| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > imim1i | GIF version | ||
| Description: Inference adding common consequents in an implication, thereby interchanging the original antecedent and consequent. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 4-Aug-2012.) |
| Ref | Expression |
|---|---|
| imim1i.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| imim1i | ⊢ ((𝜓 → 𝜒) → (𝜑 → 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imim1i.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | id 19 | . 2 ⊢ (𝜒 → 𝜒) | |
| 3 | 1, 2 | imim12i 59 | 1 ⊢ ((𝜓 → 𝜒) → (𝜑 → 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: jarr 97 bi3ant 224 pm3.41 331 pm3.42 332 jarl 662 pm2.67-2 718 oibabs 719 stdcn 852 pm2.85dc 910 peircedc 919 3jaob 1336 hbim 1591 hbimd 1619 i19.39 1686 hbae 1764 sbcof2 1856 sb4or 1879 tfi 4673 dmcosseq 4995 fliftfun 5919 tfrcl 6508 ac6sfi 7056 fsum2d 11941 fsumabs 11971 fsumiun 11983 fprod2d 12129 dvmptfsum 15393 bj-nnsn 16055 bj-pm2.18st 16072 setindis 16288 bdsetindis 16290 |
| Copyright terms: Public domain | W3C validator |