MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axin1 Structured version   Visualization version   GIF version

Theorem axin1 2697
Description: 'Not' introduction (intuitionistic logic axiom ax-in1). (Contributed by Jim Kingdon, 21-May-2018.) (New usage is discouraged.)
Assertion
Ref Expression
axin1 ((𝜑 → ¬ 𝜑) → ¬ 𝜑)

Proof of Theorem axin1
StepHypRef Expression
1 pm2.01 188 1 ((𝜑 → ¬ 𝜑) → ¬ 𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator