![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > simplbi | GIF version |
Description: Deduction eliminating a conjunct. (Contributed by NM, 27-May-1998.) |
Ref | Expression |
---|---|
simplbi.1 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
Ref | Expression |
---|---|
simplbi | ⊢ (𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simplbi.1 | . . 3 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) | |
2 | 1 | biimpi 120 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒)) |
3 | 2 | simpld 112 | 1 ⊢ (𝜑 → 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: pm5.62dc 947 3simpa 996 xoror 1390 anxordi 1411 sbidm 1862 reurex 2712 eqimss 3233 eldifi 3281 elinel1 3345 inss1 3379 sopo 4344 wefr 4389 ordtr 4409 opelxp1 4693 relop 4812 funmo 5269 funrel 5271 funinsn 5303 fnfun 5351 ffn 5403 f1f 5459 f1of1 5499 f1ofo 5507 isof1o 5850 eqopi 6225 1st2nd2 6228 reldmtpos 6306 swoer 6615 ecopover 6687 ecopoverg 6690 fnfi 6995 casef 7147 nninff 7181 lpowlpo 7227 dfplpq2 7414 enq0ref 7493 cauappcvgprlemopl 7706 cauappcvgprlemdisj 7711 caucvgprlemopl 7729 caucvgprlemdisj 7734 caucvgprprlemopl 7757 caucvgprprlemopu 7759 caucvgprprlemdisj 7762 peano1nnnn 7912 axrnegex 7939 ltxrlt 8085 1nn 8993 zre 9321 nnssz 9334 ixxss1 9970 ixxss2 9971 ixxss12 9972 iccss2 10010 rge0ssre 10043 elfzuz 10087 uzdisj 10159 nn0disj 10204 frecuzrdgtcl 10483 frecuzrdgfunlem 10490 0wrd0 10940 modfsummodlemstep 11600 mertenslem2 11679 prmnn 12248 prmuz2 12269 oddpwdc 12312 sqpweven 12313 2sqpwodd 12314 phimullem 12363 hashgcdlem 12376 1arith 12505 ctinfom 12585 ctinf 12587 sgrpmgm 12990 mndsgrp 13002 grpmnd 13079 nsgsubg 13275 ghmgrp1 13315 ghmgrp2 13316 ablgrp 13359 cmnmnd 13371 crngring 13504 rimrhm 13667 subrgring 13720 subrgrcl 13722 rhmpropd 13750 domnnzr 13766 2idlelbas 14012 rng2idlsubgsubrng 14016 2idlcpblrng 14019 2idlcpbl 14020 qusrhm 14024 topontop 14182 tpstop 14203 cntop1 14369 cntop2 14370 hmeocn 14473 isxmet2d 14516 metxmet 14523 xmstps 14625 msxms 14626 xmsxmet 14628 msmet 14629 bdxmet 14669 ivthinclemlr 14791 ivthinclemur 14793 bj-indint 15423 bj-inf2vnlem2 15463 peano4nninf 15496 |
Copyright terms: Public domain | W3C validator |