ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  jcnd GIF version

Theorem jcnd 647
Description: Deduction joining the consequents of two premises. (Contributed by Glauco Siliprandi, 11-Dec-2019.) (Proof shortened by Wolf Lammen, 10-Apr-2024.)
Hypotheses
Ref Expression
jcnd.1 (𝜑𝜓)
jcnd.2 (𝜑 → ¬ 𝜒)
Assertion
Ref Expression
jcnd (𝜑 → ¬ (𝜓𝜒))

Proof of Theorem jcnd
StepHypRef Expression
1 jcnd.1 . 2 (𝜑𝜓)
2 jcnd.2 . 2 (𝜑 → ¬ 𝜒)
3 jcn 646 . 2 (𝜓 → (¬ 𝜒 → ¬ (𝜓𝜒)))
41, 2, 3sylc 62 1 (𝜑 → ¬ (𝜓𝜒))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-in1 609  ax-in2 610
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator