![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > imim1i | GIF version |
Description: Inference adding common consequents in an implication, thereby interchanging the original antecedent and consequent. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 4-Aug-2012.) |
Ref | Expression |
---|---|
imim1i.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
imim1i | ⊢ ((𝜓 → 𝜒) → (𝜑 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imim1i.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | id 19 | . 2 ⊢ (𝜒 → 𝜒) | |
3 | 1, 2 | imim12i 59 | 1 ⊢ ((𝜓 → 𝜒) → (𝜑 → 𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: jarr 97 bi3ant 224 pm3.41 331 pm3.42 332 jarl 658 pm2.67-2 713 oibabs 714 stdcn 847 pm2.85dc 905 peircedc 914 3jaob 1302 hbim 1545 hbimd 1573 i19.39 1640 hbae 1718 sbcof2 1810 sb4or 1833 tfi 4582 dmcosseq 4899 fliftfun 5797 tfrcl 6365 ac6sfi 6898 fsum2d 11443 fsumabs 11473 fsumiun 11485 fprod2d 11631 bj-nnsn 14488 bj-pm2.18st 14505 setindis 14722 bdsetindis 14724 |
Copyright terms: Public domain | W3C validator |