MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bijust Structured version   Visualization version   GIF version

Theorem bijust 204
Description: Theorem used to justify the definition of the biconditional df-bi 206. Instance of bijust0 203. (Contributed by NM, 11-May-1999.)
Assertion
Ref Expression
bijust ¬ ((¬ ((𝜑𝜓) → ¬ (𝜓𝜑)) → ¬ ((𝜑𝜓) → ¬ (𝜓𝜑))) → ¬ (¬ ((𝜑𝜓) → ¬ (𝜓𝜑)) → ¬ ((𝜑𝜓) → ¬ (𝜓𝜑))))

Proof of Theorem bijust
StepHypRef Expression
1 bijust0 203 1 ¬ ((¬ ((𝜑𝜓) → ¬ (𝜓𝜑)) → ¬ ((𝜑𝜓) → ¬ (𝜓𝜑))) → ¬ (¬ ((𝜑𝜓) → ¬ (𝜓𝜑)) → ¬ ((𝜑𝜓) → ¬ (𝜓𝜑))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator