| Intuitionistic Logic Explorer Theorem List (p. 134 of 159) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > ILE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | grpnnncan2 13301 | Cancellation law for group subtraction. (nnncan2 8282 analog.) (Contributed by NM, 15-Feb-2008.) (Revised by Mario Carneiro, 2-Dec-2014.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ − = (-g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 − 𝑍) − (𝑌 − 𝑍)) = (𝑋 − 𝑌)) | ||
| Theorem | dfgrp3mlem 13302* | Lemma for dfgrp3m 13303. (Contributed by AV, 28-Aug-2021.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Smgrp ∧ ∃𝑤 𝑤 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (∃𝑙 ∈ 𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑥 + 𝑟) = 𝑦)) → ∃𝑢 ∈ 𝐵 ∀𝑎 ∈ 𝐵 ((𝑢 + 𝑎) = 𝑎 ∧ ∃𝑖 ∈ 𝐵 (𝑖 + 𝑎) = 𝑢)) | ||
| Theorem | dfgrp3m 13303* | Alternate definition of a group as semigroup (with at least one element) which is also a quasigroup, i.e. a magma in which solutions 𝑥 and 𝑦 of the equations (𝑎 + 𝑥) = 𝑏 and (𝑥 + 𝑎) = 𝑏 exist. Theorem 3.2 of [Bruck] p. 28. (Contributed by AV, 28-Aug-2021.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) ⇒ ⊢ (𝐺 ∈ Grp ↔ (𝐺 ∈ Smgrp ∧ ∃𝑤 𝑤 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (∃𝑙 ∈ 𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑥 + 𝑟) = 𝑦))) | ||
| Theorem | dfgrp3me 13304* | Alternate definition of a group as a set with a closed, associative operation, for which solutions 𝑥 and 𝑦 of the equations (𝑎 + 𝑥) = 𝑏 and (𝑥 + 𝑎) = 𝑏 exist. Exercise 1 of [Herstein] p. 57. (Contributed by NM, 5-Dec-2006.) (Revised by AV, 28-Aug-2021.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) ⇒ ⊢ (𝐺 ∈ Grp ↔ (∃𝑤 𝑤 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) ∈ 𝐵 ∧ ∀𝑧 ∈ 𝐵 ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)) ∧ (∃𝑙 ∈ 𝐵 (𝑙 + 𝑥) = 𝑦 ∧ ∃𝑟 ∈ 𝐵 (𝑥 + 𝑟) = 𝑦)))) | ||
| Theorem | grplactfval 13305* | The left group action of element 𝐴 of group 𝐺. (Contributed by Paul Chapman, 18-Mar-2008.) |
| ⊢ 𝐹 = (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔 + 𝑎))) & ⊢ 𝑋 = (Base‘𝐺) ⇒ ⊢ (𝐴 ∈ 𝑋 → (𝐹‘𝐴) = (𝑎 ∈ 𝑋 ↦ (𝐴 + 𝑎))) | ||
| Theorem | grplactcnv 13306* | The left group action of element 𝐴 of group 𝐺 maps the underlying set 𝑋 of 𝐺 one-to-one onto itself. (Contributed by Paul Chapman, 18-Mar-2008.) (Proof shortened by Mario Carneiro, 14-Aug-2015.) |
| ⊢ 𝐹 = (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔 + 𝑎))) & ⊢ 𝑋 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ 𝐼 = (invg‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → ((𝐹‘𝐴):𝑋–1-1-onto→𝑋 ∧ ◡(𝐹‘𝐴) = (𝐹‘(𝐼‘𝐴)))) | ||
| Theorem | grplactf1o 13307* | The left group action of element 𝐴 of group 𝐺 maps the underlying set 𝑋 of 𝐺 one-to-one onto itself. (Contributed by Paul Chapman, 18-Mar-2008.) (Proof shortened by Mario Carneiro, 14-Aug-2015.) |
| ⊢ 𝐹 = (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔 + 𝑎))) & ⊢ 𝑋 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → (𝐹‘𝐴):𝑋–1-1-onto→𝑋) | ||
| Theorem | grpsubpropdg 13308 | Weak property deduction for the group subtraction operation. (Contributed by Mario Carneiro, 27-Mar-2015.) |
| ⊢ (𝜑 → (Base‘𝐺) = (Base‘𝐻)) & ⊢ (𝜑 → (+g‘𝐺) = (+g‘𝐻)) & ⊢ (𝜑 → 𝐺 ∈ 𝑉) & ⊢ (𝜑 → 𝐻 ∈ 𝑊) ⇒ ⊢ (𝜑 → (-g‘𝐺) = (-g‘𝐻)) | ||
| Theorem | grpsubpropd2 13309* | Strong property deduction for the group subtraction operation. (Contributed by Mario Carneiro, 4-Oct-2015.) |
| ⊢ (𝜑 → 𝐵 = (Base‘𝐺)) & ⊢ (𝜑 → 𝐵 = (Base‘𝐻)) & ⊢ (𝜑 → 𝐺 ∈ Grp) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐺)𝑦) = (𝑥(+g‘𝐻)𝑦)) ⇒ ⊢ (𝜑 → (-g‘𝐺) = (-g‘𝐻)) | ||
| Theorem | grp1 13310 | The (smallest) structure representing a trivial group. According to Wikipedia ("Trivial group", 28-Apr-2019, https://en.wikipedia.org/wiki/Trivial_group) "In mathematics, a trivial group is a group consisting of a single element. All such groups are isomorphic, so one often speaks of the trivial group. The single element of the trivial group is the identity element". (Contributed by AV, 28-Apr-2019.) |
| ⊢ 𝑀 = {〈(Base‘ndx), {𝐼}〉, 〈(+g‘ndx), {〈〈𝐼, 𝐼〉, 𝐼〉}〉} ⇒ ⊢ (𝐼 ∈ 𝑉 → 𝑀 ∈ Grp) | ||
| Theorem | grp1inv 13311 | The inverse function of the trivial group. (Contributed by FL, 21-Jun-2010.) (Revised by AV, 26-Aug-2021.) |
| ⊢ 𝑀 = {〈(Base‘ndx), {𝐼}〉, 〈(+g‘ndx), {〈〈𝐼, 𝐼〉, 𝐼〉}〉} ⇒ ⊢ (𝐼 ∈ 𝑉 → (invg‘𝑀) = ( I ↾ {𝐼})) | ||
| Theorem | prdsinvlem 13312* | Characterization of inverses in a structure product. (Contributed by Mario Carneiro, 10-Jan-2015.) |
| ⊢ 𝑌 = (𝑆Xs𝑅) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ + = (+g‘𝑌) & ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝑅:𝐼⟶Grp) & ⊢ (𝜑 → 𝐹 ∈ 𝐵) & ⊢ 0 = (0g ∘ 𝑅) & ⊢ 𝑁 = (𝑦 ∈ 𝐼 ↦ ((invg‘(𝑅‘𝑦))‘(𝐹‘𝑦))) ⇒ ⊢ (𝜑 → (𝑁 ∈ 𝐵 ∧ (𝑁 + 𝐹) = 0 )) | ||
| Theorem | prdsgrpd 13313 | The product of a family of groups is a group. (Contributed by Stefan O'Rear, 10-Jan-2015.) |
| ⊢ 𝑌 = (𝑆Xs𝑅) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → 𝑅:𝐼⟶Grp) ⇒ ⊢ (𝜑 → 𝑌 ∈ Grp) | ||
| Theorem | prdsinvgd 13314* | Negation in a product of groups. (Contributed by Stefan O'Rear, 10-Jan-2015.) |
| ⊢ 𝑌 = (𝑆Xs𝑅) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → 𝑅:𝐼⟶Grp) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ 𝑁 = (invg‘𝑌) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑁‘𝑋) = (𝑥 ∈ 𝐼 ↦ ((invg‘(𝑅‘𝑥))‘(𝑋‘𝑥)))) | ||
| Theorem | pwsgrp 13315 | A structure power of a group is a group. (Contributed by Mario Carneiro, 11-Jan-2015.) |
| ⊢ 𝑌 = (𝑅 ↑s 𝐼) ⇒ ⊢ ((𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉) → 𝑌 ∈ Grp) | ||
| Theorem | pwsinvg 13316 | Negation in a group power. (Contributed by Mario Carneiro, 11-Jan-2015.) |
| ⊢ 𝑌 = (𝑅 ↑s 𝐼) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ 𝑀 = (invg‘𝑅) & ⊢ 𝑁 = (invg‘𝑌) ⇒ ⊢ ((𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵) → (𝑁‘𝑋) = (𝑀 ∘ 𝑋)) | ||
| Theorem | pwssub 13317 | Subtraction in a group power. (Contributed by Mario Carneiro, 12-Jan-2015.) |
| ⊢ 𝑌 = (𝑅 ↑s 𝐼) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ 𝑀 = (-g‘𝑅) & ⊢ − = (-g‘𝑌) ⇒ ⊢ (((𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑉) ∧ (𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵)) → (𝐹 − 𝐺) = (𝐹 ∘𝑓 𝑀𝐺)) | ||
| Theorem | imasgrp2 13318* | The image structure of a group is a group. (Contributed by Mario Carneiro, 24-Feb-2015.) (Revised by Mario Carneiro, 5-Sep-2015.) |
| ⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) & ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) & ⊢ (𝜑 → + = (+g‘𝑅)) & ⊢ (𝜑 → 𝐹:𝑉–onto→𝐵) & ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → (((𝐹‘𝑎) = (𝐹‘𝑝) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → (𝐹‘(𝑎 + 𝑏)) = (𝐹‘(𝑝 + 𝑞)))) & ⊢ (𝜑 → 𝑅 ∈ 𝑊) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) → (𝑥 + 𝑦) ∈ 𝑉) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → (𝐹‘((𝑥 + 𝑦) + 𝑧)) = (𝐹‘(𝑥 + (𝑦 + 𝑧)))) & ⊢ (𝜑 → 0 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → (𝐹‘( 0 + 𝑥)) = (𝐹‘𝑥)) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → 𝑁 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → (𝐹‘(𝑁 + 𝑥)) = (𝐹‘ 0 )) ⇒ ⊢ (𝜑 → (𝑈 ∈ Grp ∧ (𝐹‘ 0 ) = (0g‘𝑈))) | ||
| Theorem | imasgrp 13319* | The image structure of a group is a group. (Contributed by Mario Carneiro, 24-Feb-2015.) (Revised by Mario Carneiro, 5-Sep-2015.) |
| ⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) & ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) & ⊢ (𝜑 → + = (+g‘𝑅)) & ⊢ (𝜑 → 𝐹:𝑉–onto→𝐵) & ⊢ ((𝜑 ∧ (𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉) ∧ (𝑝 ∈ 𝑉 ∧ 𝑞 ∈ 𝑉)) → (((𝐹‘𝑎) = (𝐹‘𝑝) ∧ (𝐹‘𝑏) = (𝐹‘𝑞)) → (𝐹‘(𝑎 + 𝑏)) = (𝐹‘(𝑝 + 𝑞)))) & ⊢ (𝜑 → 𝑅 ∈ Grp) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ (𝜑 → (𝑈 ∈ Grp ∧ (𝐹‘ 0 ) = (0g‘𝑈))) | ||
| Theorem | imasgrpf1 13320 | The image of a group under an injection is a group. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| ⊢ 𝑈 = (𝐹 “s 𝑅) & ⊢ 𝑉 = (Base‘𝑅) ⇒ ⊢ ((𝐹:𝑉–1-1→𝐵 ∧ 𝑅 ∈ Grp) → 𝑈 ∈ Grp) | ||
| Theorem | qusgrp2 13321* | Prove that a quotient structure is a group. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by Mario Carneiro, 12-Aug-2015.) |
| ⊢ (𝜑 → 𝑈 = (𝑅 /s ∼ )) & ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) & ⊢ (𝜑 → + = (+g‘𝑅)) & ⊢ (𝜑 → ∼ Er 𝑉) & ⊢ (𝜑 → 𝑅 ∈ 𝑋) & ⊢ (𝜑 → ((𝑎 ∼ 𝑝 ∧ 𝑏 ∼ 𝑞) → (𝑎 + 𝑏) ∼ (𝑝 + 𝑞))) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉) → (𝑥 + 𝑦) ∈ 𝑉) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑉 ∧ 𝑦 ∈ 𝑉 ∧ 𝑧 ∈ 𝑉)) → ((𝑥 + 𝑦) + 𝑧) ∼ (𝑥 + (𝑦 + 𝑧))) & ⊢ (𝜑 → 0 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → ( 0 + 𝑥) ∼ 𝑥) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → 𝑁 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑉) → (𝑁 + 𝑥) ∼ 0 ) ⇒ ⊢ (𝜑 → (𝑈 ∈ Grp ∧ [ 0 ] ∼ = (0g‘𝑈))) | ||
| Theorem | mhmlem 13322* | Lemma for mhmmnd 13324 and ghmgrp 13326. (Contributed by Paul Chapman, 25-Apr-2008.) (Revised by Mario Carneiro, 12-May-2014.) (Revised by Thierry Arnoux, 25-Jan-2020.) |
| ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦))) & ⊢ (𝜑 → 𝐴 ∈ 𝑋) & ⊢ (𝜑 → 𝐵 ∈ 𝑋) ⇒ ⊢ (𝜑 → (𝐹‘(𝐴 + 𝐵)) = ((𝐹‘𝐴) ⨣ (𝐹‘𝐵))) | ||
| Theorem | mhmid 13323* | A surjective monoid morphism preserves identity element. (Contributed by Thierry Arnoux, 25-Jan-2020.) |
| ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦))) & ⊢ 𝑋 = (Base‘𝐺) & ⊢ 𝑌 = (Base‘𝐻) & ⊢ + = (+g‘𝐺) & ⊢ ⨣ = (+g‘𝐻) & ⊢ (𝜑 → 𝐹:𝑋–onto→𝑌) & ⊢ (𝜑 → 𝐺 ∈ Mnd) & ⊢ 0 = (0g‘𝐺) ⇒ ⊢ (𝜑 → (𝐹‘ 0 ) = (0g‘𝐻)) | ||
| Theorem | mhmmnd 13324* | The image of a monoid 𝐺 under a monoid homomorphism 𝐹 is a monoid. (Contributed by Thierry Arnoux, 25-Jan-2020.) |
| ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦))) & ⊢ 𝑋 = (Base‘𝐺) & ⊢ 𝑌 = (Base‘𝐻) & ⊢ + = (+g‘𝐺) & ⊢ ⨣ = (+g‘𝐻) & ⊢ (𝜑 → 𝐹:𝑋–onto→𝑌) & ⊢ (𝜑 → 𝐺 ∈ Mnd) ⇒ ⊢ (𝜑 → 𝐻 ∈ Mnd) | ||
| Theorem | mhmfmhm 13325* | The function fulfilling the conditions of mhmmnd 13324 is a monoid homomorphism. (Contributed by Thierry Arnoux, 26-Jan-2020.) |
| ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦))) & ⊢ 𝑋 = (Base‘𝐺) & ⊢ 𝑌 = (Base‘𝐻) & ⊢ + = (+g‘𝐺) & ⊢ ⨣ = (+g‘𝐻) & ⊢ (𝜑 → 𝐹:𝑋–onto→𝑌) & ⊢ (𝜑 → 𝐺 ∈ Mnd) ⇒ ⊢ (𝜑 → 𝐹 ∈ (𝐺 MndHom 𝐻)) | ||
| Theorem | ghmgrp 13326* | The image of a group 𝐺 under a group homomorphism 𝐹 is a group. This is a stronger result than that usually found in the literature, since the target of the homomorphism (operator 𝑂 in our model) need not have any of the properties of a group as a prerequisite. (Contributed by Paul Chapman, 25-Apr-2008.) (Revised by Mario Carneiro, 12-May-2014.) (Revised by Thierry Arnoux, 25-Jan-2020.) |
| ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦))) & ⊢ 𝑋 = (Base‘𝐺) & ⊢ 𝑌 = (Base‘𝐻) & ⊢ + = (+g‘𝐺) & ⊢ ⨣ = (+g‘𝐻) & ⊢ (𝜑 → 𝐹:𝑋–onto→𝑌) & ⊢ (𝜑 → 𝐺 ∈ Grp) ⇒ ⊢ (𝜑 → 𝐻 ∈ Grp) | ||
The "group multiple" operation (if the group is multiplicative, also called "group power" or "group exponentiation" operation), can be defined for arbitrary magmas, if the multiplier/exponent is a nonnegative integer. See also the definition in [Lang] p. 6, where an element 𝑥(of a monoid) to the power of a nonnegative integer 𝑛 is defined and denoted by 𝑥↑𝑛. Definition df-mulg 13328, however, defines the group multiple for arbitrary (i.e. also negative) integers. This is meaningful for groups only, and requires Definition df-minusg 13208 of the inverse operation invg. | ||
| Syntax | cmg 13327 | Extend class notation with a function mapping a group operation to the multiple/power operation for the magma/group. |
| class .g | ||
| Definition | df-mulg 13328* | Define the group multiple function, also known as group exponentiation when viewed multiplicatively. (Contributed by Mario Carneiro, 11-Dec-2014.) |
| ⊢ .g = (𝑔 ∈ V ↦ (𝑛 ∈ ℤ, 𝑥 ∈ (Base‘𝑔) ↦ if(𝑛 = 0, (0g‘𝑔), ⦋seq1((+g‘𝑔), (ℕ × {𝑥})) / 𝑠⦌if(0 < 𝑛, (𝑠‘𝑛), ((invg‘𝑔)‘(𝑠‘-𝑛)))))) | ||
| Theorem | mulgfvalg 13329* | Group multiple (exponentiation) operation. (Contributed by Mario Carneiro, 11-Dec-2014.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ 𝐼 = (invg‘𝐺) & ⊢ · = (.g‘𝐺) ⇒ ⊢ (𝐺 ∈ 𝑉 → · = (𝑛 ∈ ℤ, 𝑥 ∈ 𝐵 ↦ if(𝑛 = 0, 0 , if(0 < 𝑛, (seq1( + , (ℕ × {𝑥}))‘𝑛), (𝐼‘(seq1( + , (ℕ × {𝑥}))‘-𝑛)))))) | ||
| Theorem | mulgval 13330 | Value of the group multiple (exponentiation) operation. (Contributed by Mario Carneiro, 11-Dec-2014.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ 𝐼 = (invg‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ 𝑆 = seq1( + , (ℕ × {𝑋})) ⇒ ⊢ ((𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → (𝑁 · 𝑋) = if(𝑁 = 0, 0 , if(0 < 𝑁, (𝑆‘𝑁), (𝐼‘(𝑆‘-𝑁))))) | ||
| Theorem | mulgex 13331 | Existence of the group multiple operation. (Contributed by Jim Kingdon, 22-Apr-2025.) |
| ⊢ (𝐺 ∈ 𝑉 → (.g‘𝐺) ∈ V) | ||
| Theorem | mulgfng 13332 | Functionality of the group multiple operation. (Contributed by Mario Carneiro, 21-Mar-2015.) (Revised by Mario Carneiro, 2-Oct-2015.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ · = (.g‘𝐺) ⇒ ⊢ (𝐺 ∈ 𝑉 → · Fn (ℤ × 𝐵)) | ||
| Theorem | mulg0 13333 | Group multiple (exponentiation) operation at zero. (Contributed by Mario Carneiro, 11-Dec-2014.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ · = (.g‘𝐺) ⇒ ⊢ (𝑋 ∈ 𝐵 → (0 · 𝑋) = 0 ) | ||
| Theorem | mulgnn 13334 | Group multiple (exponentiation) operation at a positive integer. (Contributed by Mario Carneiro, 11-Dec-2014.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ 𝑆 = seq1( + , (ℕ × {𝑋})) ⇒ ⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) → (𝑁 · 𝑋) = (𝑆‘𝑁)) | ||
| Theorem | mulgnngsum 13335* | Group multiple (exponentiation) operation at a positive integer expressed by a group sum. (Contributed by AV, 28-Dec-2023.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ 𝐹 = (𝑥 ∈ (1...𝑁) ↦ 𝑋) ⇒ ⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) → (𝑁 · 𝑋) = (𝐺 Σg 𝐹)) | ||
| Theorem | mulgnn0gsum 13336* | Group multiple (exponentiation) operation at a nonnegative integer expressed by a group sum. This corresponds to the definition in [Lang] p. 6, second formula. (Contributed by AV, 28-Dec-2023.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ 𝐹 = (𝑥 ∈ (1...𝑁) ↦ 𝑋) ⇒ ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵) → (𝑁 · 𝑋) = (𝐺 Σg 𝐹)) | ||
| Theorem | mulg1 13337 | Group multiple (exponentiation) operation at one. (Contributed by Mario Carneiro, 11-Dec-2014.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ · = (.g‘𝐺) ⇒ ⊢ (𝑋 ∈ 𝐵 → (1 · 𝑋) = 𝑋) | ||
| Theorem | mulgnnp1 13338 | Group multiple (exponentiation) operation at a successor. (Contributed by Mario Carneiro, 11-Dec-2014.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ + = (+g‘𝐺) ⇒ ⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) → ((𝑁 + 1) · 𝑋) = ((𝑁 · 𝑋) + 𝑋)) | ||
| Theorem | mulg2 13339 | Group multiple (exponentiation) operation at two. (Contributed by Mario Carneiro, 15-Oct-2015.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ + = (+g‘𝐺) ⇒ ⊢ (𝑋 ∈ 𝐵 → (2 · 𝑋) = (𝑋 + 𝑋)) | ||
| Theorem | mulgnegnn 13340 | Group multiple (exponentiation) operation at a negative integer. (Contributed by Mario Carneiro, 11-Dec-2014.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ 𝐼 = (invg‘𝐺) ⇒ ⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) → (-𝑁 · 𝑋) = (𝐼‘(𝑁 · 𝑋))) | ||
| Theorem | mulgnn0p1 13341 | Group multiple (exponentiation) operation at a successor, extended to ℕ0. (Contributed by Mario Carneiro, 11-Dec-2014.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ + = (+g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵) → ((𝑁 + 1) · 𝑋) = ((𝑁 · 𝑋) + 𝑋)) | ||
| Theorem | mulgnnsubcl 13342* | Closure of the group multiple (exponentiation) operation in a subsemigroup. (Contributed by Mario Carneiro, 10-Jan-2015.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ 𝑉) & ⊢ (𝜑 → 𝑆 ⊆ 𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → (𝑥 + 𝑦) ∈ 𝑆) ⇒ ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝑆) → (𝑁 · 𝑋) ∈ 𝑆) | ||
| Theorem | mulgnn0subcl 13343* | Closure of the group multiple (exponentiation) operation in a submonoid. (Contributed by Mario Carneiro, 10-Jan-2015.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ 𝑉) & ⊢ (𝜑 → 𝑆 ⊆ 𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → (𝑥 + 𝑦) ∈ 𝑆) & ⊢ 0 = (0g‘𝐺) & ⊢ (𝜑 → 0 ∈ 𝑆) ⇒ ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑆) → (𝑁 · 𝑋) ∈ 𝑆) | ||
| Theorem | mulgsubcl 13344* | Closure of the group multiple (exponentiation) operation in a subgroup. (Contributed by Mario Carneiro, 10-Jan-2015.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ 𝑉) & ⊢ (𝜑 → 𝑆 ⊆ 𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆) → (𝑥 + 𝑦) ∈ 𝑆) & ⊢ 0 = (0g‘𝐺) & ⊢ (𝜑 → 0 ∈ 𝑆) & ⊢ 𝐼 = (invg‘𝐺) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → (𝐼‘𝑥) ∈ 𝑆) ⇒ ⊢ ((𝜑 ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆) → (𝑁 · 𝑋) ∈ 𝑆) | ||
