| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > stoic1b | GIF version | ||
| Description: Stoic logic Thema 1 (part b). The other part of thema 1 of Stoic logic; see stoic1a 1438. (Contributed by David A. Wheeler, 16-Feb-2019.) | 
| Ref | Expression | 
|---|---|
| stoic1.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝜃) | 
| Ref | Expression | 
|---|---|
| stoic1b | ⊢ ((𝜓 ∧ ¬ 𝜃) → ¬ 𝜑) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | stoic1.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜃) | |
| 2 | 1 | ancoms 268 | . 2 ⊢ ((𝜓 ∧ 𝜑) → 𝜃) | 
| 3 | 2 | stoic1a 1438 | 1 ⊢ ((𝜓 ∧ ¬ 𝜃) → ¬ 𝜑) | 
| Colors of variables: wff set class | 
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |