Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elz | GIF version |
Description: Membership in the set of integers. (Contributed by NM, 8-Jan-2002.) |
Ref | Expression |
---|---|
elz | ⊢ (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq1 2177 | . . 3 ⊢ (𝑥 = 𝑁 → (𝑥 = 0 ↔ 𝑁 = 0)) | |
2 | eleq1 2233 | . . 3 ⊢ (𝑥 = 𝑁 → (𝑥 ∈ ℕ ↔ 𝑁 ∈ ℕ)) | |
3 | negeq 8112 | . . . 4 ⊢ (𝑥 = 𝑁 → -𝑥 = -𝑁) | |
4 | 3 | eleq1d 2239 | . . 3 ⊢ (𝑥 = 𝑁 → (-𝑥 ∈ ℕ ↔ -𝑁 ∈ ℕ)) |
5 | 1, 2, 4 | 3orbi123d 1306 | . 2 ⊢ (𝑥 = 𝑁 → ((𝑥 = 0 ∨ 𝑥 ∈ ℕ ∨ -𝑥 ∈ ℕ) ↔ (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ))) |
6 | df-z 9213 | . 2 ⊢ ℤ = {𝑥 ∈ ℝ ∣ (𝑥 = 0 ∨ 𝑥 ∈ ℕ ∨ -𝑥 ∈ ℕ)} | |
7 | 5, 6 | elrab2 2889 | 1 ⊢ (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ))) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 ↔ wb 104 ∨ w3o 972 = wceq 1348 ∈ wcel 2141 ℝcr 7773 0cc0 7774 -cneg 8091 ℕcn 8878 ℤcz 9212 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-3or 974 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-rex 2454 df-rab 2457 df-v 2732 df-un 3125 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-iota 5160 df-fv 5206 df-ov 5856 df-neg 8093 df-z 9213 |
This theorem is referenced by: nnnegz 9215 zre 9216 elnnz 9222 0z 9223 elnn0z 9225 elznn0nn 9226 elznn0 9227 elznn 9228 znegcl 9243 zaddcl 9252 ztri3or0 9254 zeo 9317 addmodlteq 10354 zabsle1 13694 |
Copyright terms: Public domain | W3C validator |