| Theorem | mulgnncl 13345 | Closure of the group multiple (exponentiation) operation for a positive multiplier in a magma. (Contributed by Mario Carneiro, 11-Dec-2014.) (Revised by AV, 29-Aug-2021.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ · = (.g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Mgm ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵) → (𝑁 · 𝑋) ∈ 𝐵) | ||
| Theorem | mulgnn0cl 13346 | Closure of the group multiple (exponentiation) operation for a nonnegative multiplier in a monoid. (Contributed by Mario Carneiro, 11-Dec-2014.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ · = (.g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵) → (𝑁 · 𝑋) ∈ 𝐵) | ||
| Theorem | mulgcl 13347 | Closure of the group multiple (exponentiation) operation. (Contributed by Mario Carneiro, 11-Dec-2014.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ · = (.g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → (𝑁 · 𝑋) ∈ 𝐵) | ||
| Theorem | mulgneg 13348 | Group multiple (exponentiation) operation at a negative integer. (Contributed by Paul Chapman, 17-Apr-2009.) (Revised by Mario Carneiro, 11-Dec-2014.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ 𝐼 = (invg‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → (-𝑁 · 𝑋) = (𝐼‘(𝑁 · 𝑋))) | ||
| Theorem | mulgnegneg 13349 | The inverse of a negative group multiple is the positive group multiple. (Contributed by Paul Chapman, 17-Apr-2009.) (Revised by AV, 30-Aug-2021.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ 𝐼 = (invg‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → (𝐼‘(-𝑁 · 𝑋)) = (𝑁 · 𝑋)) | ||
| Theorem | mulgm1 13350 | Group multiple (exponentiation) operation at negative one. (Contributed by Paul Chapman, 17-Apr-2009.) (Revised by Mario Carneiro, 20-Dec-2014.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ 𝐼 = (invg‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (-1 · 𝑋) = (𝐼‘𝑋)) | ||
| Theorem | mulgnn0cld 13351 | Closure of the group multiple (exponentiation) operation for a nonnegative multiplier in a monoid. Deduction associated with mulgnn0cl 13346. (Contributed by SN, 1-Feb-2025.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Mnd) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑁 · 𝑋) ∈ 𝐵) | ||
| Theorem | mulgcld 13352 | Deduction associated with mulgcl 13347. (Contributed by Rohan Ridenour, 3-Aug-2023.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Grp) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑁 · 𝑋) ∈ 𝐵) | ||
| Theorem | mulgaddcomlem 13353 | Lemma for mulgaddcom 13354. (Contributed by Paul Chapman, 17-Apr-2009.) (Revised by AV, 31-Aug-2021.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ + = (+g‘𝐺) ⇒ ⊢ (((𝐺 ∈ Grp ∧ 𝑦 ∈ ℤ ∧ 𝑋 ∈ 𝐵) ∧ ((𝑦 · 𝑋) + 𝑋) = (𝑋 + (𝑦 · 𝑋))) → ((-𝑦 · 𝑋) + 𝑋) = (𝑋 + (-𝑦 · 𝑋))) | ||
| Theorem | mulgaddcom 13354 | The group multiple operator commutes with the group operation. (Contributed by Paul Chapman, 17-Apr-2009.) (Revised by AV, 31-Aug-2021.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ + = (+g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → ((𝑁 · 𝑋) + 𝑋) = (𝑋 + (𝑁 · 𝑋))) | ||
| Theorem | mulginvcom 13355 | The group multiple operator commutes with the group inverse function. (Contributed by Paul Chapman, 17-Apr-2009.) (Revised by AV, 31-Aug-2021.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ 𝐼 = (invg‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → (𝑁 · (𝐼‘𝑋)) = (𝐼‘(𝑁 · 𝑋))) | ||
| Theorem | mulginvinv 13356 | The group multiple operator commutes with the group inverse function. (Contributed by Paul Chapman, 17-Apr-2009.) (Revised by AV, 31-Aug-2021.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ 𝐼 = (invg‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → (𝐼‘(𝑁 · (𝐼‘𝑋))) = (𝑁 · 𝑋)) | ||
| Theorem | mulgnn0z 13357 | A group multiple of the identity, for nonnegative multiple. (Contributed by Mario Carneiro, 13-Dec-2014.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ 0 = (0g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Mnd ∧ 𝑁 ∈ ℕ0) → (𝑁 · 0 ) = 0 ) | ||
| Theorem | mulgz 13358 | A group multiple of the identity, for integer multiple. (Contributed by Mario Carneiro, 13-Dec-2014.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ 0 = (0g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ) → (𝑁 · 0 ) = 0 ) | ||
| Theorem | mulgnndir 13359 | Sum of group multiples, for positive multiples. (Contributed by Mario Carneiro, 11-Dec-2014.) (Revised by AV, 29-Aug-2021.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ + = (+g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵)) → ((𝑀 + 𝑁) · 𝑋) = ((𝑀 · 𝑋) + (𝑁 · 𝑋))) | ||
| Theorem | mulgnn0dir 13360 | Sum of group multiples, generalized to ℕ0. (Contributed by Mario Carneiro, 11-Dec-2014.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ + = (+g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵)) → ((𝑀 + 𝑁) · 𝑋) = ((𝑀 · 𝑋) + (𝑁 · 𝑋))) | ||
| Theorem | mulgdirlem 13361 | Lemma for mulgdir 13362. (Contributed by Mario Carneiro, 13-Dec-2014.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ + = (+g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵) ∧ (𝑀 + 𝑁) ∈ ℕ0) → ((𝑀 + 𝑁) · 𝑋) = ((𝑀 · 𝑋) + (𝑁 · 𝑋))) | ||
| Theorem | mulgdir 13362 | Sum of group multiples, generalized to ℤ. (Contributed by Mario Carneiro, 13-Dec-2014.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ + = (+g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵)) → ((𝑀 + 𝑁) · 𝑋) = ((𝑀 · 𝑋) + (𝑁 · 𝑋))) | ||
| Theorem | mulgp1 13363 | Group multiple (exponentiation) operation at a successor, extended to ℤ. (Contributed by Mario Carneiro, 11-Dec-2014.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ + = (+g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → ((𝑁 + 1) · 𝑋) = ((𝑁 · 𝑋) + 𝑋)) | ||
| Theorem | mulgneg2 13364 | Group multiple (exponentiation) operation at a negative integer. (Contributed by Mario Carneiro, 13-Dec-2014.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ 𝐼 = (invg‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → (-𝑁 · 𝑋) = (𝑁 · (𝐼‘𝑋))) | ||
| Theorem | mulgnnass 13365 | Product of group multiples, for positive multiples in a semigroup. (Contributed by Mario Carneiro, 13-Dec-2014.) (Revised by AV, 29-Aug-2021.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ · = (.g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Smgrp ∧ (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵)) → ((𝑀 · 𝑁) · 𝑋) = (𝑀 · (𝑁 · 𝑋))) | ||
| Theorem | mulgnn0ass 13366 | Product of group multiples, generalized to ℕ0. (Contributed by Mario Carneiro, 13-Dec-2014.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ · = (.g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Mnd ∧ (𝑀 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵)) → ((𝑀 · 𝑁) · 𝑋) = (𝑀 · (𝑁 · 𝑋))) | ||
| Theorem | mulgass 13367 | Product of group multiples, generalized to ℤ. (Contributed by Mario Carneiro, 13-Dec-2014.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ · = (.g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵)) → ((𝑀 · 𝑁) · 𝑋) = (𝑀 · (𝑁 · 𝑋))) | ||
| Theorem | mulgassr 13368 | Reversed product of group multiples. (Contributed by Paul Chapman, 17-Apr-2009.) (Revised by AV, 30-Aug-2021.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ · = (.g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵)) → ((𝑁 · 𝑀) · 𝑋) = (𝑀 · (𝑁 · 𝑋))) | ||
| Theorem | mulgmodid 13369 | Casting out multiples of the identity element leaves the group multiple unchanged. (Contributed by Paul Chapman, 17-Apr-2009.) (Revised by AV, 30-Aug-2021.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ · = (.g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ (𝑋 ∈ 𝐵 ∧ (𝑀 · 𝑋) = 0 )) → ((𝑁 mod 𝑀) · 𝑋) = (𝑁 · 𝑋)) | ||
| Theorem | mulgsubdir 13370 | Distribution of group multiples over subtraction for group elements, subdir 8431 analog. (Contributed by Mario Carneiro, 13-Dec-2014.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ − = (-g‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵)) → ((𝑀 − 𝑁) · 𝑋) = ((𝑀 · 𝑋) − (𝑁 · 𝑋))) | ||
| Theorem | mhmmulg 13371 | A homomorphism of monoids preserves group multiples. (Contributed by Mario Carneiro, 14-Jun-2015.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ × = (.g‘𝐻) ⇒ ⊢ ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵) → (𝐹‘(𝑁 · 𝑋)) = (𝑁 × (𝐹‘𝑋))) | ||
| Theorem | mulgpropdg 13372* | Two structures with the same group-nature have the same group multiple function. 𝐾 is expected to either be V (when strong equality is available) or 𝐵 (when closure is available). (Contributed by Stefan O'Rear, 21-Mar-2015.) (Revised by Mario Carneiro, 2-Oct-2015.) |
| ⊢ (𝜑 → · = (.g‘𝐺)) & ⊢ (𝜑 → × = (.g‘𝐻)) & ⊢ (𝜑 → 𝐺 ∈ 𝑉) & ⊢ (𝜑 → 𝐻 ∈ 𝑊) & ⊢ (𝜑 → 𝐵 = (Base‘𝐺)) & ⊢ (𝜑 → 𝐵 = (Base‘𝐻)) & ⊢ (𝜑 → 𝐵 ⊆ 𝐾) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾)) → (𝑥(+g‘𝐺)𝑦) ∈ 𝐾) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐾 ∧ 𝑦 ∈ 𝐾)) → (𝑥(+g‘𝐺)𝑦) = (𝑥(+g‘𝐻)𝑦)) ⇒ ⊢ (𝜑 → · = × ) | ||
| Theorem | submmulgcl 13373 | Closure of the group multiple (exponentiation) operation in a submonoid. (Contributed by Mario Carneiro, 13-Jan-2015.) |
| ⊢ ∙ = (.g‘𝐺) ⇒ ⊢ ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑆) → (𝑁 ∙ 𝑋) ∈ 𝑆) | ||
| Theorem | submmulg 13374 | A group multiple is the same if evaluated in a submonoid. (Contributed by Mario Carneiro, 15-Jun-2015.) |
| ⊢ ∙ = (.g‘𝐺) & ⊢ 𝐻 = (𝐺 ↾s 𝑆) & ⊢ · = (.g‘𝐻) ⇒ ⊢ ((𝑆 ∈ (SubMnd‘𝐺) ∧ 𝑁 ∈ ℕ0 ∧ 𝑋 ∈ 𝑆) → (𝑁 ∙ 𝑋) = (𝑁 · 𝑋)) | ||
| Syntax | csubg 13375 | Extend class notation with all subgroups of a group. |
| class SubGrp | ||
| Syntax | cnsg 13376 | Extend class notation with all normal subgroups of a group. |
| class NrmSGrp | ||
| Syntax | cqg 13377 | Quotient group equivalence class. |
| class ~QG | ||
| Definition | df-subg 13378* | Define a subgroup of a group as a set of elements that is a group in its own right. Equivalently (issubg2m 13397), a subgroup is a subset of the group that is closed for the group internal operation (see subgcl 13392), contains the neutral element of the group (see subg0 13388) and contains the inverses for all of its elements (see subginvcl 13391). (Contributed by Mario Carneiro, 2-Dec-2014.) |
| ⊢ SubGrp = (𝑤 ∈ Grp ↦ {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ (𝑤 ↾s 𝑠) ∈ Grp}) | ||
| Definition | df-nsg 13379* | Define the equivalence relation in a quotient ring or quotient group (where 𝑖 is a two-sided ideal or a normal subgroup). For non-normal subgroups this generates the left cosets. (Contributed by Mario Carneiro, 15-Jun-2015.) |
| ⊢ NrmSGrp = (𝑤 ∈ Grp ↦ {𝑠 ∈ (SubGrp‘𝑤) ∣ [(Base‘𝑤) / 𝑏][(+g‘𝑤) / 𝑝]∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 ((𝑥𝑝𝑦) ∈ 𝑠 ↔ (𝑦𝑝𝑥) ∈ 𝑠)}) | ||
| Definition | df-eqg 13380* | Define the equivalence relation in a group generated by a subgroup. More precisely, if 𝐺 is a group and 𝐻 is a subgroup, then 𝐺 ~QG 𝐻 is the equivalence relation on 𝐺 associated with the left cosets of 𝐻. A typical application of this definition is the construction of the quotient group (resp. ring) of a group (resp. ring) by a normal subgroup (resp. two-sided ideal). (Contributed by Mario Carneiro, 15-Jun-2015.) |
| ⊢ ~QG = (𝑟 ∈ V, 𝑖 ∈ V ↦ {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ (Base‘𝑟) ∧ (((invg‘𝑟)‘𝑥)(+g‘𝑟)𝑦) ∈ 𝑖)}) | ||
| Theorem | issubg 13381 | The subgroup predicate. (Contributed by Mario Carneiro, 2-Dec-2014.) |
| ⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝐺 ∈ Grp ∧ 𝑆 ⊆ 𝐵 ∧ (𝐺 ↾s 𝑆) ∈ Grp)) | ||
| Theorem | subgss 13382 | A subgroup is a subset. (Contributed by Mario Carneiro, 2-Dec-2014.) |
| ⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ⊆ 𝐵) | ||
| Theorem | subgid 13383 | A group is a subgroup of itself. (Contributed by Mario Carneiro, 7-Dec-2014.) |
| ⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ (𝐺 ∈ Grp → 𝐵 ∈ (SubGrp‘𝐺)) | ||
| Theorem | subgex 13384 | The class of subgroups of a group is a set. (Contributed by Jim Kingdon, 8-Mar-2025.) |
| ⊢ (𝐺 ∈ Grp → (SubGrp‘𝐺) ∈ V) | ||
| Theorem | subggrp 13385 | A subgroup is a group. (Contributed by Mario Carneiro, 2-Dec-2014.) |
| ⊢ 𝐻 = (𝐺 ↾s 𝑆) ⇒ ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝐻 ∈ Grp) | ||
| Theorem | subgbas 13386 | The base of the restricted group in a subgroup. (Contributed by Mario Carneiro, 2-Dec-2014.) |
| ⊢ 𝐻 = (𝐺 ↾s 𝑆) ⇒ ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 = (Base‘𝐻)) | ||
| Theorem | subgrcl 13387 | Reverse closure for the subgroup predicate. (Contributed by Mario Carneiro, 2-Dec-2014.) |
| ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp) | ||
| Theorem | subg0 13388 | A subgroup of a group must have the same identity as the group. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 30-Apr-2015.) |
| ⊢ 𝐻 = (𝐺 ↾s 𝑆) & ⊢ 0 = (0g‘𝐺) ⇒ ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 0 = (0g‘𝐻)) | ||
| Theorem | subginv 13389 | The inverse of an element in a subgroup is the same as the inverse in the larger group. (Contributed by Mario Carneiro, 2-Dec-2014.) |
| ⊢ 𝐻 = (𝐺 ↾s 𝑆) & ⊢ 𝐼 = (invg‘𝐺) & ⊢ 𝐽 = (invg‘𝐻) ⇒ ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝑆) → (𝐼‘𝑋) = (𝐽‘𝑋)) | ||
| Theorem | subg0cl 13390 | The group identity is an element of any subgroup. (Contributed by Mario Carneiro, 2-Dec-2014.) |
| ⊢ 0 = (0g‘𝐺) ⇒ ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 0 ∈ 𝑆) | ||
| Theorem | subginvcl 13391 | The inverse of an element is closed in a subgroup. (Contributed by Mario Carneiro, 2-Dec-2014.) |
| ⊢ 𝐼 = (invg‘𝐺) ⇒ ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝑆) → (𝐼‘𝑋) ∈ 𝑆) | ||
| Theorem | subgcl 13392 | A subgroup is closed under group operation. (Contributed by Mario Carneiro, 2-Dec-2014.) |
| ⊢ + = (+g‘𝐺) ⇒ ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) → (𝑋 + 𝑌) ∈ 𝑆) | ||
| Theorem | subgsubcl 13393 | A subgroup is closed under group subtraction. (Contributed by Mario Carneiro, 18-Jan-2015.) |
| ⊢ − = (-g‘𝐺) ⇒ ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) → (𝑋 − 𝑌) ∈ 𝑆) | ||
| Theorem | subgsub 13394 | The subtraction of elements in a subgroup is the same as subtraction in the group. (Contributed by Mario Carneiro, 15-Jun-2015.) |
| ⊢ − = (-g‘𝐺) & ⊢ 𝐻 = (𝐺 ↾s 𝑆) & ⊢ 𝑁 = (-g‘𝐻) ⇒ ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) → (𝑋 − 𝑌) = (𝑋𝑁𝑌)) | ||
| Theorem | subgmulgcl 13395 | Closure of the group multiple (exponentiation) operation in a subgroup. (Contributed by Mario Carneiro, 13-Jan-2015.) |
| ⊢ · = (.g‘𝐺) ⇒ ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆) → (𝑁 · 𝑋) ∈ 𝑆) | ||
| Theorem | subgmulg 13396 | A group multiple is the same if evaluated in a subgroup. (Contributed by Mario Carneiro, 15-Jan-2015.) |
| ⊢ · = (.g‘𝐺) & ⊢ 𝐻 = (𝐺 ↾s 𝑆) & ⊢ ∙ = (.g‘𝐻) ⇒ ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝑆) → (𝑁 · 𝑋) = (𝑁 ∙ 𝑋)) | ||
| Theorem | issubg2m 13397* | Characterize the subgroups of a group by closure properties. (Contributed by Mario Carneiro, 2-Dec-2014.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ 𝐼 = (invg‘𝐺) ⇒ ⊢ (𝐺 ∈ Grp → (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝑆 ⊆ 𝐵 ∧ ∃𝑢 𝑢 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 (∀𝑦 ∈ 𝑆 (𝑥 + 𝑦) ∈ 𝑆 ∧ (𝐼‘𝑥) ∈ 𝑆)))) | ||
| Theorem | issubgrpd2 13398* | Prove a subgroup by closure (definition version). (Contributed by Stefan O'Rear, 7-Dec-2014.) |
| ⊢ (𝜑 → 𝑆 = (𝐼 ↾s 𝐷)) & ⊢ (𝜑 → 0 = (0g‘𝐼)) & ⊢ (𝜑 → + = (+g‘𝐼)) & ⊢ (𝜑 → 𝐷 ⊆ (Base‘𝐼)) & ⊢ (𝜑 → 0 ∈ 𝐷) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷) → (𝑥 + 𝑦) ∈ 𝐷) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → ((invg‘𝐼)‘𝑥) ∈ 𝐷) & ⊢ (𝜑 → 𝐼 ∈ Grp) ⇒ ⊢ (𝜑 → 𝐷 ∈ (SubGrp‘𝐼)) | ||
| Theorem | issubgrpd 13399* | Prove a subgroup by closure. (Contributed by Stefan O'Rear, 7-Dec-2014.) |
| ⊢ (𝜑 → 𝑆 = (𝐼 ↾s 𝐷)) & ⊢ (𝜑 → 0 = (0g‘𝐼)) & ⊢ (𝜑 → + = (+g‘𝐼)) & ⊢ (𝜑 → 𝐷 ⊆ (Base‘𝐼)) & ⊢ (𝜑 → 0 ∈ 𝐷) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷) → (𝑥 + 𝑦) ∈ 𝐷) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → ((invg‘𝐼)‘𝑥) ∈ 𝐷) & ⊢ (𝜑 → 𝐼 ∈ Grp) ⇒ ⊢ (𝜑 → 𝑆 ∈ Grp) | ||
| Theorem | issubg3 13400* | A subgroup is a symmetric submonoid. (Contributed by Mario Carneiro, 7-Mar-2015.) |
| ⊢ 𝐼 = (invg‘𝐺) ⇒ ⊢ (𝐺 ∈ Grp → (𝑆 ∈ (SubGrp‘𝐺) ↔ (𝑆 ∈ (SubMnd‘𝐺) ∧ ∀𝑥 ∈ 𝑆 (𝐼‘𝑥) ∈ 𝑆))) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |