Theorem List for Intuitionistic Logic Explorer - 13301-13400 *Has distinct variable
group(s)
Type | Label | Description |
Statement |
|
Theorem | quseccl0g 13301 |
Closure of the quotient map for a quotient group. (Contributed by Mario
Carneiro, 18-Sep-2015.) Generalization of quseccl 13303 for arbitrary sets
𝐺. (Revised by AV, 24-Feb-2025.)
|
⊢ ∼ = (𝐺 ~QG 𝑆) & ⊢ 𝐻 = (𝐺 /s ∼ ) & ⊢ 𝐶 = (Base‘𝐺) & ⊢ 𝐵 = (Base‘𝐻)
⇒ ⊢ ((𝐺 ∈ 𝑉 ∧ 𝑋 ∈ 𝐶 ∧ 𝑆 ∈ 𝑍) → [𝑋] ∼ ∈ 𝐵) |
|
Theorem | qusgrp 13302 |
If 𝑌 is a normal subgroup of 𝐺, then
𝐻 = 𝐺 / 𝑌 is a group,
called the quotient of 𝐺 by 𝑌. (Contributed by Mario
Carneiro,
14-Jun-2015.) (Revised by Mario Carneiro, 12-Aug-2015.)
|
⊢ 𝐻 = (𝐺 /s (𝐺 ~QG 𝑆)) ⇒ ⊢ (𝑆 ∈ (NrmSGrp‘𝐺) → 𝐻 ∈ Grp) |
|
Theorem | quseccl 13303 |
Closure of the quotient map for a quotient group. (Contributed by
Mario Carneiro, 18-Sep-2015.) (Proof shortened by AV,
9-Mar-2025.)
|
⊢ 𝐻 = (𝐺 /s (𝐺 ~QG 𝑆)) & ⊢ 𝑉 = (Base‘𝐺) & ⊢ 𝐵 = (Base‘𝐻)
⇒ ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋 ∈ 𝑉) → [𝑋](𝐺 ~QG 𝑆) ∈ 𝐵) |
|
Theorem | qusadd 13304 |
Value of the group operation in a quotient group. (Contributed by
Mario Carneiro, 18-Sep-2015.)
|
⊢ 𝐻 = (𝐺 /s (𝐺 ~QG 𝑆)) & ⊢ 𝑉 = (Base‘𝐺) & ⊢ + =
(+g‘𝐺)
& ⊢ ✚ =
(+g‘𝐻) ⇒ ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → ([𝑋](𝐺 ~QG 𝑆) ✚ [𝑌](𝐺 ~QG 𝑆)) = [(𝑋 + 𝑌)](𝐺 ~QG 𝑆)) |
|
Theorem | qus0 13305 |
Value of the group identity operation in a quotient group.
(Contributed by Mario Carneiro, 18-Sep-2015.)
|
⊢ 𝐻 = (𝐺 /s (𝐺 ~QG 𝑆)) & ⊢ 0 =
(0g‘𝐺) ⇒ ⊢ (𝑆 ∈ (NrmSGrp‘𝐺) → [ 0 ](𝐺 ~QG 𝑆) = (0g‘𝐻)) |
|
Theorem | qusinv 13306 |
Value of the group inverse operation in a quotient group.
(Contributed by Mario Carneiro, 18-Sep-2015.)
|
⊢ 𝐻 = (𝐺 /s (𝐺 ~QG 𝑆)) & ⊢ 𝑉 = (Base‘𝐺) & ⊢ 𝐼 = (invg‘𝐺) & ⊢ 𝑁 = (invg‘𝐻)
⇒ ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋 ∈ 𝑉) → (𝑁‘[𝑋](𝐺 ~QG 𝑆)) = [(𝐼‘𝑋)](𝐺 ~QG 𝑆)) |
|
Theorem | qussub 13307 |
Value of the group subtraction operation in a quotient group.
(Contributed by Mario Carneiro, 18-Sep-2015.)
|
⊢ 𝐻 = (𝐺 /s (𝐺 ~QG 𝑆)) & ⊢ 𝑉 = (Base‘𝐺) & ⊢ − =
(-g‘𝐺)
& ⊢ 𝑁 = (-g‘𝐻) ⇒ ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → ([𝑋](𝐺 ~QG 𝑆)𝑁[𝑌](𝐺 ~QG 𝑆)) = [(𝑋 − 𝑌)](𝐺 ~QG 𝑆)) |
|
Theorem | ecqusaddd 13308 |
Addition of equivalence classes in a quotient group. (Contributed by
AV, 25-Feb-2025.)
|
⊢ (𝜑 → 𝐼 ∈ (NrmSGrp‘𝑅)) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ ∼ =
(𝑅 ~QG
𝐼) & ⊢ 𝑄 = (𝑅 /s ∼
) ⇒ ⊢ ((𝜑 ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵)) → [(𝐴(+g‘𝑅)𝐶)] ∼ = ([𝐴] ∼
(+g‘𝑄)[𝐶] ∼
)) |
|
Theorem | ecqusaddcl 13309 |
Closure of the addition in a quotient group. (Contributed by AV,
24-Feb-2025.)
|
⊢ (𝜑 → 𝐼 ∈ (NrmSGrp‘𝑅)) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ ∼ =
(𝑅 ~QG
𝐼) & ⊢ 𝑄 = (𝑅 /s ∼
) ⇒ ⊢ ((𝜑 ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵)) → ([𝐴] ∼
(+g‘𝑄)[𝐶] ∼ ) ∈
(Base‘𝑄)) |
|
7.2.4 Elementary theory of group
homomorphisms
|
|
Syntax | cghm 13310 |
Extend class notation with the generator of group hom-sets.
|
class GrpHom |
|
Definition | df-ghm 13311* |
A homomorphism of groups is a map between two structures which preserves
the group operation. Requiring both sides to be groups simplifies most
theorems at the cost of complicating the theorem which pushes forward a
group structure. (Contributed by Stefan O'Rear, 31-Dec-2014.)
|
⊢ GrpHom = (𝑠 ∈ Grp, 𝑡 ∈ Grp ↦ {𝑔 ∣ [(Base‘𝑠) / 𝑤](𝑔:𝑤⟶(Base‘𝑡) ∧ ∀𝑥 ∈ 𝑤 ∀𝑦 ∈ 𝑤 (𝑔‘(𝑥(+g‘𝑠)𝑦)) = ((𝑔‘𝑥)(+g‘𝑡)(𝑔‘𝑦)))}) |
|
Theorem | reldmghm 13312 |
Lemma for group homomorphisms. (Contributed by Stefan O'Rear,
31-Dec-2014.)
|
⊢ Rel dom GrpHom |
|
Theorem | isghm 13313* |
Property of being a homomorphism of groups. (Contributed by Stefan
O'Rear, 31-Dec-2014.)
|
⊢ 𝑋 = (Base‘𝑆)
& ⊢ 𝑌 = (Base‘𝑇)
& ⊢ + =
(+g‘𝑆)
& ⊢ ⨣ =
(+g‘𝑇) ⇒ ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) ↔ ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) ∧ (𝐹:𝑋⟶𝑌 ∧ ∀𝑢 ∈ 𝑋 ∀𝑣 ∈ 𝑋 (𝐹‘(𝑢 + 𝑣)) = ((𝐹‘𝑢) ⨣ (𝐹‘𝑣))))) |
|
Theorem | isghm3 13314* |
Property of a group homomorphism, similar to ismhm 13033. (Contributed by
Mario Carneiro, 7-Mar-2015.)
|
⊢ 𝑋 = (Base‘𝑆)
& ⊢ 𝑌 = (Base‘𝑇)
& ⊢ + =
(+g‘𝑆)
& ⊢ ⨣ =
(+g‘𝑇) ⇒ ⊢ ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) → (𝐹 ∈ (𝑆 GrpHom 𝑇) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑢 ∈ 𝑋 ∀𝑣 ∈ 𝑋 (𝐹‘(𝑢 + 𝑣)) = ((𝐹‘𝑢) ⨣ (𝐹‘𝑣))))) |
|
Theorem | ghmgrp1 13315 |
A group homomorphism is only defined when the domain is a group.
(Contributed by Stefan O'Rear, 31-Dec-2014.)
|
⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝑆 ∈ Grp) |
|
Theorem | ghmgrp2 13316 |
A group homomorphism is only defined when the codomain is a group.
(Contributed by Stefan O'Rear, 31-Dec-2014.)
|
⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝑇 ∈ Grp) |
|
Theorem | ghmf 13317 |
A group homomorphism is a function. (Contributed by Stefan O'Rear,
31-Dec-2014.)
|
⊢ 𝑋 = (Base‘𝑆)
& ⊢ 𝑌 = (Base‘𝑇) ⇒ ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹:𝑋⟶𝑌) |
|
Theorem | ghmlin 13318 |
A homomorphism of groups is linear. (Contributed by Stefan O'Rear,
31-Dec-2014.)
|
⊢ 𝑋 = (Base‘𝑆)
& ⊢ + =
(+g‘𝑆)
& ⊢ ⨣ =
(+g‘𝑇) ⇒ ⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ∈ 𝑋) → (𝐹‘(𝑈 + 𝑉)) = ((𝐹‘𝑈) ⨣ (𝐹‘𝑉))) |
|
Theorem | ghmid 13319 |
A homomorphism of groups preserves the identity. (Contributed by Stefan
O'Rear, 31-Dec-2014.)
|
⊢ 𝑌 = (0g‘𝑆)
& ⊢ 0 =
(0g‘𝑇) ⇒ ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝐹‘𝑌) = 0 ) |
|
Theorem | ghminv 13320 |
A homomorphism of groups preserves inverses. (Contributed by Stefan
O'Rear, 31-Dec-2014.)
|
⊢ 𝐵 = (Base‘𝑆)
& ⊢ 𝑀 = (invg‘𝑆)
& ⊢ 𝑁 = (invg‘𝑇) ⇒ ⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ 𝐵) → (𝐹‘(𝑀‘𝑋)) = (𝑁‘(𝐹‘𝑋))) |
|
Theorem | ghmsub 13321 |
Linearity of subtraction through a group homomorphism. (Contributed by
Stefan O'Rear, 31-Dec-2014.)
|
⊢ 𝐵 = (Base‘𝑆)
& ⊢ − =
(-g‘𝑆)
& ⊢ 𝑁 = (-g‘𝑇) ⇒ ⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈 ∈ 𝐵 ∧ 𝑉 ∈ 𝐵) → (𝐹‘(𝑈 − 𝑉)) = ((𝐹‘𝑈)𝑁(𝐹‘𝑉))) |
|
Theorem | isghmd 13322* |
Deduction for a group homomorphism. (Contributed by Stefan O'Rear,
4-Feb-2015.)
|
⊢ 𝑋 = (Base‘𝑆)
& ⊢ 𝑌 = (Base‘𝑇)
& ⊢ + =
(+g‘𝑆)
& ⊢ ⨣ =
(+g‘𝑇)
& ⊢ (𝜑 → 𝑆 ∈ Grp) & ⊢ (𝜑 → 𝑇 ∈ Grp) & ⊢ (𝜑 → 𝐹:𝑋⟶𝑌)
& ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦))) ⇒ ⊢ (𝜑 → 𝐹 ∈ (𝑆 GrpHom 𝑇)) |
|
Theorem | ghmmhm 13323 |
A group homomorphism is a monoid homomorphism. (Contributed by Stefan
O'Rear, 7-Mar-2015.)
|
⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹 ∈ (𝑆 MndHom 𝑇)) |
|
Theorem | ghmmhmb 13324 |
Group homomorphisms and monoid homomorphisms coincide. (Thus,
GrpHom is somewhat redundant, although its
stronger reverse closure
properties are sometimes useful.) (Contributed by Stefan O'Rear,
7-Mar-2015.)
|
⊢ ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) → (𝑆 GrpHom 𝑇) = (𝑆 MndHom 𝑇)) |
|
Theorem | ghmex 13325 |
The set of group homomorphisms exists. (Contributed by Jim Kingdon,
15-May-2025.)
|
⊢ ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) → (𝑆 GrpHom 𝑇) ∈ V) |
|
Theorem | ghmmulg 13326 |
A group homomorphism preserves group multiples. (Contributed by Mario
Carneiro, 14-Jun-2015.)
|
⊢ 𝐵 = (Base‘𝐺)
& ⊢ · =
(.g‘𝐺)
& ⊢ × =
(.g‘𝐻) ⇒ ⊢ ((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → (𝐹‘(𝑁 · 𝑋)) = (𝑁 × (𝐹‘𝑋))) |
|
Theorem | ghmrn 13327 |
The range of a homomorphism is a subgroup. (Contributed by Stefan
O'Rear, 31-Dec-2014.)
|
⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → ran 𝐹 ∈ (SubGrp‘𝑇)) |
|
Theorem | 0ghm 13328 |
The constant zero linear function between two groups. (Contributed by
Stefan O'Rear, 5-Sep-2015.)
|
⊢ 0 =
(0g‘𝑁)
& ⊢ 𝐵 = (Base‘𝑀) ⇒ ⊢ ((𝑀 ∈ Grp ∧ 𝑁 ∈ Grp) → (𝐵 × { 0 }) ∈ (𝑀 GrpHom 𝑁)) |
|
Theorem | idghm 13329 |
The identity homomorphism on a group. (Contributed by Stefan O'Rear,
31-Dec-2014.)
|
⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ (𝐺 ∈ Grp → ( I ↾ 𝐵) ∈ (𝐺 GrpHom 𝐺)) |
|
Theorem | resghm 13330 |
Restriction of a homomorphism to a subgroup. (Contributed by Stefan
O'Rear, 31-Dec-2014.)
|
⊢ 𝑈 = (𝑆 ↾s 𝑋) ⇒ ⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) → (𝐹 ↾ 𝑋) ∈ (𝑈 GrpHom 𝑇)) |
|
Theorem | resghm2 13331 |
One direction of resghm2b 13332. (Contributed by Mario Carneiro,
13-Jan-2015.) (Revised by Mario Carneiro, 18-Jun-2015.)
|
⊢ 𝑈 = (𝑇 ↾s 𝑋) ⇒ ⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑈) ∧ 𝑋 ∈ (SubGrp‘𝑇)) → 𝐹 ∈ (𝑆 GrpHom 𝑇)) |
|
Theorem | resghm2b 13332 |
Restriction of the codomain of a homomorphism. (Contributed by Mario
Carneiro, 13-Jan-2015.) (Revised by Mario Carneiro, 18-Jun-2015.)
|
⊢ 𝑈 = (𝑇 ↾s 𝑋) ⇒ ⊢ ((𝑋 ∈ (SubGrp‘𝑇) ∧ ran 𝐹 ⊆ 𝑋) → (𝐹 ∈ (𝑆 GrpHom 𝑇) ↔ 𝐹 ∈ (𝑆 GrpHom 𝑈))) |
|
Theorem | ghmghmrn 13333 |
A group homomorphism from 𝐺 to 𝐻 is also a group
homomorphism
from 𝐺 to its image in 𝐻.
(Contributed by Paul Chapman,
3-Mar-2008.) (Revised by AV, 26-Aug-2021.)
|
⊢ 𝑈 = (𝑇 ↾s ran 𝐹) ⇒ ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹 ∈ (𝑆 GrpHom 𝑈)) |
|
Theorem | ghmco 13334 |
The composition of group homomorphisms is a homomorphism. (Contributed by
Mario Carneiro, 12-Jun-2015.)
|
⊢ ((𝐹 ∈ (𝑇 GrpHom 𝑈) ∧ 𝐺 ∈ (𝑆 GrpHom 𝑇)) → (𝐹 ∘ 𝐺) ∈ (𝑆 GrpHom 𝑈)) |
|
Theorem | ghmima 13335 |
The image of a subgroup under a homomorphism. (Contributed by Stefan
O'Rear, 31-Dec-2014.)
|
⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈 ∈ (SubGrp‘𝑆)) → (𝐹 “ 𝑈) ∈ (SubGrp‘𝑇)) |
|
Theorem | ghmpreima 13336 |
The inverse image of a subgroup under a homomorphism. (Contributed by
Stefan O'Rear, 31-Dec-2014.)
|
⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (SubGrp‘𝑇)) → (◡𝐹 “ 𝑉) ∈ (SubGrp‘𝑆)) |
|
Theorem | ghmeql 13337 |
The equalizer of two group homomorphisms is a subgroup. (Contributed by
Stefan O'Rear, 7-Mar-2015.) (Revised by Mario Carneiro, 6-May-2015.)
|
⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐺 ∈ (𝑆 GrpHom 𝑇)) → dom (𝐹 ∩ 𝐺) ∈ (SubGrp‘𝑆)) |
|
Theorem | ghmnsgima 13338 |
The image of a normal subgroup under a surjective homomorphism is
normal. (Contributed by Mario Carneiro, 4-Feb-2015.)
|
⊢ 𝑌 = (Base‘𝑇) ⇒ ⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈 ∈ (NrmSGrp‘𝑆) ∧ ran 𝐹 = 𝑌) → (𝐹 “ 𝑈) ∈ (NrmSGrp‘𝑇)) |
|
Theorem | ghmnsgpreima 13339 |
The inverse image of a normal subgroup under a homomorphism is normal.
(Contributed by Mario Carneiro, 4-Feb-2015.)
|
⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (NrmSGrp‘𝑇)) → (◡𝐹 “ 𝑉) ∈ (NrmSGrp‘𝑆)) |
|
Theorem | ghmker 13340 |
The kernel of a homomorphism is a normal subgroup. (Contributed by
Mario Carneiro, 4-Feb-2015.)
|
⊢ 0 =
(0g‘𝑇) ⇒ ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → (◡𝐹 “ { 0 }) ∈
(NrmSGrp‘𝑆)) |
|
Theorem | ghmeqker 13341 |
Two source points map to the same destination point under a group
homomorphism iff their difference belongs to the kernel. (Contributed
by Stefan O'Rear, 31-Dec-2014.)
|
⊢ 𝐵 = (Base‘𝑆)
& ⊢ 0 =
(0g‘𝑇)
& ⊢ 𝐾 = (◡𝐹 “ { 0 }) & ⊢ − =
(-g‘𝑆) ⇒ ⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈 ∈ 𝐵 ∧ 𝑉 ∈ 𝐵) → ((𝐹‘𝑈) = (𝐹‘𝑉) ↔ (𝑈 − 𝑉) ∈ 𝐾)) |
|
Theorem | f1ghm0to0 13342 |
If a group homomorphism 𝐹 is injective, it maps the zero of
one
group (and only the zero) to the zero of the other group. (Contributed
by AV, 24-Oct-2019.) (Revised by Thierry Arnoux, 13-May-2023.)
|
⊢ 𝐴 = (Base‘𝑅)
& ⊢ 𝐵 = (Base‘𝑆)
& ⊢ 𝑁 = (0g‘𝑅)
& ⊢ 0 =
(0g‘𝑆) ⇒ ⊢ ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴–1-1→𝐵 ∧ 𝑋 ∈ 𝐴) → ((𝐹‘𝑋) = 0 ↔ 𝑋 = 𝑁)) |
|
Theorem | ghmf1 13343* |
Two ways of saying a group homomorphism is 1-1 into its codomain.
(Contributed by Paul Chapman, 3-Mar-2008.) (Revised by Mario Carneiro,
13-Jan-2015.) (Proof shortened by AV, 4-Apr-2025.)
|
⊢ 𝐴 = (Base‘𝑅)
& ⊢ 𝐵 = (Base‘𝑆)
& ⊢ 𝑁 = (0g‘𝑅)
& ⊢ 0 =
(0g‘𝑆) ⇒ ⊢ (𝐹 ∈ (𝑅 GrpHom 𝑆) → (𝐹:𝐴–1-1→𝐵 ↔ ∀𝑥 ∈ 𝐴 ((𝐹‘𝑥) = 0 → 𝑥 = 𝑁))) |
|
Theorem | kerf1ghm 13344 |
A group homomorphism 𝐹 is injective if and only if its
kernel is the
singleton {𝑁}. (Contributed by Thierry Arnoux,
27-Oct-2017.)
(Proof shortened by AV, 24-Oct-2019.) (Revised by Thierry Arnoux,
13-May-2023.)
|
⊢ 𝐴 = (Base‘𝑅)
& ⊢ 𝐵 = (Base‘𝑆)
& ⊢ 𝑁 = (0g‘𝑅)
& ⊢ 0 =
(0g‘𝑆) ⇒ ⊢ (𝐹 ∈ (𝑅 GrpHom 𝑆) → (𝐹:𝐴–1-1→𝐵 ↔ (◡𝐹 “ { 0 }) = {𝑁})) |
|
Theorem | ghmf1o 13345 |
A bijective group homomorphism is an isomorphism. (Contributed by Mario
Carneiro, 13-Jan-2015.)
|
⊢ 𝑋 = (Base‘𝑆)
& ⊢ 𝑌 = (Base‘𝑇) ⇒ ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝐹:𝑋–1-1-onto→𝑌 ↔ ◡𝐹 ∈ (𝑇 GrpHom 𝑆))) |
|
Theorem | conjghm 13346* |
Conjugation is an automorphism of the group. (Contributed by Mario
Carneiro, 13-Jan-2015.)
|
⊢ 𝑋 = (Base‘𝐺)
& ⊢ + =
(+g‘𝐺)
& ⊢ − =
(-g‘𝐺)
& ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ ((𝐴 + 𝑥) − 𝐴)) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → (𝐹 ∈ (𝐺 GrpHom 𝐺) ∧ 𝐹:𝑋–1-1-onto→𝑋)) |
|
Theorem | conjsubg 13347* |
A conjugated subgroup is also a subgroup. (Contributed by Mario
Carneiro, 13-Jan-2015.)
|
⊢ 𝑋 = (Base‘𝐺)
& ⊢ + =
(+g‘𝐺)
& ⊢ − =
(-g‘𝐺)
& ⊢ 𝐹 = (𝑥 ∈ 𝑆 ↦ ((𝐴 + 𝑥) − 𝐴)) ⇒ ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑋) → ran 𝐹 ∈ (SubGrp‘𝐺)) |
|
Theorem | conjsubgen 13348* |
A conjugated subgroup is equinumerous to the original subgroup.
(Contributed by Mario Carneiro, 18-Jan-2015.)
|
⊢ 𝑋 = (Base‘𝐺)
& ⊢ + =
(+g‘𝐺)
& ⊢ − =
(-g‘𝐺)
& ⊢ 𝐹 = (𝑥 ∈ 𝑆 ↦ ((𝐴 + 𝑥) − 𝐴)) ⇒ ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑋) → 𝑆 ≈ ran 𝐹) |
|
Theorem | conjnmz 13349* |
A subgroup is unchanged under conjugation by an element of its
normalizer. (Contributed by Mario Carneiro, 18-Jan-2015.)
|
⊢ 𝑋 = (Base‘𝐺)
& ⊢ + =
(+g‘𝐺)
& ⊢ − =
(-g‘𝐺)
& ⊢ 𝐹 = (𝑥 ∈ 𝑆 ↦ ((𝐴 + 𝑥) − 𝐴)) & ⊢ 𝑁 = {𝑦 ∈ 𝑋 ∣ ∀𝑧 ∈ 𝑋 ((𝑦 + 𝑧) ∈ 𝑆 ↔ (𝑧 + 𝑦) ∈ 𝑆)} ⇒ ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) → 𝑆 = ran 𝐹) |
|
Theorem | conjnmzb 13350* |
Alternative condition for elementhood in the normalizer. (Contributed
by Mario Carneiro, 18-Jan-2015.)
|
⊢ 𝑋 = (Base‘𝐺)
& ⊢ + =
(+g‘𝐺)
& ⊢ − =
(-g‘𝐺)
& ⊢ 𝐹 = (𝑥 ∈ 𝑆 ↦ ((𝐴 + 𝑥) − 𝐴)) & ⊢ 𝑁 = {𝑦 ∈ 𝑋 ∣ ∀𝑧 ∈ 𝑋 ((𝑦 + 𝑧) ∈ 𝑆 ↔ (𝑧 + 𝑦) ∈ 𝑆)} ⇒ ⊢ (𝑆 ∈ (SubGrp‘𝐺) → (𝐴 ∈ 𝑁 ↔ (𝐴 ∈ 𝑋 ∧ 𝑆 = ran 𝐹))) |
|
Theorem | conjnsg 13351* |
A normal subgroup is unchanged under conjugation. (Contributed by Mario
Carneiro, 18-Jan-2015.)
|
⊢ 𝑋 = (Base‘𝐺)
& ⊢ + =
(+g‘𝐺)
& ⊢ − =
(-g‘𝐺)
& ⊢ 𝐹 = (𝑥 ∈ 𝑆 ↦ ((𝐴 + 𝑥) − 𝐴)) ⇒ ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝐴 ∈ 𝑋) → 𝑆 = ran 𝐹) |
|
Theorem | qusghm 13352* |
If 𝑌 is a normal subgroup of 𝐺, then
the "natural map" from
elements to their cosets is a group homomorphism from 𝐺 to
𝐺 /
𝑌. (Contributed by
Mario Carneiro, 14-Jun-2015.) (Revised by
Mario Carneiro, 18-Sep-2015.)
|
⊢ 𝑋 = (Base‘𝐺)
& ⊢ 𝐻 = (𝐺 /s (𝐺 ~QG 𝑌)) & ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ [𝑥](𝐺 ~QG 𝑌)) ⇒ ⊢ (𝑌 ∈ (NrmSGrp‘𝐺) → 𝐹 ∈ (𝐺 GrpHom 𝐻)) |
|
Theorem | ghmpropd 13353* |
Group homomorphism depends only on the group attributes of structures.
(Contributed by Mario Carneiro, 12-Jun-2015.)
|
⊢ (𝜑 → 𝐵 = (Base‘𝐽)) & ⊢ (𝜑 → 𝐶 = (Base‘𝐾)) & ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) & ⊢ (𝜑 → 𝐶 = (Base‘𝑀)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐽)𝑦) = (𝑥(+g‘𝐿)𝑦))
& ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝑀)𝑦)) ⇒ ⊢ (𝜑 → (𝐽 GrpHom 𝐾) = (𝐿 GrpHom 𝑀)) |
|
7.2.5 Abelian groups
|
|
7.2.5.1 Definition and basic
properties
|
|
Syntax | ccmn 13354 |
Extend class notation with class of all commutative monoids.
|
class CMnd |
|
Syntax | cabl 13355 |
Extend class notation with class of all Abelian groups.
|
class Abel |
|
Definition | df-cmn 13356* |
Define class of all commutative monoids. (Contributed by Mario
Carneiro, 6-Jan-2015.)
|
⊢ CMnd = {𝑔 ∈ Mnd ∣ ∀𝑎 ∈ (Base‘𝑔)∀𝑏 ∈ (Base‘𝑔)(𝑎(+g‘𝑔)𝑏) = (𝑏(+g‘𝑔)𝑎)} |
|
Definition | df-abl 13357 |
Define class of all Abelian groups. (Contributed by NM, 17-Oct-2011.)
(Revised by Mario Carneiro, 6-Jan-2015.)
|
⊢ Abel = (Grp ∩ CMnd) |
|
Theorem | isabl 13358 |
The predicate "is an Abelian (commutative) group". (Contributed by
NM,
17-Oct-2011.)
|
⊢ (𝐺 ∈ Abel ↔ (𝐺 ∈ Grp ∧ 𝐺 ∈ CMnd)) |
|
Theorem | ablgrp 13359 |
An Abelian group is a group. (Contributed by NM, 26-Aug-2011.)
|
⊢ (𝐺 ∈ Abel → 𝐺 ∈ Grp) |
|
Theorem | ablgrpd 13360 |
An Abelian group is a group, deduction form of ablgrp 13359. (Contributed
by Rohan Ridenour, 3-Aug-2023.)
|
⊢ (𝜑 → 𝐺 ∈ Abel)
⇒ ⊢ (𝜑 → 𝐺 ∈ Grp) |
|
Theorem | ablcmn 13361 |
An Abelian group is a commutative monoid. (Contributed by Mario Carneiro,
6-Jan-2015.)
|
⊢ (𝐺 ∈ Abel → 𝐺 ∈ CMnd) |
|
Theorem | ablcmnd 13362 |
An Abelian group is a commutative monoid. (Contributed by SN,
1-Jun-2024.)
|
⊢ (𝜑 → 𝐺 ∈ Abel)
⇒ ⊢ (𝜑 → 𝐺 ∈ CMnd) |
|
Theorem | iscmn 13363* |
The predicate "is a commutative monoid". (Contributed by Mario
Carneiro, 6-Jan-2015.)
|
⊢ 𝐵 = (Base‘𝐺)
& ⊢ + =
(+g‘𝐺) ⇒ ⊢ (𝐺 ∈ CMnd ↔ (𝐺 ∈ Mnd ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 + 𝑦) = (𝑦 + 𝑥))) |
|
Theorem | isabl2 13364* |
The predicate "is an Abelian (commutative) group". (Contributed by
NM,
17-Oct-2011.) (Revised by Mario Carneiro, 6-Jan-2015.)
|
⊢ 𝐵 = (Base‘𝐺)
& ⊢ + =
(+g‘𝐺) ⇒ ⊢ (𝐺 ∈ Abel ↔ (𝐺 ∈ Grp ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 + 𝑦) = (𝑦 + 𝑥))) |
|
Theorem | cmnpropd 13365* |
If two structures have the same group components (properties), one is a
commutative monoid iff the other one is. (Contributed by Mario
Carneiro, 6-Jan-2015.)
|
⊢ (𝜑 → 𝐵 = (Base‘𝐾)) & ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) ⇒ ⊢ (𝜑 → (𝐾 ∈ CMnd ↔ 𝐿 ∈ CMnd)) |
|
Theorem | ablpropd 13366* |
If two structures have the same group components (properties), one is an
Abelian group iff the other one is. (Contributed by NM, 6-Dec-2014.)
|
⊢ (𝜑 → 𝐵 = (Base‘𝐾)) & ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) ⇒ ⊢ (𝜑 → (𝐾 ∈ Abel ↔ 𝐿 ∈ Abel)) |
|
Theorem | ablprop 13367 |
If two structures have the same group components (properties), one is an
Abelian group iff the other one is. (Contributed by NM,
11-Oct-2013.)
|
⊢ (Base‘𝐾) = (Base‘𝐿)
& ⊢ (+g‘𝐾) = (+g‘𝐿) ⇒ ⊢ (𝐾 ∈ Abel ↔ 𝐿 ∈ Abel) |
|
Theorem | iscmnd 13368* |
Properties that determine a commutative monoid. (Contributed by Mario
Carneiro, 7-Jan-2015.)
|
⊢ (𝜑 → 𝐵 = (Base‘𝐺)) & ⊢ (𝜑 → + =
(+g‘𝐺)) & ⊢ (𝜑 → 𝐺 ∈ Mnd) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 + 𝑦) = (𝑦 + 𝑥)) ⇒ ⊢ (𝜑 → 𝐺 ∈ CMnd) |
|
Theorem | isabld 13369* |
Properties that determine an Abelian group. (Contributed by NM,
6-Aug-2013.)
|
⊢ (𝜑 → 𝐵 = (Base‘𝐺)) & ⊢ (𝜑 → + =
(+g‘𝐺)) & ⊢ (𝜑 → 𝐺 ∈ Grp) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 + 𝑦) = (𝑦 + 𝑥)) ⇒ ⊢ (𝜑 → 𝐺 ∈ Abel) |
|
Theorem | isabli 13370* |
Properties that determine an Abelian group. (Contributed by NM,
4-Sep-2011.)
|
⊢ 𝐺 ∈ Grp & ⊢ 𝐵 = (Base‘𝐺) & ⊢ + =
(+g‘𝐺)
& ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥 + 𝑦) = (𝑦 + 𝑥)) ⇒ ⊢ 𝐺 ∈ Abel |
|
Theorem | cmnmnd 13371 |
A commutative monoid is a monoid. (Contributed by Mario Carneiro,
6-Jan-2015.)
|
⊢ (𝐺 ∈ CMnd → 𝐺 ∈ Mnd) |
|
Theorem | cmncom 13372 |
A commutative monoid is commutative. (Contributed by Mario Carneiro,
6-Jan-2015.)
|
⊢ 𝐵 = (Base‘𝐺)
& ⊢ + =
(+g‘𝐺) ⇒ ⊢ ((𝐺 ∈ CMnd ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) = (𝑌 + 𝑋)) |
|
Theorem | ablcom 13373 |
An Abelian group operation is commutative. (Contributed by NM,
26-Aug-2011.)
|
⊢ 𝐵 = (Base‘𝐺)
& ⊢ + =
(+g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Abel ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) = (𝑌 + 𝑋)) |
|
Theorem | cmn32 13374 |
Commutative/associative law for commutative monoids. (Contributed by
NM, 4-Feb-2014.) (Revised by Mario Carneiro, 21-Apr-2016.)
|
⊢ 𝐵 = (Base‘𝐺)
& ⊢ + =
(+g‘𝐺) ⇒ ⊢ ((𝐺 ∈ CMnd ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 + 𝑌) + 𝑍) = ((𝑋 + 𝑍) + 𝑌)) |
|
Theorem | cmn4 13375 |
Commutative/associative law for commutative monoids. (Contributed by
NM, 4-Feb-2014.) (Revised by Mario Carneiro, 21-Apr-2016.)
|
⊢ 𝐵 = (Base‘𝐺)
& ⊢ + =
(+g‘𝐺) ⇒ ⊢ ((𝐺 ∈ CMnd ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → ((𝑋 + 𝑌) + (𝑍 + 𝑊)) = ((𝑋 + 𝑍) + (𝑌 + 𝑊))) |
|
Theorem | cmn12 13376 |
Commutative/associative law for commutative monoids. (Contributed by
Stefan O'Rear, 5-Sep-2015.) (Revised by Mario Carneiro,
21-Apr-2016.)
|
⊢ 𝐵 = (Base‘𝐺)
& ⊢ + =
(+g‘𝐺) ⇒ ⊢ ((𝐺 ∈ CMnd ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 + (𝑌 + 𝑍)) = (𝑌 + (𝑋 + 𝑍))) |
|
Theorem | abl32 13377 |
Commutative/associative law for Abelian groups. (Contributed by Stefan
O'Rear, 10-Apr-2015.) (Revised by Mario Carneiro, 21-Apr-2016.)
|
⊢ 𝐵 = (Base‘𝐺)
& ⊢ + =
(+g‘𝐺)
& ⊢ (𝜑 → 𝐺 ∈ Abel) & ⊢ (𝜑 → 𝑋 ∈ 𝐵)
& ⊢ (𝜑 → 𝑌 ∈ 𝐵)
& ⊢ (𝜑 → 𝑍 ∈ 𝐵) ⇒ ⊢ (𝜑 → ((𝑋 + 𝑌) + 𝑍) = ((𝑋 + 𝑍) + 𝑌)) |
|
Theorem | cmnmndd 13378 |
A commutative monoid is a monoid. (Contributed by SN, 1-Jun-2024.)
|
⊢ (𝜑 → 𝐺 ∈ CMnd)
⇒ ⊢ (𝜑 → 𝐺 ∈ Mnd) |
|
Theorem | rinvmod 13379* |
Uniqueness of a right inverse element in a commutative monoid, if it
exists. Corresponds to caovimo 6112. (Contributed by AV,
31-Dec-2023.)
|
⊢ 𝐵 = (Base‘𝐺)
& ⊢ 0 =
(0g‘𝐺)
& ⊢ + =
(+g‘𝐺)
& ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐴 ∈ 𝐵) ⇒ ⊢ (𝜑 → ∃*𝑤 ∈ 𝐵 (𝐴 + 𝑤) = 0 ) |
|
Theorem | ablinvadd 13380 |
The inverse of an Abelian group operation. (Contributed by NM,
31-Mar-2014.)
|
⊢ 𝐵 = (Base‘𝐺)
& ⊢ + =
(+g‘𝐺)
& ⊢ 𝑁 = (invg‘𝐺) ⇒ ⊢ ((𝐺 ∈ Abel ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑁‘(𝑋 + 𝑌)) = ((𝑁‘𝑋) + (𝑁‘𝑌))) |
|
Theorem | ablsub2inv 13381 |
Abelian group subtraction of two inverses. (Contributed by Stefan
O'Rear, 24-May-2015.)
|
⊢ 𝐵 = (Base‘𝐺)
& ⊢ − =
(-g‘𝐺)
& ⊢ 𝑁 = (invg‘𝐺)
& ⊢ (𝜑 → 𝐺 ∈ Abel) & ⊢ (𝜑 → 𝑋 ∈ 𝐵)
& ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → ((𝑁‘𝑋) − (𝑁‘𝑌)) = (𝑌 − 𝑋)) |
|
Theorem | ablsubadd 13382 |
Relationship between Abelian group subtraction and addition.
(Contributed by NM, 31-Mar-2014.)
|
⊢ 𝐵 = (Base‘𝐺)
& ⊢ + =
(+g‘𝐺)
& ⊢ − =
(-g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Abel ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 − 𝑌) = 𝑍 ↔ (𝑌 + 𝑍) = 𝑋)) |
|
Theorem | ablsub4 13383 |
Commutative/associative subtraction law for Abelian groups.
(Contributed by NM, 31-Mar-2014.)
|
⊢ 𝐵 = (Base‘𝐺)
& ⊢ + =
(+g‘𝐺)
& ⊢ − =
(-g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Abel ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → ((𝑋 + 𝑌) − (𝑍 + 𝑊)) = ((𝑋 − 𝑍) + (𝑌 − 𝑊))) |
|
Theorem | abladdsub4 13384 |
Abelian group addition/subtraction law. (Contributed by NM,
31-Mar-2014.)
|
⊢ 𝐵 = (Base‘𝐺)
& ⊢ + =
(+g‘𝐺)
& ⊢ − =
(-g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Abel ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → ((𝑋 + 𝑌) = (𝑍 + 𝑊) ↔ (𝑋 − 𝑍) = (𝑊 − 𝑌))) |
|
Theorem | abladdsub 13385 |
Associative-type law for group subtraction and addition. (Contributed
by NM, 19-Apr-2014.)
|
⊢ 𝐵 = (Base‘𝐺)
& ⊢ + =
(+g‘𝐺)
& ⊢ − =
(-g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Abel ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 + 𝑌) − 𝑍) = ((𝑋 − 𝑍) + 𝑌)) |
|
Theorem | ablpncan2 13386 |
Cancellation law for subtraction in an Abelian group. (Contributed by
NM, 2-Oct-2014.)
|
⊢ 𝐵 = (Base‘𝐺)
& ⊢ + =
(+g‘𝐺)
& ⊢ − =
(-g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Abel ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 + 𝑌) − 𝑋) = 𝑌) |
|
Theorem | ablpncan3 13387 |
A cancellation law for Abelian groups. (Contributed by NM,
23-Mar-2015.)
|
⊢ 𝐵 = (Base‘𝐺)
& ⊢ + =
(+g‘𝐺)
& ⊢ − =
(-g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Abel ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋 + (𝑌 − 𝑋)) = 𝑌) |
|
Theorem | ablsubsub 13388 |
Law for double subtraction. (Contributed by NM, 7-Apr-2015.)
|
⊢ 𝐵 = (Base‘𝐺)
& ⊢ + =
(+g‘𝐺)
& ⊢ − =
(-g‘𝐺)
& ⊢ (𝜑 → 𝐺 ∈ Abel) & ⊢ (𝜑 → 𝑋 ∈ 𝐵)
& ⊢ (𝜑 → 𝑌 ∈ 𝐵)
& ⊢ (𝜑 → 𝑍 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑋 − (𝑌 − 𝑍)) = ((𝑋 − 𝑌) + 𝑍)) |
|
Theorem | ablsubsub4 13389 |
Law for double subtraction. (Contributed by NM, 7-Apr-2015.)
|
⊢ 𝐵 = (Base‘𝐺)
& ⊢ + =
(+g‘𝐺)
& ⊢ − =
(-g‘𝐺)
& ⊢ (𝜑 → 𝐺 ∈ Abel) & ⊢ (𝜑 → 𝑋 ∈ 𝐵)
& ⊢ (𝜑 → 𝑌 ∈ 𝐵)
& ⊢ (𝜑 → 𝑍 ∈ 𝐵) ⇒ ⊢ (𝜑 → ((𝑋 − 𝑌) − 𝑍) = (𝑋 − (𝑌 + 𝑍))) |
|
Theorem | ablpnpcan 13390 |
Cancellation law for mixed addition and subtraction. (pnpcan 8258
analog.) (Contributed by NM, 29-May-2015.)
|
⊢ 𝐵 = (Base‘𝐺)
& ⊢ + =
(+g‘𝐺)
& ⊢ − =
(-g‘𝐺)
& ⊢ (𝜑 → 𝐺 ∈ Abel) & ⊢ (𝜑 → 𝑋 ∈ 𝐵)
& ⊢ (𝜑 → 𝑌 ∈ 𝐵)
& ⊢ (𝜑 → 𝑍 ∈ 𝐵)
& ⊢ (𝜑 → 𝐺 ∈ Abel) & ⊢ (𝜑 → 𝑋 ∈ 𝐵)
& ⊢ (𝜑 → 𝑌 ∈ 𝐵)
& ⊢ (𝜑 → 𝑍 ∈ 𝐵) ⇒ ⊢ (𝜑 → ((𝑋 + 𝑌) − (𝑋 + 𝑍)) = (𝑌 − 𝑍)) |
|
Theorem | ablnncan 13391 |
Cancellation law for group subtraction. (nncan 8248 analog.)
(Contributed by NM, 7-Apr-2015.)
|
⊢ 𝐵 = (Base‘𝐺)
& ⊢ − =
(-g‘𝐺)
& ⊢ (𝜑 → 𝐺 ∈ Abel) & ⊢ (𝜑 → 𝑋 ∈ 𝐵)
& ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑋 − (𝑋 − 𝑌)) = 𝑌) |
|
Theorem | ablsub32 13392 |
Swap the second and third terms in a double group subtraction.
(Contributed by NM, 7-Apr-2015.)
|
⊢ 𝐵 = (Base‘𝐺)
& ⊢ − =
(-g‘𝐺)
& ⊢ (𝜑 → 𝐺 ∈ Abel) & ⊢ (𝜑 → 𝑋 ∈ 𝐵)
& ⊢ (𝜑 → 𝑌 ∈ 𝐵)
& ⊢ (𝜑 → 𝑍 ∈ 𝐵) ⇒ ⊢ (𝜑 → ((𝑋 − 𝑌) − 𝑍) = ((𝑋 − 𝑍) − 𝑌)) |
|
Theorem | ablnnncan 13393 |
Cancellation law for group subtraction. (nnncan 8254 analog.)
(Contributed by NM, 29-Feb-2008.) (Revised by AV, 27-Aug-2021.)
|
⊢ 𝐵 = (Base‘𝐺)
& ⊢ − =
(-g‘𝐺)
& ⊢ (𝜑 → 𝐺 ∈ Abel) & ⊢ (𝜑 → 𝑋 ∈ 𝐵)
& ⊢ (𝜑 → 𝑌 ∈ 𝐵)
& ⊢ (𝜑 → 𝑍 ∈ 𝐵) ⇒ ⊢ (𝜑 → ((𝑋 − (𝑌 − 𝑍)) − 𝑍) = (𝑋 − 𝑌)) |
|
Theorem | ablnnncan1 13394 |
Cancellation law for group subtraction. (nnncan1 8255 analog.)
(Contributed by NM, 7-Apr-2015.)
|
⊢ 𝐵 = (Base‘𝐺)
& ⊢ − =
(-g‘𝐺)
& ⊢ (𝜑 → 𝐺 ∈ Abel) & ⊢ (𝜑 → 𝑋 ∈ 𝐵)
& ⊢ (𝜑 → 𝑌 ∈ 𝐵)
& ⊢ (𝜑 → 𝑍 ∈ 𝐵) ⇒ ⊢ (𝜑 → ((𝑋 − 𝑌) − (𝑋 − 𝑍)) = (𝑍 − 𝑌)) |
|
Theorem | ablsubsub23 13395 |
Swap subtrahend and result of group subtraction. (Contributed by NM,
14-Dec-2007.) (Revised by AV, 7-Oct-2021.)
|
⊢ 𝑉 = (Base‘𝐺)
& ⊢ − =
(-g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Abel ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) → ((𝐴 − 𝐵) = 𝐶 ↔ (𝐴 − 𝐶) = 𝐵)) |
|
Theorem | ghmfghm 13396* |
The function fulfilling the conditions of ghmgrp 13188 is a group
homomorphism. (Contributed by Thierry Arnoux, 26-Jan-2020.)
|
⊢ 𝑋 = (Base‘𝐺)
& ⊢ 𝑌 = (Base‘𝐻)
& ⊢ + =
(+g‘𝐺)
& ⊢ ⨣ =
(+g‘𝐻)
& ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦))) & ⊢ (𝜑 → 𝐹:𝑋–onto→𝑌)
& ⊢ (𝜑 → 𝐺 ∈ Grp) ⇒ ⊢ (𝜑 → 𝐹 ∈ (𝐺 GrpHom 𝐻)) |
|
Theorem | ghmcmn 13397* |
The image of a commutative monoid 𝐺 under a group homomorphism
𝐹 is a commutative monoid.
(Contributed by Thierry Arnoux,
26-Jan-2020.)
|
⊢ 𝑋 = (Base‘𝐺)
& ⊢ 𝑌 = (Base‘𝐻)
& ⊢ + =
(+g‘𝐺)
& ⊢ ⨣ =
(+g‘𝐻)
& ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦))) & ⊢ (𝜑 → 𝐹:𝑋–onto→𝑌)
& ⊢ (𝜑 → 𝐺 ∈ CMnd)
⇒ ⊢ (𝜑 → 𝐻 ∈ CMnd) |
|
Theorem | ghmabl 13398* |
The image of an abelian group 𝐺 under a group homomorphism 𝐹 is
an abelian group. (Contributed by Mario Carneiro, 12-May-2014.)
(Revised by Thierry Arnoux, 26-Jan-2020.)
|
⊢ 𝑋 = (Base‘𝐺)
& ⊢ 𝑌 = (Base‘𝐻)
& ⊢ + =
(+g‘𝐺)
& ⊢ ⨣ =
(+g‘𝐻)
& ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦))) & ⊢ (𝜑 → 𝐹:𝑋–onto→𝑌)
& ⊢ (𝜑 → 𝐺 ∈ Abel)
⇒ ⊢ (𝜑 → 𝐻 ∈ Abel) |
|
Theorem | invghm 13399 |
The inversion map is a group automorphism if and only if the group is
abelian. (In general it is only a group homomorphism into the opposite
group, but in an abelian group the opposite group coincides with the
group itself.) (Contributed by Mario Carneiro, 4-May-2015.)
|
⊢ 𝐵 = (Base‘𝐺)
& ⊢ 𝐼 = (invg‘𝐺) ⇒ ⊢ (𝐺 ∈ Abel ↔ 𝐼 ∈ (𝐺 GrpHom 𝐺)) |
|
Theorem | eqgabl 13400 |
Value of the subgroup coset equivalence relation on an abelian group.
(Contributed by Mario Carneiro, 14-Jun-2015.)
|
⊢ 𝑋 = (Base‘𝐺)
& ⊢ − =
(-g‘𝐺)
& ⊢ ∼ = (𝐺 ~QG 𝑆)
⇒ ⊢ ((𝐺 ∈ Abel ∧ 𝑆 ⊆ 𝑋) → (𝐴 ∼ 𝐵 ↔ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ (𝐵 − 𝐴) ∈ 𝑆))) |