| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > simplbi | GIF version | ||
| Description: Deduction eliminating a conjunct. (Contributed by NM, 27-May-1998.) |
| Ref | Expression |
|---|---|
| simplbi.1 | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) |
| Ref | Expression |
|---|---|
| simplbi | ⊢ (𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simplbi.1 | . . 3 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) | |
| 2 | 1 | biimpi 120 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒)) |
| 3 | 2 | simpld 112 | 1 ⊢ (𝜑 → 𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: an3 589 pm5.62dc 951 3simpa 1018 xoror 1421 anxordi 1442 sbidm 1897 reurex 2750 eqimss 3278 eldifi 3326 elinel1 3390 inss1 3424 sopo 4404 wefr 4449 ordtr 4469 opelxp1 4753 relop 4872 ssrelrn 4914 funmo 5333 funrel 5335 funinsn 5370 fnfun 5418 ffn 5473 f1f 5533 f1of1 5573 f1ofo 5581 isof1o 5937 eqopi 6324 1st2nd2 6327 reldmtpos 6405 swoer 6716 ecopover 6788 ecopoverg 6791 fnfi 7111 casef 7263 nninff 7297 lpowlpo 7343 dfplpq2 7549 enq0ref 7628 cauappcvgprlemopl 7841 cauappcvgprlemdisj 7846 caucvgprlemopl 7864 caucvgprlemdisj 7869 caucvgprprlemopl 7892 caucvgprprlemopu 7894 caucvgprprlemdisj 7897 peano1nnnn 8047 axrnegex 8074 ltxrlt 8220 1nn 9129 zre 9458 nnssz 9471 ixxss1 10108 ixxss2 10109 ixxss12 10110 iccss2 10148 rge0ssre 10181 elfzuz 10225 uzdisj 10297 nn0disj 10342 frecuzrdgtcl 10642 frecuzrdgfunlem 10649 0wrd0 11105 modfsummodlemstep 11976 mertenslem2 12055 prmnn 12640 prmuz2 12661 oddpwdc 12704 sqpweven 12705 2sqpwodd 12706 phimullem 12755 hashgcdlem 12768 1arith 12898 ctinfom 13007 ctinf 13009 sgrpmgm 13448 mndsgrp 13462 grpmnd 13548 nsgsubg 13750 ghmgrp1 13790 ghmgrp2 13791 ablgrp 13834 cmnmnd 13846 crngring 13979 rimrhm 14143 subrgring 14196 subrgrcl 14198 rhmpropd 14226 domnnzr 14242 2idlelbas 14488 rng2idlsubgsubrng 14492 2idlcpblrng 14495 2idlcpbl 14496 qusrhm 14500 psr1clfi 14660 topontop 14696 tpstop 14717 cntop1 14883 cntop2 14884 hmeocn 14987 isxmet2d 15030 metxmet 15037 xmstps 15139 msxms 15140 xmsxmet 15142 msmet 15143 bdxmet 15183 ivthinclemlr 15319 ivthinclemur 15321 mpodvdsmulf1o 15672 uhgr0vb 15892 trliswlk 16105 bj-indint 16318 bj-inf2vnlem2 16358 peano4nninf 16402 |
| Copyright terms: Public domain | W3C validator |