Home | Intuitionistic Logic Explorer Theorem List (p. 15 of 140) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > ILE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | falimtru 1401 | A → identity. (Contributed by Anthony Hart, 22-Oct-2010.) |
⊢ ((⊥ → ⊤) ↔ ⊤) | ||
Theorem | falimfal 1402 | A → identity. (Contributed by Anthony Hart, 22-Oct-2010.) |
⊢ ((⊥ → ⊥) ↔ ⊤) | ||
Theorem | nottru 1403 | A ¬ identity. (Contributed by Anthony Hart, 22-Oct-2010.) |
⊢ (¬ ⊤ ↔ ⊥) | ||
Theorem | notfal 1404 | A ¬ identity. (Contributed by Anthony Hart, 22-Oct-2010.) (Proof shortened by Andrew Salmon, 13-May-2011.) |
⊢ (¬ ⊥ ↔ ⊤) | ||
Theorem | trubitru 1405 | A ↔ identity. (Contributed by Anthony Hart, 22-Oct-2010.) (Proof shortened by Andrew Salmon, 13-May-2011.) |
⊢ ((⊤ ↔ ⊤) ↔ ⊤) | ||
Theorem | trubifal 1406 | A ↔ identity. (Contributed by David A. Wheeler, 23-Feb-2018.) |
⊢ ((⊤ ↔ ⊥) ↔ ⊥) | ||
Theorem | falbitru 1407 | A ↔ identity. (Contributed by Anthony Hart, 22-Oct-2010.) (Proof shortened by Andrew Salmon, 13-May-2011.) |
⊢ ((⊥ ↔ ⊤) ↔ ⊥) | ||
Theorem | falbifal 1408 | A ↔ identity. (Contributed by Anthony Hart, 22-Oct-2010.) (Proof shortened by Andrew Salmon, 13-May-2011.) |
⊢ ((⊥ ↔ ⊥) ↔ ⊤) | ||
Theorem | truxortru 1409 | A ⊻ identity. (Contributed by David A. Wheeler, 2-Mar-2018.) |
⊢ ((⊤ ⊻ ⊤) ↔ ⊥) | ||
Theorem | truxorfal 1410 | A ⊻ identity. (Contributed by David A. Wheeler, 2-Mar-2018.) |
⊢ ((⊤ ⊻ ⊥) ↔ ⊤) | ||
Theorem | falxortru 1411 | A ⊻ identity. (Contributed by David A. Wheeler, 2-Mar-2018.) |
⊢ ((⊥ ⊻ ⊤) ↔ ⊤) | ||
Theorem | falxorfal 1412 | A ⊻ identity. (Contributed by David A. Wheeler, 2-Mar-2018.) |
⊢ ((⊥ ⊻ ⊥) ↔ ⊥) | ||
The Greek Stoics developed a system of logic. The Stoic Chrysippus, in particular, was often considered one of the greatest logicians of antiquity. Stoic logic is different from Aristotle's system, since it focuses on propositional logic, though later thinkers did combine the systems of the Stoics with Aristotle. Jan Lukasiewicz reports, "For anybody familiar with mathematical logic it is self-evident that the Stoic dialectic is the ancient form of modern propositional logic" ( On the history of the logic of proposition by Jan Lukasiewicz (1934), translated in: Selected Works - Edited by Ludwik Borkowski - Amsterdam, North-Holland, 1970 pp. 197-217, referenced in "History of Logic" https://www.historyoflogic.com/logic-stoics.htm). For more about Aristotle's system, see barbara and related theorems. A key part of the Stoic logic system is a set of five "indemonstrables" assigned to Chrysippus of Soli by Diogenes Laertius, though in general it is difficult to assign specific ideas to specific thinkers. The indemonstrables are described in, for example, [Lopez-Astorga] p. 11 , [Sanford] p. 39, and [Hitchcock] p. 5. These indemonstrables are modus ponendo ponens (modus ponens) ax-mp 5, modus tollendo tollens (modus tollens) mto 652, modus ponendo tollens I mptnan 1413, modus ponendo tollens II mptxor 1414, and modus tollendo ponens (exclusive-or version) mtpxor 1416. The first is an axiom, the second is already proved; in this section we prove the other three. Since we assume or prove all of indemonstrables, the system of logic we use here is as at least as strong as the set of Stoic indemonstrables. Note that modus tollendo ponens mtpxor 1416 originally used exclusive-or, but over time the name modus tollendo ponens has increasingly referred to an inclusive-or variation, which is proved in mtpor 1415. This set of indemonstrables is not the entire system of Stoic logic. | ||
Theorem | mptnan 1413 | Modus ponendo tollens 1, one of the "indemonstrables" in Stoic logic. See rule 1 on [Lopez-Astorga] p. 12 , rule 1 on [Sanford] p. 40, and rule A3 in [Hitchcock] p. 5. Sanford describes this rule second (after mptxor 1414) as a "safer, and these days much more common" version of modus ponendo tollens because it avoids confusion between inclusive-or and exclusive-or. (Contributed by David A. Wheeler, 3-Jul-2016.) |
⊢ 𝜑 & ⊢ ¬ (𝜑 ∧ 𝜓) ⇒ ⊢ ¬ 𝜓 | ||
Theorem | mptxor 1414 | Modus ponendo tollens 2, one of the "indemonstrables" in Stoic logic. Note that this uses exclusive-or ⊻. See rule 2 on [Lopez-Astorga] p. 12 , rule 4 on [Sanford] p. 39 and rule A4 in [Hitchcock] p. 5 . (Contributed by David A. Wheeler, 2-Mar-2018.) |
⊢ 𝜑 & ⊢ (𝜑 ⊻ 𝜓) ⇒ ⊢ ¬ 𝜓 | ||
Theorem | mtpor 1415 | Modus tollendo ponens (inclusive-or version), aka disjunctive syllogism. This is similar to mtpxor 1416, one of the five original "indemonstrables" in Stoic logic. However, in Stoic logic this rule used exclusive-or, while the name modus tollendo ponens often refers to a variant of the rule that uses inclusive-or instead. The rule says, "if 𝜑 is not true, and 𝜑 or 𝜓 (or both) are true, then 𝜓 must be true". An alternate phrasing is, "Once you eliminate the impossible, whatever remains, no matter how improbable, must be the truth". -- Sherlock Holmes (Sir Arthur Conan Doyle, 1890: The Sign of the Four, ch. 6). (Contributed by David A. Wheeler, 3-Jul-2016.) (Proof shortened by Wolf Lammen, 11-Nov-2017.) |
⊢ ¬ 𝜑 & ⊢ (𝜑 ∨ 𝜓) ⇒ ⊢ 𝜓 | ||
Theorem | mtpxor 1416 | Modus tollendo ponens (original exclusive-or version), aka disjunctive syllogism, similar to mtpor 1415, one of the five "indemonstrables" in Stoic logic. The rule says, "if 𝜑 is not true, and either 𝜑 or 𝜓 (exclusively) are true, then 𝜓 must be true". Today the name "modus tollendo ponens" often refers to a variant, the inclusive-or version as defined in mtpor 1415. See rule 3 on [Lopez-Astorga] p. 12 (note that the "or" is the same as mptxor 1414, that is, it is exclusive-or df-xor 1366), rule 3 of [Sanford] p. 39 (where it is not as clearly stated which kind of "or" is used but it appears to be in the same sense as mptxor 1414), and rule A5 in [Hitchcock] p. 5 (exclusive-or is expressly used). (Contributed by David A. Wheeler, 4-Jul-2016.) (Proof shortened by Wolf Lammen, 11-Nov-2017.) (Proof shortened by BJ, 19-Apr-2019.) |
⊢ ¬ 𝜑 & ⊢ (𝜑 ⊻ 𝜓) ⇒ ⊢ 𝜓 | ||
Theorem | stoic2a 1417 |
Stoic logic Thema 2 version a.
Statement T2 of [Bobzien] p. 117 shows a reconstructed version of Stoic logic thema 2 as follows: "When from two assertibles a third follows, and from the third and one (or both) of the two another follows, then this other follows from the first two." Bobzien uses constructs such as 𝜑, 𝜓⊢ 𝜒; in Metamath we will represent that construct as 𝜑 ∧ 𝜓 → 𝜒. This version a is without the phrase "or both"; see stoic2b 1418 for the version with the phrase "or both". We already have this rule as syldan 280, so here we show the equivalence and discourage its use. (New usage is discouraged.) (Contributed by David A. Wheeler, 17-Feb-2019.) |
⊢ ((𝜑 ∧ 𝜓) → 𝜒) & ⊢ ((𝜑 ∧ 𝜒) → 𝜃) ⇒ ⊢ ((𝜑 ∧ 𝜓) → 𝜃) | ||
Theorem | stoic2b 1418 |
Stoic logic Thema 2 version b. See stoic2a 1417.
Version b is with the phrase "or both". We already have this rule as mpd3an3 1328, so here we prove the equivalence and discourage its use. (New usage is discouraged.) (Contributed by David A. Wheeler, 17-Feb-2019.) |
⊢ ((𝜑 ∧ 𝜓) → 𝜒) & ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) ⇒ ⊢ ((𝜑 ∧ 𝜓) → 𝜃) | ||
Theorem | stoic3 1419 |
Stoic logic Thema 3.
Statement T3 of [Bobzien] p. 116-117 discusses Stoic logic thema 3. "When from two (assemblies) a third follows, and from the one that follows (i.e., the third) together with another, external external assumption, another follows, then other follows from the first two and the externally co-assumed one. (Simp. Cael. 237.2-4)" (Contributed by David A. Wheeler, 17-Feb-2019.) |
⊢ ((𝜑 ∧ 𝜓) → 𝜒) & ⊢ ((𝜒 ∧ 𝜃) → 𝜏) ⇒ ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜃) → 𝜏) | ||
Theorem | stoic4a 1420 |
Stoic logic Thema 4 version a.
Statement T4 of [Bobzien] p. 117 shows a reconstructed version of Stoic logic thema 4: "When from two assertibles a third follows, and from the third and one (or both) of the two and one (or more) external assertible(s) another follows, then this other follows from the first two and the external(s)." We use 𝜃 to represent the "external" assertibles. This is version a, which is without the phrase "or both"; see stoic4b 1421 for the version with the phrase "or both". (Contributed by David A. Wheeler, 17-Feb-2019.) |
⊢ ((𝜑 ∧ 𝜓) → 𝜒) & ⊢ ((𝜒 ∧ 𝜑 ∧ 𝜃) → 𝜏) ⇒ ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜃) → 𝜏) | ||
Theorem | stoic4b 1421 |
Stoic logic Thema 4 version b.
This is version b, which is with the phrase "or both". See stoic4a 1420 for more information. (Contributed by David A. Wheeler, 17-Feb-2019.) |
⊢ ((𝜑 ∧ 𝜓) → 𝜒) & ⊢ (((𝜒 ∧ 𝜑 ∧ 𝜓) ∧ 𝜃) → 𝜏) ⇒ ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜃) → 𝜏) | ||
Theorem | syl6an 1422 | A syllogism deduction combined with conjoining antecedents. (Contributed by Alan Sare, 28-Oct-2011.) |
⊢ (𝜑 → 𝜓) & ⊢ (𝜑 → (𝜒 → 𝜃)) & ⊢ ((𝜓 ∧ 𝜃) → 𝜏) ⇒ ⊢ (𝜑 → (𝜒 → 𝜏)) | ||
Theorem | syl10 1423 | A nested syllogism inference. (Contributed by Alan Sare, 17-Jul-2011.) |
⊢ (𝜑 → (𝜓 → 𝜒)) & ⊢ (𝜑 → (𝜓 → (𝜃 → 𝜏))) & ⊢ (𝜒 → (𝜏 → 𝜂)) ⇒ ⊢ (𝜑 → (𝜓 → (𝜃 → 𝜂))) | ||
Theorem | exbir 1424 | Exportation implication also converting head from biconditional to conditional. (Contributed by Alan Sare, 31-Dec-2011.) |
⊢ (((𝜑 ∧ 𝜓) → (𝜒 ↔ 𝜃)) → (𝜑 → (𝜓 → (𝜃 → 𝜒)))) | ||
Theorem | 3impexp 1425 | impexp 261 with a 3-conjunct antecedent. (Contributed by Alan Sare, 31-Dec-2011.) |
⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) ↔ (𝜑 → (𝜓 → (𝜒 → 𝜃)))) | ||
Theorem | 3impexpbicom 1426 | 3impexp 1425 with biconditional consequent of antecedent that is commuted in consequent. (Contributed by Alan Sare, 31-Dec-2011.) |
⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜃 ↔ 𝜏)) ↔ (𝜑 → (𝜓 → (𝜒 → (𝜏 ↔ 𝜃))))) | ||
Theorem | 3impexpbicomi 1427 | Deduction form of 3impexpbicom 1426. (Contributed by Alan Sare, 31-Dec-2011.) |
⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → (𝜃 ↔ 𝜏)) ⇒ ⊢ (𝜑 → (𝜓 → (𝜒 → (𝜏 ↔ 𝜃)))) | ||
Theorem | ancomsimp 1428 | Closed form of ancoms 266. (Contributed by Alan Sare, 31-Dec-2011.) |
⊢ (((𝜑 ∧ 𝜓) → 𝜒) ↔ ((𝜓 ∧ 𝜑) → 𝜒)) | ||
Theorem | expcomd 1429 | Deduction form of expcom 115. (Contributed by Alan Sare, 22-Jul-2012.) |
⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) ⇒ ⊢ (𝜑 → (𝜒 → (𝜓 → 𝜃))) | ||
Theorem | expdcom 1430 | Commuted form of expd 256. (Contributed by Alan Sare, 18-Mar-2012.) |
⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) ⇒ ⊢ (𝜓 → (𝜒 → (𝜑 → 𝜃))) | ||
Theorem | simplbi2comg 1431 | Implication form of simplbi2com 1432. (Contributed by Alan Sare, 22-Jul-2012.) |
⊢ ((𝜑 ↔ (𝜓 ∧ 𝜒)) → (𝜒 → (𝜓 → 𝜑))) | ||
Theorem | simplbi2com 1432 | A deduction eliminating a conjunct, similar to simplbi2 383. (Contributed by Alan Sare, 22-Jul-2012.) (Proof shortened by Wolf Lammen, 10-Nov-2012.) |
⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) ⇒ ⊢ (𝜒 → (𝜓 → 𝜑)) | ||
Theorem | syl6ci 1433 | A syllogism inference combined with contraction. (Contributed by Alan Sare, 18-Mar-2012.) |
⊢ (𝜑 → (𝜓 → 𝜒)) & ⊢ (𝜑 → 𝜃) & ⊢ (𝜒 → (𝜃 → 𝜏)) ⇒ ⊢ (𝜑 → (𝜓 → 𝜏)) | ||
Theorem | mpisyl 1434 | A syllogism combined with a modus ponens inference. (Contributed by Alan Sare, 25-Jul-2011.) |
⊢ (𝜑 → 𝜓) & ⊢ 𝜒 & ⊢ (𝜓 → (𝜒 → 𝜃)) ⇒ ⊢ (𝜑 → 𝜃) | ||
The universal quantifier was introduced above in wal 1341 for use by df-tru 1346. See the comments in that section. In this section, we continue with the first "real" use of it. | ||
Axiom | ax-5 1435 | Axiom of Quantified Implication. Axiom C4 of [Monk2] p. 105. (Contributed by NM, 5-Aug-1993.) |
⊢ (∀𝑥(𝜑 → 𝜓) → (∀𝑥𝜑 → ∀𝑥𝜓)) | ||
Axiom | ax-7 1436 | Axiom of Quantifier Commutation. This axiom says universal quantifiers can be swapped. One of the predicate logic axioms which do not involve equality. Axiom scheme C6' in [Megill] p. 448 (p. 16 of the preprint). Also appears as Lemma 12 of [Monk2] p. 109 and Axiom C5-3 of [Monk2] p. 113. (Contributed by NM, 5-Aug-1993.) |
⊢ (∀𝑥∀𝑦𝜑 → ∀𝑦∀𝑥𝜑) | ||
