Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-imim21i Structured version   Visualization version   GIF version

Theorem bj-imim21i 34634
Description: Inference associated with bj-imim21 34633. Its associated inference is syl5 34. (Contributed by BJ, 19-Jul-2019.)
Hypothesis
Ref Expression
bj-imim21i.1 (𝜑𝜓)
Assertion
Ref Expression
bj-imim21i ((𝜒 → (𝜓𝜃)) → (𝜒 → (𝜑𝜃)))

Proof of Theorem bj-imim21i
StepHypRef Expression
1 bj-imim21i.1 . 2 (𝜑𝜓)
2 bj-imim21 34633 . 2 ((𝜑𝜓) → ((𝜒 → (𝜓𝜃)) → (𝜒 → (𝜑𝜃))))
31, 2ax-mp 5 1 ((𝜒 → (𝜓𝜃)) → (𝜒 → (𝜑𝜃)))
Colors of variables: wff setvar class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator