HomeHome Intuitionistic Logic Explorer
Theorem List (p. 93 of 149)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 9201-9300   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremnn0ge0 9201 A nonnegative integer is greater than or equal to zero. (Contributed by NM, 9-May-2004.) (Revised by Mario Carneiro, 16-May-2014.)
(𝑁 ∈ β„•0 β†’ 0 ≀ 𝑁)
 
Theoremnn0nlt0 9202 A nonnegative integer is not less than zero. (Contributed by NM, 9-May-2004.) (Revised by Mario Carneiro, 27-May-2016.)
(𝐴 ∈ β„•0 β†’ Β¬ 𝐴 < 0)
 
Theoremnn0ge0i 9203 Nonnegative integers are nonnegative. (Contributed by Raph Levien, 10-Dec-2002.)
𝑁 ∈ β„•0    β‡’   0 ≀ 𝑁
 
Theoremnn0le0eq0 9204 A nonnegative integer is less than or equal to zero iff it is equal to zero. (Contributed by NM, 9-Dec-2005.)
(𝑁 ∈ β„•0 β†’ (𝑁 ≀ 0 ↔ 𝑁 = 0))
 
Theoremnn0p1gt0 9205 A nonnegative integer increased by 1 is greater than 0. (Contributed by Alexander van der Vekens, 3-Oct-2018.)
(𝑁 ∈ β„•0 β†’ 0 < (𝑁 + 1))
 
Theoremnnnn0addcl 9206 A positive integer plus a nonnegative integer is a positive integer. (Contributed by NM, 20-Apr-2005.) (Proof shortened by Mario Carneiro, 16-May-2014.)
((𝑀 ∈ β„• ∧ 𝑁 ∈ β„•0) β†’ (𝑀 + 𝑁) ∈ β„•)
 
Theoremnn0nnaddcl 9207 A nonnegative integer plus a positive integer is a positive integer. (Contributed by NM, 22-Dec-2005.)
((𝑀 ∈ β„•0 ∧ 𝑁 ∈ β„•) β†’ (𝑀 + 𝑁) ∈ β„•)
 
Theorem0mnnnnn0 9208 The result of subtracting a positive integer from 0 is not a nonnegative integer. (Contributed by Alexander van der Vekens, 19-Mar-2018.)
(𝑁 ∈ β„• β†’ (0 βˆ’ 𝑁) βˆ‰ β„•0)
 
Theoremun0addcl 9209 If 𝑆 is closed under addition, then so is 𝑆 βˆͺ {0}. (Contributed by Mario Carneiro, 17-Jul-2014.)
(πœ‘ β†’ 𝑆 βŠ† β„‚)    &   π‘‡ = (𝑆 βˆͺ {0})    &   ((πœ‘ ∧ (𝑀 ∈ 𝑆 ∧ 𝑁 ∈ 𝑆)) β†’ (𝑀 + 𝑁) ∈ 𝑆)    β‡’   ((πœ‘ ∧ (𝑀 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇)) β†’ (𝑀 + 𝑁) ∈ 𝑇)
 
Theoremun0mulcl 9210 If 𝑆 is closed under multiplication, then so is 𝑆 βˆͺ {0}. (Contributed by Mario Carneiro, 17-Jul-2014.)
(πœ‘ β†’ 𝑆 βŠ† β„‚)    &   π‘‡ = (𝑆 βˆͺ {0})    &   ((πœ‘ ∧ (𝑀 ∈ 𝑆 ∧ 𝑁 ∈ 𝑆)) β†’ (𝑀 Β· 𝑁) ∈ 𝑆)    β‡’   ((πœ‘ ∧ (𝑀 ∈ 𝑇 ∧ 𝑁 ∈ 𝑇)) β†’ (𝑀 Β· 𝑁) ∈ 𝑇)
 
Theoremnn0addcl 9211 Closure of addition of nonnegative integers. (Contributed by Raph Levien, 10-Dec-2002.) (Proof shortened by Mario Carneiro, 17-Jul-2014.)
((𝑀 ∈ β„•0 ∧ 𝑁 ∈ β„•0) β†’ (𝑀 + 𝑁) ∈ β„•0)
 
Theoremnn0mulcl 9212 Closure of multiplication of nonnegative integers. (Contributed by NM, 22-Jul-2004.) (Proof shortened by Mario Carneiro, 17-Jul-2014.)
((𝑀 ∈ β„•0 ∧ 𝑁 ∈ β„•0) β†’ (𝑀 Β· 𝑁) ∈ β„•0)
 
Theoremnn0addcli 9213 Closure of addition of nonnegative integers, inference form. (Contributed by Raph Levien, 10-Dec-2002.)
𝑀 ∈ β„•0    &   π‘ ∈ β„•0    β‡’   (𝑀 + 𝑁) ∈ β„•0
 
Theoremnn0mulcli 9214 Closure of multiplication of nonnegative integers, inference form. (Contributed by Raph Levien, 10-Dec-2002.)
𝑀 ∈ β„•0    &   π‘ ∈ β„•0    β‡’   (𝑀 Β· 𝑁) ∈ β„•0
 
Theoremnn0p1nn 9215 A nonnegative integer plus 1 is a positive integer. (Contributed by Raph Levien, 30-Jun-2006.) (Revised by Mario Carneiro, 16-May-2014.)
(𝑁 ∈ β„•0 β†’ (𝑁 + 1) ∈ β„•)
 
Theorempeano2nn0 9216 Second Peano postulate for nonnegative integers. (Contributed by NM, 9-May-2004.)
(𝑁 ∈ β„•0 β†’ (𝑁 + 1) ∈ β„•0)
 
Theoremnnm1nn0 9217 A positive integer minus 1 is a nonnegative integer. (Contributed by Jason Orendorff, 24-Jan-2007.) (Revised by Mario Carneiro, 16-May-2014.)
(𝑁 ∈ β„• β†’ (𝑁 βˆ’ 1) ∈ β„•0)
 
Theoremelnn0nn 9218 The nonnegative integer property expressed in terms of positive integers. (Contributed by NM, 10-May-2004.) (Proof shortened by Mario Carneiro, 16-May-2014.)
(𝑁 ∈ β„•0 ↔ (𝑁 ∈ β„‚ ∧ (𝑁 + 1) ∈ β„•))
 
Theoremelnnnn0 9219 The positive integer property expressed in terms of nonnegative integers. (Contributed by NM, 10-May-2004.)
(𝑁 ∈ β„• ↔ (𝑁 ∈ β„‚ ∧ (𝑁 βˆ’ 1) ∈ β„•0))
 
Theoremelnnnn0b 9220 The positive integer property expressed in terms of nonnegative integers. (Contributed by NM, 1-Sep-2005.)
(𝑁 ∈ β„• ↔ (𝑁 ∈ β„•0 ∧ 0 < 𝑁))
 
Theoremelnnnn0c 9221 The positive integer property expressed in terms of nonnegative integers. (Contributed by NM, 10-Jan-2006.)
(𝑁 ∈ β„• ↔ (𝑁 ∈ β„•0 ∧ 1 ≀ 𝑁))
 
Theoremnn0addge1 9222 A number is less than or equal to itself plus a nonnegative integer. (Contributed by NM, 10-Mar-2005.)
((𝐴 ∈ ℝ ∧ 𝑁 ∈ β„•0) β†’ 𝐴 ≀ (𝐴 + 𝑁))
 
Theoremnn0addge2 9223 A number is less than or equal to itself plus a nonnegative integer. (Contributed by NM, 10-Mar-2005.)
((𝐴 ∈ ℝ ∧ 𝑁 ∈ β„•0) β†’ 𝐴 ≀ (𝑁 + 𝐴))
 
Theoremnn0addge1i 9224 A number is less than or equal to itself plus a nonnegative integer. (Contributed by NM, 10-Mar-2005.)
𝐴 ∈ ℝ    &   π‘ ∈ β„•0    β‡’   π΄ ≀ (𝐴 + 𝑁)
 
Theoremnn0addge2i 9225 A number is less than or equal to itself plus a nonnegative integer. (Contributed by NM, 10-Mar-2005.)
𝐴 ∈ ℝ    &   π‘ ∈ β„•0    β‡’   π΄ ≀ (𝑁 + 𝐴)
 
Theoremnn0le2xi 9226 A nonnegative integer is less than or equal to twice itself. (Contributed by Raph Levien, 10-Dec-2002.)
𝑁 ∈ β„•0    β‡’   π‘ ≀ (2 Β· 𝑁)
 
Theoremnn0lele2xi 9227 'Less than or equal to' implies 'less than or equal to twice' for nonnegative integers. (Contributed by Raph Levien, 10-Dec-2002.)
𝑀 ∈ β„•0    &   π‘ ∈ β„•0    β‡’   (𝑁 ≀ 𝑀 β†’ 𝑁 ≀ (2 Β· 𝑀))
 
Theoremnn0supp 9228 Two ways to write the support of a function on β„•0. (Contributed by Mario Carneiro, 29-Dec-2014.)
(𝐹:πΌβŸΆβ„•0 β†’ (◑𝐹 β€œ (V βˆ– {0})) = (◑𝐹 β€œ β„•))
 
Theoremnnnn0d 9229 A positive integer is a nonnegative integer. (Contributed by Mario Carneiro, 27-May-2016.)
(πœ‘ β†’ 𝐴 ∈ β„•)    β‡’   (πœ‘ β†’ 𝐴 ∈ β„•0)
 
Theoremnn0red 9230 A nonnegative integer is a real number. (Contributed by Mario Carneiro, 27-May-2016.)
(πœ‘ β†’ 𝐴 ∈ β„•0)    β‡’   (πœ‘ β†’ 𝐴 ∈ ℝ)
 
Theoremnn0cnd 9231 A nonnegative integer is a complex number. (Contributed by Mario Carneiro, 27-May-2016.)
(πœ‘ β†’ 𝐴 ∈ β„•0)    β‡’   (πœ‘ β†’ 𝐴 ∈ β„‚)
 
Theoremnn0ge0d 9232 A nonnegative integer is greater than or equal to zero. (Contributed by Mario Carneiro, 27-May-2016.)
(πœ‘ β†’ 𝐴 ∈ β„•0)    β‡’   (πœ‘ β†’ 0 ≀ 𝐴)
 
Theoremnn0addcld 9233 Closure of addition of nonnegative integers, inference form. (Contributed by Mario Carneiro, 27-May-2016.)
(πœ‘ β†’ 𝐴 ∈ β„•0)    &   (πœ‘ β†’ 𝐡 ∈ β„•0)    β‡’   (πœ‘ β†’ (𝐴 + 𝐡) ∈ β„•0)
 
Theoremnn0mulcld 9234 Closure of multiplication of nonnegative integers, inference form. (Contributed by Mario Carneiro, 27-May-2016.)
(πœ‘ β†’ 𝐴 ∈ β„•0)    &   (πœ‘ β†’ 𝐡 ∈ β„•0)    β‡’   (πœ‘ β†’ (𝐴 Β· 𝐡) ∈ β„•0)
 
Theoremnn0readdcl 9235 Closure law for addition of reals, restricted to nonnegative integers. (Contributed by Alexander van der Vekens, 6-Apr-2018.)
((𝐴 ∈ β„•0 ∧ 𝐡 ∈ β„•0) β†’ (𝐴 + 𝐡) ∈ ℝ)
 
Theoremnn0ge2m1nn 9236 If a nonnegative integer is greater than or equal to two, the integer decreased by 1 is a positive integer. (Contributed by Alexander van der Vekens, 1-Aug-2018.) (Revised by AV, 4-Jan-2020.)
((𝑁 ∈ β„•0 ∧ 2 ≀ 𝑁) β†’ (𝑁 βˆ’ 1) ∈ β„•)
 
Theoremnn0ge2m1nn0 9237 If a nonnegative integer is greater than or equal to two, the integer decreased by 1 is also a nonnegative integer. (Contributed by Alexander van der Vekens, 1-Aug-2018.)
((𝑁 ∈ β„•0 ∧ 2 ≀ 𝑁) β†’ (𝑁 βˆ’ 1) ∈ β„•0)
 
Theoremnn0nndivcl 9238 Closure law for dividing of a nonnegative integer by a positive integer. (Contributed by Alexander van der Vekens, 14-Apr-2018.)
((𝐾 ∈ β„•0 ∧ 𝐿 ∈ β„•) β†’ (𝐾 / 𝐿) ∈ ℝ)
 
4.4.8  Extended nonnegative integers

The function values of the hash (set size) function are either nonnegative integers or positive infinity. To avoid the need to distinguish between finite and infinite sets (and therefore if the set size is a nonnegative integer or positive infinity), it is useful to provide a definition of the set of nonnegative integers extended by positive infinity, analogously to the extension of the real numbers ℝ*, see df-xr 7996.

 
Syntaxcxnn0 9239 The set of extended nonnegative integers.
class β„•0*
 
Definitiondf-xnn0 9240 Define the set of extended nonnegative integers that includes positive infinity. Analogue of the extension of the real numbers ℝ*, see df-xr 7996. If we assumed excluded middle, this would be essentially the same as β„•βˆž as defined at df-nninf 7119 but in its absence the relationship between the two is more complicated. (Contributed by AV, 10-Dec-2020.)
β„•0* = (β„•0 βˆͺ {+∞})
 
Theoremelxnn0 9241 An extended nonnegative integer is either a standard nonnegative integer or positive infinity. (Contributed by AV, 10-Dec-2020.)
(𝐴 ∈ β„•0* ↔ (𝐴 ∈ β„•0 ∨ 𝐴 = +∞))
 
Theoremnn0ssxnn0 9242 The standard nonnegative integers are a subset of the extended nonnegative integers. (Contributed by AV, 10-Dec-2020.)
β„•0 βŠ† β„•0*
 
Theoremnn0xnn0 9243 A standard nonnegative integer is an extended nonnegative integer. (Contributed by AV, 10-Dec-2020.)
(𝐴 ∈ β„•0 β†’ 𝐴 ∈ β„•0*)
 
Theoremxnn0xr 9244 An extended nonnegative integer is an extended real. (Contributed by AV, 10-Dec-2020.)
(𝐴 ∈ β„•0* β†’ 𝐴 ∈ ℝ*)
 
Theorem0xnn0 9245 Zero is an extended nonnegative integer. (Contributed by AV, 10-Dec-2020.)
0 ∈ β„•0*
 
Theorempnf0xnn0 9246 Positive infinity is an extended nonnegative integer. (Contributed by AV, 10-Dec-2020.)
+∞ ∈ β„•0*
 
Theoremnn0nepnf 9247 No standard nonnegative integer equals positive infinity. (Contributed by AV, 10-Dec-2020.)
(𝐴 ∈ β„•0 β†’ 𝐴 β‰  +∞)
 
Theoremnn0xnn0d 9248 A standard nonnegative integer is an extended nonnegative integer, deduction form. (Contributed by AV, 10-Dec-2020.)
(πœ‘ β†’ 𝐴 ∈ β„•0)    β‡’   (πœ‘ β†’ 𝐴 ∈ β„•0*)
 
Theoremnn0nepnfd 9249 No standard nonnegative integer equals positive infinity, deduction form. (Contributed by AV, 10-Dec-2020.)
(πœ‘ β†’ 𝐴 ∈ β„•0)    β‡’   (πœ‘ β†’ 𝐴 β‰  +∞)
 
Theoremxnn0nemnf 9250 No extended nonnegative integer equals negative infinity. (Contributed by AV, 10-Dec-2020.)
(𝐴 ∈ β„•0* β†’ 𝐴 β‰  -∞)
 
Theoremxnn0xrnemnf 9251 The extended nonnegative integers are extended reals without negative infinity. (Contributed by AV, 10-Dec-2020.)
(𝐴 ∈ β„•0* β†’ (𝐴 ∈ ℝ* ∧ 𝐴 β‰  -∞))
 
Theoremxnn0nnn0pnf 9252 An extended nonnegative integer which is not a standard nonnegative integer is positive infinity. (Contributed by AV, 10-Dec-2020.)
((𝑁 ∈ β„•0* ∧ Β¬ 𝑁 ∈ β„•0) β†’ 𝑁 = +∞)
 
4.4.9  Integers (as a subset of complex numbers)
 
Syntaxcz 9253 Extend class notation to include the class of integers.
class β„€
 
Definitiondf-z 9254 Define the set of integers, which are the positive and negative integers together with zero. Definition of integers in [Apostol] p. 22. The letter Z abbreviates the German word Zahlen meaning "numbers." (Contributed by NM, 8-Jan-2002.)
β„€ = {𝑛 ∈ ℝ ∣ (𝑛 = 0 ∨ 𝑛 ∈ β„• ∨ -𝑛 ∈ β„•)}
 
Theoremelz 9255 Membership in the set of integers. (Contributed by NM, 8-Jan-2002.)
(𝑁 ∈ β„€ ↔ (𝑁 ∈ ℝ ∧ (𝑁 = 0 ∨ 𝑁 ∈ β„• ∨ -𝑁 ∈ β„•)))
 
Theoremnnnegz 9256 The negative of a positive integer is an integer. (Contributed by NM, 12-Jan-2002.)
(𝑁 ∈ β„• β†’ -𝑁 ∈ β„€)
 
Theoremzre 9257 An integer is a real. (Contributed by NM, 8-Jan-2002.)
(𝑁 ∈ β„€ β†’ 𝑁 ∈ ℝ)
 
Theoremzcn 9258 An integer is a complex number. (Contributed by NM, 9-May-2004.)
(𝑁 ∈ β„€ β†’ 𝑁 ∈ β„‚)
 
Theoremzrei 9259 An integer is a real number. (Contributed by NM, 14-Jul-2005.)
𝐴 ∈ β„€    β‡’   π΄ ∈ ℝ
 
Theoremzssre 9260 The integers are a subset of the reals. (Contributed by NM, 2-Aug-2004.)
β„€ βŠ† ℝ
 
Theoremzsscn 9261 The integers are a subset of the complex numbers. (Contributed by NM, 2-Aug-2004.)
β„€ βŠ† β„‚
 
Theoremzex 9262 The set of integers exists. (Contributed by NM, 30-Jul-2004.) (Revised by Mario Carneiro, 17-Nov-2014.)
β„€ ∈ V
 
Theoremelnnz 9263 Positive integer property expressed in terms of integers. (Contributed by NM, 8-Jan-2002.)
(𝑁 ∈ β„• ↔ (𝑁 ∈ β„€ ∧ 0 < 𝑁))
 
Theorem0z 9264 Zero is an integer. (Contributed by NM, 12-Jan-2002.)
0 ∈ β„€
 
Theorem0zd 9265 Zero is an integer, deductive form (common case). (Contributed by David A. Wheeler, 8-Dec-2018.)
(πœ‘ β†’ 0 ∈ β„€)
 
Theoremelnn0z 9266 Nonnegative integer property expressed in terms of integers. (Contributed by NM, 9-May-2004.)
(𝑁 ∈ β„•0 ↔ (𝑁 ∈ β„€ ∧ 0 ≀ 𝑁))
 
Theoremelznn0nn 9267 Integer property expressed in terms nonnegative integers and positive integers. (Contributed by NM, 10-May-2004.)
(𝑁 ∈ β„€ ↔ (𝑁 ∈ β„•0 ∨ (𝑁 ∈ ℝ ∧ -𝑁 ∈ β„•)))
 
Theoremelznn0 9268 Integer property expressed in terms of nonnegative integers. (Contributed by NM, 9-May-2004.)
(𝑁 ∈ β„€ ↔ (𝑁 ∈ ℝ ∧ (𝑁 ∈ β„•0 ∨ -𝑁 ∈ β„•0)))
 
Theoremelznn 9269 Integer property expressed in terms of positive integers and nonnegative integers. (Contributed by NM, 12-Jul-2005.)
(𝑁 ∈ β„€ ↔ (𝑁 ∈ ℝ ∧ (𝑁 ∈ β„• ∨ -𝑁 ∈ β„•0)))
 
Theoremnnssz 9270 Positive integers are a subset of integers. (Contributed by NM, 9-Jan-2002.)
β„• βŠ† β„€
 
Theoremnn0ssz 9271 Nonnegative integers are a subset of the integers. (Contributed by NM, 9-May-2004.)
β„•0 βŠ† β„€
 
Theoremnnz 9272 A positive integer is an integer. (Contributed by NM, 9-May-2004.)
(𝑁 ∈ β„• β†’ 𝑁 ∈ β„€)
 
Theoremnn0z 9273 A nonnegative integer is an integer. (Contributed by NM, 9-May-2004.)
(𝑁 ∈ β„•0 β†’ 𝑁 ∈ β„€)
 
Theoremnnzi 9274 A positive integer is an integer. (Contributed by Mario Carneiro, 18-Feb-2014.)
𝑁 ∈ β„•    β‡’   π‘ ∈ β„€
 
Theoremnn0zi 9275 A nonnegative integer is an integer. (Contributed by Mario Carneiro, 18-Feb-2014.)
𝑁 ∈ β„•0    β‡’   π‘ ∈ β„€
 
Theoremelnnz1 9276 Positive integer property expressed in terms of integers. (Contributed by NM, 10-May-2004.) (Proof shortened by Mario Carneiro, 16-May-2014.)
(𝑁 ∈ β„• ↔ (𝑁 ∈ β„€ ∧ 1 ≀ 𝑁))
 
Theoremnnzrab 9277 Positive integers expressed as a subset of integers. (Contributed by NM, 3-Oct-2004.)
β„• = {π‘₯ ∈ β„€ ∣ 1 ≀ π‘₯}
 
Theoremnn0zrab 9278 Nonnegative integers expressed as a subset of integers. (Contributed by NM, 3-Oct-2004.)
β„•0 = {π‘₯ ∈ β„€ ∣ 0 ≀ π‘₯}
 
Theorem1z 9279 One is an integer. (Contributed by NM, 10-May-2004.)
1 ∈ β„€
 
Theorem1zzd 9280 1 is an integer, deductive form (common case). (Contributed by David A. Wheeler, 6-Dec-2018.)
(πœ‘ β†’ 1 ∈ β„€)
 
Theorem2z 9281 Two is an integer. (Contributed by NM, 10-May-2004.)
2 ∈ β„€
 
Theorem3z 9282 3 is an integer. (Contributed by David A. Wheeler, 8-Dec-2018.)
3 ∈ β„€
 
Theorem4z 9283 4 is an integer. (Contributed by BJ, 26-Mar-2020.)
4 ∈ β„€
 
Theoremznegcl 9284 Closure law for negative integers. (Contributed by NM, 9-May-2004.)
(𝑁 ∈ β„€ β†’ -𝑁 ∈ β„€)
 
Theoremneg1z 9285 -1 is an integer (common case). (Contributed by David A. Wheeler, 5-Dec-2018.)
-1 ∈ β„€
 
Theoremznegclb 9286 A number is an integer iff its negative is. (Contributed by Stefan O'Rear, 13-Sep-2014.)
(𝐴 ∈ β„‚ β†’ (𝐴 ∈ β„€ ↔ -𝐴 ∈ β„€))
 
Theoremnn0negz 9287 The negative of a nonnegative integer is an integer. (Contributed by NM, 9-May-2004.)
(𝑁 ∈ β„•0 β†’ -𝑁 ∈ β„€)
 
Theoremnn0negzi 9288 The negative of a nonnegative integer is an integer. (Contributed by Mario Carneiro, 18-Feb-2014.)
𝑁 ∈ β„•0    β‡’   -𝑁 ∈ β„€
 
Theorempeano2z 9289 Second Peano postulate generalized to integers. (Contributed by NM, 13-Feb-2005.)
(𝑁 ∈ β„€ β†’ (𝑁 + 1) ∈ β„€)
 
Theoremzaddcllempos 9290 Lemma for zaddcl 9293. Special case in which 𝑁 is a positive integer. (Contributed by Jim Kingdon, 14-Mar-2020.)
((𝑀 ∈ β„€ ∧ 𝑁 ∈ β„•) β†’ (𝑀 + 𝑁) ∈ β„€)
 
Theorempeano2zm 9291 "Reverse" second Peano postulate for integers. (Contributed by NM, 12-Sep-2005.)
(𝑁 ∈ β„€ β†’ (𝑁 βˆ’ 1) ∈ β„€)
 
Theoremzaddcllemneg 9292 Lemma for zaddcl 9293. Special case in which -𝑁 is a positive integer. (Contributed by Jim Kingdon, 14-Mar-2020.)
((𝑀 ∈ β„€ ∧ 𝑁 ∈ ℝ ∧ -𝑁 ∈ β„•) β†’ (𝑀 + 𝑁) ∈ β„€)
 
Theoremzaddcl 9293 Closure of addition of integers. (Contributed by NM, 9-May-2004.) (Proof shortened by Mario Carneiro, 16-May-2014.)
((𝑀 ∈ β„€ ∧ 𝑁 ∈ β„€) β†’ (𝑀 + 𝑁) ∈ β„€)
 
Theoremzsubcl 9294 Closure of subtraction of integers. (Contributed by NM, 11-May-2004.)
((𝑀 ∈ β„€ ∧ 𝑁 ∈ β„€) β†’ (𝑀 βˆ’ 𝑁) ∈ β„€)
 
Theoremztri3or0 9295 Integer trichotomy (with zero). (Contributed by Jim Kingdon, 14-Mar-2020.)
(𝑁 ∈ β„€ β†’ (𝑁 < 0 ∨ 𝑁 = 0 ∨ 0 < 𝑁))
 
Theoremztri3or 9296 Integer trichotomy. (Contributed by Jim Kingdon, 14-Mar-2020.)
((𝑀 ∈ β„€ ∧ 𝑁 ∈ β„€) β†’ (𝑀 < 𝑁 ∨ 𝑀 = 𝑁 ∨ 𝑁 < 𝑀))
 
Theoremzletric 9297 Trichotomy law. (Contributed by Jim Kingdon, 27-Mar-2020.)
((𝐴 ∈ β„€ ∧ 𝐡 ∈ β„€) β†’ (𝐴 ≀ 𝐡 ∨ 𝐡 ≀ 𝐴))
 
Theoremzlelttric 9298 Trichotomy law. (Contributed by Jim Kingdon, 17-Apr-2020.)
((𝐴 ∈ β„€ ∧ 𝐡 ∈ β„€) β†’ (𝐴 ≀ 𝐡 ∨ 𝐡 < 𝐴))
 
Theoremzltnle 9299 'Less than' expressed in terms of 'less than or equal to'. (Contributed by Jim Kingdon, 14-Mar-2020.)
((𝐴 ∈ β„€ ∧ 𝐡 ∈ β„€) β†’ (𝐴 < 𝐡 ↔ Β¬ 𝐡 ≀ 𝐴))
 
Theoremzleloe 9300 Integer 'Less than or equal to' expressed in terms of 'less than' or 'equals'. (Contributed by Jim Kingdon, 8-Apr-2020.)
((𝐴 ∈ β„€ ∧ 𝐡 ∈ β„€) β†’ (𝐴 ≀ 𝐡 ↔ (𝐴 < 𝐡 ∨ 𝐴 = 𝐡)))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14834
  Copyright terms: Public domain < Previous  Next >