![]() |
Metamath
Proof Explorer Theorem List (p. 361 of 437) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-28364) |
![]() (28365-29889) |
![]() (29890-43671) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | paddass 36001 | Projective subspace sum is associative. Equation 16.2.1 of [MaedaMaeda] p. 68. In our version, the subspaces do not have to be nonempty. (Contributed by NM, 29-Dec-2011.) |
⊢ 𝐴 = (Atoms‘𝐾) & ⊢ + = (+𝑃‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴)) → ((𝑋 + 𝑌) + 𝑍) = (𝑋 + (𝑌 + 𝑍))) | ||
Theorem | padd12N 36002 | Commutative/associative law for projective subspace sum. (Contributed by NM, 14-Jan-2012.) (New usage is discouraged.) |
⊢ 𝐴 = (Atoms‘𝐾) & ⊢ + = (+𝑃‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴)) → (𝑋 + (𝑌 + 𝑍)) = (𝑌 + (𝑋 + 𝑍))) | ||
Theorem | padd4N 36003 | Rearrangement of 4 terms in a projective subspace sum. (Contributed by NM, 14-Jan-2012.) (New usage is discouraged.) |
⊢ 𝐴 = (Atoms‘𝐾) & ⊢ + = (+𝑃‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑍 ⊆ 𝐴 ∧ 𝑊 ⊆ 𝐴)) → ((𝑋 + 𝑌) + (𝑍 + 𝑊)) = ((𝑋 + 𝑍) + (𝑌 + 𝑊))) | ||
Theorem | paddidm 36004 | Projective subspace sum is idempotent. Part of Lemma 16.2 of [MaedaMaeda] p. 68. (Contributed by NM, 13-Jan-2012.) |
⊢ 𝑆 = (PSubSp‘𝐾) & ⊢ + = (+𝑃‘𝐾) ⇒ ⊢ ((𝐾 ∈ 𝐵 ∧ 𝑋 ∈ 𝑆) → (𝑋 + 𝑋) = 𝑋) | ||
Theorem | paddclN 36005 | The projective sum of two subspaces is a subspace. Part of Lemma 16.2 of [MaedaMaeda] p. 68. (Contributed by NM, 14-Jan-2012.) (New usage is discouraged.) |
⊢ 𝑆 = (PSubSp‘𝐾) & ⊢ + = (+𝑃‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) → (𝑋 + 𝑌) ∈ 𝑆) | ||
Theorem | paddssw1 36006 | Subset law for projective subspace sum valid for all subsets of atoms. (Contributed by NM, 14-Mar-2012.) |
⊢ 𝐴 = (Atoms‘𝐾) & ⊢ + = (+𝑃‘𝐾) ⇒ ⊢ ((𝐾 ∈ 𝐵 ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴)) → ((𝑋 ⊆ 𝑍 ∧ 𝑌 ⊆ 𝑍) → (𝑋 + 𝑌) ⊆ (𝑍 + 𝑍))) | ||
Theorem | paddssw2 36007 | Subset law for projective subspace sum valid for all subsets of atoms. (Contributed by NM, 14-Mar-2012.) |
⊢ 𝐴 = (Atoms‘𝐾) & ⊢ + = (+𝑃‘𝐾) ⇒ ⊢ ((𝐾 ∈ 𝐵 ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴)) → ((𝑋 + 𝑌) ⊆ 𝑍 → (𝑋 ⊆ 𝑍 ∧ 𝑌 ⊆ 𝑍))) | ||
Theorem | paddss 36008 | Subset law for projective subspace sum. (unss 4010 analog.) (Contributed by NM, 7-Mar-2012.) |
⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑆 = (PSubSp‘𝐾) & ⊢ + = (+𝑃‘𝐾) ⇒ ⊢ ((𝐾 ∈ 𝐵 ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ∈ 𝑆)) → ((𝑋 ⊆ 𝑍 ∧ 𝑌 ⊆ 𝑍) ↔ (𝑋 + 𝑌) ⊆ 𝑍)) | ||
Theorem | pmodlem1 36009* | Lemma for pmod1i 36011. (Contributed by NM, 9-Mar-2012.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑆 = (PSubSp‘𝐾) & ⊢ + = (+𝑃‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) ∧ (𝑍 ∈ 𝑆 ∧ 𝑋 ⊆ 𝑍 ∧ 𝑝 ∈ 𝑍) ∧ (𝑞 ∈ 𝑋 ∧ 𝑟 ∈ 𝑌 ∧ 𝑝 ≤ (𝑞 ∨ 𝑟))) → 𝑝 ∈ (𝑋 + (𝑌 ∩ 𝑍))) | ||
Theorem | pmodlem2 36010 | Lemma for pmod1i 36011. (Contributed by NM, 9-Mar-2012.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑆 = (PSubSp‘𝐾) & ⊢ + = (+𝑃‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ∈ 𝑆) ∧ 𝑋 ⊆ 𝑍) → ((𝑋 + 𝑌) ∩ 𝑍) ⊆ (𝑋 + (𝑌 ∩ 𝑍))) | ||
Theorem | pmod1i 36011 | The modular law holds in a projective subspace. (Contributed by NM, 10-Mar-2012.) |
⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑆 = (PSubSp‘𝐾) & ⊢ + = (+𝑃‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ∈ 𝑆)) → (𝑋 ⊆ 𝑍 → ((𝑋 + 𝑌) ∩ 𝑍) = (𝑋 + (𝑌 ∩ 𝑍)))) | ||
Theorem | pmod2iN 36012 | Dual of the modular law. (Contributed by NM, 8-Apr-2012.) (New usage is discouraged.) |
⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑆 = (PSubSp‘𝐾) & ⊢ + = (+𝑃‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑆 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴)) → (𝑍 ⊆ 𝑋 → ((𝑋 ∩ 𝑌) + 𝑍) = (𝑋 ∩ (𝑌 + 𝑍)))) | ||
Theorem | pmodN 36013 | The modular law for projective subspaces. (Contributed by NM, 26-Mar-2012.) (New usage is discouraged.) |
⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑆 = (PSubSp‘𝐾) & ⊢ + = (+𝑃‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑆 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴)) → (𝑋 ∩ (𝑌 + (𝑋 ∩ 𝑍))) = ((𝑋 ∩ 𝑌) + (𝑋 ∩ 𝑍))) | ||
Theorem | pmodl42N 36014 | Lemma derived from modular law. (Contributed by NM, 8-Apr-2012.) (New usage is discouraged.) |
⊢ 𝑆 = (PSubSp‘𝐾) & ⊢ + = (+𝑃‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) ∧ (𝑍 ∈ 𝑆 ∧ 𝑊 ∈ 𝑆)) → (((𝑋 + 𝑌) + 𝑍) ∩ ((𝑋 + 𝑌) + 𝑊)) = ((𝑋 + 𝑌) + ((𝑋 + 𝑍) ∩ (𝑌 + 𝑊)))) | ||
Theorem | pmapjoin 36015 | The projective map of the join of two lattice elements. Part of Equation 15.5.3 of [MaedaMaeda] p. 63. (Contributed by NM, 27-Jan-2012.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝑀 = (pmap‘𝐾) & ⊢ + = (+𝑃‘𝐾) ⇒ ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑀‘𝑋) + (𝑀‘𝑌)) ⊆ (𝑀‘(𝑋 ∨ 𝑌))) | ||
Theorem | pmapjat1 36016 | The projective map of the join of a lattice element and an atom. (Contributed by NM, 28-Jan-2012.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑀 = (pmap‘𝐾) & ⊢ + = (+𝑃‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴) → (𝑀‘(𝑋 ∨ 𝑄)) = ((𝑀‘𝑋) + (𝑀‘𝑄))) | ||
Theorem | pmapjat2 36017 | The projective map of the join of an atom with a lattice element. (Contributed by NM, 12-May-2012.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑀 = (pmap‘𝐾) & ⊢ + = (+𝑃‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴) → (𝑀‘(𝑄 ∨ 𝑋)) = ((𝑀‘𝑄) + (𝑀‘𝑋))) | ||
Theorem | pmapjlln1 36018 | The projective map of the join of a lattice element and a lattice line (expressed as the join 𝑄 ∨ 𝑅 of two atoms). (Contributed by NM, 16-Sep-2012.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑀 = (pmap‘𝐾) & ⊢ + = (+𝑃‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → (𝑀‘(𝑋 ∨ (𝑄 ∨ 𝑅))) = ((𝑀‘𝑋) + (𝑀‘(𝑄 ∨ 𝑅)))) | ||
Theorem | hlmod1i 36019 | A version of the modular law pmod1i 36011 that holds in a Hilbert lattice. (Contributed by NM, 13-May-2012.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐹 = (pmap‘𝐾) & ⊢ + = (+𝑃‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 ≤ 𝑍 ∧ (𝐹‘(𝑋 ∨ 𝑌)) = ((𝐹‘𝑋) + (𝐹‘𝑌))) → ((𝑋 ∨ 𝑌) ∧ 𝑍) = (𝑋 ∨ (𝑌 ∧ 𝑍)))) | ||
Theorem | atmod1i1 36020 | Version of modular law pmod1i 36011 that holds in a Hilbert lattice, when one element is an atom. (Contributed by NM, 11-May-2012.) (Revised by Mario Carneiro, 10-May-2013.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑃 ≤ 𝑌) → (𝑃 ∨ (𝑋 ∧ 𝑌)) = ((𝑃 ∨ 𝑋) ∧ 𝑌)) | ||
Theorem | atmod1i1m 36021 | Version of modular law pmod1i 36011 that holds in a Hilbert lattice, when an element meets an atom. (Contributed by NM, 2-Sep-2012.) (Revised by Mario Carneiro, 10-May-2013.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴) ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ (𝑋 ∧ 𝑃) ≤ 𝑍) → ((𝑋 ∧ 𝑃) ∨ (𝑌 ∧ 𝑍)) = (((𝑋 ∧ 𝑃) ∨ 𝑌) ∧ 𝑍)) | ||
Theorem | atmod1i2 36022 | Version of modular law pmod1i 36011 that holds in a Hilbert lattice, when one element is an atom. (Contributed by NM, 14-May-2012.) (Revised by Mario Carneiro, 10-May-2013.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑋 ≤ 𝑌) → (𝑋 ∨ (𝑃 ∧ 𝑌)) = ((𝑋 ∨ 𝑃) ∧ 𝑌)) | ||
Theorem | llnmod1i2 36023 | Version of modular law pmod1i 36011 that holds in a Hilbert lattice, when one element is a lattice line (expressed as the join 𝑃 ∨ 𝑄). (Contributed by NM, 16-Sep-2012.) (Revised by Mario Carneiro, 10-May-2013.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑋 ≤ 𝑌) → (𝑋 ∨ ((𝑃 ∨ 𝑄) ∧ 𝑌)) = ((𝑋 ∨ (𝑃 ∨ 𝑄)) ∧ 𝑌)) | ||
Theorem | atmod2i1 36024 | Version of modular law pmod2iN 36012 that holds in a Hilbert lattice, when one element is an atom. (Contributed by NM, 14-May-2012.) (Revised by Mario Carneiro, 10-May-2013.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑃 ≤ 𝑋) → ((𝑋 ∧ 𝑌) ∨ 𝑃) = (𝑋 ∧ (𝑌 ∨ 𝑃))) | ||
Theorem | atmod2i2 36025 | Version of modular law pmod2iN 36012 that holds in a Hilbert lattice, when one element is an atom. (Contributed by NM, 14-May-2012.) (Revised by Mario Carneiro, 10-May-2013.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑌 ≤ 𝑋) → ((𝑋 ∧ 𝑃) ∨ 𝑌) = (𝑋 ∧ (𝑃 ∨ 𝑌))) | ||
