ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imim1i GIF version

Theorem imim1i 60
Description: Inference adding common consequents in an implication, thereby interchanging the original antecedent and consequent. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 4-Aug-2012.)
Hypothesis
Ref Expression
imim1i.1 (𝜑𝜓)
Assertion
Ref Expression
imim1i ((𝜓𝜒) → (𝜑𝜒))

Proof of Theorem imim1i
StepHypRef Expression
1 imim1i.1 . 2 (𝜑𝜓)
2 id 19 . 2 (𝜒𝜒)
31, 2imim12i 59 1 ((𝜓𝜒) → (𝜑𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by:  jarr  97  bi3ant  224  pm3.41  331  pm3.42  332  jarl  659  pm2.67-2  714  oibabs  715  stdcn  848  pm2.85dc  906  peircedc  915  3jaob  1314  hbim  1567  hbimd  1595  i19.39  1662  hbae  1740  sbcof2  1832  sb4or  1855  tfi  4628  dmcosseq  4947  fliftfun  5855  tfrcl  6440  ac6sfi  6977  fsum2d  11665  fsumabs  11695  fsumiun  11707  fprod2d  11853  dvmptfsum  15115  bj-nnsn  15533  bj-pm2.18st  15550  setindis  15767  bdsetindis  15769
  Copyright terms: Public domain W3C validator