Axiom | ax-gen 1437 | Rule of Generalization. The postulated inference rule of predicate calculus. See, e.g., Rule 2 of [Hamilton] p. 74. This rule says that if something is unconditionally true, then it is true for all values of a variable. For example, if we have proved 𝑥 = 𝑥, we can conclude ∀𝑥𝑥 = 𝑥 or even ∀𝑦𝑥 = 𝑥. Theorem spi 1524 shows we can go the other way also: in other words we can add or remove universal quantifiers from the beginning of any theorem as required. (Contributed by NM, 5-Aug-1993.) |
⊢ 𝜑 ⇒ ⊢ ∀𝑥𝜑 | ||
Theorem | gen2 1438 | Generalization applied twice. (Contributed by NM, 30-Apr-1998.) |
⊢ 𝜑 ⇒ ⊢ ∀𝑥∀𝑦𝜑 | ||
Theorem | mpg 1439 | Modus ponens combined with generalization. (Contributed by NM, 24-May-1994.) |
⊢ (∀𝑥𝜑 → 𝜓) & ⊢ 𝜑 ⇒ ⊢ 𝜓 | ||
Theorem | mpgbi 1440 | Modus ponens on biconditional combined with generalization. (Contributed by NM, 24-May-1994.) (Proof shortened by Stefan Allan, 28-Oct-2008.) |
⊢ (∀𝑥𝜑 ↔ 𝜓) & ⊢ 𝜑 ⇒ ⊢ 𝜓 | ||
Theorem | mpgbir 1441 | Modus ponens on biconditional combined with generalization. (Contributed by NM, 24-May-1994.) (Proof shortened by Stefan Allan, 28-Oct-2008.) |
⊢ (𝜑 ↔ ∀𝑥𝜓) & ⊢ 𝜓 ⇒ ⊢ 𝜑 | ||
Theorem | a7s 1442 | Swap quantifiers in an antecedent. (Contributed by NM, 5-Aug-1993.) |
⊢ (∀𝑥∀𝑦𝜑 → 𝜓) ⇒ ⊢ (∀𝑦∀𝑥𝜑 → 𝜓) | ||
Theorem | alimi 1443 | Inference quantifying both antecedent and consequent. (Contributed by NM, 5-Aug-1993.) |
⊢ (𝜑 → 𝜓) ⇒ ⊢ (∀𝑥𝜑 → ∀𝑥𝜓) | ||
Theorem | 2alimi 1444 | Inference doubly quantifying both antecedent and consequent. (Contributed by NM, 3-Feb-2005.) |
⊢ (𝜑 → 𝜓) ⇒ ⊢ (∀𝑥∀𝑦𝜑 → ∀𝑥∀𝑦𝜓) | ||
Theorem | alim 1445 | Theorem 19.20 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) (Proof shortened by O'Cat, 30-Mar-2008.) |
⊢ (∀𝑥(𝜑 → 𝜓) → (∀𝑥𝜑 → ∀𝑥𝜓)) | ||
Theorem | al2imi 1446 | Inference quantifying antecedent, nested antecedent, and consequent. (Contributed by NM, 5-Aug-1993.) |
⊢ (𝜑 → (𝜓 → 𝜒)) ⇒ ⊢ (∀𝑥𝜑 → (∀𝑥𝜓 → ∀𝑥𝜒)) | ||
Theorem | alanimi 1447 | Variant of al2imi 1446 with conjunctive antecedent. (Contributed by Andrew Salmon, 8-Jun-2011.) |
⊢ ((𝜑 ∧ 𝜓) → 𝜒) ⇒ ⊢ ((∀𝑥𝜑 ∧ ∀𝑥𝜓) → ∀𝑥𝜒) | ||
Syntax | wnf 1448 | Extend wff definition to include the not-free predicate. |
wff Ⅎ𝑥𝜑 | ||
Definition | df-nf 1449 |
Define the not-free predicate for wffs. This is read "𝑥 is not
free
in 𝜑". Not-free means that the
value of 𝑥 cannot affect the
value of 𝜑, e.g., any occurrence of 𝑥 in
𝜑 is
effectively
bound by a "for all" or something that expands to one (such as
"there
exists"). In particular, substitution for a variable not free in a
wff
does not affect its value (sbf 1765). An example of where this is used is
stdpc5 1572. See nf2 1656 for an alternate definition which
does not involve
nested quantifiers on the same variable.
Nonfreeness is a commonly used condition, so it is useful to have a notation for it. Surprisingly, there is no common formal notation for it, so here we devise one. Our definition lets us work with the notion of nonfreeness within the logic itself rather than as a metalogical side condition. To be precise, our definition really means "effectively not free", because it is slightly less restrictive than the usual textbook definition for "not free" (which considers syntactic freedom). For example, 𝑥 is effectively not free in the expression 𝑥 = 𝑥 (even though 𝑥 is syntactically free in it, so would be considered "free" in the usual textbook definition) because the value of 𝑥 in the formula 𝑥 = 𝑥 does not affect the truth of that formula (and thus substitutions will not change the result), see nfequid 1690. (Contributed by Mario Carneiro, 11-Aug-2016.) |
⊢ (Ⅎ𝑥𝜑 ↔ ∀𝑥(𝜑 → ∀𝑥𝜑)) | ||
Theorem | nfi 1450 | Deduce that 𝑥 is not free in 𝜑 from the definition. (Contributed by Mario Carneiro, 11-Aug-2016.) |
⊢ (𝜑 → ∀𝑥𝜑) ⇒ ⊢ Ⅎ𝑥𝜑 | ||
Theorem | hbth 1451 |
No variable is (effectively) free in a theorem.
This and later "hypothesis-building" lemmas, with labels starting "hb...", allow us to construct proofs of formulas of the form ⊢ (𝜑 → ∀𝑥𝜑) from smaller formulas of this form. These are useful for constructing hypotheses that state "𝑥 is (effectively) not free in 𝜑". (Contributed by NM, 5-Aug-1993.) |
⊢ 𝜑 ⇒ ⊢ (𝜑 → ∀𝑥𝜑) | ||
Theorem | nfth 1452 | No variable is (effectively) free in a theorem. (Contributed by Mario Carneiro, 11-Aug-2016.) |
⊢ 𝜑 ⇒ ⊢ Ⅎ𝑥𝜑 | ||
Theorem | nfnth 1453 | No variable is (effectively) free in a non-theorem. (Contributed by Mario Carneiro, 6-Dec-2016.) |
⊢ ¬ 𝜑 ⇒ ⊢ Ⅎ𝑥𝜑 | ||
Theorem | nftru 1454 | The true constant has no free variables. (This can also be proven in one step with nfv 1516, but this proof does not use ax-17 1514.) (Contributed by Mario Carneiro, 6-Oct-2016.) |
⊢ Ⅎ𝑥⊤ | ||
Theorem | alimdh 1455 | Deduction from Theorem 19.20 of [Margaris] p. 90. (Contributed by NM, 4-Jan-2002.) |
⊢ (𝜑 → ∀𝑥𝜑) & ⊢ (𝜑 → (𝜓 → 𝜒)) ⇒ ⊢ (𝜑 → (∀𝑥𝜓 → ∀𝑥𝜒)) | ||
Theorem | albi 1456 | Theorem 19.15 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) |
⊢ (∀𝑥(𝜑 ↔ 𝜓) → (∀𝑥𝜑 ↔ ∀𝑥𝜓)) | ||
Theorem | alrimih 1457 | Inference from Theorem 19.21 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) (New usage is discouraged.) |
⊢ (𝜑 → ∀𝑥𝜑) & ⊢ (𝜑 → 𝜓) ⇒ ⊢ (𝜑 → ∀𝑥𝜓) | ||
Theorem | albii 1458 | Inference adding universal quantifier to both sides of an equivalence. (Contributed by NM, 7-Aug-1994.) |
⊢ (𝜑 ↔ 𝜓) ⇒ ⊢ (∀𝑥𝜑 ↔ ∀𝑥𝜓) | ||
Theorem | 2albii 1459 | Inference adding 2 universal quantifiers to both sides of an equivalence. (Contributed by NM, 9-Mar-1997.) |
⊢ (𝜑 ↔ 𝜓) ⇒ ⊢ (∀𝑥∀𝑦𝜑 ↔ ∀𝑥∀𝑦𝜓) | ||
Theorem | hbxfrbi 1460 | A utility lemma to transfer a bound-variable hypothesis builder into a definition. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
⊢ (𝜑 ↔ 𝜓) & ⊢ (𝜓 → ∀𝑥𝜓) ⇒ ⊢ (𝜑 → ∀𝑥𝜑) | ||
Theorem | nfbii 1461 | Equality theorem for not-free. (Contributed by Mario Carneiro, 11-Aug-2016.) |
⊢ (𝜑 ↔ 𝜓) ⇒ ⊢ (Ⅎ𝑥𝜑 ↔ Ⅎ𝑥𝜓) | ||
Theorem | nfxfr 1462 | A utility lemma to transfer a bound-variable hypothesis builder into a definition. (Contributed by Mario Carneiro, 11-Aug-2016.) |
⊢ (𝜑 ↔ 𝜓) & ⊢ Ⅎ𝑥𝜓 ⇒ ⊢ Ⅎ𝑥𝜑 | ||
Theorem | nfxfrd 1463 | A utility lemma to transfer a bound-variable hypothesis builder into a definition. (Contributed by Mario Carneiro, 24-Sep-2016.) |
⊢ (𝜑 ↔ 𝜓) & ⊢ (𝜒 → Ⅎ𝑥𝜓) ⇒ ⊢ (𝜒 → Ⅎ𝑥𝜑) | ||
Theorem | alcoms 1464 | Swap quantifiers in an antecedent. (Contributed by NM, 11-May-1993.) |
⊢ (∀𝑥∀𝑦𝜑 → 𝜓) ⇒ ⊢ (∀𝑦∀𝑥𝜑 → 𝜓) | ||
Theorem | hbal 1465 | If 𝑥 is not free in 𝜑, it is not free in ∀𝑦𝜑. (Contributed by NM, 5-Aug-1993.) |
⊢ (𝜑 → ∀𝑥𝜑) ⇒ ⊢ (∀𝑦𝜑 → ∀𝑥∀𝑦𝜑) | ||
Theorem | alcom 1466 | Theorem 19.5 of [Margaris] p. 89. (Contributed by NM, 5-Aug-1993.) |
⊢ (∀𝑥∀𝑦𝜑 ↔ ∀𝑦∀𝑥𝜑) | ||
Theorem | alrimdh 1467 | Deduction from Theorem 19.21 of [Margaris] p. 90. (Contributed by NM, 10-Feb-1997.) (Proof shortened by Andrew Salmon, 13-May-2011.) |
⊢ (𝜑 → ∀𝑥𝜑) & ⊢ (𝜓 → ∀𝑥𝜓) & ⊢ (𝜑 → (𝜓 → 𝜒)) ⇒ ⊢ (𝜑 → (𝜓 → ∀𝑥𝜒)) | ||
Theorem | albidh 1468 | Formula-building rule for universal quantifier (deduction form). (Contributed by NM, 5-Aug-1993.) |
⊢ (𝜑 → ∀𝑥𝜑) & ⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∀𝑥𝜓 ↔ ∀𝑥𝜒)) | ||
Theorem | 19.26 1469 | Theorem 19.26 of [Margaris] p. 90. Also Theorem *10.22 of [WhiteheadRussell] p. 119. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 4-Jul-2014.) |
⊢ (∀𝑥(𝜑 ∧ 𝜓) ↔ (∀𝑥𝜑 ∧ ∀𝑥𝜓)) | ||
Theorem | 19.26-2 1470 | Theorem 19.26 of [Margaris] p. 90 with two quantifiers. (Contributed by NM, 3-Feb-2005.) |
⊢ (∀𝑥∀𝑦(𝜑 ∧ 𝜓) ↔ (∀𝑥∀𝑦𝜑 ∧ ∀𝑥∀𝑦𝜓)) | ||
Theorem | 19.26-3an 1471 | Theorem 19.26 of [Margaris] p. 90 with triple conjunction. (Contributed by NM, 13-Sep-2011.) |
⊢ (∀𝑥(𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (∀𝑥𝜑 ∧ ∀𝑥𝜓 ∧ ∀𝑥𝜒)) | ||
Theorem | 19.33 1472 | Theorem 19.33 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) |
⊢ ((∀𝑥𝜑 ∨ ∀𝑥𝜓) → ∀𝑥(𝜑 ∨ 𝜓)) | ||
Theorem | alrot3 1473 | Theorem *11.21 in [WhiteheadRussell] p. 160. (Contributed by Andrew Salmon, 24-May-2011.) |
⊢ (∀𝑥∀𝑦∀𝑧𝜑 ↔ ∀𝑦∀𝑧∀𝑥𝜑) | ||
Theorem | alrot4 1474 | Rotate 4 universal quantifiers twice. (Contributed by NM, 2-Feb-2005.) (Proof shortened by Wolf Lammen, 28-Jun-2014.) |
⊢ (∀𝑥∀𝑦∀𝑧∀𝑤𝜑 ↔ ∀𝑧∀𝑤∀𝑥∀𝑦𝜑) | ||
Theorem | albiim 1475 | Split a biconditional and distribute quantifier. (Contributed by NM, 18-Aug-1993.) |
⊢ (∀𝑥(𝜑 ↔ 𝜓) ↔ (∀𝑥(𝜑 → 𝜓) ∧ ∀𝑥(𝜓 → 𝜑))) | ||
Theorem | 2albiim 1476 | Split a biconditional and distribute 2 quantifiers. (Contributed by NM, 3-Feb-2005.) |
⊢ (∀𝑥∀𝑦(𝜑 ↔ 𝜓) ↔ (∀𝑥∀𝑦(𝜑 → 𝜓) ∧ ∀𝑥∀𝑦(𝜓 → 𝜑))) | ||
Theorem | hband 1477 | Deduction form of bound-variable hypothesis builder hban 1535. (Contributed by NM, 2-Jan-2002.) |
⊢ (𝜑 → (𝜓 → ∀𝑥𝜓)) & ⊢ (𝜑 → (𝜒 → ∀𝑥𝜒)) ⇒ ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → ∀𝑥(𝜓 ∧ 𝜒))) | ||
Theorem | hb3and 1478 | Deduction form of bound-variable hypothesis builder hb3an 1538. (Contributed by NM, 17-Feb-2013.) |
⊢ (𝜑 → (𝜓 → ∀𝑥𝜓)) & ⊢ (𝜑 → (𝜒 → ∀𝑥𝜒)) & ⊢ (𝜑 → (𝜃 → ∀𝑥𝜃)) ⇒ ⊢ (𝜑 → ((𝜓 ∧ 𝜒 ∧ 𝜃) → ∀𝑥(𝜓 ∧ 𝜒 ∧ 𝜃))) | ||
Theorem | hbald 1479 | Deduction form of bound-variable hypothesis builder hbal 1465. (Contributed by NM, 2-Jan-2002.) |
⊢ (𝜑 → ∀𝑦𝜑) & ⊢ (𝜑 → (𝜓 → ∀𝑥𝜓)) ⇒ ⊢ (𝜑 → (∀𝑦𝜓 → ∀𝑥∀𝑦𝜓)) | ||
Syntax | wex 1480 | Extend wff definition to include the existential quantifier ("there exists"). |
wff ∃𝑥𝜑 | ||
Axiom | ax-ie1 1481 | 𝑥 is bound in ∃𝑥𝜑. One of the axioms of predicate logic. (Contributed by Mario Carneiro, 31-Jan-2015.) |
⊢ (∃𝑥𝜑 → ∀𝑥∃𝑥𝜑) | ||
Axiom | ax-ie2 1482 | Define existential quantification. ∃𝑥𝜑 means "there exists at least one set 𝑥 such that 𝜑 is true". One of the axioms of predicate logic. (Contributed by Mario Carneiro, 31-Jan-2015.) |
⊢ (∀𝑥(𝜓 → ∀𝑥𝜓) → (∀𝑥(𝜑 → 𝜓) ↔ (∃𝑥𝜑 → 𝜓))) | ||
Theorem | hbe1 1483 | 𝑥 is not free in ∃𝑥𝜑. (Contributed by NM, 5-Aug-1993.) |
⊢ (∃𝑥𝜑 → ∀𝑥∃𝑥𝜑) | ||
Theorem | nfe1 1484 | 𝑥 is not free in ∃𝑥𝜑. (Contributed by Mario Carneiro, 11-Aug-2016.) |
⊢ Ⅎ𝑥∃𝑥𝜑 | ||
Theorem | 19.23ht 1485 | Closed form of Theorem 19.23 of [Margaris] p. 90. (Contributed by NM, 7-Nov-2005.) (Revised by Mario Carneiro, 1-Feb-2015.) |
⊢ (∀𝑥(𝜓 → ∀𝑥𝜓) → (∀𝑥(𝜑 → 𝜓) ↔ (∃𝑥𝜑 → 𝜓))) | ||
Theorem | 19.23h 1486 | Theorem 19.23 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 1-Feb-2015.) |
⊢ (𝜓 → ∀𝑥𝜓) ⇒ ⊢ (∀𝑥(𝜑 → 𝜓) ↔ (∃𝑥𝜑 → 𝜓)) | ||
Theorem | alnex 1487 | Theorem 19.7 of [Margaris] p. 89. To read this intuitionistically, think of it as "if 𝜑 can be refuted for all 𝑥, then it is not possible to find an 𝑥 for which 𝜑 holds" (and likewise for the converse). Comparing this with dfexdc 1489 illustrates that statements which look similar (to someone used to classical logic) can be different intuitionistically due to different placement of negations. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 1-Feb-2015.) (Revised by Mario Carneiro, 12-May-2015.) |
⊢ (∀𝑥 ¬ 𝜑 ↔ ¬ ∃𝑥𝜑) | ||
Theorem | nex 1488 | Generalization rule for negated wff. (Contributed by NM, 18-May-1994.) |
⊢ ¬ 𝜑 ⇒ ⊢ ¬ ∃𝑥𝜑 | ||
Theorem | dfexdc 1489 | Defining ∃𝑥𝜑 given decidability. It is common in classical logic to define ∃𝑥𝜑 as ¬ ∀𝑥¬ 𝜑 but in intuitionistic logic without a decidability condition, that is only an implication not an equivalence, as seen at exalim 1490. (Contributed by Jim Kingdon, 15-Mar-2018.) |
⊢ (DECID ∃𝑥𝜑 → (∃𝑥𝜑 ↔ ¬ ∀𝑥 ¬ 𝜑)) | ||
Theorem | exalim 1490 | One direction of a classical definition of existential quantification. One direction of Definition of [Margaris] p. 49. For a decidable proposition, this is an equivalence, as seen as dfexdc 1489. (Contributed by Jim Kingdon, 29-Jul-2018.) |
⊢ (∃𝑥𝜑 → ¬ ∀𝑥 ¬ 𝜑) | ||
The equality predicate was introduced above in wceq 1343 for use by df-tru 1346. See the comments in that section. In this section, we continue with the first "real" use of it. | ||
Theorem | weq 1491 |
Extend wff definition to include atomic formulas using the equality
predicate.
(Instead of introducing weq 1491 as an axiomatic statement, as was done in an older version of this database, we introduce it by "proving" a special case of set theory's more general wceq 1343. This lets us avoid overloading the = connective, thus preventing ambiguity that would complicate certain Metamath parsers. However, logically weq 1491 is considered to be a primitive syntax, even though here it is artificially "derived" from wceq 1343. Note: To see the proof steps of this syntax proof, type "show proof weq /all" in the Metamath program.) (Contributed by NM, 24-Jan-2006.) |
wff 𝑥 = 𝑦 | ||
Axiom | ax-8 1492 |
Axiom of Equality. One of the equality and substitution axioms of
predicate calculus with equality. This is similar to, but not quite, a
transitive law for equality (proved later as equtr 1697). Axiom scheme C8'
in [Megill] p. 448 (p. 16 of the preprint).
Also appears as Axiom C7 of
[Monk2] p. 105.
Axioms ax-8 1492 through ax-16 1802 are the axioms having to do with equality, substitution, and logical properties of our binary predicate ∈ (which later in set theory will mean "is a member of"). Note that all axioms except ax-16 1802 and ax-17 1514 are still valid even when 𝑥, 𝑦, and 𝑧 are replaced with the same variable because they do not have any distinct variable (Metamath's $d) restrictions. Distinct variable restrictions are required for ax-16 1802 and ax-17 1514 only. (Contributed by NM, 5-Aug-1993.) |
⊢ (𝑥 = 𝑦 → (𝑥 = 𝑧 → 𝑦 = 𝑧)) | ||
Axiom | ax-10 1493 |
Axiom of Quantifier Substitution. One of the equality and substitution
axioms of predicate calculus with equality. Appears as Lemma L12 in
[Megill] p. 445 (p. 12 of the preprint).
The original version of this axiom was ax-10o 1704 ("o" for "old") and was replaced with this shorter ax-10 1493 in May 2008. The old axiom is proved from this one as Theorem ax10o 1703. Conversely, this axiom is proved from ax-10o 1704 as Theorem ax10 1705. (Contributed by NM, 5-Aug-1993.) |
⊢ (∀𝑥 𝑥 = 𝑦 → ∀𝑦 𝑦 = 𝑥) | ||
Axiom | ax-11 1494 |
Axiom of Variable Substitution. One of the 5 equality axioms of predicate
calculus. The final consequent ∀𝑥(𝑥 = 𝑦 → 𝜑) is a way of
expressing "𝑦 substituted for 𝑥 in wff
𝜑
" (cf. sb6 1874). It
is based on Lemma 16 of [Tarski] p. 70 and
Axiom C8 of [Monk2] p. 105,
from which it can be proved by cases.
Variants of this axiom which are equivalent in classical logic but which have not been shown to be equivalent for intuitionistic logic are ax11v 1815, ax11v2 1808 and ax-11o 1811. (Contributed by NM, 5-Aug-1993.) |
⊢ (𝑥 = 𝑦 → (∀𝑦𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑))) | ||
Axiom | ax-i12 1495 |
Axiom of Quantifier Introduction. One of the equality and substitution
axioms of predicate calculus with equality. Informally, it says that
whenever 𝑧 is distinct from 𝑥 and
𝑦,
and 𝑥 =
𝑦 is true,
then 𝑥 = 𝑦 quantified with 𝑧 is also
true. In other words, 𝑧
is irrelevant to the truth of 𝑥 = 𝑦. Axiom scheme C9' in [Megill]
p. 448 (p. 16 of the preprint). It apparently does not otherwise appear
in the literature but is easily proved from textbook predicate calculus by
cases.
This axiom has been modified from the original ax12 1500 for compatibility with intuitionistic logic. (Contributed by Mario Carneiro, 31-Jan-2015.) Use its alias ax12or 1496 instead, for labeling consistency. (New usage is discouraged.) |
⊢ (∀𝑧 𝑧 = 𝑥 ∨ (∀𝑧 𝑧 = 𝑦 ∨ ∀𝑧(𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦))) | ||
Theorem | ax12or 1496 | Alias for ax-i12 1495, to be used in place of it for labeling consistency. (Contributed by NM, 3-Feb-2015.) |
⊢ (∀𝑧 𝑧 = 𝑥 ∨ (∀𝑧 𝑧 = 𝑦 ∨ ∀𝑧(𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦))) | ||
Axiom | ax-bndl 1497 |
Axiom of bundling. The general idea of this axiom is that two variables
are either distinct or non-distinct. That idea could be expressed as
∀𝑧𝑧 = 𝑥 ∨ ¬ ∀𝑧𝑧 = 𝑥. However, we instead choose an axiom
which has many of the same consequences, but which is different with
respect to a universe which contains only one object. ∀𝑧𝑧 = 𝑥 holds
if 𝑧 and 𝑥 are the same variable,
likewise for 𝑧 and 𝑦,
and ∀𝑥∀𝑧(𝑥 = 𝑦 → ∀𝑧𝑥 = 𝑦) holds if 𝑧 is distinct from
the others (and the universe has at least two objects).
As with other statements of the form "x is decidable (either true or false)", this does not entail the full Law of the Excluded Middle (which is the proposition that all statements are decidable), but instead merely the assertion that particular kinds of statements are decidable (or in this case, an assertion similar to decidability). This axiom implies ax-i12 1495 as can be seen at axi12 1502. Whether ax-bndl 1497 can be proved from the remaining axioms including ax-i12 1495 is not known. The reason we call this "bundling" is that a statement without a distinct variable constraint "bundles" together two statements, one in which the two variables are the same and one in which they are different. (Contributed by Mario Carneiro and Jim Kingdon, 14-Mar-2018.) |
⊢ (∀𝑧 𝑧 = 𝑥 ∨ (∀𝑧 𝑧 = 𝑦 ∨ ∀𝑥∀𝑧(𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦))) | ||
Axiom | ax-4 1498 |
Axiom of Specialization. A quantified wff implies the wff without a
quantifier (i.e. an instance, or special case, of the generalized wff).
In other words if something is true for all 𝑥, it is true for any
specific 𝑥 (that would typically occur as a free
variable in the wff
substituted for 𝜑). (A free variable is one that does
not occur in
the scope of a quantifier: 𝑥 and 𝑦 are both free in 𝑥 = 𝑦,
but only 𝑥 is free in ∀𝑦𝑥 = 𝑦.) Axiom scheme C5' in [Megill]
p. 448 (p. 16 of the preprint). Also appears as Axiom B5 of [Tarski]
p. 67 (under his system S2, defined in the last paragraph on p. 77).
Note that the converse of this axiom does not hold in general, but a weaker inference form of the converse holds and is expressed as rule ax-gen 1437. Conditional forms of the converse are given by ax12 1500, ax-16 1802, and ax-17 1514. Unlike the more general textbook Axiom of Specialization, we cannot choose a variable different from 𝑥 for the special case. For use, that requires the assistance of equality axioms, and we deal with it later after we introduce the definition of proper substitution - see stdpc4 1763. (Contributed by NM, 5-Aug-1993.) |
⊢ (∀𝑥𝜑 → 𝜑) | ||
Theorem | sp 1499 | Specialization. Another name for ax-4 1498. (Contributed by NM, 21-May-2008.) |
⊢ (∀𝑥𝜑 → 𝜑) | ||
Theorem | ax12 1500 | Rederive the original version of the axiom from ax-i12 1495. (Contributed by Mario Carneiro, 3-Feb-2015.) |
⊢ (¬ ∀𝑧 𝑧 = 𝑥 → (¬ ∀𝑧 𝑧 = 𝑦 → (𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦))) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |