| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > df-z | GIF version | ||
| Description: Define the set of integers, which are the positive and negative integers together with zero. Definition of integers in [Apostol] p. 22. The letter Z abbreviates the German word Zahlen meaning "numbers." (Contributed by NM, 8-Jan-2002.) | 
| Ref | Expression | 
|---|---|
| df-z | ⊢ ℤ = {𝑛 ∈ ℝ ∣ (𝑛 = 0 ∨ 𝑛 ∈ ℕ ∨ -𝑛 ∈ ℕ)} | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | cz 9326 | . 2 class ℤ | |
| 2 | vn | . . . . . 6 setvar 𝑛 | |
| 3 | 2 | cv 1363 | . . . . 5 class 𝑛 | 
| 4 | cc0 7879 | . . . . 5 class 0 | |
| 5 | 3, 4 | wceq 1364 | . . . 4 wff 𝑛 = 0 | 
| 6 | cn 8990 | . . . . 5 class ℕ | |
| 7 | 3, 6 | wcel 2167 | . . . 4 wff 𝑛 ∈ ℕ | 
| 8 | 3 | cneg 8198 | . . . . 5 class -𝑛 | 
| 9 | 8, 6 | wcel 2167 | . . . 4 wff -𝑛 ∈ ℕ | 
| 10 | 5, 7, 9 | w3o 979 | . . 3 wff (𝑛 = 0 ∨ 𝑛 ∈ ℕ ∨ -𝑛 ∈ ℕ) | 
| 11 | cr 7878 | . . 3 class ℝ | |
| 12 | 10, 2, 11 | crab 2479 | . 2 class {𝑛 ∈ ℝ ∣ (𝑛 = 0 ∨ 𝑛 ∈ ℕ ∨ -𝑛 ∈ ℕ)} | 
| 13 | 1, 12 | wceq 1364 | 1 wff ℤ = {𝑛 ∈ ℝ ∣ (𝑛 = 0 ∨ 𝑛 ∈ ℕ ∨ -𝑛 ∈ ℕ)} | 
| Colors of variables: wff set class | 
| This definition is referenced by: elz 9328 | 
| Copyright terms: Public domain | W3C validator |