ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  jcn GIF version

Theorem jcn 641
Description: Theorem joining the consequents of two premises. Theorem 8 of [Margaris] p. 60. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Josh Purinton, 29-Dec-2000.)
Assertion
Ref Expression
jcn (𝜑 → (¬ 𝜓 → ¬ (𝜑𝜓)))

Proof of Theorem jcn
StepHypRef Expression
1 pm2.27 40 . 2 (𝜑 → ((𝜑𝜓) → 𝜓))
21con3d 621 1 (𝜑 → (¬ 𝜓 → ¬ (𝜑𝜓)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-in1 604  ax-in2 605
This theorem is referenced by:  jcnd  642  bj-nnim  13249
  Copyright terms: Public domain W3C validator