Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > imim1i | GIF version |
Description: Inference adding common consequents in an implication, thereby interchanging the original antecedent and consequent. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 4-Aug-2012.) |
Ref | Expression |
---|---|
imim1i.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
imim1i | ⊢ ((𝜓 → 𝜒) → (𝜑 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imim1i.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | id 19 | . 2 ⊢ (𝜒 → 𝜒) | |
3 | 1, 2 | imim12i 59 | 1 ⊢ ((𝜓 → 𝜒) → (𝜑 → 𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: jarr 97 bi3ant 223 pm3.41 329 pm3.42 330 jarl 648 pm2.67-2 703 oibabs 704 stdcn 837 pm2.85dc 895 peircedc 904 3jaob 1292 hbim 1533 hbimd 1561 i19.39 1628 hbae 1706 sbcof2 1798 sb4or 1821 tfi 4559 dmcosseq 4875 fliftfun 5764 tfrcl 6332 ac6sfi 6864 fsum2d 11376 fsumabs 11406 fsumiun 11418 fprod2d 11564 bj-nnsn 13614 bj-pm2.18st 13631 setindis 13849 bdsetindis 13851 |
Copyright terms: Public domain | W3C validator |