| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > imim1i | GIF version | ||
| Description: Inference adding common consequents in an implication, thereby interchanging the original antecedent and consequent. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 4-Aug-2012.) |
| Ref | Expression |
|---|---|
| imim1i.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| imim1i | ⊢ ((𝜓 → 𝜒) → (𝜑 → 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imim1i.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | id 19 | . 2 ⊢ (𝜒 → 𝜒) | |
| 3 | 1, 2 | imim12i 59 | 1 ⊢ ((𝜓 → 𝜒) → (𝜑 → 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: jarr 97 bi3ant 224 pm3.41 331 pm3.42 332 jarl 659 pm2.67-2 714 oibabs 715 stdcn 848 pm2.85dc 906 peircedc 915 3jaob 1314 hbim 1567 hbimd 1595 i19.39 1662 hbae 1740 sbcof2 1832 sb4or 1855 tfi 4628 dmcosseq 4947 fliftfun 5855 tfrcl 6440 ac6sfi 6977 fsum2d 11665 fsumabs 11695 fsumiun 11707 fprod2d 11853 dvmptfsum 15115 bj-nnsn 15533 bj-pm2.18st 15550 setindis 15767 bdsetindis 15769 |
| Copyright terms: Public domain | W3C validator |