| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > simplbi | GIF version | ||
| Description: Deduction eliminating a conjunct. (Contributed by NM, 27-May-1998.) |
| Ref | Expression |
|---|---|
| simplbi.1 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
| Ref | Expression |
|---|---|
| simplbi | ⊢ (𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simplbi.1 | . . 3 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) | |
| 2 | 1 | biimpi 120 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒)) |
| 3 | 2 | simpld 112 | 1 ⊢ (𝜑 → 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: pm5.62dc 947 3simpa 996 xoror 1390 anxordi 1411 sbidm 1865 reurex 2715 eqimss 3237 eldifi 3285 elinel1 3349 inss1 3383 sopo 4348 wefr 4393 ordtr 4413 opelxp1 4697 relop 4816 funmo 5273 funrel 5275 funinsn 5307 fnfun 5355 ffn 5407 f1f 5463 f1of1 5503 f1ofo 5511 isof1o 5854 eqopi 6230 1st2nd2 6233 reldmtpos 6311 swoer 6620 ecopover 6692 ecopoverg 6695 fnfi 7002 casef 7154 nninff 7188 lpowlpo 7234 dfplpq2 7421 enq0ref 7500 cauappcvgprlemopl 7713 cauappcvgprlemdisj 7718 caucvgprlemopl 7736 caucvgprlemdisj 7741 caucvgprprlemopl 7764 caucvgprprlemopu 7766 caucvgprprlemdisj 7769 peano1nnnn 7919 axrnegex 7946 ltxrlt 8092 1nn 9001 zre 9330 nnssz 9343 ixxss1 9979 ixxss2 9980 ixxss12 9981 iccss2 10019 rge0ssre 10052 elfzuz 10096 uzdisj 10168 nn0disj 10213 frecuzrdgtcl 10504 frecuzrdgfunlem 10511 0wrd0 10961 modfsummodlemstep 11622 mertenslem2 11701 prmnn 12278 prmuz2 12299 oddpwdc 12342 sqpweven 12343 2sqpwodd 12344 phimullem 12393 hashgcdlem 12406 1arith 12536 ctinfom 12645 ctinf 12647 sgrpmgm 13050 mndsgrp 13062 grpmnd 13139 nsgsubg 13335 ghmgrp1 13375 ghmgrp2 13376 ablgrp 13419 cmnmnd 13431 crngring 13564 rimrhm 13727 subrgring 13780 subrgrcl 13782 rhmpropd 13810 domnnzr 13826 2idlelbas 14072 rng2idlsubgsubrng 14076 2idlcpblrng 14079 2idlcpbl 14080 qusrhm 14084 topontop 14250 tpstop 14271 cntop1 14437 cntop2 14438 hmeocn 14541 isxmet2d 14584 metxmet 14591 xmstps 14693 msxms 14694 xmsxmet 14696 msmet 14697 bdxmet 14737 ivthinclemlr 14873 ivthinclemur 14875 mpodvdsmulf1o 15226 bj-indint 15577 bj-inf2vnlem2 15617 peano4nninf 15650 |
| Copyright terms: Public domain | W3C validator |