| Metamath
Proof Explorer Theorem List (p. 361 of 499) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30893) |
(30894-32416) |
(32417-49836) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | altopthbg 36001 | Alternate ordered pair theorem. (Contributed by Scott Fenton, 14-Apr-2012.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐷 ∈ 𝑊) → (⟪𝐴, 𝐵⟫ = ⟪𝐶, 𝐷⟫ ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) | ||
| Theorem | altopth 36002 | The alternate ordered pair theorem. If two alternate ordered pairs are equal, their first elements are equal and their second elements are equal. Note that 𝐶 and 𝐷 are not required to be a set due to a peculiarity of our specific ordered pair definition, as opposed to the regular ordered pairs used here, which (as in opth 5416), requires 𝐷 to be a set. (Contributed by Scott Fenton, 23-Mar-2012.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ (⟪𝐴, 𝐵⟫ = ⟪𝐶, 𝐷⟫ ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) | ||
| Theorem | altopthb 36003 | Alternate ordered pair theorem with different sethood requirements. See altopth 36002 for more comments. (Contributed by Scott Fenton, 14-Apr-2012.) |
| ⊢ 𝐴 ∈ V & ⊢ 𝐷 ∈ V ⇒ ⊢ (⟪𝐴, 𝐵⟫ = ⟪𝐶, 𝐷⟫ ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) | ||
| Theorem | altopthc 36004 | Alternate ordered pair theorem with different sethood requirements. See altopth 36002 for more comments. (Contributed by Scott Fenton, 14-Apr-2012.) |
| ⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V ⇒ ⊢ (⟪𝐴, 𝐵⟫ = ⟪𝐶, 𝐷⟫ ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) | ||
| Theorem | altopthd 36005 | Alternate ordered pair theorem with different sethood requirements. See altopth 36002 for more comments. (Contributed by Scott Fenton, 14-Apr-2012.) |
| ⊢ 𝐶 ∈ V & ⊢ 𝐷 ∈ V ⇒ ⊢ (⟪𝐴, 𝐵⟫ = ⟪𝐶, 𝐷⟫ ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) | ||
| Theorem | altxpeq1 36006 | Equality for alternate Cartesian products. (Contributed by Scott Fenton, 24-Mar-2012.) |
| ⊢ (𝐴 = 𝐵 → (𝐴 ×× 𝐶) = (𝐵 ×× 𝐶)) | ||
| Theorem | altxpeq2 36007 | Equality for alternate Cartesian products. (Contributed by Scott Fenton, 24-Mar-2012.) |
| ⊢ (𝐴 = 𝐵 → (𝐶 ×× 𝐴) = (𝐶 ×× 𝐵)) | ||
| Theorem | elaltxp 36008* | Membership in alternate Cartesian products. (Contributed by Scott Fenton, 23-Mar-2012.) |
| ⊢ (𝑋 ∈ (𝐴 ×× 𝐵) ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑋 = ⟪𝑥, 𝑦⟫) | ||
| Theorem | altopelaltxp 36009 | Alternate ordered pair membership in a Cartesian product. Note that, unlike opelxp 5652, there is no sethood requirement here. (Contributed by Scott Fenton, 22-Mar-2012.) |
| ⊢ (⟪𝑋, 𝑌⟫ ∈ (𝐴 ×× 𝐵) ↔ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵)) | ||
| Theorem | altxpsspw 36010 | An inclusion rule for alternate Cartesian products. (Contributed by Scott Fenton, 24-Mar-2012.) |
| ⊢ (𝐴 ×× 𝐵) ⊆ 𝒫 𝒫 (𝐴 ∪ 𝒫 𝐵) | ||
| Theorem | altxpexg 36011 | The alternate Cartesian product of two sets is a set. (Contributed by Scott Fenton, 24-Mar-2012.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ×× 𝐵) ∈ V) | ||
| Theorem | rankaltopb 36012 | Compute the rank of an alternate ordered pair. (Contributed by Scott Fenton, 18-Dec-2013.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| ⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ 𝐵 ∈ ∪ (𝑅1 “ On)) → (rank‘⟪𝐴, 𝐵⟫) = suc suc ((rank‘𝐴) ∪ suc (rank‘𝐵))) | ||
| Theorem | nfaltop 36013 | Bound-variable hypothesis builder for alternate ordered pairs. (Contributed by Scott Fenton, 25-Sep-2015.) |
| ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 ⇒ ⊢ Ⅎ𝑥⟪𝐴, 𝐵⟫ | ||
| Theorem | sbcaltop 36014* | Distribution of class substitution over alternate ordered pairs. (Contributed by Scott Fenton, 25-Sep-2015.) |
| ⊢ (𝐴 ∈ V → ⦋𝐴 / 𝑥⦌⟪𝐶, 𝐷⟫ = ⟪⦋𝐴 / 𝑥⦌𝐶, ⦋𝐴 / 𝑥⦌𝐷⟫) | ||
| Syntax | cofs 36015 | Declare the syntax for the outer five segment configuration. |
| class OuterFiveSeg | ||
| Definition | df-ofs 36016* | The outer five segment configuration is an abbreviation for the conditions of the Five Segment Axiom (ax5seg 28914). See brofs 36038 and 5segofs 36039 for how it is used. Definition 2.10 of [Schwabhauser] p. 28. (Contributed by Scott Fenton, 21-Sep-2013.) |
| ⊢ OuterFiveSeg = {〈𝑝, 𝑞〉 ∣ ∃𝑛 ∈ ℕ ∃𝑎 ∈ (𝔼‘𝑛)∃𝑏 ∈ (𝔼‘𝑛)∃𝑐 ∈ (𝔼‘𝑛)∃𝑑 ∈ (𝔼‘𝑛)∃𝑥 ∈ (𝔼‘𝑛)∃𝑦 ∈ (𝔼‘𝑛)∃𝑧 ∈ (𝔼‘𝑛)∃𝑤 ∈ (𝔼‘𝑛)(𝑝 = 〈〈𝑎, 𝑏〉, 〈𝑐, 𝑑〉〉 ∧ 𝑞 = 〈〈𝑥, 𝑦〉, 〈𝑧, 𝑤〉〉 ∧ ((𝑏 Btwn 〈𝑎, 𝑐〉 ∧ 𝑦 Btwn 〈𝑥, 𝑧〉) ∧ (〈𝑎, 𝑏〉Cgr〈𝑥, 𝑦〉 ∧ 〈𝑏, 𝑐〉Cgr〈𝑦, 𝑧〉) ∧ (〈𝑎, 𝑑〉Cgr〈𝑥, 𝑤〉 ∧ 〈𝑏, 𝑑〉Cgr〈𝑦, 𝑤〉)))} | ||
| Theorem | cgrrflx2d 36017 | Deduction form of axcgrrflx 28890. (Contributed by Scott Fenton, 13-Oct-2013.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐴 ∈ (𝔼‘𝑁)) & ⊢ (𝜑 → 𝐵 ∈ (𝔼‘𝑁)) ⇒ ⊢ (𝜑 → 〈𝐴, 𝐵〉Cgr〈𝐵, 𝐴〉) | ||
| Theorem | cgrtr4d 36018 | Deduction form of axcgrtr 28891. (Contributed by Scott Fenton, 13-Oct-2013.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐴 ∈ (𝔼‘𝑁)) & ⊢ (𝜑 → 𝐵 ∈ (𝔼‘𝑁)) & ⊢ (𝜑 → 𝐶 ∈ (𝔼‘𝑁)) & ⊢ (𝜑 → 𝐷 ∈ (𝔼‘𝑁)) & ⊢ (𝜑 → 𝐸 ∈ (𝔼‘𝑁)) & ⊢ (𝜑 → 𝐹 ∈ (𝔼‘𝑁)) & ⊢ (𝜑 → 〈𝐴, 𝐵〉Cgr〈𝐶, 𝐷〉) & ⊢ (𝜑 → 〈𝐴, 𝐵〉Cgr〈𝐸, 𝐹〉) ⇒ ⊢ (𝜑 → 〈𝐶, 𝐷〉Cgr〈𝐸, 𝐹〉) | ||
| Theorem | cgrtr4and 36019 | Deduction form of axcgrtr 28891. (Contributed by Scott Fenton, 13-Oct-2013.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐴 ∈ (𝔼‘𝑁)) & ⊢ (𝜑 → 𝐵 ∈ (𝔼‘𝑁)) & ⊢ (𝜑 → 𝐶 ∈ (𝔼‘𝑁)) & ⊢ (𝜑 → 𝐷 ∈ (𝔼‘𝑁)) & ⊢ (𝜑 → 𝐸 ∈ (𝔼‘𝑁)) & ⊢ (𝜑 → 𝐹 ∈ (𝔼‘𝑁)) & ⊢ ((𝜑 ∧ 𝜓) → 〈𝐴, 𝐵〉Cgr〈𝐶, 𝐷〉) & ⊢ ((𝜑 ∧ 𝜓) → 〈𝐴, 𝐵〉Cgr〈𝐸, 𝐹〉) ⇒ ⊢ ((𝜑 ∧ 𝜓) → 〈𝐶, 𝐷〉Cgr〈𝐸, 𝐹〉) | ||
| Theorem | cgrrflx 36020 | Reflexivity law for congruence. Theorem 2.1 of [Schwabhauser] p. 27. (Contributed by Scott Fenton, 12-Jun-2013.) |
| ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → 〈𝐴, 𝐵〉Cgr〈𝐴, 𝐵〉) | ||
| Theorem | cgrrflxd 36021 | Deduction form of cgrrflx 36020. (Contributed by Scott Fenton, 13-Oct-2013.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐴 ∈ (𝔼‘𝑁)) & ⊢ (𝜑 → 𝐵 ∈ (𝔼‘𝑁)) ⇒ ⊢ (𝜑 → 〈𝐴, 𝐵〉Cgr〈𝐴, 𝐵〉) | ||
| Theorem | cgrcomim 36022 | Congruence commutes on the two sides. Implication version. Theorem 2.2 of [Schwabhauser] p. 27. (Contributed by Scott Fenton, 12-Jun-2013.) |
| ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (〈𝐴, 𝐵〉Cgr〈𝐶, 𝐷〉 → 〈𝐶, 𝐷〉Cgr〈𝐴, 𝐵〉)) | ||
| Theorem | cgrcom 36023 | Congruence commutes between the two sides. (Contributed by Scott Fenton, 12-Jun-2013.) |
| ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (〈𝐴, 𝐵〉Cgr〈𝐶, 𝐷〉 ↔ 〈𝐶, 𝐷〉Cgr〈𝐴, 𝐵〉)) | ||
| Theorem | cgrcomand 36024 | Deduction form of cgrcom 36023. (Contributed by Scott Fenton, 13-Oct-2013.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐴 ∈ (𝔼‘𝑁)) & ⊢ (𝜑 → 𝐵 ∈ (𝔼‘𝑁)) & ⊢ (𝜑 → 𝐶 ∈ (𝔼‘𝑁)) & ⊢ (𝜑 → 𝐷 ∈ (𝔼‘𝑁)) & ⊢ ((𝜑 ∧ 𝜓) → 〈𝐴, 𝐵〉Cgr〈𝐶, 𝐷〉) ⇒ ⊢ ((𝜑 ∧ 𝜓) → 〈𝐶, 𝐷〉Cgr〈𝐴, 𝐵〉) | ||
| Theorem | cgrtr 36025 | Transitivity law for congruence. Theorem 2.3 of [Schwabhauser] p. 27. (Contributed by Scott Fenton, 24-Sep-2013.) |
| ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) → ((〈𝐴, 𝐵〉Cgr〈𝐶, 𝐷〉 ∧ 〈𝐶, 𝐷〉Cgr〈𝐸, 𝐹〉) → 〈𝐴, 𝐵〉Cgr〈𝐸, 𝐹〉)) | ||
| Theorem | cgrtrand 36026 | Deduction form of cgrtr 36025. (Contributed by Scott Fenton, 13-Oct-2013.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐴 ∈ (𝔼‘𝑁)) & ⊢ (𝜑 → 𝐵 ∈ (𝔼‘𝑁)) & ⊢ (𝜑 → 𝐶 ∈ (𝔼‘𝑁)) & ⊢ (𝜑 → 𝐷 ∈ (𝔼‘𝑁)) & ⊢ (𝜑 → 𝐸 ∈ (𝔼‘𝑁)) & ⊢ (𝜑 → 𝐹 ∈ (𝔼‘𝑁)) & ⊢ ((𝜑 ∧ 𝜓) → 〈𝐴, 𝐵〉Cgr〈𝐶, 𝐷〉) & ⊢ ((𝜑 ∧ 𝜓) → 〈𝐶, 𝐷〉Cgr〈𝐸, 𝐹〉) ⇒ ⊢ ((𝜑 ∧ 𝜓) → 〈𝐴, 𝐵〉Cgr〈𝐸, 𝐹〉) | ||
| Theorem | cgrtr3 36027 | Transitivity law for congruence. (Contributed by Scott Fenton, 7-Oct-2013.) |
| ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) → ((〈𝐴, 𝐵〉Cgr〈𝐸, 𝐹〉 ∧ 〈𝐶, 𝐷〉Cgr〈𝐸, 𝐹〉) → 〈𝐴, 𝐵〉Cgr〈𝐶, 𝐷〉)) | ||
| Theorem | cgrtr3and 36028 | Deduction form of cgrtr3 36027. (Contributed by Scott Fenton, 13-Oct-2013.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐴 ∈ (𝔼‘𝑁)) & ⊢ (𝜑 → 𝐵 ∈ (𝔼‘𝑁)) & ⊢ (𝜑 → 𝐶 ∈ (𝔼‘𝑁)) & ⊢ (𝜑 → 𝐷 ∈ (𝔼‘𝑁)) & ⊢ (𝜑 → 𝐸 ∈ (𝔼‘𝑁)) & ⊢ (𝜑 → 𝐹 ∈ (𝔼‘𝑁)) & ⊢ ((𝜑 ∧ 𝜓) → 〈𝐴, 𝐵〉Cgr〈𝐸, 𝐹〉) & ⊢ ((𝜑 ∧ 𝜓) → 〈𝐶, 𝐷〉Cgr〈𝐸, 𝐹〉) ⇒ ⊢ ((𝜑 ∧ 𝜓) → 〈𝐴, 𝐵〉Cgr〈𝐶, 𝐷〉) | ||
| Theorem | cgrcoml 36029 | Congruence commutes on the left. Biconditional version of Theorem 2.4 of [Schwabhauser] p. 27. (Contributed by Scott Fenton, 12-Jun-2013.) |
| ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (〈𝐴, 𝐵〉Cgr〈𝐶, 𝐷〉 ↔ 〈𝐵, 𝐴〉Cgr〈𝐶, 𝐷〉)) | ||
| Theorem | cgrcomr 36030 | Congruence commutes on the right. Biconditional version of Theorem 2.5 of [Schwabhauser] p. 27. (Contributed by Scott Fenton, 12-Jun-2013.) |
| ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (〈𝐴, 𝐵〉Cgr〈𝐶, 𝐷〉 ↔ 〈𝐴, 𝐵〉Cgr〈𝐷, 𝐶〉)) | ||
| Theorem | cgrcomlr 36031 | Congruence commutes on both sides. (Contributed by Scott Fenton, 12-Jun-2013.) |
| ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (〈𝐴, 𝐵〉Cgr〈𝐶, 𝐷〉 ↔ 〈𝐵, 𝐴〉Cgr〈𝐷, 𝐶〉)) | ||
| Theorem | cgrcomland 36032 | Deduction form of cgrcoml 36029. (Contributed by Scott Fenton, 14-Oct-2013.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐴 ∈ (𝔼‘𝑁)) & ⊢ (𝜑 → 𝐵 ∈ (𝔼‘𝑁)) & ⊢ (𝜑 → 𝐶 ∈ (𝔼‘𝑁)) & ⊢ (𝜑 → 𝐷 ∈ (𝔼‘𝑁)) & ⊢ ((𝜑 ∧ 𝜓) → 〈𝐴, 𝐵〉Cgr〈𝐶, 𝐷〉) ⇒ ⊢ ((𝜑 ∧ 𝜓) → 〈𝐵, 𝐴〉Cgr〈𝐶, 𝐷〉) | ||
| Theorem | cgrcomrand 36033 | Deduction form of cgrcoml 36029. (Contributed by Scott Fenton, 14-Oct-2013.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐴 ∈ (𝔼‘𝑁)) & ⊢ (𝜑 → 𝐵 ∈ (𝔼‘𝑁)) & ⊢ (𝜑 → 𝐶 ∈ (𝔼‘𝑁)) & ⊢ (𝜑 → 𝐷 ∈ (𝔼‘𝑁)) & ⊢ ((𝜑 ∧ 𝜓) → 〈𝐴, 𝐵〉Cgr〈𝐶, 𝐷〉) ⇒ ⊢ ((𝜑 ∧ 𝜓) → 〈𝐴, 𝐵〉Cgr〈𝐷, 𝐶〉) | ||
| Theorem | cgrcomlrand 36034 | Deduction form of cgrcomlr 36031. (Contributed by Scott Fenton, 14-Oct-2013.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐴 ∈ (𝔼‘𝑁)) & ⊢ (𝜑 → 𝐵 ∈ (𝔼‘𝑁)) & ⊢ (𝜑 → 𝐶 ∈ (𝔼‘𝑁)) & ⊢ (𝜑 → 𝐷 ∈ (𝔼‘𝑁)) & ⊢ ((𝜑 ∧ 𝜓) → 〈𝐴, 𝐵〉Cgr〈𝐶, 𝐷〉) ⇒ ⊢ ((𝜑 ∧ 𝜓) → 〈𝐵, 𝐴〉Cgr〈𝐷, 𝐶〉) | ||
| Theorem | cgrtriv 36035 | Degenerate segments are congruent. Theorem 2.8 of [Schwabhauser] p. 28. (Contributed by Scott Fenton, 12-Jun-2013.) |
| ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → 〈𝐴, 𝐴〉Cgr〈𝐵, 𝐵〉) | ||
| Theorem | cgrid2 36036 | Identity law for congruence. (Contributed by Scott Fenton, 12-Jun-2013.) |
| ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (〈𝐴, 𝐴〉Cgr〈𝐵, 𝐶〉 → 𝐵 = 𝐶)) | ||
| Theorem | cgrdegen 36037 | Two congruent segments are either both degenerate or both nondegenerate. (Contributed by Scott Fenton, 12-Jun-2013.) |
| ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (〈𝐴, 𝐵〉Cgr〈𝐶, 𝐷〉 → (𝐴 = 𝐵 ↔ 𝐶 = 𝐷))) | ||
| Theorem | brofs 36038 | Binary relation form of the outer five segment predicate. (Contributed by Scott Fenton, 21-Sep-2013.) |
| ⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) → (〈〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉〉 OuterFiveSeg 〈〈𝐸, 𝐹〉, 〈𝐺, 𝐻〉〉 ↔ ((𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐹 Btwn 〈𝐸, 𝐺〉) ∧ (〈𝐴, 𝐵〉Cgr〈𝐸, 𝐹〉 ∧ 〈𝐵, 𝐶〉Cgr〈𝐹, 𝐺〉) ∧ (〈𝐴, 𝐷〉Cgr〈𝐸, 𝐻〉 ∧ 〈𝐵, 𝐷〉Cgr〈𝐹, 𝐻〉)))) | ||
| Theorem | 5segofs 36039 | Rephrase ax5seg 28914 using the outer five segment predicate. Theorem 2.10 of [Schwabhauser] p. 28. (Contributed by Scott Fenton, 21-Sep-2013.) |
| ⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) → ((〈〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉〉 OuterFiveSeg 〈〈𝐸, 𝐹〉, 〈𝐺, 𝐻〉〉 ∧ 𝐴 ≠ 𝐵) → 〈𝐶, 𝐷〉Cgr〈𝐺, 𝐻〉)) | ||
| Theorem | ofscom 36040 | The outer five segment predicate commutes. (Contributed by Scott Fenton, 26-Sep-2013.) |
| ⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) → (〈〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉〉 OuterFiveSeg 〈〈𝐸, 𝐹〉, 〈𝐺, 𝐻〉〉 ↔ 〈〈𝐸, 𝐹〉, 〈𝐺, 𝐻〉〉 OuterFiveSeg 〈〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉〉)) | ||
| Theorem | cgrextend 36041 | Link congruence over a pair of line segments. Theorem 2.11 of [Schwabhauser] p. 29. (Contributed by Scott Fenton, 12-Jun-2013.) |
| ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) → (((𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐸 Btwn 〈𝐷, 𝐹〉) ∧ (〈𝐴, 𝐵〉Cgr〈𝐷, 𝐸〉 ∧ 〈𝐵, 𝐶〉Cgr〈𝐸, 𝐹〉)) → 〈𝐴, 𝐶〉Cgr〈𝐷, 𝐹〉)) | ||
| Theorem | cgrextendand 36042 | Deduction form of cgrextend 36041. (Contributed by Scott Fenton, 14-Oct-2013.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐴 ∈ (𝔼‘𝑁)) & ⊢ (𝜑 → 𝐵 ∈ (𝔼‘𝑁)) & ⊢ (𝜑 → 𝐶 ∈ (𝔼‘𝑁)) & ⊢ (𝜑 → 𝐷 ∈ (𝔼‘𝑁)) & ⊢ (𝜑 → 𝐸 ∈ (𝔼‘𝑁)) & ⊢ (𝜑 → 𝐹 ∈ (𝔼‘𝑁)) & ⊢ ((𝜑 ∧ 𝜓) → 𝐵 Btwn 〈𝐴, 𝐶〉) & ⊢ ((𝜑 ∧ 𝜓) → 𝐸 Btwn 〈𝐷, 𝐹〉) & ⊢ ((𝜑 ∧ 𝜓) → 〈𝐴, 𝐵〉Cgr〈𝐷, 𝐸〉) & ⊢ ((𝜑 ∧ 𝜓) → 〈𝐵, 𝐶〉Cgr〈𝐸, 𝐹〉) ⇒ ⊢ ((𝜑 ∧ 𝜓) → 〈𝐴, 𝐶〉Cgr〈𝐷, 𝐹〉) | ||
| Theorem | segconeq 36043 | Two points that satisfy the conclusion of axsegcon 28903 are identical. Uniqueness portion of Theorem 2.12 of [Schwabhauser] p. 29. (Contributed by Scott Fenton, 12-Jun-2013.) |
| ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) → ((𝑄 ≠ 𝐴 ∧ (𝐴 Btwn 〈𝑄, 𝑋〉 ∧ 〈𝐴, 𝑋〉Cgr〈𝐵, 𝐶〉) ∧ (𝐴 Btwn 〈𝑄, 𝑌〉 ∧ 〈𝐴, 𝑌〉Cgr〈𝐵, 𝐶〉)) → 𝑋 = 𝑌)) | ||
| Theorem | segconeu 36044* | Existential uniqueness version of segconeq 36043. (Contributed by Scott Fenton, 19-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| ⊢ ((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝐶 ≠ 𝐷)) → ∃!𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn 〈𝐶, 𝑟〉 ∧ 〈𝐷, 𝑟〉Cgr〈𝐴, 𝐵〉)) | ||
| Theorem | btwntriv2 36045 | Betweenness always holds for the second endpoint. Theorem 3.1 of [Schwabhauser] p. 30. (Contributed by Scott Fenton, 12-Jun-2013.) |
| ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → 𝐵 Btwn 〈𝐴, 𝐵〉) | ||
| Theorem | btwncomim 36046 | Betweenness commutes. Implication version. Theorem 3.2 of [Schwabhauser] p. 30. (Contributed by Scott Fenton, 12-Jun-2013.) |
| ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝐴 Btwn 〈𝐵, 𝐶〉 → 𝐴 Btwn 〈𝐶, 𝐵〉)) | ||
| Theorem | btwncom 36047 | Betweenness commutes. (Contributed by Scott Fenton, 12-Jun-2013.) |
| ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝐴 Btwn 〈𝐵, 𝐶〉 ↔ 𝐴 Btwn 〈𝐶, 𝐵〉)) | ||
| Theorem | btwncomand 36048 | Deduction form of btwncom 36047. (Contributed by Scott Fenton, 14-Oct-2013.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐴 ∈ (𝔼‘𝑁)) & ⊢ (𝜑 → 𝐵 ∈ (𝔼‘𝑁)) & ⊢ (𝜑 → 𝐶 ∈ (𝔼‘𝑁)) & ⊢ ((𝜑 ∧ 𝜓) → 𝐴 Btwn 〈𝐵, 𝐶〉) ⇒ ⊢ ((𝜑 ∧ 𝜓) → 𝐴 Btwn 〈𝐶, 𝐵〉) | ||
| Theorem | btwntriv1 36049 | Betweenness always holds for the first endpoint. Theorem 3.3 of [Schwabhauser] p. 30. (Contributed by Scott Fenton, 12-Jun-2013.) |
| ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → 𝐴 Btwn 〈𝐴, 𝐵〉) | ||
| Theorem | btwnswapid 36050 | If you can swap the first two arguments of a betweenness statement, then those arguments are identical. Theorem 3.4 of [Schwabhauser] p. 30. (Contributed by Scott Fenton, 12-Jun-2013.) |
| ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → ((𝐴 Btwn 〈𝐵, 𝐶〉 ∧ 𝐵 Btwn 〈𝐴, 𝐶〉) → 𝐴 = 𝐵)) | ||
| Theorem | btwnswapid2 36051 | If you can swap arguments one and three of a betweenness statement, then those arguments are identical. (Contributed by Scott Fenton, 7-Oct-2013.) |
| ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → ((𝐴 Btwn 〈𝐵, 𝐶〉 ∧ 𝐶 Btwn 〈𝐵, 𝐴〉) → 𝐴 = 𝐶)) | ||
| Theorem | btwnintr 36052 | Inner transitivity law for betweenness. Left-hand side of Theorem 3.5 of [Schwabhauser] p. 30. (Contributed by Scott Fenton, 12-Jun-2013.) |
| ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → ((𝐵 Btwn 〈𝐴, 𝐷〉 ∧ 𝐶 Btwn 〈𝐵, 𝐷〉) → 𝐵 Btwn 〈𝐴, 𝐶〉)) | ||
| Theorem | btwnexch3 36053 | Exchange the first endpoint in betweenness. Left-hand side of Theorem 3.6 of [Schwabhauser] p. 30. (Contributed by Scott Fenton, 12-Jun-2013.) |
| ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → ((𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐶 Btwn 〈𝐴, 𝐷〉) → 𝐶 Btwn 〈𝐵, 𝐷〉)) | ||
| Theorem | btwnexch3and 36054 | Deduction form of btwnexch3 36053. (Contributed by Scott Fenton, 13-Oct-2013.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐴 ∈ (𝔼‘𝑁)) & ⊢ (𝜑 → 𝐵 ∈ (𝔼‘𝑁)) & ⊢ (𝜑 → 𝐶 ∈ (𝔼‘𝑁)) & ⊢ (𝜑 → 𝐷 ∈ (𝔼‘𝑁)) & ⊢ ((𝜑 ∧ 𝜓) → 𝐵 Btwn 〈𝐴, 𝐶〉) & ⊢ ((𝜑 ∧ 𝜓) → 𝐶 Btwn 〈𝐴, 𝐷〉) ⇒ ⊢ ((𝜑 ∧ 𝜓) → 𝐶 Btwn 〈𝐵, 𝐷〉) | ||
| Theorem | btwnouttr2 36055 | Outer transitivity law for betweenness. Left-hand side of Theorem 3.1 of [Schwabhauser] p. 30. (Contributed by Scott Fenton, 12-Jun-2013.) |
| ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → ((𝐵 ≠ 𝐶 ∧ 𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐶 Btwn 〈𝐵, 𝐷〉) → 𝐶 Btwn 〈𝐴, 𝐷〉)) | ||
| Theorem | btwnexch2 36056 | Exchange the outer point of two betweenness statements. Right-hand side of Theorem 3.5 of [Schwabhauser] p. 30. (Contributed by Scott Fenton, 14-Jun-2013.) |
| ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → ((𝐵 Btwn 〈𝐴, 𝐷〉 ∧ 𝐶 Btwn 〈𝐵, 𝐷〉) → 𝐶 Btwn 〈𝐴, 𝐷〉)) | ||
| Theorem | btwnouttr 36057 | Outer transitivity law for betweenness. Right-hand side of Theorem 3.7 of [Schwabhauser] p. 30. (Contributed by Scott Fenton, 14-Jun-2013.) |
| ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → ((𝐵 ≠ 𝐶 ∧ 𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐶 Btwn 〈𝐵, 𝐷〉) → 𝐵 Btwn 〈𝐴, 𝐷〉)) | ||
| Theorem | btwnexch 36058 | Outer transitivity law for betweenness. Right-hand side of Theorem 3.6 of [Schwabhauser] p. 30. (Contributed by Scott Fenton, 24-Sep-2013.) |
| ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → ((𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐶 Btwn 〈𝐴, 𝐷〉) → 𝐵 Btwn 〈𝐴, 𝐷〉)) | ||
| Theorem | btwnexchand 36059 | Deduction form of btwnexch 36058. (Contributed by Scott Fenton, 13-Oct-2013.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐴 ∈ (𝔼‘𝑁)) & ⊢ (𝜑 → 𝐵 ∈ (𝔼‘𝑁)) & ⊢ (𝜑 → 𝐶 ∈ (𝔼‘𝑁)) & ⊢ (𝜑 → 𝐷 ∈ (𝔼‘𝑁)) & ⊢ ((𝜑 ∧ 𝜓) → 𝐵 Btwn 〈𝐴, 𝐶〉) & ⊢ ((𝜑 ∧ 𝜓) → 𝐶 Btwn 〈𝐴, 𝐷〉) ⇒ ⊢ ((𝜑 ∧ 𝜓) → 𝐵 Btwn 〈𝐴, 𝐷〉) | ||
| Theorem | btwndiff 36060* | There is always a 𝑐 distinct from 𝐵 such that 𝐵 lies between 𝐴 and 𝑐. Theorem 3.14 of [Schwabhauser] p. 32. (Contributed by Scott Fenton, 24-Sep-2013.) |
| ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → ∃𝑐 ∈ (𝔼‘𝑁)(𝐵 Btwn 〈𝐴, 𝑐〉 ∧ 𝐵 ≠ 𝑐)) | ||
| Theorem | trisegint 36061* | A line segment between two sides of a triange intersects a segment crossing from the remaining side to the opposite vertex. Theorem 3.17 of [Schwabhauser] p. 33. (Contributed by Scott Fenton, 24-Sep-2013.) |
| ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) → ((𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐸 Btwn 〈𝐷, 𝐶〉 ∧ 𝑃 Btwn 〈𝐴, 𝐷〉) → ∃𝑞 ∈ (𝔼‘𝑁)(𝑞 Btwn 〈𝑃, 𝐶〉 ∧ 𝑞 Btwn 〈𝐵, 𝐸〉))) | ||
| Syntax | ctransport 36062 | Declare the syntax for the segment transport function. |
| class TransportTo | ||
| Definition | df-transport 36063* | Define the segment transport function. See fvtransport 36065 for an explanation of the function. (Contributed by Scott Fenton, 18-Oct-2013.) |
| ⊢ TransportTo = {〈〈𝑝, 𝑞〉, 𝑥〉 ∣ ∃𝑛 ∈ ℕ ((𝑝 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ 𝑞 ∈ ((𝔼‘𝑛) × (𝔼‘𝑛)) ∧ (1st ‘𝑞) ≠ (2nd ‘𝑞)) ∧ 𝑥 = (℩𝑟 ∈ (𝔼‘𝑛)((2nd ‘𝑞) Btwn 〈(1st ‘𝑞), 𝑟〉 ∧ 〈(2nd ‘𝑞), 𝑟〉Cgr𝑝)))} | ||
| Theorem | funtransport 36064 | The TransportTo relationship is a function. (Contributed by Scott Fenton, 18-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| ⊢ Fun TransportTo | ||
| Theorem | fvtransport 36065* | Calculate the value of the TransportTo function. This function takes four points, 𝐴 through 𝐷, where 𝐶 and 𝐷 are distinct. It then returns the point that extends 𝐶𝐷 by the length of 𝐴𝐵. (Contributed by Scott Fenton, 18-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| ⊢ ((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝐶 ≠ 𝐷)) → (〈𝐴, 𝐵〉TransportTo〈𝐶, 𝐷〉) = (℩𝑟 ∈ (𝔼‘𝑁)(𝐷 Btwn 〈𝐶, 𝑟〉 ∧ 〈𝐷, 𝑟〉Cgr〈𝐴, 𝐵〉))) | ||
| Theorem | transportcl 36066 | Closure law for segment transport. (Contributed by Scott Fenton, 19-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| ⊢ ((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝐶 ≠ 𝐷)) → (〈𝐴, 𝐵〉TransportTo〈𝐶, 𝐷〉) ∈ (𝔼‘𝑁)) | ||
| Theorem | transportprops 36067 | Calculate the defining properties of the transport function. (Contributed by Scott Fenton, 19-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| ⊢ ((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ 𝐶 ≠ 𝐷)) → (𝐷 Btwn 〈𝐶, (〈𝐴, 𝐵〉TransportTo〈𝐶, 𝐷〉)〉 ∧ 〈𝐷, (〈𝐴, 𝐵〉TransportTo〈𝐶, 𝐷〉)〉Cgr〈𝐴, 𝐵〉)) | ||
| Syntax | cifs 36068 | Declare the syntax for the inner five segment predicate. |
| class InnerFiveSeg | ||
| Syntax | ccgr3 36069 | Declare the syntax for the three place congruence predicate. |
| class Cgr3 | ||
| Syntax | ccolin 36070 | Declare the syntax for the colinearity predicate. |
| class Colinear | ||
| Syntax | cfs 36071 | Declare the syntax for the five segment predicate. |
| class FiveSeg | ||
| Definition | df-colinear 36072* | The colinearity predicate states that the three points in its arguments sit on one line. Definition 4.10 of [Schwabhauser] p. 36. (Contributed by Scott Fenton, 25-Oct-2013.) |
| ⊢ Colinear = ◡{〈〈𝑏, 𝑐〉, 𝑎〉 ∣ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑐 ∈ (𝔼‘𝑛)) ∧ (𝑎 Btwn 〈𝑏, 𝑐〉 ∨ 𝑏 Btwn 〈𝑐, 𝑎〉 ∨ 𝑐 Btwn 〈𝑎, 𝑏〉))} | ||
| Definition | df-ifs 36073* | The inner five segment configuration is an abbreviation for another congruence condition. See brifs 36076 and ifscgr 36077 for how it is used. Definition 4.1 of [Schwabhauser] p. 34. (Contributed by Scott Fenton, 26-Sep-2013.) |
| ⊢ InnerFiveSeg = {〈𝑝, 𝑞〉 ∣ ∃𝑛 ∈ ℕ ∃𝑎 ∈ (𝔼‘𝑛)∃𝑏 ∈ (𝔼‘𝑛)∃𝑐 ∈ (𝔼‘𝑛)∃𝑑 ∈ (𝔼‘𝑛)∃𝑥 ∈ (𝔼‘𝑛)∃𝑦 ∈ (𝔼‘𝑛)∃𝑧 ∈ (𝔼‘𝑛)∃𝑤 ∈ (𝔼‘𝑛)(𝑝 = 〈〈𝑎, 𝑏〉, 〈𝑐, 𝑑〉〉 ∧ 𝑞 = 〈〈𝑥, 𝑦〉, 〈𝑧, 𝑤〉〉 ∧ ((𝑏 Btwn 〈𝑎, 𝑐〉 ∧ 𝑦 Btwn 〈𝑥, 𝑧〉) ∧ (〈𝑎, 𝑐〉Cgr〈𝑥, 𝑧〉 ∧ 〈𝑏, 𝑐〉Cgr〈𝑦, 𝑧〉) ∧ (〈𝑎, 𝑑〉Cgr〈𝑥, 𝑤〉 ∧ 〈𝑐, 𝑑〉Cgr〈𝑧, 𝑤〉)))} | ||
| Definition | df-cgr3 36074* | The three place congruence predicate. This is an abbreviation for saying that all three pair in a triple are congruent with each other. Three place form of Definition 4.4 of [Schwabhauser] p. 35. (Contributed by Scott Fenton, 4-Oct-2013.) |
| ⊢ Cgr3 = {〈𝑝, 𝑞〉 ∣ ∃𝑛 ∈ ℕ ∃𝑎 ∈ (𝔼‘𝑛)∃𝑏 ∈ (𝔼‘𝑛)∃𝑐 ∈ (𝔼‘𝑛)∃𝑑 ∈ (𝔼‘𝑛)∃𝑒 ∈ (𝔼‘𝑛)∃𝑓 ∈ (𝔼‘𝑛)(𝑝 = 〈𝑎, 〈𝑏, 𝑐〉〉 ∧ 𝑞 = 〈𝑑, 〈𝑒, 𝑓〉〉 ∧ (〈𝑎, 𝑏〉Cgr〈𝑑, 𝑒〉 ∧ 〈𝑎, 𝑐〉Cgr〈𝑑, 𝑓〉 ∧ 〈𝑏, 𝑐〉Cgr〈𝑒, 𝑓〉))} | ||
| Definition | df-fs 36075* | The general five segment configuration is a generalization of the outer and inner five segment configurations. See brfs 36112 and fscgr 36113 for its use. Definition 4.15 of [Schwabhauser] p. 37. (Contributed by Scott Fenton, 5-Oct-2013.) |
| ⊢ FiveSeg = {〈𝑝, 𝑞〉 ∣ ∃𝑛 ∈ ℕ ∃𝑎 ∈ (𝔼‘𝑛)∃𝑏 ∈ (𝔼‘𝑛)∃𝑐 ∈ (𝔼‘𝑛)∃𝑑 ∈ (𝔼‘𝑛)∃𝑥 ∈ (𝔼‘𝑛)∃𝑦 ∈ (𝔼‘𝑛)∃𝑧 ∈ (𝔼‘𝑛)∃𝑤 ∈ (𝔼‘𝑛)(𝑝 = 〈〈𝑎, 𝑏〉, 〈𝑐, 𝑑〉〉 ∧ 𝑞 = 〈〈𝑥, 𝑦〉, 〈𝑧, 𝑤〉〉 ∧ (𝑎 Colinear 〈𝑏, 𝑐〉 ∧ 〈𝑎, 〈𝑏, 𝑐〉〉Cgr3〈𝑥, 〈𝑦, 𝑧〉〉 ∧ (〈𝑎, 𝑑〉Cgr〈𝑥, 𝑤〉 ∧ 〈𝑏, 𝑑〉Cgr〈𝑦, 𝑤〉)))} | ||
| Theorem | brifs 36076 | Binary relation form of the inner five segment predicate. (Contributed by Scott Fenton, 26-Sep-2013.) |
| ⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) → (〈〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉〉 InnerFiveSeg 〈〈𝐸, 𝐹〉, 〈𝐺, 𝐻〉〉 ↔ ((𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐹 Btwn 〈𝐸, 𝐺〉) ∧ (〈𝐴, 𝐶〉Cgr〈𝐸, 𝐺〉 ∧ 〈𝐵, 𝐶〉Cgr〈𝐹, 𝐺〉) ∧ (〈𝐴, 𝐷〉Cgr〈𝐸, 𝐻〉 ∧ 〈𝐶, 𝐷〉Cgr〈𝐺, 𝐻〉)))) | ||
| Theorem | ifscgr 36077 | Inner five segment congruence. Take two triangles, 𝐴𝐷𝐶 and 𝐸𝐻𝐺, with 𝐵 between 𝐴 and 𝐶 and 𝐹 between 𝐸 and 𝐺. If the other components of the triangles are congruent, then so are 𝐵𝐷 and 𝐹𝐻. Theorem 4.2 of [Schwabhauser] p. 34. (Contributed by Scott Fenton, 27-Sep-2013.) |
| ⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) → (〈〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉〉 InnerFiveSeg 〈〈𝐸, 𝐹〉, 〈𝐺, 𝐻〉〉 → 〈𝐵, 𝐷〉Cgr〈𝐹, 𝐻〉)) | ||
| Theorem | cgrsub 36078 | Removing identical parts from the end of a line segment preserves congruence. Theorem 4.3 of [Schwabhauser] p. 35. (Contributed by Scott Fenton, 4-Oct-2013.) |
| ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) → (((𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐸 Btwn 〈𝐷, 𝐹〉) ∧ (〈𝐴, 𝐶〉Cgr〈𝐷, 𝐹〉 ∧ 〈𝐵, 𝐶〉Cgr〈𝐸, 𝐹〉)) → 〈𝐴, 𝐵〉Cgr〈𝐷, 𝐸〉)) | ||
| Theorem | brcgr3 36079 | Binary relation form of the three-place congruence predicate. (Contributed by Scott Fenton, 4-Oct-2013.) |
| ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) → (〈𝐴, 〈𝐵, 𝐶〉〉Cgr3〈𝐷, 〈𝐸, 𝐹〉〉 ↔ (〈𝐴, 𝐵〉Cgr〈𝐷, 𝐸〉 ∧ 〈𝐴, 𝐶〉Cgr〈𝐷, 𝐹〉 ∧ 〈𝐵, 𝐶〉Cgr〈𝐸, 𝐹〉))) | ||
| Theorem | cgr3permute3 36080 | Permutation law for three-place congruence. (Contributed by Scott Fenton, 5-Oct-2013.) |
| ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) → (〈𝐴, 〈𝐵, 𝐶〉〉Cgr3〈𝐷, 〈𝐸, 𝐹〉〉 ↔ 〈𝐵, 〈𝐶, 𝐴〉〉Cgr3〈𝐸, 〈𝐹, 𝐷〉〉)) | ||
| Theorem | cgr3permute1 36081 | Permutation law for three-place congruence. (Contributed by Scott Fenton, 5-Oct-2013.) |
| ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) → (〈𝐴, 〈𝐵, 𝐶〉〉Cgr3〈𝐷, 〈𝐸, 𝐹〉〉 ↔ 〈𝐴, 〈𝐶, 𝐵〉〉Cgr3〈𝐷, 〈𝐹, 𝐸〉〉)) | ||
| Theorem | cgr3permute2 36082 | Permutation law for three-place congruence. (Contributed by Scott Fenton, 5-Oct-2013.) |
| ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) → (〈𝐴, 〈𝐵, 𝐶〉〉Cgr3〈𝐷, 〈𝐸, 𝐹〉〉 ↔ 〈𝐵, 〈𝐴, 𝐶〉〉Cgr3〈𝐸, 〈𝐷, 𝐹〉〉)) | ||
| Theorem | cgr3permute4 36083 | Permutation law for three-place congruence. (Contributed by Scott Fenton, 5-Oct-2013.) |
| ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) → (〈𝐴, 〈𝐵, 𝐶〉〉Cgr3〈𝐷, 〈𝐸, 𝐹〉〉 ↔ 〈𝐶, 〈𝐴, 𝐵〉〉Cgr3〈𝐹, 〈𝐷, 𝐸〉〉)) | ||
| Theorem | cgr3permute5 36084 | Permutation law for three-place congruence. (Contributed by Scott Fenton, 5-Oct-2013.) |
| ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) → (〈𝐴, 〈𝐵, 𝐶〉〉Cgr3〈𝐷, 〈𝐸, 𝐹〉〉 ↔ 〈𝐶, 〈𝐵, 𝐴〉〉Cgr3〈𝐹, 〈𝐸, 𝐷〉〉)) | ||
| Theorem | cgr3tr4 36085 | Transitivity law for three-place congruence. (Contributed by Scott Fenton, 5-Oct-2013.) |
| ⊢ ((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁)) ∧ (𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁) ∧ 𝐼 ∈ (𝔼‘𝑁)))) → ((〈𝐴, 〈𝐵, 𝐶〉〉Cgr3〈𝐷, 〈𝐸, 𝐹〉〉 ∧ 〈𝐴, 〈𝐵, 𝐶〉〉Cgr3〈𝐺, 〈𝐻, 𝐼〉〉) → 〈𝐷, 〈𝐸, 𝐹〉〉Cgr3〈𝐺, 〈𝐻, 𝐼〉〉)) | ||
| Theorem | cgr3com 36086 | Commutativity law for three-place congruence. (Contributed by Scott Fenton, 5-Oct-2013.) |
| ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) → (〈𝐴, 〈𝐵, 𝐶〉〉Cgr3〈𝐷, 〈𝐸, 𝐹〉〉 ↔ 〈𝐷, 〈𝐸, 𝐹〉〉Cgr3〈𝐴, 〈𝐵, 𝐶〉〉)) | ||
| Theorem | cgr3rflx 36087 | Identity law for three-place congruence. (Contributed by Scott Fenton, 6-Oct-2013.) |
| ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → 〈𝐴, 〈𝐵, 𝐶〉〉Cgr3〈𝐴, 〈𝐵, 𝐶〉〉) | ||
| Theorem | cgrxfr 36088* | A line segment can be divided at the same place as a congruent line segment is divided. Theorem 4.5 of [Schwabhauser] p. 35. (Contributed by Scott Fenton, 4-Oct-2013.) |
| ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) → ((𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 〈𝐴, 𝐶〉Cgr〈𝐷, 𝐹〉) → ∃𝑒 ∈ (𝔼‘𝑁)(𝑒 Btwn 〈𝐷, 𝐹〉 ∧ 〈𝐴, 〈𝐵, 𝐶〉〉Cgr3〈𝐷, 〈𝑒, 𝐹〉〉))) | ||
| Theorem | btwnxfr 36089 | A condition for extending betweenness to a new set of points based on congruence with another set of points. Theorem 4.6 of [Schwabhauser] p. 36. (Contributed by Scott Fenton, 4-Oct-2013.) |
| ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) → ((𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 〈𝐴, 〈𝐵, 𝐶〉〉Cgr3〈𝐷, 〈𝐸, 𝐹〉〉) → 𝐸 Btwn 〈𝐷, 𝐹〉)) | ||
| Theorem | colinrel 36090 | Colinearity is a relationship. (Contributed by Scott Fenton, 7-Nov-2013.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| ⊢ Rel Colinear | ||
| Theorem | brcolinear2 36091* | Alternate colinearity binary relation. (Contributed by Scott Fenton, 7-Nov-2013.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| ⊢ ((𝑄 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → (𝑃 Colinear 〈𝑄, 𝑅〉 ↔ ∃𝑛 ∈ ℕ ((𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛) ∧ 𝑅 ∈ (𝔼‘𝑛)) ∧ (𝑃 Btwn 〈𝑄, 𝑅〉 ∨ 𝑄 Btwn 〈𝑅, 𝑃〉 ∨ 𝑅 Btwn 〈𝑃, 𝑄〉)))) | ||
| Theorem | brcolinear 36092 | The binary relation form of the colinearity predicate. (Contributed by Scott Fenton, 5-Oct-2013.) |
| ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝐴 Colinear 〈𝐵, 𝐶〉 ↔ (𝐴 Btwn 〈𝐵, 𝐶〉 ∨ 𝐵 Btwn 〈𝐶, 𝐴〉 ∨ 𝐶 Btwn 〈𝐴, 𝐵〉))) | ||
| Theorem | colinearex 36093 | The colinear predicate exists. (Contributed by Scott Fenton, 25-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| ⊢ Colinear ∈ V | ||
| Theorem | colineardim1 36094 | If 𝐴 is colinear with 𝐵 and 𝐶, then 𝐴 is in the same space as 𝐵. (Contributed by Scott Fenton, 25-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.) |
| ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ 𝑊)) → (𝐴 Colinear 〈𝐵, 𝐶〉 → 𝐴 ∈ (𝔼‘𝑁))) | ||
| Theorem | colinearperm1 36095 | Permutation law for colinearity. Part of theorem 4.11 of [Schwabhauser] p. 36. (Contributed by Scott Fenton, 5-Oct-2013.) |
| ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝐴 Colinear 〈𝐵, 𝐶〉 ↔ 𝐴 Colinear 〈𝐶, 𝐵〉)) | ||
| Theorem | colinearperm3 36096 | Permutation law for colinearity. Part of theorem 4.11 of [Schwabhauser] p. 36. (Contributed by Scott Fenton, 5-Oct-2013.) |
| ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝐴 Colinear 〈𝐵, 𝐶〉 ↔ 𝐵 Colinear 〈𝐶, 𝐴〉)) | ||
| Theorem | colinearperm2 36097 | Permutation law for colinearity. Part of theorem 4.11 of [Schwabhauser] p. 36. (Contributed by Scott Fenton, 5-Oct-2013.) |
| ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝐴 Colinear 〈𝐵, 𝐶〉 ↔ 𝐵 Colinear 〈𝐴, 𝐶〉)) | ||
| Theorem | colinearperm4 36098 | Permutation law for colinearity. Part of theorem 4.11 of [Schwabhauser] p. 36. (Contributed by Scott Fenton, 5-Oct-2013.) |
| ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝐴 Colinear 〈𝐵, 𝐶〉 ↔ 𝐶 Colinear 〈𝐴, 𝐵〉)) | ||
| Theorem | colinearperm5 36099 | Permutation law for colinearity. Part of theorem 4.11 of [Schwabhauser] p. 36. (Contributed by Scott Fenton, 5-Oct-2013.) |
| ⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝐴 Colinear 〈𝐵, 𝐶〉 ↔ 𝐶 Colinear 〈𝐵, 𝐴〉)) | ||
| Theorem | colineartriv1 36100 | Trivial case of colinearity. Theorem 4.12 of [Schwabhauser] p. 37. (Contributed by Scott Fenton, 5-Oct-2013.) |
| ⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → 𝐴 Colinear 〈𝐴, 𝐵〉) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |