ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imim1i GIF version

Theorem imim1i 60
Description: Inference adding common consequents in an implication, thereby interchanging the original antecedent and consequent. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 4-Aug-2012.)
Hypothesis
Ref Expression
imim1i.1 (𝜑𝜓)
Assertion
Ref Expression
imim1i ((𝜓𝜒) → (𝜑𝜒))

Proof of Theorem imim1i
StepHypRef Expression
1 imim1i.1 . 2 (𝜑𝜓)
2 id 19 . 2 (𝜒𝜒)
31, 2imim12i 59 1 ((𝜓𝜒) → (𝜑𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by:  jarr  97  bi3ant  224  pm3.41  331  pm3.42  332  jarl  662  pm2.67-2  718  oibabs  719  stdcn  852  pm2.85dc  910  peircedc  919  3jaob  1336  hbim  1591  hbimd  1619  i19.39  1686  hbae  1764  sbcof2  1856  sb4or  1879  tfi  4673  dmcosseq  4995  fliftfun  5919  tfrcl  6508  ac6sfi  7056  fsum2d  11941  fsumabs  11971  fsumiun  11983  fprod2d  12129  dvmptfsum  15393  bj-nnsn  16055  bj-pm2.18st  16072  setindis  16288  bdsetindis  16290
  Copyright terms: Public domain W3C validator