Theorem | llnmod2i2 36026 | Version of modular law pmod1i 36011 that holds in a Hilbert lattice, when one element is a lattice line (expressed as the join 𝑃 ∨ 𝑄). (Contributed by NM, 16-Sep-2012.) (Revised by Mario Carneiro, 10-May-2013.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑌 ≤ 𝑋) → ((𝑋 ∧ (𝑃 ∨ 𝑄)) ∨ 𝑌) = (𝑋 ∧ ((𝑃 ∨ 𝑄) ∨ 𝑌))) | ||
Theorem | atmod3i1 36027 | Version of modular law that holds in a Hilbert lattice, when one element is an atom. (Contributed by NM, 4-Jun-2012.) (Revised by Mario Carneiro, 10-May-2013.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑃 ≤ 𝑋) → (𝑃 ∨ (𝑋 ∧ 𝑌)) = (𝑋 ∧ (𝑃 ∨ 𝑌))) | ||
Theorem | atmod3i2 36028 | Version of modular law that holds in a Hilbert lattice, when one element is an atom. (Contributed by NM, 10-Jun-2012.) (Revised by Mario Carneiro, 10-May-2013.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑋 ≤ 𝑌) → (𝑋 ∨ (𝑌 ∧ 𝑃)) = (𝑌 ∧ (𝑋 ∨ 𝑃))) | ||
Theorem | atmod4i1 36029 | Version of modular law that holds in a Hilbert lattice, when one element is an atom. (Contributed by NM, 10-Jun-2012.) (Revised by Mario Carneiro, 10-May-2013.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑃 ≤ 𝑌) → ((𝑋 ∧ 𝑌) ∨ 𝑃) = ((𝑋 ∨ 𝑃) ∧ 𝑌)) | ||
Theorem | atmod4i2 36030 | Version of modular law that holds in a Hilbert lattice, when one element is an atom. (Contributed by NM, 4-Jun-2012.) (Revised by Mario Carneiro, 10-Mar-2013.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑋 ≤ 𝑌) → ((𝑃 ∧ 𝑌) ∨ 𝑋) = ((𝑃 ∨ 𝑋) ∧ 𝑌)) | ||
Theorem | llnexchb2lem 36031 | Lemma for llnexchb2 36032. (Contributed by NM, 17-Nov-2012.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑁 = (LLines‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑋) ∧ (𝑋 ∧ 𝑌) ∈ 𝐴) → ((𝑋 ∧ 𝑌) ≤ (𝑃 ∨ 𝑄) ↔ (𝑋 ∧ 𝑌) = (𝑋 ∧ (𝑃 ∨ 𝑄)))) | ||
Theorem | llnexchb2 36032 | Line exchange property (compare cvlatexchb2 35498 for atoms). (Contributed by NM, 17-Nov-2012.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑁 = (LLines‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁 ∧ 𝑍 ∈ 𝑁) ∧ ((𝑋 ∧ 𝑌) ∈ 𝐴 ∧ 𝑋 ≠ 𝑍)) → ((𝑋 ∧ 𝑌) ≤ 𝑍 ↔ (𝑋 ∧ 𝑌) = (𝑋 ∧ 𝑍))) | ||
Theorem | llnexch2N 36033 | Line exchange property (compare cvlatexch2 35500 for atoms). (Contributed by NM, 18-Nov-2012.) (New usage is discouraged.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑁 = (LLines‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑁 ∧ 𝑌 ∈ 𝑁 ∧ 𝑍 ∈ 𝑁) ∧ ((𝑋 ∧ 𝑌) ∈ 𝐴 ∧ 𝑋 ≠ 𝑍)) → ((𝑋 ∧ 𝑌) ≤ 𝑍 → (𝑋 ∧ 𝑍) ≤ 𝑌)) | ||
Theorem | dalawlem1 36034 | Lemma for dalaw 36049. Special case of dath2 35900, where 𝐶 is replaced by ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)). The remaining lemmas will eliminate the conditions on the atoms imposed by dath2 35900. (Contributed by NM, 6-Oct-2012.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑂 = (LPlanes‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) ∧ (((𝑃 ∨ 𝑄) ∨ 𝑅) ∈ 𝑂 ∧ ((𝑆 ∨ 𝑇) ∨ 𝑈) ∈ 𝑂) ∧ ((¬ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑃 ∨ 𝑄) ∧ ¬ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑄 ∨ 𝑅) ∧ ¬ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑃)) ∧ (¬ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑆 ∨ 𝑇) ∧ ¬ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑇 ∨ 𝑈) ∧ ¬ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑈 ∨ 𝑆)) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈))) → ((𝑃 ∨ 𝑄) ∧ (𝑆 ∨ 𝑇)) ≤ (((𝑄 ∨ 𝑅) ∧ (𝑇 ∨ 𝑈)) ∨ ((𝑅 ∨ 𝑃) ∧ (𝑈 ∨ 𝑆)))) | ||
Theorem | dalawlem2 36035 | Lemma for dalaw 36049. Utility lemma that breaks ((𝑃 ∨ 𝑄) ∧ (𝑆 ∨ 𝑇)) into a join of two pieces. (Contributed by NM, 6-Oct-2012.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴)) → ((𝑃 ∨ 𝑄) ∧ (𝑆 ∨ 𝑇)) ≤ ((((𝑃 ∨ 𝑄) ∨ 𝑇) ∧ 𝑆) ∨ (((𝑃 ∨ 𝑄) ∨ 𝑆) ∧ 𝑇))) | ||
Theorem | dalawlem3 36036 | Lemma for dalaw 36049. First piece of dalawlem5 36038. (Contributed by NM, 4-Oct-2012.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑃 ∨ 𝑄) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → (((𝑄 ∨ 𝑇) ∨ 𝑃) ∧ 𝑆) ≤ (((𝑄 ∨ 𝑅) ∧ (𝑇 ∨ 𝑈)) ∨ ((𝑅 ∨ 𝑃) ∧ (𝑈 ∨ 𝑆)))) | ||
Theorem | dalawlem4 36037 | Lemma for dalaw 36049. Second piece of dalawlem5 36038. (Contributed by NM, 4-Oct-2012.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑃 ∨ 𝑄) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → (((𝑃 ∨ 𝑆) ∨ 𝑄) ∧ 𝑇) ≤ (((𝑄 ∨ 𝑅) ∧ (𝑇 ∨ 𝑈)) ∨ ((𝑅 ∨ 𝑃) ∧ (𝑈 ∨ 𝑆)))) | ||
Theorem | dalawlem5 36038 | Lemma for dalaw 36049. Special case to eliminate the requirement ¬ (𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑃 ∨ 𝑄) in dalawlem1 36034. (Contributed by NM, 4-Oct-2012.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑃 ∨ 𝑄) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → ((𝑃 ∨ 𝑄) ∧ (𝑆 ∨ 𝑇)) ≤ (((𝑄 ∨ 𝑅) ∧ (𝑇 ∨ 𝑈)) ∨ ((𝑅 ∨ 𝑃) ∧ (𝑈 ∨ 𝑆)))) | ||
Theorem | dalawlem6 36039 | Lemma for dalaw 36049. First piece of dalawlem8 36041. (Contributed by NM, 6-Oct-2012.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → (((𝑃 ∨ 𝑄) ∨ 𝑇) ∧ 𝑆) ≤ (((𝑄 ∨ 𝑅) ∧ (𝑇 ∨ 𝑈)) ∨ ((𝑅 ∨ 𝑃) ∧ (𝑈 ∨ 𝑆)))) | ||
Theorem | dalawlem7 36040 | Lemma for dalaw 36049. Second piece of dalawlem8 36041. (Contributed by NM, 6-Oct-2012.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → (((𝑃 ∨ 𝑄) ∨ 𝑆) ∧ 𝑇) ≤ (((𝑄 ∨ 𝑅) ∧ (𝑇 ∨ 𝑈)) ∨ ((𝑅 ∨ 𝑃) ∧ (𝑈 ∨ 𝑆)))) | ||
Theorem | dalawlem8 36041 | Lemma for dalaw 36049. Special case to eliminate the requirement ¬ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑄 ∨ 𝑅) in dalawlem1 36034. (Contributed by NM, 6-Oct-2012.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → ((𝑃 ∨ 𝑄) ∧ (𝑆 ∨ 𝑇)) ≤ (((𝑄 ∨ 𝑅) ∧ (𝑇 ∨ 𝑈)) ∨ ((𝑅 ∨ 𝑃) ∧ (𝑈 ∨ 𝑆)))) | ||
Theorem | dalawlem9 36042 | Lemma for dalaw 36049. Special case to eliminate the requirement ¬ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑃) in dalawlem1 36034. (Contributed by NM, 6-Oct-2012.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑃) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → ((𝑃 ∨ 𝑄) ∧ (𝑆 ∨ 𝑇)) ≤ (((𝑄 ∨ 𝑅) ∧ (𝑇 ∨ 𝑈)) ∨ ((𝑅 ∨ 𝑃) ∧ (𝑈 ∨ 𝑆)))) | ||
Theorem | dalawlem10 36043 | Lemma for dalaw 36049. Combine dalawlem5 36038, dalawlem8 36041, and dalawlem9 . (Contributed by NM, 6-Oct-2012.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ ¬ (¬ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑃 ∨ 𝑄) ∧ ¬ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑄 ∨ 𝑅) ∧ ¬ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑃)) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → ((𝑃 ∨ 𝑄) ∧ (𝑆 ∨ 𝑇)) ≤ (((𝑄 ∨ 𝑅) ∧ (𝑇 ∨ 𝑈)) ∨ ((𝑅 ∨ 𝑃) ∧ (𝑈 ∨ 𝑆)))) | ||
Theorem | dalawlem11 36044 | Lemma for dalaw 36049. First part of dalawlem13 36046. (Contributed by NM, 17-Sep-2012.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑃 ≤ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → ((𝑃 ∨ 𝑄) ∧ (𝑆 ∨ 𝑇)) ≤ (((𝑄 ∨ 𝑅) ∧ (𝑇 ∨ 𝑈)) ∨ ((𝑅 ∨ 𝑃) ∧ (𝑈 ∨ 𝑆)))) | ||
Theorem | dalawlem12 36045 | Lemma for dalaw 36049. Second part of dalawlem13 36046. (Contributed by NM, 17-Sep-2012.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑄 = 𝑅 ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → ((𝑃 ∨ 𝑄) ∧ (𝑆 ∨ 𝑇)) ≤ (((𝑄 ∨ 𝑅) ∧ (𝑇 ∨ 𝑈)) ∨ ((𝑅 ∨ 𝑃) ∧ (𝑈 ∨ 𝑆)))) | ||
Theorem | dalawlem13 36046 | Lemma for dalaw 36049. Special case to eliminate the requirement ((𝑃 ∨ 𝑄) ∨ 𝑅) ∈ 𝑂 in dalawlem1 36034. (Contributed by NM, 6-Oct-2012.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑂 = (LPlanes‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ ¬ ((𝑃 ∨ 𝑄) ∨ 𝑅) ∈ 𝑂 ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → ((𝑃 ∨ 𝑄) ∧ (𝑆 ∨ 𝑇)) ≤ (((𝑄 ∨ 𝑅) ∧ (𝑇 ∨ 𝑈)) ∨ ((𝑅 ∨ 𝑃) ∧ (𝑈 ∨ 𝑆)))) | ||
Theorem | dalawlem14 36047 | Lemma for dalaw 36049. Combine dalawlem10 36043 and dalawlem13 36046. (Contributed by NM, 6-Oct-2012.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑂 = (LPlanes‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ ¬ (((𝑃 ∨ 𝑄) ∨ 𝑅) ∈ 𝑂 ∧ (¬ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑃 ∨ 𝑄) ∧ ¬ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑄 ∨ 𝑅) ∧ ¬ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑃))) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → ((𝑃 ∨ 𝑄) ∧ (𝑆 ∨ 𝑇)) ≤ (((𝑄 ∨ 𝑅) ∧ (𝑇 ∨ 𝑈)) ∨ ((𝑅 ∨ 𝑃) ∧ (𝑈 ∨ 𝑆)))) | ||
Theorem | dalawlem15 36048 | Lemma for dalaw 36049. Swap variable triples 𝑃𝑄𝑅 and 𝑆𝑇𝑈 in dalawlem14 36047, to obtain the elimination of the remaining conditions in dalawlem1 36034. (Contributed by NM, 6-Oct-2012.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑂 = (LPlanes‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ ¬ (((𝑆 ∨ 𝑇) ∨ 𝑈) ∈ 𝑂 ∧ (¬ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑆 ∨ 𝑇) ∧ ¬ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑇 ∨ 𝑈) ∧ ¬ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑈 ∨ 𝑆))) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → ((𝑃 ∨ 𝑄) ∧ (𝑆 ∨ 𝑇)) ≤ (((𝑄 ∨ 𝑅) ∧ (𝑇 ∨ 𝑈)) ∨ ((𝑅 ∨ 𝑃) ∧ (𝑈 ∨ 𝑆)))) | ||
Theorem | dalaw 36049 | Desargues's law, derived from Desargues's theorem dath 35899 and with no conditions on the atoms. If triples 〈𝑃, 𝑄, 𝑅〉 and 〈𝑆, 𝑇, 𝑈〉 are centrally perspective, i.e. ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈), then they are axially perspective. Theorem 13.3 of [Crawley] p. 110. (Contributed by NM, 7-Oct-2012.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴)) → (((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≤ (𝑅 ∨ 𝑈) → ((𝑃 ∨ 𝑄) ∧ (𝑆 ∨ 𝑇)) ≤ (((𝑄 ∨ 𝑅) ∧ (𝑇 ∨ 𝑈)) ∨ ((𝑅 ∨ 𝑃) ∧ (𝑈 ∨ 𝑆))))) | ||
Syntax | cpclN 36050 | Extend class notation with projective subspace closure. |
class PCl | ||
Definition | df-pclN 36051* | Projective subspace closure, which is the smallest projective subspace containing an arbitrary set of atoms. The subspace closure of the union of a set of projective subspaces is their supremum in PSubSp. Related to an analogous definition of closure used in Lemma 3.1.4 of [PtakPulmannova] p. 68. (Note that this closure is not necessarily one of the closed projective subspaces PSubCl of df-psubclN 36098.) (Contributed by NM, 7-Sep-2013.) |
⊢ PCl = (𝑘 ∈ V ↦ (𝑥 ∈ 𝒫 (Atoms‘𝑘) ↦ ∩ {𝑦 ∈ (PSubSp‘𝑘) ∣ 𝑥 ⊆ 𝑦})) | ||
Theorem | pclfvalN 36052* | The projective subspace closure function. (Contributed by NM, 7-Sep-2013.) (New usage is discouraged.) |
⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑆 = (PSubSp‘𝐾) & ⊢ 𝑈 = (PCl‘𝐾) ⇒ ⊢ (𝐾 ∈ 𝑉 → 𝑈 = (𝑥 ∈ 𝒫 𝐴 ↦ ∩ {𝑦 ∈ 𝑆 ∣ 𝑥 ⊆ 𝑦})) | ||
Theorem | pclvalN 36053* | Value of the projective subspace closure function. (Contributed by NM, 7-Sep-2013.) (New usage is discouraged.) |
⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑆 = (PSubSp‘𝐾) & ⊢ 𝑈 = (PCl‘𝐾) ⇒ ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ⊆ 𝐴) → (𝑈‘𝑋) = ∩ {𝑦 ∈ 𝑆 ∣ 𝑋 ⊆ 𝑦}) | ||
Theorem | pclclN 36054 | Closure of the projective subspace closure function. (Contributed by NM, 8-Sep-2013.) (New usage is discouraged.) |
⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑆 = (PSubSp‘𝐾) & ⊢ 𝑈 = (PCl‘𝐾) ⇒ ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ⊆ 𝐴) → (𝑈‘𝑋) ∈ 𝑆) | ||
Theorem | elpclN 36055* | Membership in the projective subspace closure function. (Contributed by NM, 13-Sep-2013.) (New usage is discouraged.) |
⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑆 = (PSubSp‘𝐾) & ⊢ 𝑈 = (PCl‘𝐾) & ⊢ 𝑄 ∈ V ⇒ ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ⊆ 𝐴) → (𝑄 ∈ (𝑈‘𝑋) ↔ ∀𝑦 ∈ 𝑆 (𝑋 ⊆ 𝑦 → 𝑄 ∈ 𝑦))) | ||
Theorem | elpcliN 36056 | Implication of membership in the projective subspace closure function. (Contributed by NM, 13-Sep-2013.) (New usage is discouraged.) |
⊢ 𝑆 = (PSubSp‘𝐾) & ⊢ 𝑈 = (PCl‘𝐾) ⇒ ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑋 ⊆ 𝑌 ∧ 𝑌 ∈ 𝑆) ∧ 𝑄 ∈ (𝑈‘𝑋)) → 𝑄 ∈ 𝑌) | ||
Theorem | pclssN 36057 | Ordering is preserved by subspace closure. (Contributed by NM, 8-Sep-2013.) (New usage is discouraged.) |
⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑈 = (PCl‘𝐾) ⇒ ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ⊆ 𝑌 ∧ 𝑌 ⊆ 𝐴) → (𝑈‘𝑋) ⊆ (𝑈‘𝑌)) | ||
Theorem | pclssidN 36058 | A set of atoms is included in its projective subspace closure. (Contributed by NM, 12-Sep-2013.) (New usage is discouraged.) |
⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑈 = (PCl‘𝐾) ⇒ ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ⊆ 𝐴) → 𝑋 ⊆ (𝑈‘𝑋)) | ||
Theorem | pclidN 36059 | The projective subspace closure of a projective subspace is itself. (Contributed by NM, 8-Sep-2013.) (New usage is discouraged.) |
⊢ 𝑆 = (PSubSp‘𝐾) & ⊢ 𝑈 = (PCl‘𝐾) ⇒ ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ∈ 𝑆) → (𝑈‘𝑋) = 𝑋) | ||
Theorem | pclbtwnN 36060 | A projective subspace sandwiched between a set of atoms and the set's projective subspace closure equals the closure. (Contributed by NM, 8-Sep-2013.) (New usage is discouraged.) |
⊢ 𝑆 = (PSubSp‘𝐾) & ⊢ 𝑈 = (PCl‘𝐾) ⇒ ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑋 ∈ 𝑆) ∧ (𝑌 ⊆ 𝑋 ∧ 𝑋 ⊆ (𝑈‘𝑌))) → 𝑋 = (𝑈‘𝑌)) | ||
Theorem | pclunN 36061 | The projective subspace closure of the union of two sets of atoms equals the closure of their projective sum. (Contributed by NM, 12-Sep-2013.) (New usage is discouraged.) |
⊢ 𝐴 = (Atoms‘𝐾) & ⊢ + = (+𝑃‘𝐾) & ⊢ 𝑈 = (PCl‘𝐾) ⇒ ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) → (𝑈‘(𝑋 ∪ 𝑌)) = (𝑈‘(𝑋 + 𝑌))) | ||
Theorem | pclun2N 36062 | The projective subspace closure of the union of two subspaces equals their projective sum. (Contributed by NM, 12-Sep-2013.) (New usage is discouraged.) |
⊢ 𝑆 = (PSubSp‘𝐾) & ⊢ + = (+𝑃‘𝐾) & ⊢ 𝑈 = (PCl‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) → (𝑈‘(𝑋 ∪ 𝑌)) = (𝑋 + 𝑌)) | ||
Theorem | pclfinN 36063* | The projective subspace closure of a set equals the union of the closures of its finite subsets. Analogous to Lemma 3.3.6 of [PtakPulmannova] p. 72. Compare the closed subspace version pclfinclN 36113. (Contributed by NM, 10-Sep-2013.) (New usage is discouraged.) |
⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑈 = (PCl‘𝐾) ⇒ ⊢ ((𝐾 ∈ AtLat ∧ 𝑋 ⊆ 𝐴) → (𝑈‘𝑋) = ∪ 𝑦 ∈ (Fin ∩ 𝒫 𝑋)(𝑈‘𝑦)) | ||
Theorem | pclcmpatN 36064* | The set of projective subspaces is compactly atomistic: if an atom is in the projective subspace closure of a set of atoms, it also belongs to the projective subspace closure of a finite subset of that set. Analogous to Lemma 3.3.10 of [PtakPulmannova] p. 74. (Contributed by NM, 10-Sep-2013.) (New usage is discouraged.) |
⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑈 = (PCl‘𝐾) ⇒ ⊢ ((𝐾 ∈ AtLat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑃 ∈ (𝑈‘𝑋)) → ∃𝑦 ∈ Fin (𝑦 ⊆ 𝑋 ∧ 𝑃 ∈ (𝑈‘𝑦))) | ||
Syntax | cpolN 36065 | Extend class notation with polarity of projective subspace $m$. |
class ⊥𝑃 | ||
Definition | df-polarityN 36066* | Define polarity of projective subspace, which is a kind of complement of the subspace. Item 2 in [Holland95] p. 222 bottom. For more generality, we define it for all subsets of atoms, not just projective subspaces. The intersection with Atoms‘𝑙 ensures it is defined when 𝑚 = ∅. (Contributed by NM, 23-Oct-2011.) |
⊢ ⊥𝑃 = (𝑙 ∈ V ↦ (𝑚 ∈ 𝒫 (Atoms‘𝑙) ↦ ((Atoms‘𝑙) ∩ ∩ 𝑝 ∈ 𝑚 ((pmap‘𝑙)‘((oc‘𝑙)‘𝑝))))) | ||
Theorem | polfvalN 36067* | The projective subspace polarity function. (Contributed by NM, 23-Oct-2011.) (New usage is discouraged.) |
⊢ ⊥ = (oc‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑀 = (pmap‘𝐾) & ⊢ 𝑃 = (⊥𝑃‘𝐾) ⇒ ⊢ (𝐾 ∈ 𝐵 → 𝑃 = (𝑚 ∈ 𝒫 𝐴 ↦ (𝐴 ∩ ∩ 𝑝 ∈ 𝑚 (𝑀‘( ⊥ ‘𝑝))))) | ||
Theorem | polvalN 36068* | Value of the projective subspace polarity function. (Contributed by NM, 23-Oct-2011.) (New usage is discouraged.) |
⊢ ⊥ = (oc‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑀 = (pmap‘𝐾) & ⊢ 𝑃 = (⊥𝑃‘𝐾) ⇒ ⊢ ((𝐾 ∈ 𝐵 ∧ 𝑋 ⊆ 𝐴) → (𝑃‘𝑋) = (𝐴 ∩ ∩ 𝑝 ∈ 𝑋 (𝑀‘( ⊥ ‘𝑝)))) | ||
Theorem | polval2N 36069 | Alternate expression for value of the projective subspace polarity function. Equation for polarity in [Holland95] p. 223. (Contributed by NM, 22-Jan-2012.) (New usage is discouraged.) |
⊢ 𝑈 = (lub‘𝐾) & ⊢ ⊥ = (oc‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑀 = (pmap‘𝐾) & ⊢ 𝑃 = (⊥𝑃‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → (𝑃‘𝑋) = (𝑀‘( ⊥ ‘(𝑈‘𝑋)))) | ||
Theorem | polsubN 36070 | The polarity of a set of atoms is a projective subspace. (Contributed by NM, 23-Jan-2012.) (New usage is discouraged.) |
⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑆 = (PSubSp‘𝐾) & ⊢ ⊥ = (⊥𝑃‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → ( ⊥ ‘𝑋) ∈ 𝑆) | ||
Theorem | polssatN 36071 | The polarity of a set of atoms is a set of atoms. (Contributed by NM, 24-Jan-2012.) (New usage is discouraged.) |
⊢ 𝐴 = (Atoms‘𝐾) & ⊢ ⊥ = (⊥𝑃‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → ( ⊥ ‘𝑋) ⊆ 𝐴) | ||
Theorem | pol0N 36072 | The polarity of the empty projective subspace is the whole space. (Contributed by NM, 29-Oct-2011.) (New usage is discouraged.) |
⊢ 𝐴 = (Atoms‘𝐾) & ⊢ ⊥ = (⊥𝑃‘𝐾) ⇒ ⊢ (𝐾 ∈ 𝐵 → ( ⊥ ‘∅) = 𝐴) | ||
Theorem | pol1N 36073 | The polarity of the whole projective subspace is the empty space. Remark in [Holland95] p. 223. (Contributed by NM, 24-Jan-2012.) (New usage is discouraged.) |
⊢ 𝐴 = (Atoms‘𝐾) & ⊢ ⊥ = (⊥𝑃‘𝐾) ⇒ ⊢ (𝐾 ∈ HL → ( ⊥ ‘𝐴) = ∅) | ||
Theorem | 2pol0N 36074 | The closed subspace closure of the empty set. (Contributed by NM, 12-Sep-2013.) (New usage is discouraged.) |
⊢ ⊥ = (⊥𝑃‘𝐾) ⇒ ⊢ (𝐾 ∈ HL → ( ⊥ ‘( ⊥ ‘∅)) = ∅) | ||
Theorem | polpmapN 36075 | The polarity of a projective map. (Contributed by NM, 24-Jan-2012.) (New usage is discouraged.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ⊥ = (oc‘𝐾) & ⊢ 𝑀 = (pmap‘𝐾) & ⊢ 𝑃 = (⊥𝑃‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → (𝑃‘(𝑀‘𝑋)) = (𝑀‘( ⊥ ‘𝑋))) | ||
Theorem | 2polpmapN 36076 | Double polarity of a projective map. (Contributed by NM, 24-Jan-2012.) (New usage is discouraged.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝑀 = (pmap‘𝐾) & ⊢ ⊥ = (⊥𝑃‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → ( ⊥ ‘( ⊥ ‘(𝑀‘𝑋))) = (𝑀‘𝑋)) | ||
Theorem | 2polvalN 36077 | Value of double polarity. (Contributed by NM, 25-Jan-2012.) (New usage is discouraged.) |
⊢ 𝑈 = (lub‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑀 = (pmap‘𝐾) & ⊢ ⊥ = (⊥𝑃‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → ( ⊥ ‘( ⊥ ‘𝑋)) = (𝑀‘(𝑈‘𝑋))) | ||
Theorem | 2polssN 36078 | A set of atoms is a subset of its double polarity. (Contributed by NM, 29-Jan-2012.) (New usage is discouraged.) |
⊢ 𝐴 = (Atoms‘𝐾) & ⊢ ⊥ = (⊥𝑃‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → 𝑋 ⊆ ( ⊥ ‘( ⊥ ‘𝑋))) | ||
Theorem | 3polN 36079 | Triple polarity cancels to a single polarity. (Contributed by NM, 6-Mar-2012.) (New usage is discouraged.) |
⊢ 𝐴 = (Atoms‘𝐾) & ⊢ ⊥ = (⊥𝑃‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴) → ( ⊥ ‘( ⊥ ‘( ⊥ ‘𝑆))) = ( ⊥ ‘𝑆)) | ||
Theorem | polcon3N 36080 | Contraposition law for polarity. Remark in [Holland95] p. 223. (Contributed by NM, 23-Mar-2012.) (New usage is discouraged.) |
⊢ 𝐴 = (Atoms‘𝐾) & ⊢ ⊥ = (⊥𝑃‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑌 ⊆ 𝐴 ∧ 𝑋 ⊆ 𝑌) → ( ⊥ ‘𝑌) ⊆ ( ⊥ ‘𝑋)) | ||
Theorem | 2polcon4bN 36081 | Contraposition law for polarity. (Contributed by NM, 6-Mar-2012.) (New usage is discouraged.) |
⊢ 𝐴 = (Atoms‘𝐾) & ⊢ ⊥ = (⊥𝑃‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) → (( ⊥ ‘( ⊥ ‘𝑋)) ⊆ ( ⊥ ‘( ⊥ ‘𝑌)) ↔ ( ⊥ ‘𝑌) ⊆ ( ⊥ ‘𝑋))) | ||
Theorem | polcon2N 36082 | Contraposition law for polarity. (Contributed by NM, 23-Mar-2012.) (New usage is discouraged.) |
⊢ 𝐴 = (Atoms‘𝐾) & ⊢ ⊥ = (⊥𝑃‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑌 ⊆ 𝐴 ∧ 𝑋 ⊆ ( ⊥ ‘𝑌)) → 𝑌 ⊆ ( ⊥ ‘𝑋)) | ||
Theorem | polcon2bN 36083 | Contraposition law for polarity. (Contributed by NM, 23-Mar-2012.) (New usage is discouraged.) |
⊢ 𝐴 = (Atoms‘𝐾) & ⊢ ⊥ = (⊥𝑃‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴) → (𝑋 ⊆ ( ⊥ ‘𝑌) ↔ 𝑌 ⊆ ( ⊥ ‘𝑋))) | ||
Theorem | pclss2polN 36084 | The projective subspace closure is a subset of closed subspace closure. (Contributed by NM, 12-Sep-2013.) (New usage is discouraged.) |
⊢ 𝐴 = (Atoms‘𝐾) & ⊢ ⊥ = (⊥𝑃‘𝐾) & ⊢ 𝑈 = (PCl‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → (𝑈‘𝑋) ⊆ ( ⊥ ‘( ⊥ ‘𝑋))) | ||
Theorem | pcl0N 36085 | The projective subspace closure of the empty subspace. (Contributed by NM, 12-Sep-2013.) (New usage is discouraged.) |
⊢ 𝑈 = (PCl‘𝐾) ⇒ ⊢ (𝐾 ∈ HL → (𝑈‘∅) = ∅) | ||
Theorem | pcl0bN 36086 | The projective subspace closure of the empty subspace. (Contributed by NM, 13-Sep-2013.) (New usage is discouraged.) |
⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑈 = (PCl‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑃 ⊆ 𝐴) → ((𝑈‘𝑃) = ∅ ↔ 𝑃 = ∅)) | ||
Theorem | pmaplubN 36087 | The LUB of a projective map is the projective map's argument. (Contributed by NM, 13-Mar-2012.) (New usage is discouraged.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝑈 = (lub‘𝐾) & ⊢ 𝑀 = (pmap‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → (𝑈‘(𝑀‘𝑋)) = 𝑋) | ||
Theorem | sspmaplubN 36088 | A set of atoms is a subset of the projective map of its LUB. (Contributed by NM, 6-Mar-2012.) (New usage is discouraged.) |
⊢ 𝑈 = (lub‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑀 = (pmap‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴) → 𝑆 ⊆ (𝑀‘(𝑈‘𝑆))) | ||
Theorem | 2pmaplubN 36089 | Double projective map of an LUB. (Contributed by NM, 6-Mar-2012.) (New usage is discouraged.) |
⊢ 𝑈 = (lub‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑀 = (pmap‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴) → (𝑀‘(𝑈‘(𝑀‘(𝑈‘𝑆)))) = (𝑀‘(𝑈‘𝑆))) | ||
Theorem | paddunN 36090 | The closure of the projective sum of two sets of atoms is the same as the closure of their union. (Closure is actually double polarity, which can be trivially inferred from this theorem using fveq2d 6452.) (Contributed by NM, 6-Mar-2012.) (New usage is discouraged.) |
⊢ 𝐴 = (Atoms‘𝐾) & ⊢ + = (+𝑃‘𝐾) & ⊢ ⊥ = (⊥𝑃‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴 ∧ 𝑇 ⊆ 𝐴) → ( ⊥ ‘(𝑆 + 𝑇)) = ( ⊥ ‘(𝑆 ∪ 𝑇))) | ||
Theorem | poldmj1N 36091 | De Morgan's law for polarity of projective sum. (oldmj1 35384 analog.) (Contributed by NM, 7-Mar-2012.) (New usage is discouraged.) |
⊢ 𝐴 = (Atoms‘𝐾) & ⊢ + = (+𝑃‘𝐾) & ⊢ ⊥ = (⊥𝑃‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴 ∧ 𝑇 ⊆ 𝐴) → ( ⊥ ‘(𝑆 + 𝑇)) = (( ⊥ ‘𝑆) ∩ ( ⊥ ‘𝑇))) | ||
Theorem | pmapj2N 36092 | The projective map of the join of two lattice elements. (Contributed by NM, 14-Mar-2012.) (New usage is discouraged.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝑀 = (pmap‘𝐾) & ⊢ + = (+𝑃‘𝐾) & ⊢ ⊥ = (⊥𝑃‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑀‘(𝑋 ∨ 𝑌)) = ( ⊥ ‘( ⊥ ‘((𝑀‘𝑋) + (𝑀‘𝑌))))) | ||
Theorem | pmapocjN 36093 | The projective map of the orthocomplement of the join of two lattice elements. (Contributed by NM, 14-Mar-2012.) (New usage is discouraged.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ ⊥ = (oc‘𝐾) & ⊢ 𝐹 = (pmap‘𝐾) & ⊢ + = (+𝑃‘𝐾) & ⊢ 𝑁 = (⊥𝑃‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝐹‘( ⊥ ‘(𝑋 ∨ 𝑌))) = (𝑁‘((𝐹‘𝑋) + (𝐹‘𝑌)))) | ||
Theorem | polatN 36094 | The polarity of the singleton of an atom (i.e. a point). (Contributed by NM, 14-Jan-2012.) (New usage is discouraged.) |
⊢ ⊥ = (oc‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑀 = (pmap‘𝐾) & ⊢ 𝑃 = (⊥𝑃‘𝐾) ⇒ ⊢ ((𝐾 ∈ OL ∧ 𝑄 ∈ 𝐴) → (𝑃‘{𝑄}) = (𝑀‘( ⊥ ‘𝑄))) | ||
Theorem | 2polatN 36095 | Double polarity of the singleton of an atom (i.e. a point). (Contributed by NM, 25-Jan-2012.) (New usage is discouraged.) |
⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑃 = (⊥𝑃‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴) → (𝑃‘(𝑃‘{𝑄})) = {𝑄}) | ||
Theorem | pnonsingN 36096 | The intersection of a set of atoms and its polarity is empty. Definition of nonsingular in [Holland95] p. 214. (Contributed by NM, 29-Jan-2012.) (New usage is discouraged.) |
⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝑃 = (⊥𝑃‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴) → (𝑋 ∩ (𝑃‘𝑋)) = ∅) | ||
Syntax | cpscN 36097 | Extend class notation with set of all closed projective subspaces for a Hilbert lattice. |
class PSubCl | ||
Definition | df-psubclN 36098* | Define set of all closed projective subspaces, which are those sets of atoms that equal their double polarity. Based on definition in [Holland95] p. 223. (Contributed by NM, 23-Jan-2012.) |
⊢ PSubCl = (𝑘 ∈ V ↦ {𝑠 ∣ (𝑠 ⊆ (Atoms‘𝑘) ∧ ((⊥𝑃‘𝑘)‘((⊥𝑃‘𝑘)‘𝑠)) = 𝑠)}) | ||
Theorem | psubclsetN 36099* | The set of closed projective subspaces in a Hilbert lattice. (Contributed by NM, 23-Jan-2012.) (New usage is discouraged.) |
⊢ 𝐴 = (Atoms‘𝐾) & ⊢ ⊥ = (⊥𝑃‘𝐾) & ⊢ 𝐶 = (PSubCl‘𝐾) ⇒ ⊢ (𝐾 ∈ 𝐵 → 𝐶 = {𝑠 ∣ (𝑠 ⊆ 𝐴 ∧ ( ⊥ ‘( ⊥ ‘𝑠)) = 𝑠)}) | ||
Theorem | ispsubclN 36100 | The predicate "is a closed projective subspace". (Contributed by NM, 23-Jan-2012.) (New usage is discouraged.) |
⊢ 𝐴 = (Atoms‘𝐾) & ⊢ ⊥ = (⊥𝑃‘𝐾) & ⊢ 𝐶 = (PSubCl‘𝐾) ⇒ ⊢ (𝐾 ∈ 𝐷 → (𝑋 ∈ 𝐶 ↔ (𝑋 ⊆ 𝐴 ∧ ( ⊥ ‘( ⊥ ‘𝑋)) = 𝑋))) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |