| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elz | GIF version | ||
| Description: Membership in the set of integers. (Contributed by NM, 8-Jan-2002.) |
| Ref | Expression |
|---|---|
| elz | ⊢ (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq1 2203 | . . 3 ⊢ (𝑥 = 𝑁 → (𝑥 = 0 ↔ 𝑁 = 0)) | |
| 2 | eleq1 2259 | . . 3 ⊢ (𝑥 = 𝑁 → (𝑥 ∈ ℕ ↔ 𝑁 ∈ ℕ)) | |
| 3 | negeq 8236 | . . . 4 ⊢ (𝑥 = 𝑁 → -𝑥 = -𝑁) | |
| 4 | 3 | eleq1d 2265 | . . 3 ⊢ (𝑥 = 𝑁 → (-𝑥 ∈ ℕ ↔ -𝑁 ∈ ℕ)) |
| 5 | 1, 2, 4 | 3orbi123d 1322 | . 2 ⊢ (𝑥 = 𝑁 → ((𝑥 = 0 ∨ 𝑥 ∈ ℕ ∨ -𝑥 ∈ ℕ) ↔ (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ))) |
| 6 | df-z 9344 | . 2 ⊢ ℤ = {𝑥 ∈ ℝ ∣ (𝑥 = 0 ∨ 𝑥 ∈ ℕ ∨ -𝑥 ∈ ℕ)} | |
| 7 | 5, 6 | elrab2 2923 | 1 ⊢ (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ))) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 ∨ w3o 979 = wceq 1364 ∈ wcel 2167 ℝcr 7895 0cc0 7896 -cneg 8215 ℕcn 9007 ℤcz 9343 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 df-rab 2484 df-v 2765 df-un 3161 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-iota 5220 df-fv 5267 df-ov 5928 df-neg 8217 df-z 9344 |
| This theorem is referenced by: nnnegz 9346 zre 9347 elnnz 9353 0z 9354 elnn0z 9356 elznn0nn 9357 elznn0 9358 elznn 9359 znegcl 9374 zaddcl 9383 ztri3or0 9385 zeo 9448 addmodlteq 10507 zabsle1 15324 |
| Copyright terms: Public domain | W3C validator |