ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imim1i GIF version

Theorem imim1i 60
Description: Inference adding common consequents in an implication, thereby interchanging the original antecedent and consequent. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 4-Aug-2012.)
Hypothesis
Ref Expression
imim1i.1 (𝜑𝜓)
Assertion
Ref Expression
imim1i ((𝜓𝜒) → (𝜑𝜒))

Proof of Theorem imim1i
StepHypRef Expression
1 imim1i.1 . 2 (𝜑𝜓)
2 id 19 . 2 (𝜒𝜒)
31, 2imim12i 59 1 ((𝜓𝜒) → (𝜑𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by:  jarr  97  bi3ant  224  pm3.41  331  pm3.42  332  jarl  659  pm2.67-2  714  oibabs  715  stdcn  848  pm2.85dc  906  peircedc  915  3jaob  1313  hbim  1556  hbimd  1584  i19.39  1651  hbae  1729  sbcof2  1821  sb4or  1844  tfi  4615  dmcosseq  4934  fliftfun  5840  tfrcl  6419  ac6sfi  6956  fsum2d  11581  fsumabs  11611  fsumiun  11623  fprod2d  11769  dvmptfsum  14904  bj-nnsn  15295  bj-pm2.18st  15312  setindis  15529  bdsetindis  15531
  Copyright terms: Public domain W3C validator