HomeHome Intuitionistic Logic Explorer
Theorem List (p. 15 of 149)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 1401-1500   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
1.2.14  Truth tables: Operations on true and false constants

For classical logic, truth tables can be used to define propositional logic operations, by showing the results of those operations for all possible combinations of true () and false ().

Although the intuitionistic logic connectives are not as simply defined, and do play similar roles as in classical logic and most theorems from classical logic continue to hold.

Here we show that our definitions and axioms produce equivalent results for and as we would get from truth tables for (conjunction aka logical 'and') wa 104, (disjunction aka logical inclusive 'or') wo 708, (implies) wi 4, ¬ (not) wn 3, (logical equivalence) df-bi 117, and (exclusive or) df-xor 1376.

 
Theoremtruantru 1401 A identity. (Contributed by Anthony Hart, 22-Oct-2010.)
((⊤ ∧ ⊤) ↔ ⊤)
 
Theoremtruanfal 1402 A identity. (Contributed by Anthony Hart, 22-Oct-2010.)
((⊤ ∧ ⊥) ↔ ⊥)
 
Theoremfalantru 1403 A identity. (Contributed by David A. Wheeler, 23-Feb-2018.)
((⊥ ∧ ⊤) ↔ ⊥)
 
Theoremfalanfal 1404 A identity. (Contributed by Anthony Hart, 22-Oct-2010.)
((⊥ ∧ ⊥) ↔ ⊥)
 
Theoremtruortru 1405 A identity. (Contributed by Anthony Hart, 22-Oct-2010.) (Proof shortened by Andrew Salmon, 13-May-2011.)
((⊤ ∨ ⊤) ↔ ⊤)
 
Theoremtruorfal 1406 A identity. (Contributed by Anthony Hart, 22-Oct-2010.)
((⊤ ∨ ⊥) ↔ ⊤)
 
Theoremfalortru 1407 A identity. (Contributed by Anthony Hart, 22-Oct-2010.)
((⊥ ∨ ⊤) ↔ ⊤)
 
Theoremfalorfal 1408 A identity. (Contributed by Anthony Hart, 22-Oct-2010.) (Proof shortened by Andrew Salmon, 13-May-2011.)
((⊥ ∨ ⊥) ↔ ⊥)
 
Theoremtruimtru 1409 A identity. (Contributed by Anthony Hart, 22-Oct-2010.)
((⊤ → ⊤) ↔ ⊤)
 
Theoremtruimfal 1410 A identity. (Contributed by Anthony Hart, 22-Oct-2010.) (Proof shortened by Andrew Salmon, 13-May-2011.)
((⊤ → ⊥) ↔ ⊥)
 
Theoremfalimtru 1411 A identity. (Contributed by Anthony Hart, 22-Oct-2010.)
((⊥ → ⊤) ↔ ⊤)
 
Theoremfalimfal 1412 A identity. (Contributed by Anthony Hart, 22-Oct-2010.)
((⊥ → ⊥) ↔ ⊤)
 
Theoremnottru 1413 A ¬ identity. (Contributed by Anthony Hart, 22-Oct-2010.)
(¬ ⊤ ↔ ⊥)
 
Theoremnotfal 1414 A ¬ identity. (Contributed by Anthony Hart, 22-Oct-2010.) (Proof shortened by Andrew Salmon, 13-May-2011.)
(¬ ⊥ ↔ ⊤)
 
Theoremtrubitru 1415 A identity. (Contributed by Anthony Hart, 22-Oct-2010.) (Proof shortened by Andrew Salmon, 13-May-2011.)
((⊤ ↔ ⊤) ↔ ⊤)
 
Theoremtrubifal 1416 A identity. (Contributed by David A. Wheeler, 23-Feb-2018.)
((⊤ ↔ ⊥) ↔ ⊥)
 
Theoremfalbitru 1417 A identity. (Contributed by Anthony Hart, 22-Oct-2010.) (Proof shortened by Andrew Salmon, 13-May-2011.)
((⊥ ↔ ⊤) ↔ ⊥)
 
Theoremfalbifal 1418 A identity. (Contributed by Anthony Hart, 22-Oct-2010.) (Proof shortened by Andrew Salmon, 13-May-2011.)
((⊥ ↔ ⊥) ↔ ⊤)
 
Theoremtruxortru 1419 A identity. (Contributed by David A. Wheeler, 2-Mar-2018.)
((⊤ ⊻ ⊤) ↔ ⊥)
 
Theoremtruxorfal 1420 A identity. (Contributed by David A. Wheeler, 2-Mar-2018.)
((⊤ ⊻ ⊥) ↔ ⊤)
 
Theoremfalxortru 1421 A identity. (Contributed by David A. Wheeler, 2-Mar-2018.)
((⊥ ⊻ ⊤) ↔ ⊤)
 
Theoremfalxorfal 1422 A identity. (Contributed by David A. Wheeler, 2-Mar-2018.)
((⊥ ⊻ ⊥) ↔ ⊥)
 
1.2.15  Stoic logic indemonstrables (Chrysippus of Soli)

The Greek Stoics developed a system of logic. The Stoic Chrysippus, in particular, was often considered one of the greatest logicians of antiquity. Stoic logic is different from Aristotle's system, since it focuses on propositional logic, though later thinkers did combine the systems of the Stoics with Aristotle. Jan Lukasiewicz reports, "For anybody familiar with mathematical logic it is self-evident that the Stoic dialectic is the ancient form of modern propositional logic" ( On the history of the logic of proposition by Jan Lukasiewicz (1934), translated in: Selected Works - Edited by Ludwik Borkowski - Amsterdam, North-Holland, 1970 pp. 197-217, referenced in "History of Logic" https://www.historyoflogic.com/logic-stoics.htm). For more about Aristotle's system, see barbara and related theorems.

A key part of the Stoic logic system is a set of five "indemonstrables" assigned to Chrysippus of Soli by Diogenes Laertius, though in general it is difficult to assign specific ideas to specific thinkers. The indemonstrables are described in, for example, [Lopez-Astorga] p. 11 , [Sanford] p. 39, and [Hitchcock] p. 5. These indemonstrables are modus ponendo ponens (modus ponens) ax-mp 5, modus tollendo tollens (modus tollens) mto 662, modus ponendo tollens I mptnan 1423, modus ponendo tollens II mptxor 1424, and modus tollendo ponens (exclusive-or version) mtpxor 1426. The first is an axiom, the second is already proved; in this section we prove the other three. Since we assume or prove all of indemonstrables, the system of logic we use here is as at least as strong as the set of Stoic indemonstrables. Note that modus tollendo ponens mtpxor 1426 originally used exclusive-or, but over time the name modus tollendo ponens has increasingly referred to an inclusive-or variation, which is proved in mtpor 1425. This set of indemonstrables is not the entire system of Stoic logic.

 
Theoremmptnan 1423 Modus ponendo tollens 1, one of the "indemonstrables" in Stoic logic. See rule 1 on [Lopez-Astorga] p. 12 , rule 1 on [Sanford] p. 40, and rule A3 in [Hitchcock] p. 5. Sanford describes this rule second (after mptxor 1424) as a "safer, and these days much more common" version of modus ponendo tollens because it avoids confusion between inclusive-or and exclusive-or. (Contributed by David A. Wheeler, 3-Jul-2016.)
𝜑    &    ¬ (𝜑𝜓)        ¬ 𝜓
 
Theoremmptxor 1424 Modus ponendo tollens 2, one of the "indemonstrables" in Stoic logic. Note that this uses exclusive-or . See rule 2 on [Lopez-Astorga] p. 12 , rule 4 on [Sanford] p. 39 and rule A4 in [Hitchcock] p. 5 . (Contributed by David A. Wheeler, 2-Mar-2018.)
𝜑    &   (𝜑𝜓)        ¬ 𝜓
 
Theoremmtpor 1425 Modus tollendo ponens (inclusive-or version), aka disjunctive syllogism. This is similar to mtpxor 1426, one of the five original "indemonstrables" in Stoic logic. However, in Stoic logic this rule used exclusive-or, while the name modus tollendo ponens often refers to a variant of the rule that uses inclusive-or instead. The rule says, "if 𝜑 is not true, and 𝜑 or 𝜓 (or both) are true, then 𝜓 must be true". An alternate phrasing is, "Once you eliminate the impossible, whatever remains, no matter how improbable, must be the truth". -- Sherlock Holmes (Sir Arthur Conan Doyle, 1890: The Sign of the Four, ch. 6). (Contributed by David A. Wheeler, 3-Jul-2016.) (Proof shortened by Wolf Lammen, 11-Nov-2017.)
¬ 𝜑    &   (𝜑𝜓)       𝜓
 
Theoremmtpxor 1426 Modus tollendo ponens (original exclusive-or version), aka disjunctive syllogism, similar to mtpor 1425, one of the five "indemonstrables" in Stoic logic. The rule says, "if 𝜑 is not true, and either 𝜑 or 𝜓 (exclusively) are true, then 𝜓 must be true". Today the name "modus tollendo ponens" often refers to a variant, the inclusive-or version as defined in mtpor 1425. See rule 3 on [Lopez-Astorga] p. 12 (note that the "or" is the same as mptxor 1424, that is, it is exclusive-or df-xor 1376), rule 3 of [Sanford] p. 39 (where it is not as clearly stated which kind of "or" is used but it appears to be in the same sense as mptxor 1424), and rule A5 in [Hitchcock] p. 5 (exclusive-or is expressly used). (Contributed by David A. Wheeler, 4-Jul-2016.) (Proof shortened by Wolf Lammen, 11-Nov-2017.) (Proof shortened by BJ, 19-Apr-2019.)
¬ 𝜑    &   (𝜑𝜓)       𝜓
 
Theoremstoic1a 1427 Stoic logic Thema 1 (part a).

The first thema of the four Stoic logic themata, in its basic form, was:

"When from two (assertibles) a third follows, then from either of them together with the contradictory of the conclusion the contradictory of the other follows." (Apuleius Int. 209.9-14), see [Bobzien] p. 117 and https://plato.stanford.edu/entries/logic-ancient/

We will represent thema 1 as two very similar rules stoic1a 1427 and stoic1b 1428 to represent each side. (Contributed by David A. Wheeler, 16-Feb-2019.) (Proof shortened by Wolf Lammen, 21-May-2020.)

((𝜑𝜓) → 𝜃)       ((𝜑 ∧ ¬ 𝜃) → ¬ 𝜓)
 
Theoremstoic1b 1428 Stoic logic Thema 1 (part b). The other part of thema 1 of Stoic logic; see stoic1a 1427. (Contributed by David A. Wheeler, 16-Feb-2019.)
((𝜑𝜓) → 𝜃)       ((𝜓 ∧ ¬ 𝜃) → ¬ 𝜑)
 
Theoremstoic2a 1429 Stoic logic Thema 2 version a.

Statement T2 of [Bobzien] p. 117 shows a reconstructed version of Stoic logic thema 2 as follows: "When from two assertibles a third follows, and from the third and one (or both) of the two another follows, then this other follows from the first two."

Bobzien uses constructs such as 𝜑, 𝜓𝜒; in Metamath we will represent that construct as 𝜑𝜓𝜒.

This version a is without the phrase "or both"; see stoic2b 1430 for the version with the phrase "or both". We already have this rule as syldan 282, so here we show the equivalence and discourage its use. (New usage is discouraged.) (Contributed by David A. Wheeler, 17-Feb-2019.)

((𝜑𝜓) → 𝜒)    &   ((𝜑𝜒) → 𝜃)       ((𝜑𝜓) → 𝜃)
 
Theoremstoic2b 1430 Stoic logic Thema 2 version b. See stoic2a 1429.

Version b is with the phrase "or both". We already have this rule as mpd3an3 1338, so here we prove the equivalence and discourage its use. (New usage is discouraged.) (Contributed by David A. Wheeler, 17-Feb-2019.)

((𝜑𝜓) → 𝜒)    &   ((𝜑𝜓𝜒) → 𝜃)       ((𝜑𝜓) → 𝜃)
 
Theoremstoic3 1431 Stoic logic Thema 3.

Statement T3 of [Bobzien] p. 116-117 discusses Stoic logic thema 3.

"When from two (assemblies) a third follows, and from the one that follows (i.e., the third) together with another, external external assumption, another follows, then other follows from the first two and the externally co-assumed one. (Simp. Cael. 237.2-4)" (Contributed by David A. Wheeler, 17-Feb-2019.)

((𝜑𝜓) → 𝜒)    &   ((𝜒𝜃) → 𝜏)       ((𝜑𝜓𝜃) → 𝜏)
 
Theoremstoic4a 1432 Stoic logic Thema 4 version a.

Statement T4 of [Bobzien] p. 117 shows a reconstructed version of Stoic logic thema 4: "When from two assertibles a third follows, and from the third and one (or both) of the two and one (or more) external assertible(s) another follows, then this other follows from the first two and the external(s)."

We use 𝜃 to represent the "external" assertibles. This is version a, which is without the phrase "or both"; see stoic4b 1433 for the version with the phrase "or both". (Contributed by David A. Wheeler, 17-Feb-2019.)

((𝜑𝜓) → 𝜒)    &   ((𝜒𝜑𝜃) → 𝜏)       ((𝜑𝜓𝜃) → 𝜏)
 
Theoremstoic4b 1433 Stoic logic Thema 4 version b.

This is version b, which is with the phrase "or both". See stoic4a 1432 for more information. (Contributed by David A. Wheeler, 17-Feb-2019.)

((𝜑𝜓) → 𝜒)    &   (((𝜒𝜑𝜓) ∧ 𝜃) → 𝜏)       ((𝜑𝜓𝜃) → 𝜏)
 
1.2.16  Logical implication (continued)
 
Theoremsyl6an 1434 A syllogism deduction combined with conjoining antecedents. (Contributed by Alan Sare, 28-Oct-2011.)
(𝜑𝜓)    &   (𝜑 → (𝜒𝜃))    &   ((𝜓𝜃) → 𝜏)       (𝜑 → (𝜒𝜏))
 
Theoremsyl10 1435 A nested syllogism inference. (Contributed by Alan Sare, 17-Jul-2011.)
(𝜑 → (𝜓𝜒))    &   (𝜑 → (𝜓 → (𝜃𝜏)))    &   (𝜒 → (𝜏𝜂))       (𝜑 → (𝜓 → (𝜃𝜂)))
 
Theoremexbir 1436 Exportation implication also converting head from biconditional to conditional. (Contributed by Alan Sare, 31-Dec-2011.)
(((𝜑𝜓) → (𝜒𝜃)) → (𝜑 → (𝜓 → (𝜃𝜒))))
 
Theorem3impexp 1437 impexp 263 with a 3-conjunct antecedent. (Contributed by Alan Sare, 31-Dec-2011.)
(((𝜑𝜓𝜒) → 𝜃) ↔ (𝜑 → (𝜓 → (𝜒𝜃))))
 
Theorem3impexpbicom 1438 3impexp 1437 with biconditional consequent of antecedent that is commuted in consequent. (Contributed by Alan Sare, 31-Dec-2011.)
(((𝜑𝜓𝜒) → (𝜃𝜏)) ↔ (𝜑 → (𝜓 → (𝜒 → (𝜏𝜃)))))
 
Theorem3impexpbicomi 1439 Deduction form of 3impexpbicom 1438. (Contributed by Alan Sare, 31-Dec-2011.)
((𝜑𝜓𝜒) → (𝜃𝜏))       (𝜑 → (𝜓 → (𝜒 → (𝜏𝜃))))
 
Theoremancomsimp 1440 Closed form of ancoms 268. (Contributed by Alan Sare, 31-Dec-2011.)
(((𝜑𝜓) → 𝜒) ↔ ((𝜓𝜑) → 𝜒))
 
Theoremexpcomd 1441 Deduction form of expcom 116. (Contributed by Alan Sare, 22-Jul-2012.)
(𝜑 → ((𝜓𝜒) → 𝜃))       (𝜑 → (𝜒 → (𝜓𝜃)))
 
Theoremexpdcom 1442 Commuted form of expd 258. (Contributed by Alan Sare, 18-Mar-2012.)
(𝜑 → ((𝜓𝜒) → 𝜃))       (𝜓 → (𝜒 → (𝜑𝜃)))
 
Theoremsimplbi2comg 1443 Implication form of simplbi2com 1444. (Contributed by Alan Sare, 22-Jul-2012.)
((𝜑 ↔ (𝜓𝜒)) → (𝜒 → (𝜓𝜑)))
 
Theoremsimplbi2com 1444 A deduction eliminating a conjunct, similar to simplbi2 385. (Contributed by Alan Sare, 22-Jul-2012.) (Proof shortened by Wolf Lammen, 10-Nov-2012.)
(𝜑 ↔ (𝜓𝜒))       (𝜒 → (𝜓𝜑))
 
