HomeHome Metamath Proof Explorer
Theorem List (p. 27 of 466)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-29280)
  Hilbert Space Explorer  Hilbert Space Explorer
(29281-30803)
  Users' Mathboxes  Users' Mathboxes
(30804-46521)
 

Theorem List for Metamath Proof Explorer - 2601-2700   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremsb8mo 2601 Variable substitution for the at-most-one quantifier. Usage of this theorem is discouraged because it depends on ax-13 2372. (Contributed by Alexander van der Vekens, 17-Jun-2017.) (New usage is discouraged.)
𝑦𝜑       (∃*𝑥𝜑 ↔ ∃*𝑦[𝑦 / 𝑥]𝜑)
 
Theoremcbvmovw 2602* Change bound variable. Uses only Tarski's FOL axiom schemes. See cbvmo 2605 and cbvmow 2603 for versions with fewer disjoint variable conditions but requiring more axioms. (Contributed by NM, 9-Mar-1995.) (Revised by Gino Giotto, 30-Sep-2024.)
(𝑥 = 𝑦 → (𝜑𝜓))       (∃*𝑥𝜑 ↔ ∃*𝑦𝜓)
 
Theoremcbvmow 2603* Rule used to change bound variables, using implicit substitution. Version of cbvmo 2605 with a disjoint variable condition, which does not require ax-10 2137, ax-13 2372. (Contributed by NM, 9-Mar-1995.) (Revised by Gino Giotto, 23-May-2024.)
𝑦𝜑    &   𝑥𝜓    &   (𝑥 = 𝑦 → (𝜑𝜓))       (∃*𝑥𝜑 ↔ ∃*𝑦𝜓)
 
TheoremcbvmowOLD 2604* Obsolete version of cbvmow 2603 as of 23-May-2024. (Contributed by NM, 9-Mar-1995.) (Revised by Gino Giotto, 10-Jan-2024.) (Proof modification is discouraged.) (New usage is discouraged.)
𝑦𝜑    &   𝑥𝜓    &   (𝑥 = 𝑦 → (𝜑𝜓))       (∃*𝑥𝜑 ↔ ∃*𝑦𝜓)
 
Theoremcbvmo 2605 Rule used to change bound variables, using implicit substitution. Usage of this theorem is discouraged because it depends on ax-13 2372. Use the weaker cbvmow 2603, cbvmovw 2602 when possible. (Contributed by NM, 9-Mar-1995.) (Revised by Andrew Salmon, 8-Jun-2011.) (Proof shortened by Wolf Lammen, 4-Jan-2023.) (New usage is discouraged.)
𝑦𝜑    &   𝑥𝜓    &   (𝑥 = 𝑦 → (𝜑𝜓))       (∃*𝑥𝜑 ↔ ∃*𝑦𝜓)
 
Theoremcbveuvw 2606* Change bound variable. Uses only Tarski's FOL axiom schemes. See cbveu 2609 for a version with fewer disjoint variable conditions but requiring more axioms. (Contributed by NM, 25-Nov-1994.) (Revised by Gino Giotto, 30-Sep-2024.)
(𝑥 = 𝑦 → (𝜑𝜓))       (∃!𝑥𝜑 ↔ ∃!𝑦𝜓)
 
Theoremcbveuw 2607* Version of cbveu 2609 with a disjoint variable condition, which does not require ax-10 2137, ax-13 2372. (Contributed by NM, 25-Nov-1994.) (Revised by Gino Giotto, 23-May-2024.)
𝑦𝜑    &   𝑥𝜓    &   (𝑥 = 𝑦 → (𝜑𝜓))       (∃!𝑥𝜑 ↔ ∃!𝑦𝜓)
 
TheoremcbveuwOLD 2608* Obsolete version of cbveuw 2607 as of 23-May-2024. (Contributed by NM, 25-Nov-1994.) (Revised by Gino Giotto, 10-Jan-2024.) (Proof modification is discouraged.) (New usage is discouraged.)
𝑦𝜑    &   𝑥𝜓    &   (𝑥 = 𝑦 → (𝜑𝜓))       (∃!𝑥𝜑 ↔ ∃!𝑦𝜓)
 
Theoremcbveu 2609 Rule used to change bound variables, using implicit substitution. Usage of this theorem is discouraged because it depends on ax-13 2372. Use the weaker cbveuw 2607, cbveuvw 2606 when possible. (Contributed by NM, 25-Nov-1994.) (Revised by Mario Carneiro, 7-Oct-2016.) (New usage is discouraged.)
𝑦𝜑    &   𝑥𝜓    &   (𝑥 = 𝑦 → (𝜑𝜓))       (∃!𝑥𝜑 ↔ ∃!𝑦𝜓)
 
TheoremcbveuALT 2610 Alternative proof of cbveu 2609. Since df-eu 2569 combines two other quantifiers, one can base this theorem on their associated 'change bounded variable' kind of theorems as well. (Contributed by Wolf Lammen, 5-Jan-2023.) (Proof modification is discouraged.) (New usage is discouraged.)
𝑦𝜑    &   𝑥𝜓    &   (𝑥 = 𝑦 → (𝜑𝜓))       (∃!𝑥𝜑 ↔ ∃!𝑦𝜓)
 
Theoremeu2 2611* An alternate way of defining existential uniqueness. Definition 6.10 of [TakeutiZaring] p. 26. (Contributed by NM, 8-Jul-1994.) (Proof shortened by Wolf Lammen, 2-Dec-2018.)
𝑦𝜑       (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∀𝑥𝑦((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦)))
 
Theoremeu1 2612* An alternate way to express uniqueness used by some authors. Exercise 2(b) of [Margaris] p. 110. (Contributed by NM, 20-Aug-1993.) (Revised by Mario Carneiro, 7-Oct-2016.) (Proof shortened by Wolf Lammen, 29-Oct-2018.) Avoid ax-13 2372. (Revised by Wolf Lammen, 7-Feb-2023.)
𝑦𝜑       (∃!𝑥𝜑 ↔ ∃𝑥(𝜑 ∧ ∀𝑦([𝑦 / 𝑥]𝜑𝑥 = 𝑦)))
 
Theoremeuor 2613 Introduce a disjunct into a unique existential quantifier. For a version requiring disjoint variables, but fewer axioms, see euorv 2614. (Contributed by NM, 21-Oct-2005.)
𝑥𝜑       ((¬ 𝜑 ∧ ∃!𝑥𝜓) → ∃!𝑥(𝜑𝜓))
 
Theoremeuorv 2614* Introduce a disjunct into a unique existential quantifier. Version of euor 2613 requiring disjoint variables, but fewer axioms. (Contributed by NM, 23-Mar-1995.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 14-Jan-2023.)
((¬ 𝜑 ∧ ∃!𝑥𝜓) → ∃!𝑥(𝜑𝜓))
 
Theoremeuor2 2615 Introduce or eliminate a disjunct in a unique existential quantifier. (Contributed by NM, 21-Oct-2005.) (Proof shortened by Andrew Salmon, 9-Jul-2011.) (Proof shortened by Wolf Lammen, 27-Dec-2018.)
(¬ ∃𝑥𝜑 → (∃!𝑥(𝜑𝜓) ↔ ∃!𝑥𝜓))
 
Theoremsbmo 2616* Substitution into an at-most-one quantifier. (Contributed by Jeff Madsen, 2-Sep-2009.)
([𝑦 / 𝑥]∃*𝑧𝜑 ↔ ∃*𝑧[𝑦 / 𝑥]𝜑)
 
Theoremeu4 2617* Uniqueness using implicit substitution. (Contributed by NM, 26-Jul-1995.)
(𝑥 = 𝑦 → (𝜑𝜓))       (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∀𝑥𝑦((𝜑𝜓) → 𝑥 = 𝑦)))
 
Theoremeuimmo 2618 Existential uniqueness implies uniqueness through reverse implication. (Contributed by NM, 22-Apr-1995.)
(∀𝑥(𝜑𝜓) → (∃!𝑥𝜓 → ∃*𝑥𝜑))
 
Theoremeuim 2619 Add unique existential quantifiers to an implication. Note the reversed implication in the antecedent. (Contributed by NM, 19-Oct-2005.) (Proof shortened by Andrew Salmon, 14-Jun-2011.) (Proof shortened by Wolf Lammen, 1-Oct-2023.)
((∃𝑥𝜑 ∧ ∀𝑥(𝜑𝜓)) → (∃!𝑥𝜓 → ∃!𝑥𝜑))
 
Theoremmoanimlem 2620 Factor out the common proof skeleton of moanimv 2621 and moanim 2622. (Contributed by NM, 3-Dec-2001.) (Proof shortened by Wolf Lammen, 24-Dec-2018.) Factor out common proof lines. (Revised by Wolf Lammen, 8-Feb-2023.)
(𝜑 → (∃*𝑥𝜓 ↔ ∃*𝑥(𝜑𝜓)))    &   (∃𝑥(𝜑𝜓) → 𝜑)       (∃*𝑥(𝜑𝜓) ↔ (𝜑 → ∃*𝑥𝜓))
 
Theoremmoanimv 2621* Introduction of a conjunct into an at-most-one quantifier. Version of moanim 2622 requiring disjoint variables, but fewer axioms. (Contributed by NM, 23-Mar-1995.) Reduce axiom usage . (Revised by Wolf Lammen, 8-Feb-2023.)
(∃*𝑥(𝜑𝜓) ↔ (𝜑 → ∃*𝑥𝜓))
 
Theoremmoanim 2622 Introduction of a conjunct into "at most one" quantifier. For a version requiring disjoint variables, but fewer axioms, see moanimv 2621. (Contributed by NM, 3-Dec-2001.) (Proof shortened by Wolf Lammen, 24-Dec-2018.)
𝑥𝜑       (∃*𝑥(𝜑𝜓) ↔ (𝜑 → ∃*𝑥𝜓))
 
Theoremeuan 2623 Introduction of a conjunct into unique existential quantifier. (Contributed by NM, 19-Feb-2005.) (Proof shortened by Andrew Salmon, 9-Jul-2011.) (Proof shortened by Wolf Lammen, 24-Dec-2018.)
𝑥𝜑       (∃!𝑥(𝜑𝜓) ↔ (𝜑 ∧ ∃!𝑥𝜓))
 
Theoremmoanmo 2624 Nested at-most-one quantifiers. (Contributed by NM, 25-Jan-2006.)
∃*𝑥(𝜑 ∧ ∃*𝑥𝜑)
 
Theoremmoaneu 2625 Nested at-most-one and unique existential quantifiers. (Contributed by NM, 25-Jan-2006.) (Proof shortened by Wolf Lammen, 27-Dec-2018.)
∃*𝑥(𝜑 ∧ ∃!𝑥𝜑)
 
Theoremeuanv 2626* Introduction of a conjunct into unique existential quantifier. (Contributed by NM, 23-Mar-1995.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 14-Jan-2023.)
(∃!𝑥(𝜑𝜓) ↔ (𝜑 ∧ ∃!𝑥𝜓))
 
Theoremmopick 2627 "At most one" picks a variable value, eliminating an existential quantifier. (Contributed by NM, 27-Jan-1997.) (Proof shortened by Wolf Lammen, 17-Sep-2019.)
((∃*𝑥𝜑 ∧ ∃𝑥(𝜑𝜓)) → (𝜑𝜓))
 
Theoremmoexexlem 2628 Factor out the proof skeleton of moexex 2640 and moexexvw 2630. (Contributed by Wolf Lammen, 2-Oct-2023.)
𝑦𝜑    &   𝑦∃*𝑥𝜑    &   𝑥∃*𝑦𝑥(𝜑𝜓)       ((∃*𝑥𝜑 ∧ ∀𝑥∃*𝑦𝜓) → ∃*𝑦𝑥(𝜑𝜓))
 
Theorem2moexv 2629* Double quantification with "at most one". (Contributed by NM, 3-Dec-2001.)
(∃*𝑥𝑦𝜑 → ∀𝑦∃*𝑥𝜑)
 
Theoremmoexexvw 2630* "At most one" double quantification. Version of moexexv 2641 with an additional disjoint variable condition, which does not require ax-13 2372. (Contributed by NM, 26-Jan-1997.) (Revised by Gino Giotto, 22-Aug-2023.) Factor out common proof lines with moexex 2640. (Revised by Wolf Lammen, 2-Oct-2023.)
((∃*𝑥𝜑 ∧ ∀𝑥∃*𝑦𝜓) → ∃*𝑦𝑥(𝜑𝜓))
 
Theorem2moswapv 2631* A condition allowing to swap an existential quantifier and at at-most-one quantifier. Version of 2moswap 2646 with a disjoint variable condition, which does not require ax-13 2372. (Contributed by NM, 10-Apr-2004.) (Revised by Gino Giotto, 22-Aug-2023.) Factor out common proof lines with moexexvw 2630. (Revised by Wolf Lammen, 2-Oct-2023.)
(∀𝑥∃*𝑦𝜑 → (∃*𝑥𝑦𝜑 → ∃*𝑦𝑥𝜑))
 
Theorem2euswapv 2632* A condition allowing to swap an existential quantifier and a unique existential quantifier. Version of 2euswap 2647 with a disjoint variable condition, which does not require ax-13 2372. (Contributed by NM, 10-Apr-2004.) (Revised by Gino Giotto, 22-Aug-2023.)
(∀𝑥∃*𝑦𝜑 → (∃!𝑥𝑦𝜑 → ∃!𝑦𝑥𝜑))
 
Theorem2euexv 2633* Double quantification with existential uniqueness. Version of 2euex 2643 with 𝑥 and 𝑦 distinct, but not requiring ax-13 2372. (Contributed by NM, 3-Dec-2001.) (Revised by Wolf Lammen, 2-Oct-2023.)
(∃!𝑥𝑦𝜑 → ∃𝑦∃!𝑥𝜑)
 
Theorem2exeuv 2634* Double existential uniqueness implies double unique existential quantification. Version of 2exeu 2648 with 𝑥 and 𝑦 distinct, but not requiring ax-13 2372. (Contributed by NM, 3-Dec-2001.) (Revised by Wolf Lammen, 2-Oct-2023.)
((∃!𝑥𝑦𝜑 ∧ ∃!𝑦𝑥𝜑) → ∃!𝑥∃!𝑦𝜑)
 
Theoremeupick 2635 Existential uniqueness "picks" a variable value for which another wff is true. If there is only one thing 𝑥 such that 𝜑 is true, and there is also an 𝑥 (actually the same one) such that 𝜑 and 𝜓 are both true, then 𝜑 implies 𝜓 regardless of 𝑥. This theorem can be useful for eliminating existential quantifiers in a hypothesis. Compare Theorem *14.26 in [WhiteheadRussell] p. 192. (Contributed by NM, 10-Jul-1994.)
((∃!𝑥𝜑 ∧ ∃𝑥(𝜑𝜓)) → (𝜑𝜓))
 
Theoremeupicka 2636 Version of eupick 2635 with closed formulas. (Contributed by NM, 6-Sep-2008.)
((∃!𝑥𝜑 ∧ ∃𝑥(𝜑𝜓)) → ∀𝑥(𝜑𝜓))
 
Theoremeupickb 2637 Existential uniqueness "pick" showing wff equivalence. (Contributed by NM, 25-Nov-1994.) (Proof shortened by Wolf Lammen, 27-Dec-2018.)
((∃!𝑥𝜑 ∧ ∃!𝑥𝜓 ∧ ∃𝑥(𝜑𝜓)) → (𝜑𝜓))
 
Theoremeupickbi 2638 Theorem *14.26 in [WhiteheadRussell] p. 192. (Contributed by Andrew Salmon, 11-Jul-2011.) (Proof shortened by Wolf Lammen, 27-Dec-2018.)
(∃!𝑥𝜑 → (∃𝑥(𝜑𝜓) ↔ ∀𝑥(𝜑𝜓)))
 
Theoremmopick2 2639 "At most one" can show the existence of a common value. In this case we can infer existence of conjunction from a conjunction of existence, and it is one way to achieve the converse of 19.40 1889. (Contributed by NM, 5-Apr-2004.) (Proof shortened by Andrew Salmon, 9-Jul-2011.)
((∃*𝑥𝜑 ∧ ∃𝑥(𝜑𝜓) ∧ ∃𝑥(𝜑𝜒)) → ∃𝑥(𝜑𝜓𝜒))
 
Theoremmoexex 2640 "At most one" double quantification. Usage of this theorem is discouraged because it depends on ax-13 2372. Use the version moexexvw 2630 when possible. (Contributed by NM, 3-Dec-2001.) (Proof shortened by Wolf Lammen, 28-Dec-2018.) Factor out common proof lines with moexexvw 2630. (Revised by Wolf Lammen, 2-Oct-2023.) (New usage is discouraged.)
𝑦𝜑       ((∃*𝑥𝜑 ∧ ∀𝑥∃*𝑦𝜓) → ∃*𝑦𝑥(𝜑𝜓))
 
Theoremmoexexv 2641* "At most one" double quantification. Usage of this theorem is discouraged because it depends on ax-13 2372. Use the weaker moexexvw 2630 when possible. (Contributed by NM, 26-Jan-1997.) (New usage is discouraged.)
((∃*𝑥𝜑 ∧ ∀𝑥∃*𝑦𝜓) → ∃*𝑦𝑥(𝜑𝜓))
 
Theorem2moex 2642 Double quantification with "at most one". Usage of this theorem is discouraged because it depends on ax-13 2372. Use the weaker 2moexv 2629 when possible. (Contributed by NM, 3-Dec-2001.) (New usage is discouraged.)
(∃*𝑥𝑦𝜑 → ∀𝑦∃*𝑥𝜑)
 
Theorem2euex 2643 Double quantification with existential uniqueness. Usage of this theorem is discouraged because it depends on ax-13 2372. Use the weaker 2euexv 2633 when possible. (Contributed by NM, 3-Dec-2001.) (Proof shortened by Andrew Salmon, 9-Jul-2011.) (New usage is discouraged.)
(∃!𝑥𝑦𝜑 → ∃𝑦∃!𝑥𝜑)
 
Theorem2eumo 2644 Nested unique existential quantifier and at-most-one quantifier. (Contributed by NM, 3-Dec-2001.)
(∃!𝑥∃*𝑦𝜑 → ∃*𝑥∃!𝑦𝜑)
 
Theorem2eu2ex 2645 Double existential uniqueness. (Contributed by NM, 3-Dec-2001.)
(∃!𝑥∃!𝑦𝜑 → ∃𝑥𝑦𝜑)
 
Theorem2moswap 2646 A condition allowing to swap an existential quantifier and at at-most-one quantifier. Usage of this theorem is discouraged because it depends on ax-13 2372. Use the weaker 2moswapv 2631 when possible. (Contributed by NM, 10-Apr-2004.) (New usage is discouraged.)
(∀𝑥∃*𝑦𝜑 → (∃*𝑥𝑦𝜑 → ∃*𝑦𝑥𝜑))
 
Theorem2euswap 2647 A condition allowing to swap an existential quantifier and a unique existential quantifier. Usage of this theorem is discouraged because it depends on ax-13 2372. Use the weaker 2euswapv 2632 when possible. (Contributed by NM, 10-Apr-2004.) (New usage is discouraged.)
(∀𝑥∃*𝑦𝜑 → (∃!𝑥𝑦𝜑 → ∃!𝑦𝑥𝜑))
 
Theorem2exeu 2648 Double existential uniqueness implies double unique existential quantification. The converse does not hold. Usage of this theorem is discouraged because it depends on ax-13 2372. Use the weaker 2exeuv 2634 when possible. (Contributed by NM, 3-Dec-2001.) (Proof shortened by Mario Carneiro, 22-Dec-2016.) (New usage is discouraged.)
((∃!𝑥𝑦𝜑 ∧ ∃!𝑦𝑥𝜑) → ∃!𝑥∃!𝑦𝜑)
 
Theorem2mo2 2649* Two ways of expressing "there exists at most one ordered pair 𝑥, 𝑦 such that 𝜑(𝑥, 𝑦) holds. Note that this is not equivalent to ∃*𝑥∃*𝑦𝜑. See also 2mo 2650. This is the analogue of 2eu4 2656 for existential uniqueness. (Contributed by Wolf Lammen, 26-Oct-2019.) Reduce dependencies on axioms. (Revised by Wolf Lammen, 3-Jan-2023.)
((∃*𝑥𝑦𝜑 ∧ ∃*𝑦𝑥𝜑) ↔ ∃𝑧𝑤𝑥𝑦(𝜑 → (𝑥 = 𝑧𝑦 = 𝑤)))
 
Theorem2mo 2650* Two ways of expressing "there exists at most one ordered pair 𝑥, 𝑦 such that 𝜑(𝑥, 𝑦) holds. See also 2mo2 2649. (Contributed by NM, 2-Feb-2005.) (Revised by Mario Carneiro, 17-Oct-2016.) (Proof shortened by Wolf Lammen, 2-Nov-2019.)
(∃𝑧𝑤𝑥𝑦(𝜑 → (𝑥 = 𝑧𝑦 = 𝑤)) ↔ ∀𝑥𝑦𝑧𝑤((𝜑 ∧ [𝑧 / 𝑥][𝑤 / 𝑦]𝜑) → (𝑥 = 𝑧𝑦 = 𝑤)))
 
Theorem2mos 2651* Double "there exists at most one", using implicit substitution. (Contributed by NM, 10-Feb-2005.)
((𝑥 = 𝑧𝑦 = 𝑤) → (𝜑𝜓))       (∃𝑧𝑤𝑥𝑦(𝜑 → (𝑥 = 𝑧𝑦 = 𝑤)) ↔ ∀𝑥𝑦𝑧𝑤((𝜑𝜓) → (𝑥 = 𝑧𝑦 = 𝑤)))
 
Theorem2eu1 2652 Double existential uniqueness. This theorem shows a condition under which a "naive" definition matches the correct one. Usage of this theorem is discouraged because it depends on ax-13 2372. Use the weaker 2eu1v 2653 when possible. (Contributed by NM, 3-Dec-2001.) (Proof shortened by Wolf Lammen, 23-Apr-2023.) (New usage is discouraged.)
(∀𝑥∃*𝑦𝜑 → (∃!𝑥∃!𝑦𝜑 ↔ (∃!𝑥𝑦𝜑 ∧ ∃!𝑦𝑥𝜑)))
 
Theorem2eu1v 2653* Double existential uniqueness. This theorem shows a condition under which a "naive" definition matches the correct one. Version of 2eu1 2652 with 𝑥 and 𝑦 distinct, but not requiring ax-13 2372. (Contributed by NM, 3-Dec-2001.) (Revised by Wolf Lammen, 2-Oct-2023.)
(∀𝑥∃*𝑦𝜑 → (∃!𝑥∃!𝑦𝜑 ↔ (∃!𝑥𝑦𝜑 ∧ ∃!𝑦𝑥𝜑)))
 
Theorem2eu2 2654 Double existential uniqueness. Usage of this theorem is discouraged because it depends on ax-13 2372. (Contributed by NM, 3-Dec-2001.) (New usage is discouraged.)
(∃!𝑦𝑥𝜑 → (∃!𝑥∃!𝑦𝜑 ↔ ∃!𝑥𝑦𝜑))
 
Theorem2eu3 2655 Double existential uniqueness. Usage of this theorem is discouraged because it depends on ax-13 2372. (Contributed by NM, 3-Dec-2001.) (Proof shortened by Wolf Lammen, 23-Apr-2023.) (New usage is discouraged.)
(∀𝑥𝑦(∃*𝑥𝜑 ∨ ∃*𝑦𝜑) → ((∃!𝑥∃!𝑦𝜑 ∧ ∃!𝑦∃!𝑥𝜑) ↔ (∃!𝑥𝑦𝜑 ∧ ∃!𝑦𝑥𝜑)))
 
Theorem2eu4 2656* This theorem provides us with a definition of double existential uniqueness ("exactly one 𝑥 and exactly one 𝑦"). Naively one might think (incorrectly) that it could be defined by ∃!𝑥∃!𝑦𝜑. See 2eu1 2652 for a condition under which the naive definition holds and 2exeu 2648 for a one-way implication. See 2eu5 2657 and 2eu8 2660 for alternate definitions. (Contributed by NM, 3-Dec-2001.) (Proof shortened by Wolf Lammen, 14-Sep-2019.)
((∃!𝑥𝑦𝜑 ∧ ∃!𝑦𝑥𝜑) ↔ (∃𝑥𝑦𝜑 ∧ ∃𝑧𝑤𝑥𝑦(𝜑 → (𝑥 = 𝑧𝑦 = 𝑤))))
 
Theorem2eu5 2657* An alternate definition of double existential uniqueness (see 2eu4 2656). A mistake sometimes made in the literature is to use ∃!𝑥∃!𝑦 to mean "exactly one 𝑥 and exactly one 𝑦". (For example, see Proposition 7.53 of [TakeutiZaring] p. 53.) It turns out that this is actually a weaker assertion, as can be seen by expanding out the formal definitions. This theorem shows that the erroneous definition can be repaired by conjoining 𝑥∃*𝑦𝜑 as an additional condition. The correct definition apparently has never been published. (∃* means "there exists at most one".) (Contributed by NM, 26-Oct-2003.) Avoid ax-13 2372. (Revised by Wolf Lammen, 2-Oct-2023.)
((∃!𝑥∃!𝑦𝜑 ∧ ∀𝑥∃*𝑦𝜑) ↔ (∃𝑥𝑦𝜑 ∧ ∃𝑧𝑤𝑥𝑦(𝜑 → (𝑥 = 𝑧𝑦 = 𝑤))))
 
Theorem2eu6 2658* Two equivalent expressions for double existential uniqueness. (Contributed by NM, 2-Feb-2005.) (Revised by Mario Carneiro, 17-Oct-2016.) (Proof shortened by Wolf Lammen, 2-Oct-2019.)
((∃!𝑥𝑦𝜑 ∧ ∃!𝑦𝑥𝜑) ↔ ∃𝑧𝑤𝑥𝑦(𝜑 ↔ (𝑥 = 𝑧𝑦 = 𝑤)))
 
Theorem2eu7 2659 Two equivalent expressions for double existential uniqueness. Usage of this theorem is discouraged because it depends on ax-13 2372. (Contributed by NM, 19-Feb-2005.) (New usage is discouraged.)
((∃!𝑥𝑦𝜑 ∧ ∃!𝑦𝑥𝜑) ↔ ∃!𝑥∃!𝑦(∃𝑥𝜑 ∧ ∃𝑦𝜑))
 
Theorem2eu8 2660 Two equivalent expressions for double existential uniqueness. Curiously, we can put ∃! on either of the internal conjuncts but not both. We can also commute ∃!𝑥∃!𝑦 using 2eu7 2659. Usage of this theorem is discouraged because it depends on ax-13 2372. (Contributed by NM, 20-Feb-2005.) (New usage is discouraged.)
(∃!𝑥∃!𝑦(∃𝑥𝜑 ∧ ∃𝑦𝜑) ↔ ∃!𝑥∃!𝑦(∃!𝑥𝜑 ∧ ∃𝑦𝜑))
 
Theoremeuae 2661* Two ways to express "exactly one thing exists". To paraphrase the statement and explain the label: there Exists a Unique thing if and only if for All 𝑥, 𝑥 Equals some given (and disjoint) 𝑦. Both sides are false in set theory, see Theorems neutru 34596 and dtru 5359. (Contributed by NM, 5-Apr-2004.) State the theorem using truth constant . (Revised by BJ, 7-Oct-2022.) Reduce axiom dependencies. (Revised by Wolf Lammen, 2-Mar-2023.)
(∃!𝑥⊤ ↔ ∀𝑥 𝑥 = 𝑦)
 
Theoremexists1 2662* Two ways to express "exactly one thing exists". The left-hand side requires only one variable to express this. Both sides are false in set theory, see Theorem dtru 5359. (Contributed by NM, 5-Apr-2004.) (Proof shortened by BJ, 7-Oct-2022.)
(∃!𝑥 𝑥 = 𝑥 ↔ ∀𝑥 𝑥 = 𝑦)
 
Theoremexists2 2663 A condition implying that at least two things exist. (Contributed by NM, 10-Apr-2004.) (Proof shortened by Andrew Salmon, 9-Jul-2011.) Reduce axiom usage. (Revised by Wolf Lammen, 4-Mar-2023.)
((∃𝑥𝜑 ∧ ∃𝑥 ¬ 𝜑) → ¬ ∃!𝑥 𝑥 = 𝑥)
 
1.7  Other axiomatizations related to classical predicate calculus
 
1.7.1  Aristotelian logic: Assertic syllogisms

Model the Aristotelian assertic syllogisms using modern notation. This section shows that the Aristotelian assertic syllogisms can be proven with our axioms of logic, and also provides generally useful theorems.

In antiquity Aristotelian logic and Stoic logic (see mptnan 1771) were the leading logical systems. Aristotelian logic became the leading system in medieval Europe. This section models this system (including later refinements). Aristotle defined syllogisms very generally ("a discourse in which certain (specific) things having been supposed, something different from the things supposed results of necessity because these things are so") Aristotle, Prior Analytics 24b18-20. However, in Prior Analytics he limits himself to categorical syllogisms that consist of three categorical propositions with specific structures. The syllogisms are the valid subset of the possible combinations of these structures. The medieval schools used vowels to identify the types of terms (a=all, e=none, i=some, and o=some are not), and named the different syllogisms with Latin words that had the vowels in the intended order.

"There is a surprising amount of scholarly debate about how best to formalize Aristotle's syllogisms..." according to Aristotle's Modal Proofs: Prior Analytics A8-22 in Predicate Logic, Adriane Rini, Springer, 2011, ISBN 978-94-007-0049-9, page 28. For example, Lukasiewicz believes it is important to note that "Aristotle does not introduce singular terms or premisses into his system". Lukasiewicz also believes that Aristotelian syllogisms are predicates (having a true/false value), not inference rules: "The characteristic sign of an inference is the word 'therefore'... no syllogism is formulated by Aristotle primarily as an inference, but they are all implications." Jan Lukasiewicz, Aristotle's Syllogistic from the Standpoint of Modern Formal Logic, Second edition, Oxford, 1957, page 1-2. Lukasiewicz devised a specialized prefix notation for representing Aristotelian syllogisms instead of using standard predicate logic notation.

We instead translate each Aristotelian syllogism into an inference rule, and each rule is defined using standard predicate logic notation and predicates. The predicates are represented by wff variables that may depend on the quantified variable 𝑥. Our translation is essentially identical to the one used in Rini page 18, Table 2 "Non-Modal Syllogisms in Lower Predicate Calculus (LPC)", which uses standard predicate logic with predicates. Rini states, "the crucial point is that we capture the meaning Aristotle intends, and the method by which we represent that meaning is less important". There are two differences: we make the existence criteria explicit, and we use 𝜑, 𝜓, and 𝜒 in the order they appear (a common Metamath convention). Patzig also uses standard predicate logic notation and predicates (though he interprets them as conditional propositions, not as inference rules); see Gunther Patzig, Aristotle's Theory of the Syllogism second edition, 1963, English translation by Jonathan Barnes, 1968, page 38. Terms such as "all" and "some" are translated into predicate logic using the approach devised by Frege and Russell. "Frege (and Russell) devised an ingenious procedure for regimenting binary quantifiers like "every" and "some" in terms of unary quantifiers like "everything" and "something": they formalized sentences of the form "Some A is B" and "Every A is B" as exists x (Ax and Bx) and all x (Ax implies Bx), respectively." "Quantifiers and Quantification", Stanford Encyclopedia of Philosophy, http://plato.stanford.edu/entries/quantification/ 1771. See Principia Mathematica page 22 and *10 for more information (especially *10.3 and *10.26).

Expressions of the form "no 𝜑 is 𝜓 " are consistently translated as 𝑥(𝜑 → ¬ 𝜓). These can also be expressed as ¬ ∃𝑥(𝜑𝜓), per alinexa 1845. We translate "all 𝜑 is 𝜓 " to 𝑥(𝜑𝜓), "some 𝜑 is 𝜓 " to 𝑥(𝜑𝜓), and "some 𝜑 is not 𝜓 " to 𝑥(𝜑 ∧ ¬ 𝜓). It is traditional to use the singular form "is", not the plural form "are", in the generic expressions. By convention the major premise is listed first.

In traditional Aristotelian syllogisms the predicates have a restricted form ("x is a ..."); those predicates could be modeled in modern notation by more specific constructs such as 𝑥 = 𝐴, 𝑥𝐴, or 𝑥𝐴. Here we use wff variables instead of specialized restricted forms. This generalization makes the syllogisms more useful in more circumstances. In addition, these expressions make it clearer that the syllogisms of Aristotelian logic are the forerunners of predicate calculus. If we used restricted forms like 𝑥𝐴 instead, we would not only unnecessarily limit their use, but we would also need to use set and class axioms, making their relationship to predicate calculus less clear. Using such specific constructs would also be anti-historical; Aristotle and others who directly followed his work focused on relating wholes to their parts, an approach now called part-whole theory. The work of Cantor and Peano (over 2,000 years later) led to a sharper distinction between inclusion () and membership (); this distinction was not directly made in Aristotle's work.

There are some widespread misconceptions about the existential assumptions made by Aristotle (aka "existential import"). Aristotle was not trying to develop something exactly corresponding to modern logic. Aristotle devised "a companion-logic for science. He relegates fictions like fairy godmothers and mermaids and unicorns to the realms of poetry and literature. In his mind, they exist outside the ambit of science. This is why he leaves no room for such nonexistent entities in his logic. This is a thoughtful choice, not an inadvertent omission. Technically, Aristotelian science is a search for definitions, where a definition is "a phrase signifying a thing's essence." (Topics, I.5.102a37, Pickard-Cambridge.)... Because non-existent entities cannot be anything, they do not, in Aristotle's mind, possess an essence... This is why he leaves no place for fictional entities like goat-stags (or unicorns)." Source: Louis F. Groarke, "Aristotle: Logic", section 7. (Existential Assumptions), Internet Encyclopedia of Philosophy (A Peer-Reviewed Academic Resource), http://www.iep.utm.edu/aris-log/ 1845. Thus, some syllogisms have "extra" existence hypotheses that do not directly appear in Aristotle's original materials (since they were always assumed); they are added where they are needed. This affects barbari 2670, celaront 2672, cesaro 2679, camestros 2680, felapton 2687, darapti 2685, calemos 2691, fesapo 2692, and bamalip 2693.

These are only the assertic syllogisms. Aristotle also defined modal syllogisms that deal with modal qualifiers such as "necessarily" and "possibly". Historically, Aristotelian modal syllogisms were not as widely used. For more about modal syllogisms in a modern context, see Rini as well as Aristotle's Modal Syllogistic by Marko Malink, Harvard University Press, November 2013. We do not treat them further here.

Aristotelian logic is essentially the forerunner of predicate calculus (as well as set theory since it discusses membership in groups), while Stoic logic is essentially the forerunner of propositional calculus.

The following twenty-four syllogisms (from barbara 2664 to bamalip 2693) are all proven from { ax-mp 5, ax-1 6, ax-2 7, ax-3 8, ax-gen 1798, ax-4 1812 }, which corresponds in the usual translation to modal logic (a universal (resp. existential) quantifier maps to necessity (resp. possibility)) to the weakest normal modal logic (K). Some proofs could be shortened by using additionally spi 2177 (inference form of sp 2176, which corresponds to the axiom (T) of modal logic), as demonstrated by dariiALT 2667, barbariALT 2671, festinoALT 2676, barocoALT 2678, daraptiALT 2686.

 
Theorembarbara 2664 "Barbara", one of the fundamental syllogisms of Aristotelian logic. All 𝜑 is 𝜓, and all 𝜒 is 𝜑, therefore all 𝜒 is 𝜓. In Aristotelian notation, AAA-1: MaP and SaM therefore SaP. For example, given "All men are mortal" and "Socrates is a man", we can prove "Socrates is mortal". If H is the set of men, M is the set of mortal beings, and S is Socrates, these word phrases can be represented as 𝑥(𝑥𝐻𝑥𝑀) (all men are mortal) and 𝑥(𝑥 = 𝑆𝑥𝐻) (Socrates is a man) therefore 𝑥(𝑥 = 𝑆𝑥𝑀) (Socrates is mortal). Russell and Whitehead note that "the syllogism in Barbara is derived from [syl 17]" (quote after Theorem *2.06 of [WhiteheadRussell] p. 101). Most of the proof is in alsyl 1896. There are a legion of sources for Barbara, including http://www.friesian.com/aristotl.htm 1896, http://plato.stanford.edu/entries/aristotle-logic/ 1896, and https://en.wikipedia.org/wiki/Syllogism 1896. (Contributed by David A. Wheeler, 24-Aug-2016.)
𝑥(𝜑𝜓)    &   𝑥(𝜒𝜑)       𝑥(𝜒𝜓)
 
Theoremcelarent 2665 "Celarent", one of the syllogisms of Aristotelian logic. No 𝜑 is 𝜓, and all 𝜒 is 𝜑, therefore no 𝜒 is 𝜓. Instance of barbara 2664. In Aristotelian notation, EAE-1: MeP and SaM therefore SeP. For example, given the "No reptiles have fur" and "All snakes are reptiles", therefore "No snakes have fur". Example from https://en.wikipedia.org/wiki/Syllogism 2664. (Contributed by David A. Wheeler, 24-Aug-2016.)
𝑥(𝜑 → ¬ 𝜓)    &   𝑥(𝜒𝜑)       𝑥(𝜒 → ¬ 𝜓)
 
Theoremdarii 2666 "Darii", one of the syllogisms of Aristotelian logic. All 𝜑 is 𝜓, and some 𝜒 is 𝜑, therefore some 𝜒 is 𝜓. In Aristotelian notation, AII-1: MaP and SiM therefore SiP. For example, given "All rabbits have fur" and "Some pets are rabbits", therefore "Some pets have fur". Example from https://en.wikipedia.org/wiki/Syllogism. See dariiALT 2667 for a shorter proof requiring more axioms. (Contributed by David A. Wheeler, 24-Aug-2016.) Reduce dependencies on axioms. (Revised by BJ, 16-Sep-2022.)
𝑥(𝜑𝜓)    &   𝑥(𝜒𝜑)       𝑥(𝜒𝜓)
 
TheoremdariiALT 2667 Alternate proof of darii 2666, shorter but using more axioms. This shows how the use of spi 2177 may shorten some proofs of the Aristotelian syllogisms, even though this adds axiom dependencies. Note that spi 2177 is the inference associated with sp 2176, which corresponds to the axiom (T) of modal logic. (Contributed by David A. Wheeler, 27-Aug-2016.) Added precisions on axiom usage. (Revised by BJ, 27-Sep-2022.) (Proof modification is discouraged.) (New usage is discouraged.)
𝑥(𝜑𝜓)    &   𝑥(𝜒𝜑)       𝑥(𝜒𝜓)
 
Theoremferio 2668 "Ferio" ("Ferioque"), one of the syllogisms of Aristotelian logic. No 𝜑 is 𝜓, and some 𝜒 is 𝜑, therefore some 𝜒 is not 𝜓. Instance of darii 2666. In Aristotelian notation, EIO-1: MeP and SiM therefore SoP. For example, given "No homework is fun" and "Some reading is homework", therefore "Some reading is not fun". This is essentially a logical axiom in Aristotelian logic. Example from https://en.wikipedia.org/wiki/Syllogism 2666. (Contributed by David A. Wheeler, 24-Aug-2016.)
𝑥(𝜑 → ¬ 𝜓)    &   𝑥(𝜒𝜑)       𝑥(𝜒 ∧ ¬ 𝜓)
 
Theorembarbarilem 2669 Lemma for barbari 2670 and the other Aristotelian syllogisms with existential assumption. (Contributed by BJ, 16-Sep-2022.)
𝑥𝜑    &   𝑥(𝜑𝜓)       𝑥(𝜑𝜓)
 
Theorembarbari 2670 "Barbari", one of the syllogisms of Aristotelian logic. All 𝜑 is 𝜓, all 𝜒 is 𝜑, and some 𝜒 exist, therefore some 𝜒 is 𝜓. In Aristotelian notation, AAI-1: MaP and SaM therefore SiP. For example, given "All men are mortal", "All Greeks are men", and "Greeks exist", therefore "Some Greeks are mortal". Note the existence hypothesis (to prove the "some" in the conclusion). Example from https://en.wikipedia.org/wiki/Syllogism. (Contributed by David A. Wheeler, 27-Aug-2016.) Reduce dependencies on axioms. (Revised by BJ, 16-Sep-2022.)
𝑥(𝜑𝜓)    &   𝑥(𝜒𝜑)    &   𝑥𝜒       𝑥(𝜒𝜓)
 
TheorembarbariALT 2671 Alternate proof of barbari 2670, shorter but using more axioms. See comment of dariiALT 2667. (Contributed by David A. Wheeler, 27-Aug-2016.) (Proof modification is discouraged.) (New usage is discouraged.)
𝑥(𝜑𝜓)    &   𝑥(𝜒𝜑)    &   𝑥𝜒       𝑥(𝜒𝜓)
 
Theoremcelaront 2672 "Celaront", one of the syllogisms of Aristotelian logic. No 𝜑 is 𝜓, all 𝜒 is 𝜑, and some 𝜒 exist, therefore some 𝜒 is not 𝜓. Instance of barbari 2670. In Aristotelian notation, EAO-1: MeP and SaM therefore SoP. For example, given "No reptiles have fur", "All snakes are reptiles", and "Snakes exist", prove "Some snakes have no fur". Note the existence hypothesis. Example from https://en.wikipedia.org/wiki/Syllogism 2670. (Contributed by David A. Wheeler, 27-Aug-2016.)
𝑥(𝜑 → ¬ 𝜓)    &   𝑥(𝜒𝜑)    &   𝑥𝜒       𝑥(𝜒 ∧ ¬ 𝜓)
 
Theoremcesare 2673 "Cesare", one of the syllogisms of Aristotelian logic. No 𝜑 is 𝜓, and all 𝜒 is 𝜓, therefore no 𝜒 is 𝜑. In Aristotelian notation, EAE-2: PeM and SaM therefore SeP. Related to celarent 2665. (Contributed by David A. Wheeler, 27-Aug-2016.) Reduce dependencies on axioms. (Revised by BJ, 16-Sep-2022.)
𝑥(𝜑 → ¬ 𝜓)    &   𝑥(𝜒𝜓)       𝑥(𝜒 → ¬ 𝜑)
 
Theoremcamestres 2674 "Camestres", one of the syllogisms of Aristotelian logic. All 𝜑 is 𝜓, and no 𝜒 is 𝜓, therefore no 𝜒 is 𝜑. In Aristotelian notation, AEE-2: PaM and SeM therefore SeP. (Contributed by David A. Wheeler, 28-Aug-2016.) Reduce dependencies on axioms. (Revised by BJ, 16-Sep-2022.)
𝑥(𝜑𝜓)    &   𝑥(𝜒 → ¬ 𝜓)       𝑥(𝜒 → ¬ 𝜑)
 
