Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > simplbi | GIF version |
Description: Deduction eliminating a conjunct. (Contributed by NM, 27-May-1998.) |
Ref | Expression |
---|---|
simplbi.1 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
Ref | Expression |
---|---|
simplbi | ⊢ (𝜑 → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simplbi.1 | . . 3 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) | |
2 | 1 | biimpi 119 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒)) |
3 | 2 | simpld 111 | 1 ⊢ (𝜑 → 𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: pm5.62dc 940 3simpa 989 xoror 1374 anxordi 1395 sbidm 1844 reurex 2683 eqimss 3201 eldifi 3249 elinel1 3313 inss1 3347 sopo 4298 wefr 4343 ordtr 4363 opelxp1 4645 relop 4761 funmo 5213 funrel 5215 funinsn 5247 fnfun 5295 ffn 5347 f1f 5403 f1of1 5441 f1ofo 5449 isof1o 5786 eqopi 6151 1st2nd2 6154 reldmtpos 6232 swoer 6541 ecopover 6611 ecopoverg 6614 fnfi 6914 casef 7065 nninff 7099 lpowlpo 7144 dfplpq2 7316 enq0ref 7395 cauappcvgprlemopl 7608 cauappcvgprlemdisj 7613 caucvgprlemopl 7631 caucvgprlemdisj 7636 caucvgprprlemopl 7659 caucvgprprlemopu 7661 caucvgprprlemdisj 7664 peano1nnnn 7814 axrnegex 7841 ltxrlt 7985 1nn 8889 zre 9216 nnssz 9229 ixxss1 9861 ixxss2 9862 ixxss12 9863 iccss2 9901 rge0ssre 9934 elfzuz 9977 uzdisj 10049 nn0disj 10094 frecuzrdgtcl 10368 frecuzrdgfunlem 10375 modfsummodlemstep 11420 mertenslem2 11499 prmnn 12064 prmuz2 12085 oddpwdc 12128 sqpweven 12129 2sqpwodd 12130 phimullem 12179 hashgcdlem 12192 1arith 12319 ctinfom 12383 ctinf 12385 sgrpmgm 12648 mndsgrp 12657 grpmnd 12715 topontop 12806 tpstop 12827 cntop1 12995 cntop2 12996 hmeocn 13099 isxmet2d 13142 metxmet 13149 xmstps 13251 msxms 13252 xmsxmet 13254 msmet 13255 bdxmet 13295 ivthinclemlr 13409 ivthinclemur 13411 bj-indint 13966 bj-inf2vnlem2 14006 peano4nninf 14039 |
Copyright terms: Public domain | W3C validator |