![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > simplbi | GIF version |
Description: Deduction eliminating a conjunct. (Contributed by NM, 27-May-1998.) |
Ref | Expression |
---|---|
simplbi.1 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
Ref | Expression |
---|---|
simplbi | ⊢ (𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simplbi.1 | . . 3 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) | |
2 | 1 | biimpi 120 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒)) |
3 | 2 | simpld 112 | 1 ⊢ (𝜑 → 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: pm5.62dc 947 3simpa 996 xoror 1390 anxordi 1411 sbidm 1862 reurex 2712 eqimss 3234 eldifi 3282 elinel1 3346 inss1 3380 sopo 4345 wefr 4390 ordtr 4410 opelxp1 4694 relop 4813 funmo 5270 funrel 5272 funinsn 5304 fnfun 5352 ffn 5404 f1f 5460 f1of1 5500 f1ofo 5508 isof1o 5851 eqopi 6227 1st2nd2 6230 reldmtpos 6308 swoer 6617 ecopover 6689 ecopoverg 6692 fnfi 6997 casef 7149 nninff 7183 lpowlpo 7229 dfplpq2 7416 enq0ref 7495 cauappcvgprlemopl 7708 cauappcvgprlemdisj 7713 caucvgprlemopl 7731 caucvgprlemdisj 7736 caucvgprprlemopl 7759 caucvgprprlemopu 7761 caucvgprprlemdisj 7764 peano1nnnn 7914 axrnegex 7941 ltxrlt 8087 1nn 8995 zre 9324 nnssz 9337 ixxss1 9973 ixxss2 9974 ixxss12 9975 iccss2 10013 rge0ssre 10046 elfzuz 10090 uzdisj 10162 nn0disj 10207 frecuzrdgtcl 10486 frecuzrdgfunlem 10493 0wrd0 10943 modfsummodlemstep 11603 mertenslem2 11682 prmnn 12251 prmuz2 12272 oddpwdc 12315 sqpweven 12316 2sqpwodd 12317 phimullem 12366 hashgcdlem 12379 1arith 12508 ctinfom 12588 ctinf 12590 sgrpmgm 12993 mndsgrp 13005 grpmnd 13082 nsgsubg 13278 ghmgrp1 13318 ghmgrp2 13319 ablgrp 13362 cmnmnd 13374 crngring 13507 rimrhm 13670 subrgring 13723 subrgrcl 13725 rhmpropd 13753 domnnzr 13769 2idlelbas 14015 rng2idlsubgsubrng 14019 2idlcpblrng 14022 2idlcpbl 14023 qusrhm 14027 topontop 14193 tpstop 14214 cntop1 14380 cntop2 14381 hmeocn 14484 isxmet2d 14527 metxmet 14534 xmstps 14636 msxms 14637 xmsxmet 14639 msmet 14640 bdxmet 14680 ivthinclemlr 14816 ivthinclemur 14818 bj-indint 15493 bj-inf2vnlem2 15533 peano4nninf 15566 |
Copyright terms: Public domain | W3C validator |