Theoremsyl6ci 1445 A syllogism inference combined with contraction. (Contributed by Alan Sare, 18-Mar-2012.)
(𝜑 → (𝜓𝜒))    &   (𝜑𝜃)    &   (𝜒 → (𝜃𝜏))       (𝜑 → (𝜓𝜏))
 
Theoremmpisyl 1446 A syllogism combined with a modus ponens inference. (Contributed by Alan Sare, 25-Jul-2011.)
(𝜑𝜓)    &   𝜒    &   (𝜓 → (𝜒𝜃))       (𝜑𝜃)
 
1.3  Predicate calculus mostly without distinct variables
 
1.3.1  Universal quantifier (continued)

The universal quantifier was introduced above in wal 1351 for use by df-tru 1356. See the comments in that section. In this section, we continue with the first "real" use of it.

 
Axiomax-5 1447 Axiom of Quantified Implication. Axiom C4 of [Monk2] p. 105. (Contributed by NM, 5-Aug-1993.)
(∀𝑥(𝜑𝜓) → (∀𝑥𝜑 → ∀𝑥𝜓))
 
Axiomax-7 1448 Axiom of Quantifier Commutation. This axiom says universal quantifiers can be swapped. One of the predicate logic axioms which do not involve equality. Axiom scheme C6' in [Megill] p. 448 (p. 16 of the preprint). Also appears as Lemma 12 of [Monk2] p. 109 and Axiom C5-3 of [Monk2] p. 113. (Contributed by NM, 5-Aug-1993.)
(∀𝑥𝑦𝜑 → ∀𝑦𝑥𝜑)
 
Axiomax-gen 1449 Rule of Generalization. The postulated inference rule of predicate calculus. See, e.g., Rule 2 of [Hamilton] p. 74. This rule says that if something is unconditionally true, then it is true for all values of a variable. For example, if we have proved 𝑥 = 𝑥, we can conclude 𝑥𝑥 = 𝑥 or even 𝑦𝑥 = 𝑥. Theorem spi 1536 shows we can go the other way also: in other words we can add or remove universal quantifiers from the beginning of any theorem as required. (Contributed by NM, 5-Aug-1993.)
𝜑       𝑥𝜑
 
Theoremgen2 1450 Generalization applied twice. (Contributed by NM, 30-Apr-1998.)
𝜑       𝑥𝑦𝜑
 
Theoremmpg 1451 Modus ponens combined with generalization. (Contributed by NM, 24-May-1994.)
(∀𝑥𝜑𝜓)    &   𝜑       𝜓
 
Theoremmpgbi 1452 Modus ponens on biconditional combined with generalization. (Contributed by NM, 24-May-1994.) (Proof shortened by Stefan Allan, 28-Oct-2008.)
(∀𝑥𝜑𝜓)    &   𝜑       𝜓
 
Theoremmpgbir 1453 Modus ponens on biconditional combined with generalization. (Contributed by NM, 24-May-1994.) (Proof shortened by Stefan Allan, 28-Oct-2008.)
(𝜑 ↔ ∀𝑥𝜓)    &   𝜓       𝜑
 
Theorema7s 1454 Swap quantifiers in an antecedent. (Contributed by NM, 5-Aug-1993.)
(∀𝑥𝑦𝜑𝜓)       (∀𝑦𝑥𝜑𝜓)
 
Theoremalimi 1455 Inference quantifying both antecedent and consequent. (Contributed by NM, 5-Aug-1993.)
(𝜑𝜓)       (∀𝑥𝜑 → ∀𝑥𝜓)
 
Theorem2alimi 1456 Inference doubly quantifying both antecedent and consequent. (Contributed by NM, 3-Feb-2005.)
(𝜑𝜓)       (∀𝑥𝑦𝜑 → ∀𝑥𝑦𝜓)
 
Theoremalim 1457 Theorem 19.20 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) (Proof shortened by O'Cat, 30-Mar-2008.)
(∀𝑥(𝜑𝜓) → (∀𝑥𝜑 → ∀𝑥𝜓))
 
Theoremal2imi 1458 Inference quantifying antecedent, nested antecedent, and consequent. (Contributed by NM, 5-Aug-1993.)
(𝜑 → (𝜓𝜒))       (∀𝑥𝜑 → (∀𝑥𝜓 → ∀𝑥𝜒))
 
Theoremalanimi 1459 Variant of al2imi 1458 with conjunctive antecedent. (Contributed by Andrew Salmon, 8-Jun-2011.)
((𝜑𝜓) → 𝜒)       ((∀𝑥𝜑 ∧ ∀𝑥𝜓) → ∀𝑥𝜒)
 
Syntaxwnf 1460 Extend wff definition to include the not-free predicate.
wff 𝑥𝜑
 
Definitiondf-nf 1461 Define the not-free predicate for wffs. This is read "𝑥 is not free in 𝜑". Not-free means that the value of 𝑥 cannot affect the value of 𝜑, e.g., any occurrence of 𝑥 in 𝜑 is effectively bound by a "for all" or something that expands to one (such as "there exists"). In particular, substitution for a variable not free in a wff does not affect its value (sbf 1777). An example of where this is used is stdpc5 1584. See nf2 1668 for an alternate definition which does not involve nested quantifiers on the same variable.

Nonfreeness is a commonly used condition, so it is useful to have a notation for it. Surprisingly, there is no common formal notation for it, so here we devise one. Our definition lets us work with the notion of nonfreeness within the logic itself rather than as a metalogical side condition.

To be precise, our definition really means "effectively not free", because it is slightly less restrictive than the usual textbook definition for "not free" (which considers syntactic freedom). For example, 𝑥 is effectively not free in the expression 𝑥 = 𝑥 (even though 𝑥 is syntactically free in it, so would be considered "free" in the usual textbook definition) because the value of 𝑥 in the formula 𝑥 = 𝑥 does not affect the truth of that formula (and thus substitutions will not change the result), see nfequid 1702. (Contributed by Mario Carneiro, 11-Aug-2016.)

(Ⅎ𝑥𝜑 ↔ ∀𝑥(𝜑 → ∀𝑥𝜑))
 
Theoremnfi 1462 Deduce that 𝑥 is not free in 𝜑 from the definition. (Contributed by Mario Carneiro, 11-Aug-2016.)
(𝜑 → ∀𝑥𝜑)       𝑥𝜑
 
Theoremhbth 1463 No variable is (effectively) free in a theorem.

This and later "hypothesis-building" lemmas, with labels starting "hb...", allow us to construct proofs of formulas of the form (𝜑 → ∀𝑥𝜑) from smaller formulas of this form. These are useful for constructing hypotheses that state "𝑥 is (effectively) not free in 𝜑". (Contributed by NM, 5-Aug-1993.)

𝜑       (𝜑 → ∀𝑥𝜑)
 
Theoremnfth 1464 No variable is (effectively) free in a theorem. (Contributed by Mario Carneiro, 11-Aug-2016.)
𝜑       𝑥𝜑
 
Theoremnfnth 1465 No variable is (effectively) free in a non-theorem. (Contributed by Mario Carneiro, 6-Dec-2016.)
¬ 𝜑       𝑥𝜑
 
Theoremnftru 1466 The true constant has no free variables. (This can also be proven in one step with nfv 1528, but this proof does not use ax-17 1526.) (Contributed by Mario Carneiro, 6-Oct-2016.)
𝑥
 
Theoremalimdh 1467 Deduction from Theorem 19.20 of [Margaris] p. 90. (Contributed by NM, 4-Jan-2002.)
(𝜑 → ∀𝑥𝜑)    &   (𝜑 → (𝜓𝜒))       (𝜑 → (∀𝑥𝜓 → ∀𝑥𝜒))
 
Theoremalbi 1468 Theorem 19.15 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.)
(∀𝑥(𝜑𝜓) → (∀𝑥𝜑 ↔ ∀𝑥𝜓))
 
Theoremalrimih 1469 Inference from Theorem 19.21 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) (New usage is discouraged.)
(𝜑 → ∀𝑥𝜑)    &   (𝜑𝜓)       (𝜑 → ∀𝑥𝜓)
 
Theoremalbii 1470 Inference adding universal quantifier to both sides of an equivalence. (Contributed by NM, 7-Aug-1994.)
(𝜑𝜓)       (∀𝑥𝜑 ↔ ∀𝑥𝜓)
 
Theorem2albii 1471 Inference adding 2 universal quantifiers to both sides of an equivalence. (Contributed by NM, 9-Mar-1997.)
(𝜑𝜓)       (∀𝑥𝑦𝜑 ↔ ∀𝑥𝑦𝜓)
 
Theoremhbxfrbi 1472 A utility lemma to transfer a bound-variable hypothesis builder into a definition. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.)
(𝜑𝜓)    &   (𝜓 → ∀𝑥𝜓)       (𝜑 → ∀𝑥𝜑)
 
Theoremnfbii 1473 Equality theorem for not-free. (Contributed by Mario Carneiro, 11-Aug-2016.)
(𝜑𝜓)       (Ⅎ𝑥𝜑 ↔ Ⅎ𝑥𝜓)
 
Theoremnfxfr 1474 A utility lemma to transfer a bound-variable hypothesis builder into a definition. (Contributed by Mario Carneiro, 11-Aug-2016.)
(𝜑𝜓)    &   𝑥𝜓       𝑥𝜑
 
Theoremnfxfrd 1475 A utility lemma to transfer a bound-variable hypothesis builder into a definition. (Contributed by Mario Carneiro, 24-Sep-2016.)
(𝜑𝜓)    &   (𝜒 → Ⅎ𝑥𝜓)       (𝜒 → Ⅎ𝑥𝜑)
 
Theoremalcoms 1476 Swap quantifiers in an antecedent. (Contributed by NM, 11-May-1993.)
(∀𝑥𝑦𝜑𝜓)       (∀𝑦𝑥𝜑𝜓)
 
Theoremhbal 1477 If 𝑥 is not free in 𝜑, it is not free in 𝑦𝜑. (Contributed by NM, 5-Aug-1993.)
(𝜑 → ∀𝑥𝜑)       (∀𝑦𝜑 → ∀𝑥𝑦𝜑)
 
Theoremalcom 1478 Theorem 19.5 of [Margaris] p. 89. (Contributed by NM, 5-Aug-1993.)
(∀𝑥𝑦𝜑 ↔ ∀𝑦𝑥𝜑)
 
Theoremalrimdh 1479 Deduction from Theorem 19.21 of [Margaris] p. 90. (Contributed by NM, 10-Feb-1997.) (Proof shortened by Andrew Salmon, 13-May-2011.)
(𝜑 → ∀𝑥𝜑)    &   (𝜓 → ∀𝑥𝜓)    &   (𝜑 → (𝜓𝜒))       (𝜑 → (𝜓 → ∀𝑥𝜒))
 
Theoremalbidh 1480 Formula-building rule for universal quantifier (deduction form). (Contributed by NM, 5-Aug-1993.)
(𝜑 → ∀𝑥𝜑)    &   (𝜑 → (𝜓𝜒))       (𝜑 → (∀𝑥𝜓 ↔ ∀𝑥𝜒))
 
Theorem19.26 1481 Theorem 19.26 of [Margaris] p. 90. Also Theorem *10.22 of [WhiteheadRussell] p. 119. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 4-Jul-2014.)
(∀𝑥(𝜑𝜓) ↔ (∀𝑥𝜑 ∧ ∀𝑥𝜓))
 
Theorem19.26-2 1482 Theorem 19.26 of [Margaris] p. 90 with two quantifiers. (Contributed by NM, 3-Feb-2005.)
(∀𝑥𝑦(𝜑𝜓) ↔ (∀𝑥𝑦𝜑 ∧ ∀𝑥𝑦𝜓))
 
Theorem19.26-3an 1483 Theorem 19.26 of [Margaris] p. 90 with triple conjunction. (Contributed by NM, 13-Sep-2011.)
(∀𝑥(𝜑𝜓𝜒) ↔ (∀𝑥𝜑 ∧ ∀𝑥𝜓 ∧ ∀𝑥𝜒))
 
Theorem19.33 1484 Theorem 19.33 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.)
((∀𝑥𝜑 ∨ ∀𝑥𝜓) → ∀𝑥(𝜑𝜓))
 
Theoremalrot3 1485 Theorem *11.21 in [WhiteheadRussell] p. 160. (Contributed by Andrew Salmon, 24-May-2011.)
(∀𝑥𝑦𝑧𝜑 ↔ ∀𝑦𝑧𝑥𝜑)
 
Theoremalrot4 1486 Rotate 4 universal quantifiers twice. (Contributed by NM, 2-Feb-2005.) (Proof shortened by Wolf Lammen, 28-Jun-2014.)
(∀𝑥𝑦𝑧𝑤𝜑 ↔ ∀𝑧𝑤𝑥𝑦𝜑)
 
Theoremalbiim 1487 Split a biconditional and distribute quantifier. (Contributed by NM, 18-Aug-1993.)
(∀𝑥(𝜑𝜓) ↔ (∀𝑥(𝜑𝜓) ∧ ∀𝑥(𝜓𝜑)))
 
Theorem2albiim 1488 Split a biconditional and distribute 2 quantifiers. (Contributed by NM, 3-Feb-2005.)
(∀𝑥𝑦(𝜑𝜓) ↔ (∀𝑥𝑦(𝜑𝜓) ∧ ∀𝑥𝑦(𝜓𝜑)))
 
Theoremhband 1489 Deduction form of bound-variable hypothesis builder hban 1547. (Contributed by NM, 2-Jan-2002.)
(𝜑 → (𝜓 → ∀𝑥𝜓))    &   (𝜑 → (𝜒 → ∀𝑥𝜒))       (𝜑 → ((𝜓𝜒) → ∀𝑥(𝜓𝜒)))
 
Theoremhb3and 1490 Deduction form of bound-variable hypothesis builder hb3an 1550. (Contributed by NM, 17-Feb-2013.)
(𝜑 → (𝜓 → ∀𝑥𝜓))    &   (𝜑 → (𝜒 → ∀𝑥𝜒))    &   (𝜑 → (𝜃 → ∀𝑥𝜃))       (𝜑 → ((𝜓𝜒𝜃) → ∀𝑥(𝜓𝜒𝜃)))
 
Theoremhbald 1491 Deduction form of bound-variable hypothesis builder hbal 1477. (Contributed by NM, 2-Jan-2002.)
(𝜑 → ∀𝑦𝜑)    &   (𝜑 → (𝜓 → ∀𝑥𝜓))       (𝜑 → (∀𝑦𝜓 → ∀𝑥𝑦𝜓))
 
Syntaxwex 1492 Extend wff definition to include the existential quantifier ("there exists").
wff 𝑥𝜑
 
Axiomax-ie1 1493 𝑥 is bound in 𝑥𝜑. One of the axioms of predicate logic. (Contributed by Mario Carneiro, 31-Jan-2015.)
(∃𝑥𝜑 → ∀𝑥𝑥𝜑)
 
Axiomax-ie2 1494 Define existential quantification. 𝑥𝜑 means "there exists at least one set 𝑥 such that 𝜑 is true". One of the axioms of predicate logic. (Contributed by Mario Carneiro, 31-Jan-2015.)
(∀𝑥(𝜓 → ∀𝑥𝜓) → (∀𝑥(𝜑𝜓) ↔ (∃𝑥𝜑𝜓)))
 
Theoremhbe1 1495 𝑥 is not free in 𝑥𝜑. (Contributed by NM, 5-Aug-1993.)
(∃𝑥𝜑 → ∀𝑥𝑥𝜑)
 
Theoremnfe1 1496 𝑥 is not free in 𝑥𝜑. (Contributed by Mario Carneiro, 11-Aug-2016.)
𝑥𝑥𝜑
 
Theorem19.23ht 1497 Closed form of Theorem 19.23 of [Margaris] p. 90. (Contributed by NM, 7-Nov-2005.) (Revised by Mario Carneiro, 1-Feb-2015.)
(∀𝑥(𝜓 → ∀𝑥𝜓) → (∀𝑥(𝜑𝜓) ↔ (∃𝑥𝜑𝜓)))
 
Theorem19.23h 1498 Theorem 19.23 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 1-Feb-2015.)
(𝜓 → ∀𝑥𝜓)       (∀𝑥(𝜑𝜓) ↔ (∃𝑥𝜑𝜓))
 
Theoremalnex 1499 Theorem 19.7 of [Margaris] p. 89. To read this intuitionistically, think of it as "if 𝜑 can be refuted for all 𝑥, then it is not possible to find an 𝑥 for which 𝜑 holds" (and likewise for the converse). Comparing this with dfexdc 1501 illustrates that statements which look similar (to someone used to classical logic) can be different intuitionistically due to different placement of negations. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 1-Feb-2015.) (Revised by Mario Carneiro, 12-May-2015.)
(∀𝑥 ¬ 𝜑 ↔ ¬ ∃𝑥𝜑)
 
Theoremnex 1500 Generalization rule for negated wff. (Contributed by NM, 18-May-1994.)
¬ 𝜑        ¬ ∃𝑥𝜑
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14834
  Copyright terms: Public domain < Previous  Next >