Theorem List for Intuitionistic Logic Explorer - 13301-13400   *Has distinct variable
 group(s)
| Type | Label | Description | 
| Statement | 
|   | 
| Definition | df-nsg 13301* | 
Define the equivalence relation in a quotient ring or quotient group
       (where 𝑖 is a two-sided ideal or a normal
subgroup).  For non-normal
       subgroups this generates the left cosets.  (Contributed by Mario
       Carneiro, 15-Jun-2015.)
 | 
| ⊢ NrmSGrp = (𝑤 ∈ Grp ↦ {𝑠 ∈ (SubGrp‘𝑤) ∣ [(Base‘𝑤) / 𝑏][(+g‘𝑤) / 𝑝]∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 ((𝑥𝑝𝑦) ∈ 𝑠 ↔ (𝑦𝑝𝑥) ∈ 𝑠)}) | 
|   | 
| Definition | df-eqg 13302* | 
Define the equivalence relation in a group generated by a subgroup.
       More precisely, if 𝐺 is a group and 𝐻 is a
subgroup, then
       𝐺
~QG 𝐻 is the equivalence relation on 𝐺
associated with the
       left cosets of 𝐻.  A typical application of this
definition is the
       construction of the quotient group (resp. ring) of a group (resp. ring)
       by a normal subgroup (resp. two-sided ideal).  (Contributed by Mario
       Carneiro, 15-Jun-2015.)
 | 
| ⊢  ~QG = (𝑟 ∈ V, 𝑖 ∈ V ↦ {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ (Base‘𝑟) ∧ (((invg‘𝑟)‘𝑥)(+g‘𝑟)𝑦) ∈ 𝑖)}) | 
|   | 
| Theorem | issubg 13303 | 
The subgroup predicate.  (Contributed by Mario Carneiro, 2-Dec-2014.)
 | 
| ⊢ 𝐵 = (Base‘𝐺)    ⇒   ⊢ (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝐺 ∈ Grp ∧ 𝑆 ⊆ 𝐵 ∧ (𝐺 ↾s 𝑆) ∈ Grp)) | 
|   | 
| Theorem | subgss 13304 | 
A subgroup is a subset.  (Contributed by Mario Carneiro, 2-Dec-2014.)
 | 
| ⊢ 𝐵 = (Base‘𝐺)    ⇒   ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ⊆ 𝐵) | 
|   | 
| Theorem | subgid 13305 | 
A group is a subgroup of itself.  (Contributed by Mario Carneiro,
       7-Dec-2014.)
 | 
| ⊢ 𝐵 = (Base‘𝐺)    ⇒   ⊢ (𝐺 ∈ Grp → 𝐵 ∈ (SubGrp‘𝐺)) | 
|   | 
| Theorem | subgex 13306 | 
The class of subgroups of a group is a set.  (Contributed by Jim
       Kingdon, 8-Mar-2025.)
 | 
| ⊢ (𝐺 ∈ Grp → (SubGrp‘𝐺) ∈ V) | 
|   | 
| Theorem | subggrp 13307 | 
A subgroup is a group.  (Contributed by Mario Carneiro, 2-Dec-2014.)
 | 
| ⊢ 𝐻 = (𝐺 ↾s 𝑆)    ⇒   ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝐻 ∈ Grp) | 
|   | 
| Theorem | subgbas 13308 | 
The base of the restricted group in a subgroup.  (Contributed by Mario
       Carneiro, 2-Dec-2014.)
 | 
| ⊢ 𝐻 = (𝐺 ↾s 𝑆)    ⇒   ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 = (Base‘𝐻)) | 
|   | 
| Theorem | subgrcl 13309 | 
Reverse closure for the subgroup predicate.  (Contributed by Mario
     Carneiro, 2-Dec-2014.)
 | 
| ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp) | 
|   | 
| Theorem | subg0 13310 | 
A subgroup of a group must have the same identity as the group.
         (Contributed by Stefan O'Rear, 27-Nov-2014.)  (Revised by Mario
         Carneiro, 30-Apr-2015.)
 | 
| ⊢ 𝐻 = (𝐺 ↾s 𝑆)   
 &   ⊢  0 =
 (0g‘𝐺)    ⇒   ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 0 =
 (0g‘𝐻)) | 
|   | 
| Theorem | subginv 13311 | 
The inverse of an element in a subgroup is the same as the inverse in
       the larger group.  (Contributed by Mario Carneiro, 2-Dec-2014.)
 | 
| ⊢ 𝐻 = (𝐺 ↾s 𝑆)   
 &   ⊢ 𝐼 = (invg‘𝐺)   
 &   ⊢ 𝐽 = (invg‘𝐻)    ⇒   ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝑆) → (𝐼‘𝑋) = (𝐽‘𝑋)) | 
|   | 
| Theorem | subg0cl 13312 | 
The group identity is an element of any subgroup.  (Contributed by Mario
       Carneiro, 2-Dec-2014.)
 | 
| ⊢  0 =
 (0g‘𝐺)    ⇒   ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 0 ∈ 𝑆) | 
|   | 
| Theorem | subginvcl 13313 | 
The inverse of an element is closed in a subgroup.  (Contributed by
       Mario Carneiro, 2-Dec-2014.)
 | 
| ⊢ 𝐼 = (invg‘𝐺)    ⇒   ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝑆) → (𝐼‘𝑋) ∈ 𝑆) | 
|   | 
| Theorem | subgcl 13314 | 
A subgroup is closed under group operation.  (Contributed by Mario
       Carneiro, 2-Dec-2014.)
 | 
| ⊢  + =
 (+g‘𝐺)    ⇒   ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) → (𝑋 + 𝑌) ∈ 𝑆) | 
|   | 
| Theorem | subgsubcl 13315 | 
A subgroup is closed under group subtraction.  (Contributed by Mario
       Carneiro, 18-Jan-2015.)
 | 
| ⊢  − =
 (-g‘𝐺)    ⇒   ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) → (𝑋 − 𝑌) ∈ 𝑆) | 
|   | 
| Theorem | subgsub 13316 | 
The subtraction of elements in a subgroup is the same as subtraction in
       the group.  (Contributed by Mario Carneiro, 15-Jun-2015.)
 | 
| ⊢  − =
 (-g‘𝐺)   
 &   ⊢ 𝐻 = (𝐺 ↾s 𝑆)   
 &   ⊢ 𝑁 = (-g‘𝐻)    ⇒   ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) → (𝑋 − 𝑌) = (𝑋𝑁𝑌)) | 
|   | 
| Theorem | subgmulgcl 13317 | 
Closure of the group multiple (exponentiation) operation in a subgroup.
       (Contributed by Mario Carneiro, 13-Jan-2015.)
 | 
| ⊢  · =
 (.g‘𝐺)    ⇒   ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆) → (𝑁 · 𝑋) ∈ 𝑆) | 
|   | 
| Theorem | subgmulg 13318 | 
A group multiple is the same if evaluated in a subgroup.  (Contributed
       by Mario Carneiro, 15-Jan-2015.)
 | 
| ⊢  · =
 (.g‘𝐺)   
 &   ⊢ 𝐻 = (𝐺 ↾s 𝑆)   
 &   ⊢  ∙ =
 (.g‘𝐻)    ⇒   ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆) → (𝑁 · 𝑋) = (𝑁 ∙ 𝑋)) | 
|   | 
| Theorem | issubg2m 13319* | 
Characterize the subgroups of a group by closure properties.
       (Contributed by Mario Carneiro, 2-Dec-2014.)
 | 
| ⊢ 𝐵 = (Base‘𝐺)   
 &   ⊢  + =
 (+g‘𝐺)   
 &   ⊢ 𝐼 = (invg‘𝐺)    ⇒   ⊢ (𝐺 ∈ Grp → (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝑆 ⊆ 𝐵 ∧ ∃𝑢 𝑢 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 (∀𝑦 ∈ 𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼‘𝑥) ∈ 𝑆)))) | 
|   | 
| Theorem | issubgrpd2 13320* | 
Prove a subgroup by closure (definition version).  (Contributed by
       Stefan O'Rear, 7-Dec-2014.)
 | 
| ⊢ (𝜑 → 𝑆 = (𝐼 ↾s 𝐷))    &   ⊢ (𝜑 → 0 =
 (0g‘𝐼))    &   ⊢ (𝜑 → + =
 (+g‘𝐼))    &   ⊢ (𝜑 → 𝐷 ⊆ (Base‘𝐼))    &   ⊢ (𝜑 → 0 ∈ 𝐷)   
 &   ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷) → (𝑥 + 𝑦) ∈ 𝐷)   
 &   ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → ((invg‘𝐼)‘𝑥) ∈ 𝐷)   
 &   ⊢ (𝜑 → 𝐼 ∈ Grp)    ⇒   ⊢ (𝜑 → 𝐷 ∈ (SubGrp‘𝐼)) | 
|   | 
| Theorem | issubgrpd 13321* | 
Prove a subgroup by closure.  (Contributed by Stefan O'Rear,
       7-Dec-2014.)
 | 
| ⊢ (𝜑 → 𝑆 = (𝐼 ↾s 𝐷))    &   ⊢ (𝜑 → 0 =
 (0g‘𝐼))    &   ⊢ (𝜑 → + =
 (+g‘𝐼))    &   ⊢ (𝜑 → 𝐷 ⊆ (Base‘𝐼))    &   ⊢ (𝜑 → 0 ∈ 𝐷)   
 &   ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷) → (𝑥 + 𝑦) ∈ 𝐷)   
 &   ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → ((invg‘𝐼)‘𝑥) ∈ 𝐷)   
 &   ⊢ (𝜑 → 𝐼 ∈ Grp)    ⇒   ⊢ (𝜑 → 𝑆 ∈ Grp) | 
|   | 
| Theorem | issubg3 13322* | 
A subgroup is a symmetric submonoid.  (Contributed by Mario Carneiro,
       7-Mar-2015.)
 | 
| ⊢ 𝐼 = (invg‘𝐺)    ⇒   ⊢ (𝐺 ∈ Grp → (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝑆 ∈ (SubMnd‘𝐺) ∧ ∀𝑥 ∈ 𝑆 (𝐼‘𝑥) ∈ 𝑆))) | 
|   | 
| Theorem | issubg4m 13323* | 
A subgroup is an inhabited subset of the group closed under subtraction.
       (Contributed by Mario Carneiro, 17-Sep-2015.)
 | 
| ⊢ 𝐵 = (Base‘𝐺)   
 &   ⊢  − =
 (-g‘𝐺)    ⇒   ⊢ (𝐺 ∈ Grp → (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝑆 ⊆ 𝐵 ∧ ∃𝑤 𝑤 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥 − 𝑦) ∈ 𝑆))) | 
|   | 
| Theorem | grpissubg 13324 | 
If the base set of a group is contained in the base set of another
       group, and the group operation of the group is the restriction of the
       group operation of the other group to its base set, then the (base set
       of the) group is subgroup of the other group.  (Contributed by AV,
       14-Mar-2019.)
 | 
| ⊢ 𝐵 = (Base‘𝐺)   
 &   ⊢ 𝑆 = (Base‘𝐻)    ⇒   ⊢ ((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) → ((𝑆 ⊆ 𝐵 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆))) → 𝑆 ∈ (SubGrp‘𝐺))) | 
|   | 
| Theorem | resgrpisgrp 13325 | 
If the base set of a group is contained in the base set of another
       group, and the group operation of the group is the restriction of the
       group operation of the other group to its base set, then the other group
       restricted to the base set of the group is a group.  (Contributed by AV,
       14-Mar-2019.)
 | 
| ⊢ 𝐵 = (Base‘𝐺)   
 &   ⊢ 𝑆 = (Base‘𝐻)    ⇒   ⊢ ((𝐺 ∈ Grp ∧ 𝐻 ∈ Grp) → ((𝑆 ⊆ 𝐵 ∧ (+g‘𝐻) = ((+g‘𝐺) ↾ (𝑆 × 𝑆))) → (𝐺 ↾s 𝑆) ∈ Grp)) | 
|   | 
| Theorem | subgsubm 13326 | 
A subgroup is a submonoid.  (Contributed by Mario Carneiro,
       18-Jun-2015.)
 | 
| ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ∈ (SubMnd‘𝐺)) | 
|   | 
| Theorem | subsubg 13327 | 
A subgroup of a subgroup is a subgroup.  (Contributed by Mario Carneiro,
       19-Jan-2015.)
 | 
| ⊢ 𝐻 = (𝐺 ↾s 𝑆)    ⇒   ⊢ (𝑆 ∈ (SubGrp‘𝐺) → (𝐴 ∈ (SubGrp‘𝐻) ↔ (𝐴 ∈ (SubGrp‘𝐺) ∧ 𝐴 ⊆ 𝑆))) | 
|   | 
| Theorem | subgintm 13328* | 
The intersection of an inhabited collection of subgroups is a subgroup.
       (Contributed by Mario Carneiro, 7-Dec-2014.)
 | 
| ⊢ ((𝑆 ⊆ (SubGrp‘𝐺) ∧ ∃𝑤 𝑤 ∈ 𝑆) → ∩ 𝑆 ∈ (SubGrp‘𝐺)) | 
|   | 
| Theorem | 0subg 13329 | 
The zero subgroup of an arbitrary group.  (Contributed by Stefan O'Rear,
       10-Dec-2014.)  (Proof shortened by SN, 31-Jan-2025.)
 | 
| ⊢  0 =
 (0g‘𝐺)    ⇒   ⊢ (𝐺 ∈ Grp → { 0 } ∈
 (SubGrp‘𝐺)) | 
|   | 
| Theorem | trivsubgd 13330 | 
The only subgroup of a trivial group is itself.  (Contributed by Rohan
       Ridenour, 3-Aug-2023.)
 | 
| ⊢ 𝐵 = (Base‘𝐺)   
 &   ⊢  0 =
 (0g‘𝐺)   
 &   ⊢ (𝜑 → 𝐺 ∈ Grp)    &   ⊢ (𝜑 → 𝐵 = { 0 })    &   ⊢ (𝜑 → 𝐴 ∈ (SubGrp‘𝐺))    ⇒   ⊢ (𝜑 → 𝐴 = 𝐵) | 
|   | 
| Theorem | trivsubgsnd 13331 | 
The only subgroup of a trivial group is itself.  (Contributed by Rohan
       Ridenour, 3-Aug-2023.)
 | 
| ⊢ 𝐵 = (Base‘𝐺)   
 &   ⊢  0 =
 (0g‘𝐺)   
 &   ⊢ (𝜑 → 𝐺 ∈ Grp)    &   ⊢ (𝜑 → 𝐵 = { 0
 })    ⇒   ⊢ (𝜑 → (SubGrp‘𝐺) = {𝐵}) | 
|   | 
| Theorem | isnsg 13332* | 
Property of being a normal subgroup.  (Contributed by Mario Carneiro,
       18-Jan-2015.)
 | 
| ⊢ 𝑋 = (Base‘𝐺)   
 &   ⊢  + =
 (+g‘𝐺)    ⇒   ⊢ (𝑆 ∈ (NrmSGrp‘𝐺) ↔ (𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆))) | 
|   | 
| Theorem | isnsg2 13333* | 
Weaken the condition of isnsg 13332 to only one side of the implication.
       (Contributed by Mario Carneiro, 18-Jan-2015.)
 | 
| ⊢ 𝑋 = (Base‘𝐺)   
 &   ⊢  + =
 (+g‘𝐺)    ⇒   ⊢ (𝑆 ∈ (NrmSGrp‘𝐺) ↔ (𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝑥 + 𝑦) ∈ 𝑆 → (𝑦 + 𝑥) ∈ 𝑆))) | 
|   | 
| Theorem | nsgbi 13334 | 
Defining property of a normal subgroup.  (Contributed by Mario Carneiro,
       18-Jan-2015.)
 | 
| ⊢ 𝑋 = (Base‘𝐺)   
 &   ⊢  + =
 (+g‘𝐺)    ⇒   ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐴 + 𝐵) ∈ 𝑆 ↔ (𝐵 + 𝐴) ∈ 𝑆)) | 
|   | 
| Theorem | nsgsubg 13335 | 
A normal subgroup is a subgroup.  (Contributed by Mario Carneiro,
       18-Jan-2015.)
 | 
| ⊢ (𝑆 ∈ (NrmSGrp‘𝐺) → 𝑆 ∈ (SubGrp‘𝐺)) | 
|   | 
| Theorem | nsgconj 13336 | 
The conjugation of an element of a normal subgroup is in the subgroup.
       (Contributed by Mario Carneiro, 4-Feb-2015.)
 | 
| ⊢ 𝑋 = (Base‘𝐺)   
 &   ⊢  + =
 (+g‘𝐺)   
 &   ⊢  − =
 (-g‘𝐺)    ⇒   ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑆) → ((𝐴 + 𝐵) − 𝐴) ∈ 𝑆) | 
|   | 
| Theorem | isnsg3 13337* | 
A subgroup is normal iff the conjugation of all the elements of the
       subgroup is in the subgroup.  (Contributed by Mario Carneiro,
       18-Jan-2015.)
 | 
| ⊢ 𝑋 = (Base‘𝐺)   
 &   ⊢  + =
 (+g‘𝐺)   
 &   ⊢  − =
 (-g‘𝐺)    ⇒   ⊢ (𝑆 ∈ (NrmSGrp‘𝐺) ↔ (𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑆 ((𝑥 + 𝑦) − 𝑥) ∈ 𝑆)) | 
|   | 
| Theorem | elnmz 13338* | 
Elementhood in the normalizer.  (Contributed by Mario Carneiro,
       18-Jan-2015.)
 | 
| ⊢ 𝑁 = {𝑥 ∈ 𝑋 ∣ ∀𝑦 ∈ 𝑋 ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆)}    ⇒   ⊢ (𝐴 ∈ 𝑁 ↔ (𝐴 ∈ 𝑋 ∧ ∀𝑧 ∈ 𝑋 ((𝐴 + 𝑧) ∈ 𝑆 ↔ (𝑧 + 𝐴) ∈ 𝑆))) | 
|   | 
| Theorem | nmzbi 13339* | 
Defining property of the normalizer.  (Contributed by Mario Carneiro,
       18-Jan-2015.)
 | 
| ⊢ 𝑁 = {𝑥 ∈ 𝑋 ∣ ∀𝑦 ∈ 𝑋 ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆)}    ⇒   ⊢ ((𝐴 ∈ 𝑁 ∧ 𝐵 ∈ 𝑋) → ((𝐴 + 𝐵) ∈ 𝑆 ↔ (𝐵 + 𝐴) ∈ 𝑆)) | 
|   | 
| Theorem | nmzsubg 13340* | 
The normalizer NG(S) of a subset 𝑆 of the
group is a subgroup.
       (Contributed by Mario Carneiro, 18-Jan-2015.)
 | 
| ⊢ 𝑁 = {𝑥 ∈ 𝑋 ∣ ∀𝑦 ∈ 𝑋 ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆)}    &   ⊢ 𝑋 = (Base‘𝐺)    &   ⊢  + =
 (+g‘𝐺)    ⇒   ⊢ (𝐺 ∈ Grp → 𝑁 ∈ (SubGrp‘𝐺)) | 
|   | 
| Theorem | ssnmz 13341* | 
A subgroup is a subset of its normalizer.  (Contributed by Mario
       Carneiro, 18-Jan-2015.)
 | 
| ⊢ 𝑁 = {𝑥 ∈ 𝑋 ∣ ∀𝑦 ∈ 𝑋 ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆)}    &   ⊢ 𝑋 = (Base‘𝐺)    &   ⊢  + =
 (+g‘𝐺)    ⇒   ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ⊆ 𝑁) | 
|   | 
| Theorem | isnsg4 13342* | 
A subgroup is normal iff its normalizer is the entire group.
       (Contributed by Mario Carneiro, 18-Jan-2015.)
 | 
| ⊢ 𝑁 = {𝑥 ∈ 𝑋 ∣ ∀𝑦 ∈ 𝑋 ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆)}    &   ⊢ 𝑋 = (Base‘𝐺)    &   ⊢  + =
 (+g‘𝐺)    ⇒   ⊢ (𝑆 ∈ (NrmSGrp‘𝐺) ↔ (𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 = 𝑋)) | 
|   | 
| Theorem | nmznsg 13343* | 
Any subgroup is a normal subgroup of its normalizer.  (Contributed by
       Mario Carneiro, 19-Jan-2015.)
 | 
| ⊢ 𝑁 = {𝑥 ∈ 𝑋 ∣ ∀𝑦 ∈ 𝑋 ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆)}    &   ⊢ 𝑋 = (Base‘𝐺)    &   ⊢  + =
 (+g‘𝐺)   
 &   ⊢ 𝐻 = (𝐺 ↾s 𝑁)    ⇒   ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ∈ (NrmSGrp‘𝐻)) | 
|   | 
| Theorem | 0nsg 13344 | 
The zero subgroup is normal.  (Contributed by Mario Carneiro,
       4-Feb-2015.)
 | 
| ⊢  0 =
 (0g‘𝐺)    ⇒   ⊢ (𝐺 ∈ Grp → { 0 } ∈
 (NrmSGrp‘𝐺)) | 
|   | 
| Theorem | nsgid 13345 | 
The whole group is a normal subgroup of itself.  (Contributed by Mario
       Carneiro, 4-Feb-2015.)
 | 
| ⊢ 𝐵 = (Base‘𝐺)    ⇒   ⊢ (𝐺 ∈ Grp → 𝐵 ∈ (NrmSGrp‘𝐺)) | 
|   | 
| Theorem | 0idnsgd 13346 | 
The whole group and the zero subgroup are normal subgroups of a group.
       (Contributed by Rohan Ridenour, 3-Aug-2023.)
 | 
| ⊢ 𝐵 = (Base‘𝐺)   
 &   ⊢  0 =
 (0g‘𝐺)   
 &   ⊢ (𝜑 → 𝐺 ∈ Grp)    ⇒   ⊢ (𝜑 → {{ 0 }, 𝐵} ⊆ (NrmSGrp‘𝐺)) | 
|   | 
| Theorem | trivnsgd 13347 | 
The only normal subgroup of a trivial group is itself.  (Contributed by
       Rohan Ridenour, 3-Aug-2023.)
 | 
| ⊢ 𝐵 = (Base‘𝐺)   
 &   ⊢  0 =
 (0g‘𝐺)   
 &   ⊢ (𝜑 → 𝐺 ∈ Grp)    &   ⊢ (𝜑 → 𝐵 = { 0
 })    ⇒   ⊢ (𝜑 → (NrmSGrp‘𝐺) = {𝐵}) | 
|   | 
| Theorem | triv1nsgd 13348 | 
A trivial group has exactly one normal subgroup.  (Contributed by Rohan
       Ridenour, 3-Aug-2023.)
 | 
| ⊢ 𝐵 = (Base‘𝐺)   
 &   ⊢  0 =
 (0g‘𝐺)   
 &   ⊢ (𝜑 → 𝐺 ∈ Grp)    &   ⊢ (𝜑 → 𝐵 = { 0
 })    ⇒   ⊢ (𝜑 → (NrmSGrp‘𝐺) ≈ 1o) | 
|   | 
| Theorem | 1nsgtrivd 13349 | 
A group with exactly one normal subgroup is trivial.  (Contributed by
       Rohan Ridenour, 3-Aug-2023.)
 | 
| ⊢ 𝐵 = (Base‘𝐺)   
 &   ⊢  0 =
 (0g‘𝐺)   
 &   ⊢ (𝜑 → 𝐺 ∈ Grp)    &   ⊢ (𝜑 → (NrmSGrp‘𝐺) ≈
 1o)    ⇒   ⊢ (𝜑 → 𝐵 = { 0 }) | 
|   | 
| Theorem | releqgg 13350 | 
The left coset equivalence relation is a relation.  (Contributed by
       Mario Carneiro, 14-Jun-2015.)
 | 
| ⊢ 𝑅 = (𝐺 ~QG 𝑆)    ⇒   ⊢ ((𝐺 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → Rel 𝑅) | 
|   | 
| Theorem | eqgex 13351 | 
The left coset equivalence relation exists.  (Contributed by Jim
       Kingdon, 25-Apr-2025.)
 | 
| ⊢ ((𝐺 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → (𝐺 ~QG 𝑆) ∈ V) | 
|   | 
| Theorem | eqgfval 13352* | 
Value of the subgroup left coset equivalence relation.  (Contributed by
       Mario Carneiro, 15-Jan-2015.)
 | 
| ⊢ 𝑋 = (Base‘𝐺)   
 &   ⊢ 𝑁 = (invg‘𝐺)   
 &   ⊢  + =
 (+g‘𝐺)   
 &   ⊢ 𝑅 = (𝐺 ~QG 𝑆)    ⇒   ⊢ ((𝐺 ∈ 𝑉 ∧ 𝑆 ⊆ 𝑋) → 𝑅 = {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝑋 ∧ ((𝑁‘𝑥) + 𝑦) ∈ 𝑆)}) | 
|   | 
| Theorem | eqgval 13353 | 
Value of the subgroup left coset equivalence relation.  (Contributed by
       Mario Carneiro, 15-Jan-2015.)  (Revised by Mario Carneiro,
       14-Jun-2015.)
 | 
| ⊢ 𝑋 = (Base‘𝐺)   
 &   ⊢ 𝑁 = (invg‘𝐺)   
 &   ⊢  + =
 (+g‘𝐺)   
 &   ⊢ 𝑅 = (𝐺 ~QG 𝑆)    ⇒   ⊢ ((𝐺 ∈ 𝑉 ∧ 𝑆 ⊆ 𝑋) → (𝐴𝑅𝐵 ↔ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ ((𝑁‘𝐴) + 𝐵) ∈ 𝑆))) | 
|   | 
| Theorem | eqger 13354 | 
The subgroup coset equivalence relation is an equivalence relation.
       (Contributed by Mario Carneiro, 13-Jan-2015.)
 | 
| ⊢ 𝑋 = (Base‘𝐺)   
 &   ⊢  ∼ = (𝐺 ~QG 𝑌)   
 ⇒   ⊢ (𝑌 ∈ (SubGrp‘𝐺) → ∼ Er 𝑋) | 
|   | 
| Theorem | eqglact 13355* | 
A left coset can be expressed as the image of a left action.
         (Contributed by Mario Carneiro, 20-Sep-2015.)
 | 
| ⊢ 𝑋 = (Base‘𝐺)   
 &   ⊢  ∼ = (𝐺 ~QG 𝑌)    &   ⊢  + =
 (+g‘𝐺)    ⇒   ⊢ ((𝐺 ∈ Grp ∧ 𝑌 ⊆ 𝑋 ∧ 𝐴 ∈ 𝑋) → [𝐴] ∼ = ((𝑥 ∈ 𝑋 ↦ (𝐴 + 𝑥)) “ 𝑌)) | 
|   | 
| Theorem | eqgid 13356 | 
The left coset containing the identity is the original subgroup.
         (Contributed by Mario Carneiro, 20-Sep-2015.)
 | 
| ⊢ 𝑋 = (Base‘𝐺)   
 &   ⊢  ∼ = (𝐺 ~QG 𝑌)    &   ⊢  0 =
 (0g‘𝐺)    ⇒   ⊢ (𝑌 ∈ (SubGrp‘𝐺) → [ 0 ] ∼ = 𝑌) | 
|   | 
| Theorem | eqgen 13357 | 
Each coset is equipotent to the subgroup itself (which is also the coset
       containing the identity).  (Contributed by Mario Carneiro,
       20-Sep-2015.)
 | 
| ⊢ 𝑋 = (Base‘𝐺)   
 &   ⊢  ∼ = (𝐺 ~QG 𝑌)   
 ⇒   ⊢ ((𝑌 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ (𝑋 / ∼ )) → 𝑌 ≈ 𝐴) | 
|   | 
| Theorem | eqgcpbl 13358 | 
The subgroup coset equivalence relation is compatible with addition when
       the subgroup is normal.  (Contributed by Mario Carneiro,
       14-Jun-2015.)
 | 
| ⊢ 𝑋 = (Base‘𝐺)   
 &   ⊢  ∼ = (𝐺 ~QG 𝑌)    &   ⊢  + =
 (+g‘𝐺)    ⇒   ⊢ (𝑌 ∈ (NrmSGrp‘𝐺) → ((𝐴 ∼ 𝐶 ∧ 𝐵 ∼ 𝐷) → (𝐴 + 𝐵) ∼ (𝐶 + 𝐷))) | 
|   | 
| Theorem | eqg0el 13359 | 
Equivalence class of a quotient group for a subgroup.  (Contributed by
       Thierry Arnoux, 15-Jan-2024.)
 | 
| ⊢  ∼ = (𝐺 ~QG 𝐻)   
 ⇒   ⊢ ((𝐺 ∈ Grp ∧ 𝐻 ∈ (SubGrp‘𝐺)) → ([𝑋] ∼ = 𝐻 ↔ 𝑋 ∈ 𝐻)) | 
|   | 
| Theorem | quselbasg 13360* | 
Membership in the base set of a quotient group.  (Contributed by AV,
       1-Mar-2025.)
 | 
| ⊢  ∼ = (𝐺 ~QG 𝑆)    &   ⊢ 𝑈 = (𝐺 /s ∼ )    &   ⊢ 𝐵 = (Base‘𝐺)   
 ⇒   ⊢ ((𝐺 ∈ 𝑉 ∧ 𝑋 ∈ 𝑊 ∧ 𝑆 ∈ 𝑍) → (𝑋 ∈ (Base‘𝑈) ↔ ∃𝑥 ∈ 𝐵 𝑋 = [𝑥] ∼
 )) | 
|   | 
| Theorem | quseccl0g 13361 | 
Closure of the quotient map for a quotient group.  (Contributed by Mario
       Carneiro, 18-Sep-2015.)  Generalization of quseccl 13363 for arbitrary sets
       𝐺.  (Revised by AV, 24-Feb-2025.)
 | 
| ⊢  ∼ = (𝐺 ~QG 𝑆)    &   ⊢ 𝐻 = (𝐺 /s ∼ )    &   ⊢ 𝐶 = (Base‘𝐺)    &   ⊢ 𝐵 = (Base‘𝐻)   
 ⇒   ⊢ ((𝐺 ∈ 𝑉 ∧ 𝑋 ∈ 𝐶 ∧ 𝑆 ∈ 𝑍) → [𝑋] ∼ ∈ 𝐵) | 
|   | 
| Theorem | qusgrp 13362 | 
If 𝑌 is a normal subgroup of 𝐺, then
𝐻 = 𝐺 / 𝑌 is a group,
       called the quotient of 𝐺 by 𝑌.  (Contributed by Mario
Carneiro,
       14-Jun-2015.)  (Revised by Mario Carneiro, 12-Aug-2015.)
 | 
| ⊢ 𝐻 = (𝐺 /s (𝐺 ~QG 𝑆))    ⇒   ⊢ (𝑆 ∈ (NrmSGrp‘𝐺) → 𝐻 ∈ Grp) | 
|   | 
| Theorem | quseccl 13363 | 
Closure of the quotient map for a quotient group.  (Contributed by
           Mario Carneiro, 18-Sep-2015.)  (Proof shortened by AV,
           9-Mar-2025.)
 | 
| ⊢ 𝐻 = (𝐺 /s (𝐺 ~QG 𝑆))    &   ⊢ 𝑉 = (Base‘𝐺)    &   ⊢ 𝐵 = (Base‘𝐻)   
 ⇒   ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋 ∈ 𝑉) → [𝑋](𝐺 ~QG 𝑆) ∈ 𝐵) | 
|   | 
| Theorem | qusadd 13364 | 
Value of the group operation in a quotient group.  (Contributed by
         Mario Carneiro, 18-Sep-2015.)
 | 
| ⊢ 𝐻 = (𝐺 /s (𝐺 ~QG 𝑆))    &   ⊢ 𝑉 = (Base‘𝐺)    &   ⊢  + =
 (+g‘𝐺)   
 &   ⊢  ✚ =
 (+g‘𝐻)    ⇒   ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → ([𝑋](𝐺 ~QG 𝑆) ✚ [𝑌](𝐺 ~QG 𝑆)) = [(𝑋 + 𝑌)](𝐺 ~QG 𝑆)) | 
|   | 
| Theorem | qus0 13365 | 
Value of the group identity operation in a quotient group.
         (Contributed by Mario Carneiro, 18-Sep-2015.)
 | 
| ⊢ 𝐻 = (𝐺 /s (𝐺 ~QG 𝑆))    &   ⊢  0 =
 (0g‘𝐺)    ⇒   ⊢ (𝑆 ∈ (NrmSGrp‘𝐺) → [ 0 ](𝐺 ~QG 𝑆) = (0g‘𝐻)) | 
|   | 
| Theorem | qusinv 13366 | 
Value of the group inverse operation in a quotient group.
         (Contributed by Mario Carneiro, 18-Sep-2015.)
 | 
| ⊢ 𝐻 = (𝐺 /s (𝐺 ~QG 𝑆))    &   ⊢ 𝑉 = (Base‘𝐺)    &   ⊢ 𝐼 = (invg‘𝐺)    &   ⊢ 𝑁 = (invg‘𝐻)   
 ⇒   ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋 ∈ 𝑉) → (𝑁‘[𝑋](𝐺 ~QG 𝑆)) = [(𝐼‘𝑋)](𝐺 ~QG 𝑆)) | 
|   | 
| Theorem | qussub 13367 | 
Value of the group subtraction operation in a quotient group.
         (Contributed by Mario Carneiro, 18-Sep-2015.)
 | 
| ⊢ 𝐻 = (𝐺 /s (𝐺 ~QG 𝑆))    &   ⊢ 𝑉 = (Base‘𝐺)    &   ⊢  − =
 (-g‘𝐺)   
 &   ⊢ 𝑁 = (-g‘𝐻)    ⇒   ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → ([𝑋](𝐺 ~QG 𝑆)𝑁[𝑌](𝐺 ~QG 𝑆)) = [(𝑋 − 𝑌)](𝐺 ~QG 𝑆)) | 
|   | 
| Theorem | ecqusaddd 13368 | 
Addition of equivalence classes in a quotient group.  (Contributed by
       AV, 25-Feb-2025.)
 | 
| ⊢ (𝜑 → 𝐼 ∈ (NrmSGrp‘𝑅))    &   ⊢ 𝐵 = (Base‘𝑅)    &   ⊢  ∼ =
 (𝑅 ~QG
 𝐼)    &   ⊢ 𝑄 = (𝑅 /s ∼
 )    ⇒   ⊢ ((𝜑 ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵)) → [(𝐴(+g‘𝑅)𝐶)] ∼ = ([𝐴] ∼
 (+g‘𝑄)[𝐶] ∼
 )) | 
|   | 
| Theorem | ecqusaddcl 13369 | 
Closure of the addition in a quotient group.  (Contributed by AV,
       24-Feb-2025.)
 | 
| ⊢ (𝜑 → 𝐼 ∈ (NrmSGrp‘𝑅))    &   ⊢ 𝐵 = (Base‘𝑅)    &   ⊢  ∼ =
 (𝑅 ~QG
 𝐼)    &   ⊢ 𝑄 = (𝑅 /s ∼
 )    ⇒   ⊢ ((𝜑 ∧ (𝐴 ∈ 𝐵 ∧ 𝐶 ∈ 𝐵)) → ([𝐴] ∼
 (+g‘𝑄)[𝐶] ∼ ) ∈
 (Base‘𝑄)) | 
|   | 
| 7.2.4  Elementary theory of group
 homomorphisms
 | 
|   | 
| Syntax | cghm 13370 | 
Extend class notation with the generator of group hom-sets.
 | 
| class  GrpHom | 
|   | 
| Definition | df-ghm 13371* | 
A homomorphism of groups is a map between two structures which preserves
       the group operation.  Requiring both sides to be groups simplifies most
       theorems at the cost of complicating the theorem which pushes forward a
       group structure.  (Contributed by Stefan O'Rear, 31-Dec-2014.)
 | 
| ⊢  GrpHom = (𝑠 ∈ Grp, 𝑡 ∈ Grp ↦ {𝑔 ∣ [(Base‘𝑠) / 𝑤](𝑔:𝑤⟶(Base‘𝑡) ∧ ∀𝑥 ∈ 𝑤 ∀𝑦 ∈ 𝑤 (𝑔‘(𝑥(+g‘𝑠)𝑦)) = ((𝑔‘𝑥)(+g‘𝑡)(𝑔‘𝑦)))}) | 
|   | 
| Theorem | reldmghm 13372 | 
Lemma for group homomorphisms.  (Contributed by Stefan O'Rear,
       31-Dec-2014.)
 | 
| ⊢ Rel dom GrpHom | 
|   | 
| Theorem | isghm 13373* | 
Property of being a homomorphism of groups.  (Contributed by Stefan
       O'Rear, 31-Dec-2014.)
 | 
| ⊢ 𝑋 = (Base‘𝑆)   
 &   ⊢ 𝑌 = (Base‘𝑇)   
 &   ⊢  + =
 (+g‘𝑆)   
 &   ⊢  ⨣ =
 (+g‘𝑇)    ⇒   ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) ↔ ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) ∧ (𝐹:𝑋⟶𝑌 ∧ ∀𝑢 ∈ 𝑋 ∀𝑣 ∈ 𝑋 (𝐹‘(𝑢 + 𝑣)) = ((𝐹‘𝑢) ⨣ (𝐹‘𝑣))))) | 
|   | 
| Theorem | isghm3 13374* | 
Property of a group homomorphism, similar to ismhm 13093.  (Contributed by
       Mario Carneiro, 7-Mar-2015.)
 | 
| ⊢ 𝑋 = (Base‘𝑆)   
 &   ⊢ 𝑌 = (Base‘𝑇)   
 &   ⊢  + =
 (+g‘𝑆)   
 &   ⊢  ⨣ =
 (+g‘𝑇)    ⇒   ⊢ ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) → (𝐹 ∈ (𝑆 GrpHom 𝑇) ↔ (𝐹:𝑋⟶𝑌 ∧ ∀𝑢 ∈ 𝑋 ∀𝑣 ∈ 𝑋 (𝐹‘(𝑢 + 𝑣)) = ((𝐹‘𝑢) ⨣ (𝐹‘𝑣))))) | 
|   | 
| Theorem | ghmgrp1 13375 | 
A group homomorphism is only defined when the domain is a group.
       (Contributed by Stefan O'Rear, 31-Dec-2014.)
 | 
| ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝑆 ∈ Grp) | 
|   | 
| Theorem | ghmgrp2 13376 | 
A group homomorphism is only defined when the codomain is a group.
       (Contributed by Stefan O'Rear, 31-Dec-2014.)
 | 
| ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝑇 ∈ Grp) | 
|   | 
| Theorem | ghmf 13377 | 
A group homomorphism is a function.  (Contributed by Stefan O'Rear,
       31-Dec-2014.)
 | 
| ⊢ 𝑋 = (Base‘𝑆)   
 &   ⊢ 𝑌 = (Base‘𝑇)    ⇒   ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹:𝑋⟶𝑌) | 
|   | 
| Theorem | ghmlin 13378 | 
A homomorphism of groups is linear.  (Contributed by Stefan O'Rear,
       31-Dec-2014.)
 | 
| ⊢ 𝑋 = (Base‘𝑆)   
 &   ⊢  + =
 (+g‘𝑆)   
 &   ⊢  ⨣ =
 (+g‘𝑇)    ⇒   ⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ∈ 𝑋) → (𝐹‘(𝑈 + 𝑉)) = ((𝐹‘𝑈) ⨣ (𝐹‘𝑉))) | 
|   | 
| Theorem | ghmid 13379 | 
A homomorphism of groups preserves the identity.  (Contributed by Stefan
       O'Rear, 31-Dec-2014.)
 | 
| ⊢ 𝑌 = (0g‘𝑆)   
 &   ⊢  0 =
 (0g‘𝑇)    ⇒   ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝐹‘𝑌) = 0 ) | 
|   | 
| Theorem | ghminv 13380 | 
A homomorphism of groups preserves inverses.  (Contributed by Stefan
       O'Rear, 31-Dec-2014.)
 | 
| ⊢ 𝐵 = (Base‘𝑆)   
 &   ⊢ 𝑀 = (invg‘𝑆)   
 &   ⊢ 𝑁 = (invg‘𝑇)    ⇒   ⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ 𝐵) → (𝐹‘(𝑀‘𝑋)) = (𝑁‘(𝐹‘𝑋))) | 
|   | 
| Theorem | ghmsub 13381 | 
Linearity of subtraction through a group homomorphism.  (Contributed by
       Stefan O'Rear, 31-Dec-2014.)
 | 
| ⊢ 𝐵 = (Base‘𝑆)   
 &   ⊢  − =
 (-g‘𝑆)   
 &   ⊢ 𝑁 = (-g‘𝑇)    ⇒   ⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈 ∈ 𝐵 ∧ 𝑉 ∈ 𝐵) → (𝐹‘(𝑈 − 𝑉)) = ((𝐹‘𝑈)𝑁(𝐹‘𝑉))) | 
|   | 
| Theorem | isghmd 13382* | 
Deduction for a group homomorphism.  (Contributed by Stefan O'Rear,
       4-Feb-2015.)
 | 
| ⊢ 𝑋 = (Base‘𝑆)   
 &   ⊢ 𝑌 = (Base‘𝑇)   
 &   ⊢  + =
 (+g‘𝑆)   
 &   ⊢  ⨣ =
 (+g‘𝑇)   
 &   ⊢ (𝜑 → 𝑆 ∈ Grp)    &   ⊢ (𝜑 → 𝑇 ∈ Grp)    &   ⊢ (𝜑 → 𝐹:𝑋⟶𝑌)   
 &   ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦)))    ⇒   ⊢ (𝜑 → 𝐹 ∈ (𝑆 GrpHom 𝑇)) | 
|   | 
| Theorem | ghmmhm 13383 | 
A group homomorphism is a monoid homomorphism.  (Contributed by Stefan
       O'Rear, 7-Mar-2015.)
 | 
| ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹 ∈ (𝑆 MndHom 𝑇)) | 
|   | 
| Theorem | ghmmhmb 13384 | 
Group homomorphisms and monoid homomorphisms coincide.  (Thus,
       GrpHom is somewhat redundant, although its
stronger reverse closure
       properties are sometimes useful.)  (Contributed by Stefan O'Rear,
       7-Mar-2015.)
 | 
| ⊢ ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) → (𝑆 GrpHom 𝑇) = (𝑆 MndHom 𝑇)) | 
|   | 
| Theorem | ghmex 13385 | 
The set of group homomorphisms exists.  (Contributed by Jim Kingdon,
       15-May-2025.)
 | 
| ⊢ ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) → (𝑆 GrpHom 𝑇) ∈ V) | 
|   | 
| Theorem | ghmmulg 13386 | 
A group homomorphism preserves group multiples.  (Contributed by Mario
       Carneiro, 14-Jun-2015.)
 | 
| ⊢ 𝐵 = (Base‘𝐺)   
 &   ⊢  · =
 (.g‘𝐺)   
 &   ⊢  × =
 (.g‘𝐻)    ⇒   ⊢ ((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → (𝐹‘(𝑁 · 𝑋)) = (𝑁 × (𝐹‘𝑋))) | 
|   | 
| Theorem | ghmrn 13387 | 
The range of a homomorphism is a subgroup.  (Contributed by Stefan
       O'Rear, 31-Dec-2014.)
 | 
| ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → ran 𝐹 ∈ (SubGrp‘𝑇)) | 
|   | 
| Theorem | 0ghm 13388 | 
The constant zero linear function between two groups.  (Contributed by
       Stefan O'Rear, 5-Sep-2015.)
 | 
| ⊢  0 =
 (0g‘𝑁)   
 &   ⊢ 𝐵 = (Base‘𝑀)    ⇒   ⊢ ((𝑀 ∈ Grp ∧ 𝑁 ∈ Grp) → (𝐵 × { 0 }) ∈ (𝑀 GrpHom 𝑁)) | 
|   | 
| Theorem | idghm 13389 | 
The identity homomorphism on a group.  (Contributed by Stefan O'Rear,
       31-Dec-2014.)
 | 
| ⊢ 𝐵 = (Base‘𝐺)    ⇒   ⊢ (𝐺 ∈ Grp → ( I ↾ 𝐵) ∈ (𝐺 GrpHom 𝐺)) | 
|   | 
| Theorem | resghm 13390 | 
Restriction of a homomorphism to a subgroup.  (Contributed by Stefan
       O'Rear, 31-Dec-2014.)
 | 
| ⊢ 𝑈 = (𝑆 ↾s 𝑋)    ⇒   ⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) → (𝐹 ↾ 𝑋) ∈ (𝑈 GrpHom 𝑇)) | 
|   | 
| Theorem | resghm2 13391 | 
One direction of resghm2b 13392.  (Contributed by Mario Carneiro,
       13-Jan-2015.)  (Revised by Mario Carneiro, 18-Jun-2015.)
 | 
| ⊢ 𝑈 = (𝑇 ↾s 𝑋)    ⇒   ⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑈) ∧ 𝑋 ∈ (SubGrp‘𝑇)) → 𝐹 ∈ (𝑆 GrpHom 𝑇)) | 
|   | 
| Theorem | resghm2b 13392 | 
Restriction of the codomain of a homomorphism.  (Contributed by Mario
       Carneiro, 13-Jan-2015.)  (Revised by Mario Carneiro, 18-Jun-2015.)
 | 
| ⊢ 𝑈 = (𝑇 ↾s 𝑋)    ⇒   ⊢ ((𝑋 ∈ (SubGrp‘𝑇) ∧ ran 𝐹 ⊆ 𝑋) → (𝐹 ∈ (𝑆 GrpHom 𝑇) ↔ 𝐹 ∈ (𝑆 GrpHom 𝑈))) | 
|   | 
| Theorem | ghmghmrn 13393 | 
A group homomorphism from 𝐺 to 𝐻 is also a group
homomorphism
       from 𝐺 to its image in 𝐻. 
(Contributed by Paul Chapman,
       3-Mar-2008.)  (Revised by AV, 26-Aug-2021.)
 | 
| ⊢ 𝑈 = (𝑇 ↾s ran 𝐹)    ⇒   ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹 ∈ (𝑆 GrpHom 𝑈)) | 
|   | 
| Theorem | ghmco 13394 | 
The composition of group homomorphisms is a homomorphism.  (Contributed by
     Mario Carneiro, 12-Jun-2015.)
 | 
| ⊢ ((𝐹 ∈ (𝑇 GrpHom 𝑈) ∧ 𝐺 ∈ (𝑆 GrpHom 𝑇)) → (𝐹 ∘ 𝐺) ∈ (𝑆 GrpHom 𝑈)) | 
|   | 
| Theorem | ghmima 13395 | 
The image of a subgroup under a homomorphism.  (Contributed by Stefan
     O'Rear, 31-Dec-2014.)
 | 
| ⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈 ∈ (SubGrp‘𝑆)) → (𝐹 “ 𝑈) ∈ (SubGrp‘𝑇)) | 
|   | 
| Theorem | ghmpreima 13396 | 
The inverse image of a subgroup under a homomorphism.  (Contributed by
       Stefan O'Rear, 31-Dec-2014.)
 | 
| ⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (SubGrp‘𝑇)) → (◡𝐹 “ 𝑉) ∈ (SubGrp‘𝑆)) | 
|   | 
| Theorem | ghmeql 13397 | 
The equalizer of two group homomorphisms is a subgroup.  (Contributed by
       Stefan O'Rear, 7-Mar-2015.)  (Revised by Mario Carneiro, 6-May-2015.)
 | 
| ⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐺 ∈ (𝑆 GrpHom 𝑇)) → dom (𝐹 ∩ 𝐺) ∈ (SubGrp‘𝑆)) | 
|   | 
| Theorem | ghmnsgima 13398 | 
The image of a normal subgroup under a surjective homomorphism is
       normal.  (Contributed by Mario Carneiro, 4-Feb-2015.)
 | 
| ⊢ 𝑌 = (Base‘𝑇)    ⇒   ⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈 ∈ (NrmSGrp‘𝑆) ∧ ran 𝐹 = 𝑌) → (𝐹 “ 𝑈) ∈ (NrmSGrp‘𝑇)) | 
|   | 
| Theorem | ghmnsgpreima 13399 | 
The inverse image of a normal subgroup under a homomorphism is normal.
       (Contributed by Mario Carneiro, 4-Feb-2015.)
 | 
| ⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (NrmSGrp‘𝑇)) → (◡𝐹 “ 𝑉) ∈ (NrmSGrp‘𝑆)) | 
|   | 
| Theorem | ghmker 13400 | 
The kernel of a homomorphism is a normal subgroup.  (Contributed by
       Mario Carneiro, 4-Feb-2015.)
 | 
| ⊢  0 =
 (0g‘𝑇)    ⇒   ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → (◡𝐹 “ { 0 }) ∈
 (NrmSGrp‘𝑆)) |