ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elz GIF version

Theorem elz 9228
Description: Membership in the set of integers. (Contributed by NM, 8-Jan-2002.)
Assertion
Ref Expression
elz (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ)))

Proof of Theorem elz
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqeq1 2182 . . 3 (𝑥 = 𝑁 → (𝑥 = 0 ↔ 𝑁 = 0))
2 eleq1 2238 . . 3 (𝑥 = 𝑁 → (𝑥 ∈ ℕ ↔ 𝑁 ∈ ℕ))
3 negeq 8124 . . . 4 (𝑥 = 𝑁 → -𝑥 = -𝑁)
43eleq1d 2244 . . 3 (𝑥 = 𝑁 → (-𝑥 ∈ ℕ ↔ -𝑁 ∈ ℕ))
51, 2, 43orbi123d 1311 . 2 (𝑥 = 𝑁 → ((𝑥 = 0 ∨ 𝑥 ∈ ℕ ∨ -𝑥 ∈ ℕ) ↔ (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ)))
6 df-z 9227 . 2 ℤ = {𝑥 ∈ ℝ ∣ (𝑥 = 0 ∨ 𝑥 ∈ ℕ ∨ -𝑥 ∈ ℕ)}
75, 6elrab2 2894 1 (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 = 0 ∨ 𝑁 ∈ ℕ ∨ -𝑁 ∈ ℕ)))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105  w3o 977   = wceq 1353  wcel 2146  cr 7785  0cc0 7786  -cneg 8103  cn 8892  cz 9226
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-ext 2157
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-nf 1459  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-rex 2459  df-rab 2462  df-v 2737  df-un 3131  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-br 3999  df-iota 5170  df-fv 5216  df-ov 5868  df-neg 8105  df-z 9227
This theorem is referenced by:  nnnegz  9229  zre  9230  elnnz  9236  0z  9237  elnn0z  9239  elznn0nn  9240  elznn0  9241  elznn  9242  znegcl  9257  zaddcl  9266  ztri3or0  9268  zeo  9331  addmodlteq  10368  zabsle1  13971
  Copyright terms: Public domain W3C validator