝑋 / 𝑍) + (π‘Œ / 𝑍)))
 
Theoremrdivmuldivd 13318 Multiplication of two ratios. Theorem I.14 of [Apostol] p. 18. (Contributed by Thierry Arnoux, 30-Oct-2017.)
𝐡 = (Baseβ€˜π‘…)    &   π‘ˆ = (Unitβ€˜π‘…)    &    + = (+gβ€˜π‘…)    &    / = (/rβ€˜π‘…)    &    Β· = (.rβ€˜π‘…)    &   (πœ‘ β†’ 𝑅 ∈ CRing)    &   (πœ‘ β†’ 𝑋 ∈ 𝐡)    &   (πœ‘ β†’ π‘Œ ∈ π‘ˆ)    &   (πœ‘ β†’ 𝑍 ∈ 𝐡)    &   (πœ‘ β†’ π‘Š ∈ π‘ˆ)    β‡’   (πœ‘ β†’ ((𝑋 / π‘Œ) Β· (𝑍 / π‘Š)) = ((𝑋 Β· 𝑍) / (π‘Œ Β· π‘Š)))
 
Theoremringinvdv 13319 Write the inverse function in terms of division. (Contributed by Mario Carneiro, 2-Jul-2014.)
𝐡 = (Baseβ€˜π‘…)    &   π‘ˆ = (Unitβ€˜π‘…)    &    / = (/rβ€˜π‘…)    &    1 = (1rβ€˜π‘…)    &   πΌ = (invrβ€˜π‘…)    β‡’   ((𝑅 ∈ Ring ∧ 𝑋 ∈ π‘ˆ) β†’ (πΌβ€˜π‘‹) = ( 1 / 𝑋))
 
Theoremrngidpropdg 13320* The ring unity depends only on the ring's base set and multiplication operation. (Contributed by Mario Carneiro, 26-Dec-2014.)
(πœ‘ β†’ 𝐡 = (Baseβ€˜πΎ))    &   (πœ‘ β†’ 𝐡 = (Baseβ€˜πΏ))    &   ((πœ‘ ∧ (π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ 𝐡)) β†’ (π‘₯(.rβ€˜πΎ)𝑦) = (π‘₯(.rβ€˜πΏ)𝑦))    &   (πœ‘ β†’ 𝐾 ∈ 𝑉)    &   (πœ‘ β†’ 𝐿 ∈ π‘Š)    β‡’   (πœ‘ β†’ (1rβ€˜πΎ) = (1rβ€˜πΏ))
 
Theoremdvdsrpropdg 13321* The divisibility relation depends only on the ring's base set and multiplication operation. (Contributed by Mario Carneiro, 26-Dec-2014.)
(πœ‘ β†’ 𝐡 = (Baseβ€˜πΎ))    &   (πœ‘ β†’ 𝐡 = (Baseβ€˜πΏ))    &   ((πœ‘ ∧ (π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ 𝐡)) β†’ (π‘₯(.rβ€˜πΎ)𝑦) = (π‘₯(.rβ€˜πΏ)𝑦))    &   (πœ‘ β†’ 𝐾 ∈ SRing)    &   (πœ‘ β†’ 𝐿 ∈ SRing)    β‡’   (πœ‘ β†’ (βˆ₯rβ€˜πΎ) = (βˆ₯rβ€˜πΏ))
 
Theoremunitpropdg 13322* The set of units depends only on the ring's base set and multiplication operation. (Contributed by Mario Carneiro, 26-Dec-2014.)
(πœ‘ β†’ 𝐡 = (Baseβ€˜πΎ))    &   (πœ‘ β†’ 𝐡 = (Baseβ€˜πΏ))    &   ((πœ‘ ∧ (π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ 𝐡)) β†’ (π‘₯(.rβ€˜πΎ)𝑦) = (π‘₯(.rβ€˜πΏ)𝑦))    &   (πœ‘ β†’ 𝐾 ∈ Ring)    &   (πœ‘ β†’ 𝐿 ∈ Ring)    β‡’   (πœ‘ β†’ (Unitβ€˜πΎ) = (Unitβ€˜πΏ))
 
Theoreminvrpropdg 13323* The ring inverse function depends only on the ring's base set and multiplication operation. (Contributed by Mario Carneiro, 26-Dec-2014.) (Revised by Mario Carneiro, 5-Oct-2015.)
(πœ‘ β†’ 𝐡 = (Baseβ€˜πΎ))    &   (πœ‘ β†’ 𝐡 = (Baseβ€˜πΏ))    &   ((πœ‘ ∧ (π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ 𝐡)) β†’ (π‘₯(.rβ€˜πΎ)𝑦) = (π‘₯(.rβ€˜πΏ)𝑦))    &   (πœ‘ β†’ 𝐾 ∈ Ring)    &   (πœ‘ β†’ 𝐿 ∈ Ring)    β‡’   (πœ‘ β†’ (invrβ€˜πΎ) = (invrβ€˜πΏ))
 
7.3.7  Ring homomorphisms
 
Syntaxcrh 13324 Extend class notation with the ring homomorphisms.
class RingHom
 
Syntaxcrs 13325 Extend class notation with the ring isomorphisms.
class RingIso
 
Definitiondf-rnghom 13326* Define the set of ring homomorphisms from π‘Ÿ to 𝑠. (Contributed by Stefan O'Rear, 7-Mar-2015.)
RingHom = (π‘Ÿ ∈ Ring, 𝑠 ∈ Ring ↦ ⦋(Baseβ€˜π‘Ÿ) / π‘£β¦Œβ¦‹(Baseβ€˜π‘ ) / π‘€β¦Œ{𝑓 ∈ (𝑀 β†‘π‘š 𝑣) ∣ ((π‘“β€˜(1rβ€˜π‘Ÿ)) = (1rβ€˜π‘ ) ∧ βˆ€π‘₯ ∈ 𝑣 βˆ€π‘¦ ∈ 𝑣 ((π‘“β€˜(π‘₯(+gβ€˜π‘Ÿ)𝑦)) = ((π‘“β€˜π‘₯)(+gβ€˜π‘ )(π‘“β€˜π‘¦)) ∧ (π‘“β€˜(π‘₯(.rβ€˜π‘Ÿ)𝑦)) = ((π‘“β€˜π‘₯)(.rβ€˜π‘ )(π‘“β€˜π‘¦))))})
 
Definitiondf-rngiso 13327* Define the set of ring isomorphisms from π‘Ÿ to 𝑠. (Contributed by Stefan O'Rear, 7-Mar-2015.)
RingIso = (π‘Ÿ ∈ V, 𝑠 ∈ V ↦ {𝑓 ∈ (π‘Ÿ RingHom 𝑠) ∣ ◑𝑓 ∈ (𝑠 RingHom π‘Ÿ)})
 
7.3.8  Nonzero rings and zero rings
 
Syntaxcnzr 13328 The class of nonzero rings.
class NzRing
 
Definitiondf-nzr 13329 A nonzero or nontrivial ring is a ring with at least two values, or equivalently where 1 and 0 are different. (Contributed by Stefan O'Rear, 24-Feb-2015.)
NzRing = {π‘Ÿ ∈ Ring ∣ (1rβ€˜π‘Ÿ) β‰  (0gβ€˜π‘Ÿ)}
 
Theoremisnzr 13330 Property of a nonzero ring. (Contributed by Stefan O'Rear, 24-Feb-2015.)
1 = (1rβ€˜π‘…)    &    0 = (0gβ€˜π‘…)    β‡’   (𝑅 ∈ NzRing ↔ (𝑅 ∈ Ring ∧ 1 β‰  0 ))
 
Theoremnzrnz 13331 One and zero are different in a nonzero ring. (Contributed by Stefan O'Rear, 24-Feb-2015.)
1 = (1rβ€˜π‘…)    &    0 = (0gβ€˜π‘…)    β‡’   (𝑅 ∈ NzRing β†’ 1 β‰  0 )
 
Theoremnzrring 13332 A nonzero ring is a ring. (Contributed by Stefan O'Rear, 24-Feb-2015.) (Proof shortened by SN, 23-Feb-2025.)
(𝑅 ∈ NzRing β†’ 𝑅 ∈ Ring)
 
Theoremringelnzr 13333 A ring is nonzero if it has a nonzero element. (Contributed by Stefan O'Rear, 6-Feb-2015.) (Revised by Mario Carneiro, 13-Jun-2015.)
0 = (0gβ€˜π‘…)    &   π΅ = (Baseβ€˜π‘…)    β‡’   ((𝑅 ∈ Ring ∧ 𝑋 ∈ (𝐡 βˆ– { 0 })) β†’ 𝑅 ∈ NzRing)
 
Theoremnzrunit 13334 A unit is nonzero in any nonzero ring. (Contributed by Mario Carneiro, 6-Oct-2015.)
π‘ˆ = (Unitβ€˜π‘…)    &    0 = (0gβ€˜π‘…)    β‡’   ((𝑅 ∈ NzRing ∧ 𝐴 ∈ π‘ˆ) β†’ 𝐴 β‰  0 )
 
Theorem01eq0ring 13335 If the zero and the identity element of a ring are the same, the ring is the zero ring. (Contributed by AV, 16-Apr-2019.) (Proof shortened by SN, 23-Feb-2025.)
𝐡 = (Baseβ€˜π‘…)    &    0 = (0gβ€˜π‘…)    &    1 = (1rβ€˜π‘…)    β‡’   ((𝑅 ∈ Ring ∧ 0 = 1 ) β†’ 𝐡 = { 0 })
 
7.3.9  Local rings
 
Syntaxclring 13336 Extend class notation with class of all local rings.
class LRing
 
Definitiondf-lring 13337* A local ring is a nonzero ring where for any two elements summing to one, at least one is invertible. Any field is a local ring; the ring of integers is an example of a ring which is not a local ring. (Contributed by Jim Kingdon, 18-Feb-2025.) (Revised by SN, 23-Feb-2025.)
LRing = {π‘Ÿ ∈ NzRing ∣ βˆ€π‘₯ ∈ (Baseβ€˜π‘Ÿ)βˆ€π‘¦ ∈ (Baseβ€˜π‘Ÿ)((π‘₯(+gβ€˜π‘Ÿ)𝑦) = (1rβ€˜π‘Ÿ) β†’ (π‘₯ ∈ (Unitβ€˜π‘Ÿ) ∨ 𝑦 ∈ (Unitβ€˜π‘Ÿ)))}
 
Theoremislring 13338* The predicate "is a local ring". (Contributed by SN, 23-Feb-2025.)
𝐡 = (Baseβ€˜π‘…)    &    + = (+gβ€˜π‘…)    &    1 = (1rβ€˜π‘…)    &   π‘ˆ = (Unitβ€˜π‘…)    β‡’   (𝑅 ∈ LRing ↔ (𝑅 ∈ NzRing ∧ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 ((π‘₯ + 𝑦) = 1 β†’ (π‘₯ ∈ π‘ˆ ∨ 𝑦 ∈ π‘ˆ))))
 
Theoremlringnzr 13339 A local ring is a nonzero ring. (Contributed by SN, 23-Feb-2025.)
(𝑅 ∈ LRing β†’ 𝑅 ∈ NzRing)
 
Theoremlringring 13340 A local ring is a ring. (Contributed by Jim Kingdon, 20-Feb-2025.) (Revised by SN, 23-Feb-2025.)
(𝑅 ∈ LRing β†’ 𝑅 ∈ Ring)
 
Theoremlringnz 13341 A local ring is a nonzero ring. (Contributed by Jim Kingdon, 20-Feb-2025.) (Revised by SN, 23-Feb-2025.)
1 = (1rβ€˜π‘…)    &    0 = (0gβ€˜π‘…)    β‡’   (𝑅 ∈ LRing β†’ 1 β‰  0 )
 
Theoremlringuplu 13342 If the sum of two elements of a local ring is invertible, then at least one of the summands must be invertible. (Contributed by Jim Kingdon, 18-Feb-2025.) (Revised by SN, 23-Feb-2025.)
(πœ‘ β†’ 𝐡 = (Baseβ€˜π‘…))    &   (πœ‘ β†’ π‘ˆ = (Unitβ€˜π‘…))    &   (πœ‘ β†’ + = (+gβ€˜π‘…))    &   (πœ‘ β†’ 𝑅 ∈ LRing)    &   (πœ‘ β†’ (𝑋 + π‘Œ) ∈ π‘ˆ)    &   (πœ‘ β†’ 𝑋 ∈ 𝐡)    &   (πœ‘ β†’ π‘Œ ∈ 𝐡)    β‡’   (πœ‘ β†’ (𝑋 ∈ π‘ˆ ∨ π‘Œ ∈ π‘ˆ))
 
7.3.10  Subrings of a ring
 
Syntaxcsubrg 13343 Extend class notation with all subrings of a ring.
class SubRing
 
Syntaxcrgspn 13344 Extend class notation with span of a set of elements over a ring.
class RingSpan
 
Definitiondf-subrg 13345* Define a subring of a ring as a set of elements that is a ring in its own right and contains the multiplicative identity.

The additional constraint is necessary because the multiplicative identity of a ring, unlike the additive identity of a ring/group or the multiplicative identity of a field, cannot be identified by a local property. Thus, it is possible for a subset of a ring to be a ring while not containing the true identity if it contains a false identity. For instance, the subset (β„€ Γ— {0}) of (β„€ Γ— β„€) (where multiplication is componentwise) contains the false identity ⟨1, 0⟩ which preserves every element of the subset and thus appears to be the identity of the subset, but is not the identity of the larger ring. (Contributed by Stefan O'Rear, 27-Nov-2014.)

SubRing = (𝑀 ∈ Ring ↦ {𝑠 ∈ 𝒫 (Baseβ€˜π‘€) ∣ ((𝑀 β†Ύs 𝑠) ∈ Ring ∧ (1rβ€˜π‘€) ∈ 𝑠)})
 
Definitiondf-rgspn 13346* The ring-span of a set of elements in a ring is the smallest subring which contains all of them. (Contributed by Stefan O'Rear, 7-Dec-2014.)
RingSpan = (𝑀 ∈ V ↦ (𝑠 ∈ 𝒫 (Baseβ€˜π‘€) ↦ ∩ {𝑑 ∈ (SubRingβ€˜π‘€) ∣ 𝑠 βŠ† 𝑑}))
 
Theoremissubrg 13347 The subring predicate. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Proof shortened by AV, 12-Oct-2020.)
𝐡 = (Baseβ€˜π‘…)    &    1 = (1rβ€˜π‘…)    β‡’   (𝐴 ∈ (SubRingβ€˜π‘…) ↔ ((𝑅 ∈ Ring ∧ (𝑅 β†Ύs 𝐴) ∈ Ring) ∧ (𝐴 βŠ† 𝐡 ∧ 1 ∈ 𝐴)))
 
Theoremsubrgss 13348 A subring is a subset. (Contributed by Stefan O'Rear, 27-Nov-2014.)
𝐡 = (Baseβ€˜π‘…)    β‡’   (𝐴 ∈ (SubRingβ€˜π‘…) β†’ 𝐴 βŠ† 𝐡)
 
Theoremsubrgid 13349 Every ring is a subring of itself. (Contributed by Stefan O'Rear, 30-Nov-2014.)
𝐡 = (Baseβ€˜π‘…)    β‡’   (𝑅 ∈ Ring β†’ 𝐡 ∈ (SubRingβ€˜π‘…))
 
Theoremsubrgring 13350 A subring is a ring. (Contributed by Stefan O'Rear, 27-Nov-2014.)
𝑆 = (𝑅 β†Ύs 𝐴)    β‡’   (𝐴 ∈ (SubRingβ€˜π‘…) β†’ 𝑆 ∈ Ring)
 
Theoremsubrgcrng 13351 A subring of a commutative ring is a commutative ring. (Contributed by Mario Carneiro, 10-Jan-2015.)
𝑆 = (𝑅 β†Ύs 𝐴)    β‡’   ((𝑅 ∈ CRing ∧ 𝐴 ∈ (SubRingβ€˜π‘…)) β†’ 𝑆 ∈ CRing)
 
Theoremsubrgrcl 13352 Reverse closure for a subring predicate. (Contributed by Mario Carneiro, 3-Dec-2014.)
(𝐴 ∈ (SubRingβ€˜π‘…) β†’ 𝑅 ∈ Ring)
 
Theoremsubrgsubg 13353 A subring is a subgroup. (Contributed by Mario Carneiro, 3-Dec-2014.)
(𝐴 ∈ (SubRingβ€˜π‘…) β†’ 𝐴 ∈ (SubGrpβ€˜π‘…))
 
Theoremsubrg0 13354 A subring always has the same additive identity. (Contributed by Stefan O'Rear, 27-Nov-2014.)
𝑆 = (𝑅 β†Ύs 𝐴)    &    0 = (0gβ€˜π‘…)    β‡’   (𝐴 ∈ (SubRingβ€˜π‘…) β†’ 0 = (0gβ€˜π‘†))
 
Theoremsubrg1cl 13355 A subring contains the multiplicative identity. (Contributed by Stefan O'Rear, 27-Nov-2014.)
1 = (1rβ€˜π‘…)    β‡’   (𝐴 ∈ (SubRingβ€˜π‘…) β†’ 1 ∈ 𝐴)
 
Theoremsubrgbas 13356 Base set of a subring structure. (Contributed by Stefan O'Rear, 27-Nov-2014.)
𝑆 = (𝑅 β†Ύs 𝐴)    β‡’   (𝐴 ∈ (SubRingβ€˜π‘…) β†’ 𝐴 = (Baseβ€˜π‘†))
 
Theoremsubrg1 13357 A subring always has the same multiplicative identity. (Contributed by Stefan O'Rear, 27-Nov-2014.)
𝑆 = (𝑅 β†Ύs 𝐴)    &    1 = (1rβ€˜π‘…)    β‡’   (𝐴 ∈ (SubRingβ€˜π‘…) β†’ 1 = (1rβ€˜π‘†))
 
Theoremsubrgacl 13358 A subring is closed under addition. (Contributed by Mario Carneiro, 2-Dec-2014.)
+ = (+gβ€˜π‘…)    β‡’   ((𝐴 ∈ (SubRingβ€˜π‘…) ∧ 𝑋 ∈ 𝐴 ∧ π‘Œ ∈ 𝐴) β†’ (𝑋 + π‘Œ) ∈ 𝐴)
 
Theoremsubrgmcl 13359 A subgroup is closed under multiplication. (Contributed by Mario Carneiro, 2-Dec-2014.)
Β· = (.rβ€˜π‘…)    β‡’   ((𝐴 ∈ (SubRingβ€˜π‘…) ∧ 𝑋 ∈ 𝐴 ∧ π‘Œ ∈ 𝐴) β†’ (𝑋 Β· π‘Œ) ∈ 𝐴)
 
Theoremsubrgsubm 13360 A subring is a submonoid of the multiplicative monoid. (Contributed by Mario Carneiro, 15-Jun-2015.)
𝑀 = (mulGrpβ€˜π‘…)    β‡’   (𝐴 ∈ (SubRingβ€˜π‘…) β†’ 𝐴 ∈ (SubMndβ€˜π‘€))
 
Theoremsubrgdvds 13361 If an element divides another in a subring, then it also divides the other in the parent ring. (Contributed by Mario Carneiro, 4-Dec-2014.)
𝑆 = (𝑅 β†Ύs 𝐴)    &    βˆ₯ = (βˆ₯rβ€˜π‘…)    &   πΈ = (βˆ₯rβ€˜π‘†)    β‡’   (𝐴 ∈ (SubRingβ€˜π‘…) β†’ 𝐸 βŠ† βˆ₯ )
 
Theoremsubrguss 13362 A unit of a subring is a unit of the parent ring. (Contributed by Mario Carneiro, 4-Dec-2014.)
𝑆 = (𝑅 β†Ύs 𝐴)    &   π‘ˆ = (Unitβ€˜π‘…)    &   π‘‰ = (Unitβ€˜π‘†)    β‡’   (𝐴 ∈ (SubRingβ€˜π‘…) β†’ 𝑉 βŠ† π‘ˆ)
 
Theoremsubrginv 13363 A subring always has the same inversion function, for elements that are invertible. (Contributed by Mario Carneiro, 4-Dec-2014.)
𝑆 = (𝑅 β†Ύs 𝐴)    &   πΌ = (invrβ€˜π‘…)    &   π‘ˆ = (Unitβ€˜π‘†)    &   π½ = (invrβ€˜π‘†)    β‡’   ((𝐴 ∈ (SubRingβ€˜π‘…) ∧ 𝑋 ∈ π‘ˆ) β†’ (πΌβ€˜π‘‹) = (π½β€˜π‘‹))
 
Theoremsubrgdv 13364 A subring always has the same division function, for elements that are invertible. (Contributed by Mario Carneiro, 4-Dec-2014.)
𝑆 = (𝑅 β†Ύs 𝐴)    &    / = (/rβ€˜π‘…)    &   π‘ˆ = (Unitβ€˜π‘†)    &   πΈ = (/rβ€˜π‘†)    β‡’   ((𝐴 ∈ (SubRingβ€˜π‘…) ∧ 𝑋 ∈ 𝐴 ∧ π‘Œ ∈ π‘ˆ) β†’ (𝑋 / π‘Œ) = (π‘‹πΈπ‘Œ))
 
Theoremsubrgunit 13365 An element of a ring is a unit of a subring iff it is a unit of the parent ring and both it and its inverse are in the subring. (Contributed by Mario Carneiro, 4-Dec-2014.)
𝑆 = (𝑅 β†Ύs 𝐴)    &   π‘ˆ = (Unitβ€˜π‘…)    &   π‘‰ = (Unitβ€˜π‘†)    &   πΌ = (invrβ€˜π‘…)    β‡’   (𝐴 ∈ (SubRingβ€˜π‘…) β†’ (𝑋 ∈ 𝑉 ↔ (𝑋 ∈ π‘ˆ ∧ 𝑋 ∈ 𝐴 ∧ (πΌβ€˜π‘‹) ∈ 𝐴)))
 
Theoremsubrgugrp 13366 The units of a subring form a subgroup of the unit group of the original ring. (Contributed by Mario Carneiro, 4-Dec-2014.)
𝑆 = (𝑅 β†Ύs 𝐴)    &   π‘ˆ = (Unitβ€˜π‘…)    &   π‘‰ = (Unitβ€˜π‘†)    &   πΊ = ((mulGrpβ€˜π‘…) β†Ύs π‘ˆ)    β‡’   (𝐴 ∈ (SubRingβ€˜π‘…) β†’ 𝑉 ∈ (SubGrpβ€˜πΊ))
 
Theoremissubrg2 13367* Characterize the subrings of a ring by closure properties. (Contributed by Mario Carneiro, 3-Dec-2014.)
𝐡 = (Baseβ€˜π‘…)    &    1 = (1rβ€˜π‘…)    &    Β· = (.rβ€˜π‘…)    β‡’   (𝑅 ∈ Ring β†’ (𝐴 ∈ (SubRingβ€˜π‘…) ↔ (𝐴 ∈ (SubGrpβ€˜π‘…) ∧ 1 ∈ 𝐴 ∧ βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 (π‘₯ Β· 𝑦) ∈ 𝐴)))
 
Theoremsubrgnzr 13368 A subring of a nonzero ring is nonzero. (Contributed by Mario Carneiro, 15-Jun-2015.)
𝑆 = (𝑅 β†Ύs 𝐴)    β‡’   ((𝑅 ∈ NzRing ∧ 𝐴 ∈ (SubRingβ€˜π‘…)) β†’ 𝑆 ∈ NzRing)
 
Theoremsubrgintm 13369* The intersection of an inhabited collection of subrings is a subring. (Contributed by Stefan O'Rear, 30-Nov-2014.) (Revised by Mario Carneiro, 7-Dec-2014.)
((𝑆 βŠ† (SubRingβ€˜π‘…) ∧ βˆƒπ‘€ 𝑀 ∈ 𝑆) β†’ ∩ 𝑆 ∈ (SubRingβ€˜π‘…))
 
Theoremsubrgin 13370 The intersection of two subrings is a subring. (Contributed by Stefan O'Rear, 30-Nov-2014.) (Revised by Mario Carneiro, 7-Dec-2014.)
((𝐴 ∈ (SubRingβ€˜π‘…) ∧ 𝐡 ∈ (SubRingβ€˜π‘…)) β†’ (𝐴 ∩ 𝐡) ∈ (SubRingβ€˜π‘…))
 
Theoremsubsubrg 13371 A subring of a subring is a subring. (Contributed by Mario Carneiro, 4-Dec-2014.)
𝑆 = (𝑅 β†Ύs 𝐴)    β‡’   (𝐴 ∈ (SubRingβ€˜π‘…) β†’ (𝐡 ∈ (SubRingβ€˜π‘†) ↔ (𝐡 ∈ (SubRingβ€˜π‘…) ∧ 𝐡 βŠ† 𝐴)))
 
Theoremsubsubrg2 13372 The set of subrings of a subring are the smaller subrings. (Contributed by Stefan O'Rear, 9-Mar-2015.)
𝑆 = (𝑅 β†Ύs 𝐴)    β‡’   (𝐴 ∈ (SubRingβ€˜π‘…) β†’ (SubRingβ€˜π‘†) = ((SubRingβ€˜π‘…) ∩ 𝒫 𝐴))
 
Theoremissubrg3 13373 A subring is an additive subgroup which is also a multiplicative submonoid. (Contributed by Mario Carneiro, 7-Mar-2015.)
𝑀 = (mulGrpβ€˜π‘…)    β‡’   (𝑅 ∈ Ring β†’ (𝑆 ∈ (SubRingβ€˜π‘…) ↔ (𝑆 ∈ (SubGrpβ€˜π‘…) ∧ 𝑆 ∈ (SubMndβ€˜π‘€))))
 
Theoremsubrgpropd 13374* If two structures have the same group components (properties), they have the same set of subrings. (Contributed by Mario Carneiro, 9-Feb-2015.)
(πœ‘ β†’ 𝐡 = (Baseβ€˜πΎ))    &   (πœ‘ β†’ 𝐡 = (Baseβ€˜πΏ))    &   ((πœ‘ ∧ (π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ 𝐡)) β†’ (π‘₯(+gβ€˜πΎ)𝑦) = (π‘₯(+gβ€˜πΏ)𝑦))    &   ((πœ‘ ∧ (π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ 𝐡)) β†’ (π‘₯(.rβ€˜πΎ)𝑦) = (π‘₯(.rβ€˜πΏ)𝑦))    β‡’   (πœ‘ β†’ (SubRingβ€˜πΎ) = (SubRingβ€˜πΏ))
 
7.4  Division rings and fields
 
7.4.1  Ring apartness
 
Syntaxcapr 13375 Extend class notation with ring apartness.
class #r
 
Definitiondf-apr 13376* The relation between elements whose difference is invertible, which for a local ring is an apartness relation by aprap 13381. (Contributed by Jim Kingdon, 13-Feb-2025.)
#r = (𝑀 ∈ V ↦ {⟨π‘₯, π‘¦βŸ© ∣ ((π‘₯ ∈ (Baseβ€˜π‘€) ∧ 𝑦 ∈ (Baseβ€˜π‘€)) ∧ (π‘₯(-gβ€˜π‘€)𝑦) ∈ (Unitβ€˜π‘€))})
 
Theoremaprval 13377 Expand Definition df-apr 13376. (Contributed by Jim Kingdon, 17-Feb-2025.)
(πœ‘ β†’ 𝐡 = (Baseβ€˜π‘…))    &   (πœ‘ β†’ # = (#rβ€˜π‘…))    &   (πœ‘ β†’ βˆ’ = (-gβ€˜π‘…))    &   (πœ‘ β†’ π‘ˆ = (Unitβ€˜π‘…))    &   (πœ‘ β†’ 𝑅 ∈ Ring)    &   (πœ‘ β†’ 𝑋 ∈ 𝐡)    &   (πœ‘ β†’ π‘Œ ∈ 𝐡)    β‡’   (πœ‘ β†’ (𝑋 # π‘Œ ↔ (𝑋 βˆ’ π‘Œ) ∈ π‘ˆ))
 
Theoremaprirr 13378 The apartness relation given by df-apr 13376 for a nonzero ring is irreflexive. (Contributed by Jim Kingdon, 16-Feb-2025.)
(πœ‘ β†’ 𝐡 = (Baseβ€˜π‘…))    &   (πœ‘ β†’ # = (#rβ€˜π‘…))    &   (πœ‘ β†’ 𝑅 ∈ Ring)    &   (πœ‘ β†’ 𝑋 ∈ 𝐡)    &   (πœ‘ β†’ (1rβ€˜π‘…) β‰  (0gβ€˜π‘…))    β‡’   (πœ‘ β†’ Β¬ 𝑋 # 𝑋)
 
Theoremaprsym 13379 The apartness relation given by df-apr 13376 for a ring is symmetric. (Contributed by Jim Kingdon, 17-Feb-2025.)
(πœ‘ β†’ 𝐡 = (Baseβ€˜π‘…))    &   (πœ‘ β†’ # = (#rβ€˜π‘…))    &   (πœ‘ β†’ 𝑅 ∈ Ring)    &   (πœ‘ β†’ 𝑋 ∈ 𝐡)    &   (πœ‘ β†’ π‘Œ ∈ 𝐡)    β‡’   (πœ‘ β†’ (𝑋 # π‘Œ β†’ π‘Œ # 𝑋))
 
Theoremaprcotr 13380 The apartness relation given by df-apr 13376 for a local ring is cotransitive. (Contributed by Jim Kingdon, 17-Feb-2025.)
(πœ‘ β†’ 𝐡 = (Baseβ€˜π‘…))    &   (πœ‘ β†’ # = (#rβ€˜π‘…))    &   (πœ‘ β†’ 𝑅 ∈ LRing)    &   (πœ‘ β†’ 𝑋 ∈ 𝐡)    &   (πœ‘ β†’ π‘Œ ∈ 𝐡)    &   (πœ‘ β†’ 𝑍 ∈ 𝐡)    β‡’   (πœ‘ β†’ (𝑋 # π‘Œ β†’ (𝑋 # 𝑍 ∨ π‘Œ # 𝑍)))
 
Theoremaprap 13381 The relation given by df-apr 13376 for a local ring is an apartness relation. (Contributed by Jim Kingdon, 20-Feb-2025.)
(𝑅 ∈ LRing β†’ (#rβ€˜π‘…) Ap (Baseβ€˜π‘…))
 
7.5  Left modules
 
7.5.1  Definition and basic properties
 
Syntaxclmod 13382 Extend class notation with class of all left modules.
class LMod
 
Syntaxcscaf 13383 The functionalization of the scalar multiplication operation.
class Β·sf
 
Definitiondf-lmod 13384* Define the class of all left modules, which are generalizations of left vector spaces. A left module over a ring is an (Abelian) group (vectors) together with a ring (scalars) and a left scalar product connecting them. (Contributed by NM, 4-Nov-2013.)
LMod = {𝑔 ∈ Grp ∣ [(Baseβ€˜π‘”) / 𝑣][(+gβ€˜π‘”) / π‘Ž][(Scalarβ€˜π‘”) / 𝑓][( ·𝑠 β€˜π‘”) / 𝑠][(Baseβ€˜π‘“) / π‘˜][(+gβ€˜π‘“) / 𝑝][(.rβ€˜π‘“) / 𝑑](𝑓 ∈ Ring ∧ βˆ€π‘ž ∈ π‘˜ βˆ€π‘Ÿ ∈ π‘˜ βˆ€π‘₯ ∈ 𝑣 βˆ€π‘€ ∈ 𝑣 (((π‘Ÿπ‘ π‘€) ∈ 𝑣 ∧ (π‘Ÿπ‘ (π‘€π‘Žπ‘₯)) = ((π‘Ÿπ‘ π‘€)π‘Ž(π‘Ÿπ‘ π‘₯)) ∧ ((π‘žπ‘π‘Ÿ)𝑠𝑀) = ((π‘žπ‘ π‘€)π‘Ž(π‘Ÿπ‘ π‘€))) ∧ (((π‘žπ‘‘π‘Ÿ)𝑠𝑀) = (π‘žπ‘ (π‘Ÿπ‘ π‘€)) ∧ ((1rβ€˜π‘“)𝑠𝑀) = 𝑀)))}
 
Definitiondf-scaf 13385* Define the functionalization of the ·𝑠 operator. This restricts the value of ·𝑠 to the stated domain, which is necessary when working with restricted structures, whose operations may be defined on a larger set than the true base. (Contributed by Mario Carneiro, 5-Oct-2015.)
Β·sf = (𝑔 ∈ V ↦ (π‘₯ ∈ (Baseβ€˜(Scalarβ€˜π‘”)), 𝑦 ∈ (Baseβ€˜π‘”) ↦ (π‘₯( ·𝑠 β€˜π‘”)𝑦)))
 
Theoremislmod 13386* The predicate "is a left module". (Contributed by NM, 4-Nov-2013.) (Revised by Mario Carneiro, 19-Jun-2014.)
𝑉 = (Baseβ€˜π‘Š)    &    + = (+gβ€˜π‘Š)    &    Β· = ( ·𝑠 β€˜π‘Š)    &   πΉ = (Scalarβ€˜π‘Š)    &   πΎ = (Baseβ€˜πΉ)    &    ⨣ = (+gβ€˜πΉ)    &    Γ— = (.rβ€˜πΉ)    &    1 = (1rβ€˜πΉ)    β‡’   (π‘Š ∈ LMod ↔ (π‘Š ∈ Grp ∧ 𝐹 ∈ Ring ∧ βˆ€π‘ž ∈ 𝐾 βˆ€π‘Ÿ ∈ 𝐾 βˆ€π‘₯ ∈ 𝑉 βˆ€π‘€ ∈ 𝑉 (((π‘Ÿ Β· 𝑀) ∈ 𝑉 ∧ (π‘Ÿ Β· (𝑀 + π‘₯)) = ((π‘Ÿ Β· 𝑀) + (π‘Ÿ Β· π‘₯)) ∧ ((π‘ž ⨣ π‘Ÿ) Β· 𝑀) = ((π‘ž Β· 𝑀) + (π‘Ÿ Β· 𝑀))) ∧ (((π‘ž Γ— π‘Ÿ) Β· 𝑀) = (π‘ž Β· (π‘Ÿ Β· 𝑀)) ∧ ( 1 Β· 𝑀) = 𝑀))))
 
Theoremlmodlema 13387 Lemma for properties of a left module. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.)
𝑉 = (Baseβ€˜π‘Š)    &    + = (+gβ€˜π‘Š)    &    Β· = ( ·𝑠 β€˜π‘Š)    &   πΉ = (Scalarβ€˜π‘Š)    &   πΎ = (Baseβ€˜πΉ)    &    ⨣ = (+gβ€˜πΉ)    &    Γ— = (.rβ€˜πΉ)    &    1 = (1rβ€˜πΉ)    β‡’   ((π‘Š ∈ LMod ∧ (𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾) ∧ (𝑋 ∈ 𝑉 ∧ π‘Œ ∈ 𝑉)) β†’ (((𝑅 Β· π‘Œ) ∈ 𝑉 ∧ (𝑅 Β· (π‘Œ + 𝑋)) = ((𝑅 Β· π‘Œ) + (𝑅 Β· 𝑋)) ∧ ((𝑄 ⨣ 𝑅) Β· π‘Œ) = ((𝑄 Β· π‘Œ) + (𝑅 Β· π‘Œ))) ∧ (((𝑄 Γ— 𝑅) Β· π‘Œ) = (𝑄 Β· (𝑅 Β· π‘Œ)) ∧ ( 1 Β· π‘Œ) = π‘Œ)))
 
Theoremislmodd 13388* Properties that determine a left module. See note in isgrpd2 12902 regarding the πœ‘ on hypotheses that name structure components. (Contributed by Mario Carneiro, 22-Jun-2014.)
(πœ‘ β†’ 𝑉 = (Baseβ€˜π‘Š))    &   (πœ‘ β†’ + = (+gβ€˜π‘Š))    &   (πœ‘ β†’ 𝐹 = (Scalarβ€˜π‘Š))    &   (πœ‘ β†’ Β· = ( ·𝑠 β€˜π‘Š))    &   (πœ‘ β†’ 𝐡 = (Baseβ€˜πΉ))    &   (πœ‘ β†’ ⨣ = (+gβ€˜πΉ))    &   (πœ‘ β†’ Γ— = (.rβ€˜πΉ))    &   (πœ‘ β†’ 1 = (1rβ€˜πΉ))    &   (πœ‘ β†’ 𝐹 ∈ Ring)    &   (πœ‘ β†’ π‘Š ∈ Grp)    &   ((πœ‘ ∧ π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ 𝑉) β†’ (π‘₯ Β· 𝑦) ∈ 𝑉)    &   ((πœ‘ ∧ (π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) β†’ (π‘₯ Β· (𝑦 + 𝑧)) = ((π‘₯ Β· 𝑦) + (π‘₯ Β· 𝑧)))    &   ((πœ‘ ∧ (π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ 𝐡 ∧ 𝑧 ∈ 𝑉)) β†’ ((π‘₯ ⨣ 𝑦) Β· 𝑧) = ((π‘₯ Β· 𝑧) + (𝑦 Β· 𝑧)))    &   ((πœ‘ ∧ (π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ 𝐡 ∧ 𝑧 ∈ 𝑉)) β†’ ((π‘₯ Γ— 𝑦) Β· 𝑧) = (π‘₯ Β· (𝑦 Β· 𝑧)))    &   ((πœ‘ ∧ π‘₯ ∈ 𝑉) β†’ ( 1 Β· π‘₯) = π‘₯)    β‡’   (πœ‘ β†’ π‘Š ∈ LMod)
 
Theoremlmodgrp 13389 A left module is a group. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 25-Jun-2014.)
(π‘Š ∈ LMod β†’ π‘Š ∈ Grp)
 
Theoremlmodring 13390 The scalar component of a left module is a ring. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.)
𝐹 = (Scalarβ€˜π‘Š)    β‡’   (π‘Š ∈ LMod β†’ 𝐹 ∈ Ring)
 
Theoremlmodfgrp 13391 The scalar component of a left module is an additive group. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.)
𝐹 = (Scalarβ€˜π‘Š)    β‡’   (π‘Š ∈ LMod β†’ 𝐹 ∈ Grp)
 
Theoremlmodgrpd 13392 A left module is a group. (Contributed by SN, 16-May-2024.)
(πœ‘ β†’ π‘Š ∈ LMod)    β‡’   (πœ‘ β†’ π‘Š ∈ Grp)
 
Theoremlmodbn0 13393 The base set of a left module is nonempty. It is also inhabited (by lmod0vcl 13412). (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.)
𝐡 = (Baseβ€˜π‘Š)    β‡’   (π‘Š ∈ LMod β†’ 𝐡 β‰  βˆ…)
 
Theoremlmodacl 13394 Closure of ring addition for a left module. (Contributed by NM, 14-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
𝐹 = (Scalarβ€˜π‘Š)    &   πΎ = (Baseβ€˜πΉ)    &    + = (+gβ€˜πΉ)    β‡’   ((π‘Š ∈ LMod ∧ 𝑋 ∈ 𝐾 ∧ π‘Œ ∈ 𝐾) β†’ (𝑋 + π‘Œ) ∈ 𝐾)
 
Theoremlmodmcl 13395 Closure of ring multiplication for a left module. (Contributed by NM, 14-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
𝐹 = (Scalarβ€˜π‘Š)    &   πΎ = (Baseβ€˜πΉ)    &    Β· = (.rβ€˜πΉ)    β‡’   ((π‘Š ∈ LMod ∧ 𝑋 ∈ 𝐾 ∧ π‘Œ ∈ 𝐾) β†’ (𝑋 Β· π‘Œ) ∈ 𝐾)
 
Theoremlmodsn0 13396 The set of scalars in a left module is nonempty. It is also inhabited, by lmod0cl 13409. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.)
𝐹 = (Scalarβ€˜π‘Š)    &   π΅ = (Baseβ€˜πΉ)    β‡’   (π‘Š ∈ LMod β†’ 𝐡 β‰  βˆ…)
 
Theoremlmodvacl 13397 Closure of vector addition for a left module. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.)
𝑉 = (Baseβ€˜π‘Š)    &    + = (+gβ€˜π‘Š)    β‡’   ((π‘Š ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ π‘Œ ∈ 𝑉) β†’ (𝑋 + π‘Œ) ∈ 𝑉)
 
Theoremlmodass 13398 Left module vector sum is associative. (Contributed by NM, 10-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
𝑉 = (Baseβ€˜π‘Š)    &    + = (+gβ€˜π‘Š)    β‡’   ((π‘Š ∈ LMod ∧ (𝑋 ∈ 𝑉 ∧ π‘Œ ∈ 𝑉 ∧ 𝑍 ∈ 𝑉)) β†’ ((𝑋 + π‘Œ) + 𝑍) = (𝑋 + (π‘Œ + 𝑍)))
 
Theoremlmodlcan 13399 Left cancellation law for vector sum. (Contributed by NM, 12-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
𝑉 = (Baseβ€˜π‘Š)    &    + = (+gβ€˜π‘Š)    β‡’   ((π‘Š ∈ LMod ∧ (𝑋 ∈ 𝑉 ∧ π‘Œ ∈ 𝑉 ∧ 𝑍 ∈ 𝑉)) β†’ ((𝑍 + 𝑋) = (𝑍 + π‘Œ) ↔ 𝑋 = π‘Œ))
 
Theoremlmodvscl 13400 Closure of scalar product for a left module. (Contributed by NM, 8-Dec-2013.) (Revised by Mario Carneiro, 19-Jun-2014.)
𝑉 = (Baseβ€˜π‘Š)    &   πΉ = (Scalarβ€˜π‘Š)    &    Β· = ( ·𝑠 β€˜π‘Š)    &   πΎ = (Baseβ€˜πΉ)    β‡’   ((π‘Š ∈ LMod ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉) β†’ (𝑅 Β· 𝑋) ∈ 𝑉)
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-14917
  Copyright terms: Public domain < Previous  Next >