| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > simplbi | GIF version | ||
| Description: Deduction eliminating a conjunct. (Contributed by NM, 27-May-1998.) |
| Ref | Expression |
|---|---|
| simplbi.1 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
| Ref | Expression |
|---|---|
| simplbi | ⊢ (𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simplbi.1 | . . 3 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) | |
| 2 | 1 | biimpi 120 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒)) |
| 3 | 2 | simpld 112 | 1 ⊢ (𝜑 → 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: pm5.62dc 948 3simpa 997 xoror 1399 anxordi 1420 sbidm 1875 reurex 2725 eqimss 3248 eldifi 3296 elinel1 3360 inss1 3394 sopo 4364 wefr 4409 ordtr 4429 opelxp1 4713 relop 4832 ssrelrn 4874 funmo 5291 funrel 5293 funinsn 5328 fnfun 5376 ffn 5431 f1f 5488 f1of1 5528 f1ofo 5536 isof1o 5883 eqopi 6265 1st2nd2 6268 reldmtpos 6346 swoer 6655 ecopover 6727 ecopoverg 6730 fnfi 7045 casef 7197 nninff 7231 lpowlpo 7277 dfplpq2 7474 enq0ref 7553 cauappcvgprlemopl 7766 cauappcvgprlemdisj 7771 caucvgprlemopl 7789 caucvgprlemdisj 7794 caucvgprprlemopl 7817 caucvgprprlemopu 7819 caucvgprprlemdisj 7822 peano1nnnn 7972 axrnegex 7999 ltxrlt 8145 1nn 9054 zre 9383 nnssz 9396 ixxss1 10033 ixxss2 10034 ixxss12 10035 iccss2 10073 rge0ssre 10106 elfzuz 10150 uzdisj 10222 nn0disj 10267 frecuzrdgtcl 10564 frecuzrdgfunlem 10571 0wrd0 11027 modfsummodlemstep 11812 mertenslem2 11891 prmnn 12476 prmuz2 12497 oddpwdc 12540 sqpweven 12541 2sqpwodd 12542 phimullem 12591 hashgcdlem 12604 1arith 12734 ctinfom 12843 ctinf 12845 sgrpmgm 13283 mndsgrp 13297 grpmnd 13383 nsgsubg 13585 ghmgrp1 13625 ghmgrp2 13626 ablgrp 13669 cmnmnd 13681 crngring 13814 rimrhm 13977 subrgring 14030 subrgrcl 14032 rhmpropd 14060 domnnzr 14076 2idlelbas 14322 rng2idlsubgsubrng 14326 2idlcpblrng 14329 2idlcpbl 14330 qusrhm 14334 psr1clfi 14494 topontop 14530 tpstop 14551 cntop1 14717 cntop2 14718 hmeocn 14821 isxmet2d 14864 metxmet 14871 xmstps 14973 msxms 14974 xmsxmet 14976 msmet 14977 bdxmet 15017 ivthinclemlr 15153 ivthinclemur 15155 mpodvdsmulf1o 15506 uhgr0vb 15724 bj-indint 15941 bj-inf2vnlem2 15981 peano4nninf 16017 |
| Copyright terms: Public domain | W3C validator |