ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm3.43i GIF version

Theorem pm3.43i 271
Description: Nested conjunction of antecedents. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
pm3.43i ((𝜑𝜓) → ((𝜑𝜒) → (𝜑 → (𝜓𝜒))))

Proof of Theorem pm3.43i
StepHypRef Expression
1 pm3.2 138 . 2 (𝜓 → (𝜒 → (𝜓𝜒)))
21imim3i 61 1 ((𝜑𝜓) → ((𝜑𝜒) → (𝜑 → (𝜓𝜒))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia3 107
This theorem is referenced by:  pm3.43  592
  Copyright terms: Public domain W3C validator