ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  jarr GIF version

Theorem jarr 97
Description: Elimination of a nested antecedent. (Contributed by Wolf Lammen, 9-May-2013.)
Assertion
Ref Expression
jarr (((𝜑𝜓) → 𝜒) → (𝜓𝜒))

Proof of Theorem jarr
StepHypRef Expression
1 ax-1 6 . 2 (𝜓 → (𝜑𝜓))
21imim1i 60 1 (((𝜑𝜓) → 𝜒) → (𝜓𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by:  loolin  101  loowoz  102
  Copyright terms: Public domain W3C validator