Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > simplbi | GIF version |
Description: Deduction eliminating a conjunct. (Contributed by NM, 27-May-1998.) |
Ref | Expression |
---|---|
simplbi.1 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
Ref | Expression |
---|---|
simplbi | ⊢ (𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simplbi.1 | . . 3 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) | |
2 | 1 | biimpi 119 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒)) |
3 | 2 | simpld 111 | 1 ⊢ (𝜑 → 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: pm5.62dc 935 3simpa 984 xoror 1369 anxordi 1390 sbidm 1839 reurex 2679 eqimss 3196 eldifi 3244 elinel1 3308 inss1 3342 sopo 4291 wefr 4336 ordtr 4356 opelxp1 4638 relop 4754 funmo 5203 funrel 5205 funinsn 5237 fnfun 5285 ffn 5337 f1f 5393 f1of1 5431 f1ofo 5439 isof1o 5775 eqopi 6140 1st2nd2 6143 reldmtpos 6221 swoer 6529 ecopover 6599 ecopoverg 6602 fnfi 6902 casef 7053 nninff 7087 lpowlpo 7132 dfplpq2 7295 enq0ref 7374 cauappcvgprlemopl 7587 cauappcvgprlemdisj 7592 caucvgprlemopl 7610 caucvgprlemdisj 7615 caucvgprprlemopl 7638 caucvgprprlemopu 7640 caucvgprprlemdisj 7643 peano1nnnn 7793 axrnegex 7820 ltxrlt 7964 1nn 8868 zre 9195 nnssz 9208 ixxss1 9840 ixxss2 9841 ixxss12 9842 iccss2 9880 rge0ssre 9913 elfzuz 9956 uzdisj 10028 nn0disj 10073 frecuzrdgtcl 10347 frecuzrdgfunlem 10354 modfsummodlemstep 11398 mertenslem2 11477 prmnn 12042 prmuz2 12063 oddpwdc 12106 sqpweven 12107 2sqpwodd 12108 phimullem 12157 hashgcdlem 12170 1arith 12297 ctinfom 12361 ctinf 12363 topontop 12652 tpstop 12673 cntop1 12841 cntop2 12842 hmeocn 12945 isxmet2d 12988 metxmet 12995 xmstps 13097 msxms 13098 xmsxmet 13100 msmet 13101 bdxmet 13141 ivthinclemlr 13255 ivthinclemur 13257 bj-indint 13813 bj-inf2vnlem2 13853 peano4nninf 13886 |
Copyright terms: Public domain | W3C validator |