Theoremfestino 2675 "Festino", one of the syllogisms of Aristotelian logic. No 𝜑 is 𝜓, and some 𝜒 is 𝜓, therefore some 𝜒 is not 𝜑. In Aristotelian notation, EIO-2: PeM and SiM therefore SoP. (Contributed by David A. Wheeler, 25-Nov-2016.) Reduce dependencies on axioms. (Revised by BJ, 16-Sep-2022.)
𝑥(𝜑 → ¬ 𝜓)    &   𝑥(𝜒𝜓)       𝑥(𝜒 ∧ ¬ 𝜑)
 
TheoremfestinoALT 2676 Alternate proof of festino 2675, shorter but using more axioms. See comment of dariiALT 2667. (Contributed by David A. Wheeler, 27-Aug-2016.) (Proof modification is discouraged.) (New usage is discouraged.)
𝑥(𝜑 → ¬ 𝜓)    &   𝑥(𝜒𝜓)       𝑥(𝜒 ∧ ¬ 𝜑)
 
Theorembaroco 2677 "Baroco", one of the syllogisms of Aristotelian logic. All 𝜑 is 𝜓, and some 𝜒 is not 𝜓, therefore some 𝜒 is not 𝜑. In Aristotelian notation, AOO-2: PaM and SoM therefore SoP. For example, "All informative things are useful", "Some websites are not useful", therefore "Some websites are not informative". (Contributed by David A. Wheeler, 28-Aug-2016.) Reduce dependencies on axioms. (Revised by BJ, 16-Sep-2022.)
𝑥(𝜑𝜓)    &   𝑥(𝜒 ∧ ¬ 𝜓)       𝑥(𝜒 ∧ ¬ 𝜑)
 
TheorembarocoALT 2678 Alternate proof of festino 2675, shorter but using more axioms. See comment of dariiALT 2667. (Contributed by David A. Wheeler, 27-Aug-2016.) (Proof modification is discouraged.) (New usage is discouraged.)
𝑥(𝜑𝜓)    &   𝑥(𝜒 ∧ ¬ 𝜓)       𝑥(𝜒 ∧ ¬ 𝜑)
 
Theoremcesaro 2679 "Cesaro", one of the syllogisms of Aristotelian logic. No 𝜑 is 𝜓, all 𝜒 is 𝜓, and 𝜒 exist, therefore some 𝜒 is not 𝜑. In Aristotelian notation, EAO-2: PeM and SaM therefore SoP. (Contributed by David A. Wheeler, 28-Aug-2016.) Reduce dependencies on axioms. (Revised by BJ, 16-Sep-2022.)
𝑥(𝜑 → ¬ 𝜓)    &   𝑥(𝜒𝜓)    &   𝑥𝜒       𝑥(𝜒 ∧ ¬ 𝜑)
 
Theoremcamestros 2680 "Camestros", one of the syllogisms of Aristotelian logic. All 𝜑 is 𝜓, no 𝜒 is 𝜓, and 𝜒 exist, therefore some 𝜒 is not 𝜑. In Aristotelian notation, AEO-2: PaM and SeM therefore SoP. For example, "All horses have hooves", "No humans have hooves", and humans exist, therefore "Some humans are not horses". (Contributed by David A. Wheeler, 28-Aug-2016.) Reduce dependencies on axioms. (Revised by BJ, 16-Sep-2022.)
𝑥(𝜑𝜓)    &   𝑥(𝜒 → ¬ 𝜓)    &   𝑥𝜒       𝑥(𝜒 ∧ ¬ 𝜑)
 
Theoremdatisi 2681 "Datisi", one of the syllogisms of Aristotelian logic. All 𝜑 is 𝜓, and some 𝜑 is 𝜒, therefore some 𝜒 is 𝜓. In Aristotelian notation, AII-3: MaP and MiS therefore SiP. (Contributed by David A. Wheeler, 28-Aug-2016.) Shorten and reduce dependencies on axioms. (Revised by BJ, 16-Sep-2022.)
𝑥(𝜑𝜓)    &   𝑥(𝜑𝜒)       𝑥(𝜒𝜓)
 
Theoremdisamis 2682 "Disamis", one of the syllogisms of Aristotelian logic. Some 𝜑 is 𝜓, and all 𝜑 is 𝜒, therefore some 𝜒 is 𝜓. In Aristotelian notation, IAI-3: MiP and MaS therefore SiP. (Contributed by David A. Wheeler, 28-Aug-2016.) Reduce dependencies on axioms. (Revised by BJ, 16-Sep-2022.)
𝑥(𝜑𝜓)    &   𝑥(𝜑𝜒)       𝑥(𝜒𝜓)
 
Theoremferison 2683 "Ferison", one of the syllogisms of Aristotelian logic. No 𝜑 is 𝜓, and some 𝜑 is 𝜒, therefore some 𝜒 is not 𝜓. Instance of datisi 2681. In Aristotelian notation, EIO-3: MeP and MiS therefore SoP. (Contributed by David A. Wheeler, 28-Aug-2016.)
𝑥(𝜑 → ¬ 𝜓)    &   𝑥(𝜑𝜒)       𝑥(𝜒 ∧ ¬ 𝜓)
 
Theorembocardo 2684 "Bocardo", one of the syllogisms of Aristotelian logic. Some 𝜑 is not 𝜓, and all 𝜑 is 𝜒, therefore some 𝜒 is not 𝜓. Instance of disamis 2682. In Aristotelian notation, OAO-3: MoP and MaS therefore SoP. For example, "Some cats have no tails", "All cats are mammals", therefore "Some mammals have no tails". (Contributed by David A. Wheeler, 28-Aug-2016.)
𝑥(𝜑 ∧ ¬ 𝜓)    &   𝑥(𝜑𝜒)       𝑥(𝜒 ∧ ¬ 𝜓)
 
Theoremdarapti 2685 "Darapti", one of the syllogisms of Aristotelian logic. All 𝜑 is 𝜓, all 𝜑 is 𝜒, and some 𝜑 exist, therefore some 𝜒 is 𝜓. In Aristotelian notation, AAI-3: MaP and MaS therefore SiP. For example, "All squares are rectangles" and "All squares are rhombuses", therefore "Some rhombuses are rectangles". (Contributed by David A. Wheeler, 28-Aug-2016.) Reduce dependencies on axioms. (Revised by BJ, 16-Sep-2022.)
𝑥(𝜑𝜓)    &   𝑥(𝜑𝜒)    &   𝑥𝜑       𝑥(𝜒𝜓)
 
TheoremdaraptiALT 2686 Alternate proof of darapti 2685, shorter but using more axioms. See comment of dariiALT 2667. (Contributed by David A. Wheeler, 27-Aug-2016.) (Proof modification is discouraged.) (New usage is discouraged.)
𝑥(𝜑𝜓)    &   𝑥(𝜑𝜒)    &   𝑥𝜑       𝑥(𝜒𝜓)
 
Theoremfelapton 2687 "Felapton", one of the syllogisms of Aristotelian logic. No 𝜑 is 𝜓, all 𝜑 is 𝜒, and some 𝜑 exist, therefore some 𝜒 is not 𝜓. Instance of darapti 2685. In Aristotelian notation, EAO-3: MeP and MaS therefore SoP. For example, "No flowers are animals" and "All flowers are plants", therefore "Some plants are not animals". (Contributed by David A. Wheeler, 28-Aug-2016.)
𝑥(𝜑 → ¬ 𝜓)    &   𝑥(𝜑𝜒)    &   𝑥𝜑       𝑥(𝜒 ∧ ¬ 𝜓)
 
Theoremcalemes 2688 "Calemes", one of the syllogisms of Aristotelian logic. All 𝜑 is 𝜓, and no 𝜓 is 𝜒, therefore no 𝜒 is 𝜑. In Aristotelian notation, AEE-4: PaM and MeS therefore SeP. (Contributed by David A. Wheeler, 28-Aug-2016.) Reduce dependencies on axioms. (Revised by BJ, 16-Sep-2022.)
𝑥(𝜑𝜓)    &   𝑥(𝜓 → ¬ 𝜒)       𝑥(𝜒 → ¬ 𝜑)
 
Theoremdimatis 2689 "Dimatis", one of the syllogisms of Aristotelian logic. Some 𝜑 is 𝜓, and all 𝜓 is 𝜒, therefore some 𝜒 is 𝜑. In Aristotelian notation, IAI-4: PiM and MaS therefore SiP. For example, "Some pets are rabbits", "All rabbits have fur", therefore "Some fur bearing animals are pets". Like darii 2666 with positions interchanged. (Contributed by David A. Wheeler, 28-Aug-2016.) Shorten and reduce dependencies on axioms. (Revised by BJ, 16-Sep-2022.)
𝑥(𝜑𝜓)    &   𝑥(𝜓𝜒)       𝑥(𝜒𝜑)
 
Theoremfresison 2690 "Fresison", one of the syllogisms of Aristotelian logic. No 𝜑 is 𝜓 (PeM), and some 𝜓 is 𝜒 (MiS), therefore some 𝜒 is not 𝜑 (SoP). In Aristotelian notation, EIO-4: PeM and MiS therefore SoP. (Contributed by David A. Wheeler, 28-Aug-2016.) Shorten and reduce dependencies on axioms. (Revised by BJ, 16-Sep-2022.)
𝑥(𝜑 → ¬ 𝜓)    &   𝑥(𝜓𝜒)       𝑥(𝜒 ∧ ¬ 𝜑)
 
Theoremcalemos 2691 "Calemos", one of the syllogisms of Aristotelian logic. All 𝜑 is 𝜓 (PaM), no 𝜓 is 𝜒 (MeS), and 𝜒 exist, therefore some 𝜒 is not 𝜑 (SoP). In Aristotelian notation, AEO-4: PaM and MeS therefore SoP. (Contributed by David A. Wheeler, 28-Aug-2016.) Shorten and reduce dependencies on axioms. (Revised by BJ, 16-Sep-2022.)
𝑥(𝜑𝜓)    &   𝑥(𝜓 → ¬ 𝜒)    &   𝑥𝜒       𝑥(𝜒 ∧ ¬ 𝜑)
 
Theoremfesapo 2692 "Fesapo", one of the syllogisms of Aristotelian logic. No 𝜑 is 𝜓, all 𝜓 is 𝜒, and 𝜓 exist, therefore some 𝜒 is not 𝜑. In Aristotelian notation, EAO-4: PeM and MaS therefore SoP. (Contributed by David A. Wheeler, 28-Aug-2016.) Reduce dependencies on axioms. (Revised by BJ, 16-Sep-2022.)
𝑥(𝜑 → ¬ 𝜓)    &   𝑥(𝜓𝜒)    &   𝑥𝜓       𝑥(𝜒 ∧ ¬ 𝜑)
 
Theorembamalip 2693 "Bamalip", one of the syllogisms of Aristotelian logic. All 𝜑 is 𝜓, all 𝜓 is 𝜒, and 𝜑 exist, therefore some 𝜒 is 𝜑. In Aristotelian notation, AAI-4: PaM and MaS therefore SiP. Very similar to barbari 2670. (Contributed by David A. Wheeler, 28-Aug-2016.) Shorten and reduce dependencies on axioms. (Revised by BJ, 16-Sep-2022.)
𝑥(𝜑𝜓)    &   𝑥(𝜓𝜒)    &   𝑥𝜑       𝑥(𝜒𝜑)
 
1.7.2  Intuitionistic logic

Intuitionistic (constructive) logic is similar to classical logic with the notable omission of ax-3 8 and theorems such as exmid 892 or peirce 201. We mostly treat intuitionistic logic in a separate file, iset.mm, which is known as the Intuitionistic Logic Explorer on the web site. However, iset.mm has a number of additional axioms (mainly to replace definitions like df-or 845 and df-ex 1783 which are not valid in intuitionistic logic) and we want to prove those axioms here to demonstrate that adding those axioms in iset.mm does not make iset.mm any less consistent than set.mm.

The following axioms are unchanged between set.mm and iset.mm: ax-1 6, ax-2 7, ax-mp 5, ax-4 1812, ax-11 2154, ax-gen 1798, ax-7 2011, ax-12 2171, ax-8 2108, ax-9 2116, and ax-5 1913.

In this list of axioms, the ones that repeat earlier theorems are marked "(New usage is discouraged.)" so that the earlier theorems will be used consistently in other proofs.

 
Theoremaxia1 2694 Left 'and' elimination (intuitionistic logic axiom ax-ia1). (Contributed by Jim Kingdon, 21-May-2018.) (New usage is discouraged.)
((𝜑𝜓) → 𝜑)
 
Theoremaxia2 2695 Right 'and' elimination (intuitionistic logic axiom ax-ia2). (Contributed by Jim Kingdon, 21-May-2018.) (New usage is discouraged.)
((𝜑𝜓) → 𝜓)
 
Theoremaxia3 2696 'And' introduction (intuitionistic logic axiom ax-ia3). (Contributed by Jim Kingdon, 21-May-2018.) (New usage is discouraged.)
(𝜑 → (𝜓 → (𝜑𝜓)))
 
Theoremaxin1 2697 'Not' introduction (intuitionistic logic axiom ax-in1). (Contributed by Jim Kingdon, 21-May-2018.) (New usage is discouraged.)
((𝜑 → ¬ 𝜑) → ¬ 𝜑)
 
Theoremaxin2 2698 'Not' elimination (intuitionistic logic axiom ax-in2). (Contributed by Jim Kingdon, 21-May-2018.) (New usage is discouraged.)
𝜑 → (𝜑𝜓))
 
Theoremaxio 2699 Definition of 'or' (intuitionistic logic axiom ax-io). (Contributed by Jim Kingdon, 21-May-2018.) (New usage is discouraged.)
(((𝜑𝜒) → 𝜓) ↔ ((𝜑𝜓) ∧ (𝜒𝜓)))
 
Theoremaxi4 2700 Specialization (intuitionistic logic axiom ax-4). This is just sp 2176 by another name. (Contributed by Jim Kingdon, 31-Dec-2017.) (New usage is discouraged.)
(∀𝑥𝜑𝜑)
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-45000 451 45001-45100 452 45101-45200 453 45201-45300 454 45301-45400 455 45401-45500 456 45501-45600 457 45601-45700 458 45701-45800 459 45801-45900 460 45901-46000 461 46001-46100 462 46101-46200 463 46201-46300 464 46301-46400 465 46401-46500 466 46501-46521
  Copyright terms: Public domain < Previous  Next >