| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > simplbi | GIF version | ||
| Description: Deduction eliminating a conjunct. (Contributed by NM, 27-May-1998.) |
| Ref | Expression |
|---|---|
| simplbi.1 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
| Ref | Expression |
|---|---|
| simplbi | ⊢ (𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simplbi.1 | . . 3 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) | |
| 2 | 1 | biimpi 120 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒)) |
| 3 | 2 | simpld 112 | 1 ⊢ (𝜑 → 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: an3 589 pm5.62dc 950 3simpa 999 xoror 1401 anxordi 1422 sbidm 1877 reurex 2730 eqimss 3258 eldifi 3306 elinel1 3370 inss1 3404 sopo 4381 wefr 4426 ordtr 4446 opelxp1 4730 relop 4849 ssrelrn 4891 funmo 5309 funrel 5311 funinsn 5346 fnfun 5394 ffn 5449 f1f 5507 f1of1 5547 f1ofo 5555 isof1o 5904 eqopi 6288 1st2nd2 6291 reldmtpos 6369 swoer 6678 ecopover 6750 ecopoverg 6753 fnfi 7071 casef 7223 nninff 7257 lpowlpo 7303 dfplpq2 7509 enq0ref 7588 cauappcvgprlemopl 7801 cauappcvgprlemdisj 7806 caucvgprlemopl 7824 caucvgprlemdisj 7829 caucvgprprlemopl 7852 caucvgprprlemopu 7854 caucvgprprlemdisj 7857 peano1nnnn 8007 axrnegex 8034 ltxrlt 8180 1nn 9089 zre 9418 nnssz 9431 ixxss1 10068 ixxss2 10069 ixxss12 10070 iccss2 10108 rge0ssre 10141 elfzuz 10185 uzdisj 10257 nn0disj 10302 frecuzrdgtcl 10601 frecuzrdgfunlem 10608 0wrd0 11064 modfsummodlemstep 11934 mertenslem2 12013 prmnn 12598 prmuz2 12619 oddpwdc 12662 sqpweven 12663 2sqpwodd 12664 phimullem 12713 hashgcdlem 12726 1arith 12856 ctinfom 12965 ctinf 12967 sgrpmgm 13406 mndsgrp 13420 grpmnd 13506 nsgsubg 13708 ghmgrp1 13748 ghmgrp2 13749 ablgrp 13792 cmnmnd 13804 crngring 13937 rimrhm 14100 subrgring 14153 subrgrcl 14155 rhmpropd 14183 domnnzr 14199 2idlelbas 14445 rng2idlsubgsubrng 14449 2idlcpblrng 14452 2idlcpbl 14453 qusrhm 14457 psr1clfi 14617 topontop 14653 tpstop 14674 cntop1 14840 cntop2 14841 hmeocn 14944 isxmet2d 14987 metxmet 14994 xmstps 15096 msxms 15097 xmsxmet 15099 msmet 15100 bdxmet 15140 ivthinclemlr 15276 ivthinclemur 15278 mpodvdsmulf1o 15629 uhgr0vb 15849 bj-indint 16204 bj-inf2vnlem2 16244 peano4nninf 16283 |
| Copyright terms: Public domain | W3C validator |