Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > imim1i | GIF version |
Description: Inference adding common consequents in an implication, thereby interchanging the original antecedent and consequent. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 4-Aug-2012.) |
Ref | Expression |
---|---|
imim1i.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
imim1i | ⊢ ((𝜓 → 𝜒) → (𝜑 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imim1i.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | id 19 | . 2 ⊢ (𝜒 → 𝜒) | |
3 | 1, 2 | imim12i 59 | 1 ⊢ ((𝜓 → 𝜒) → (𝜑 → 𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: jarr 97 bi3ant 223 pm3.41 329 pm3.42 330 jarl 648 pm2.67-2 703 oibabs 704 stdcn 833 pm2.85dc 891 peircedc 900 3jaob 1284 hbim 1525 hbimd 1553 i19.39 1620 hbae 1698 sbcof2 1790 sb4or 1813 tfi 4542 dmcosseq 4858 fliftfun 5747 tfrcl 6312 ac6sfi 6844 fsum2d 11336 fsumabs 11366 fsumiun 11378 fprod2d 11524 bj-nnsn 13351 bj-pm2.18st 13365 setindis 13584 bdsetindis 13586 |
Copyright terms: Public domain | W3C validator |