| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > imim1i | GIF version | ||
| Description: Inference adding common consequents in an implication, thereby interchanging the original antecedent and consequent. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 4-Aug-2012.) |
| Ref | Expression |
|---|---|
| imim1i.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| imim1i | ⊢ ((𝜓 → 𝜒) → (𝜑 → 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imim1i.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | id 19 | . 2 ⊢ (𝜒 → 𝜒) | |
| 3 | 1, 2 | imim12i 59 | 1 ⊢ ((𝜓 → 𝜒) → (𝜑 → 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: jarr 97 bi3ant 224 pm3.41 331 pm3.42 332 jarl 660 pm2.67-2 715 oibabs 716 stdcn 849 pm2.85dc 907 peircedc 916 3jaob 1315 hbim 1569 hbimd 1597 i19.39 1664 hbae 1742 sbcof2 1834 sb4or 1857 tfi 4638 dmcosseq 4959 fliftfun 5878 tfrcl 6463 ac6sfi 7010 fsum2d 11821 fsumabs 11851 fsumiun 11863 fprod2d 12009 dvmptfsum 15272 bj-nnsn 15808 bj-pm2.18st 15825 setindis 16041 bdsetindis 16043 |
| Copyright terms: Public domain | W3C validator |