![]() |
Metamath
Proof Explorer Theorem List (p. 361 of 489) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30950) |
![]() (30951-32473) |
![]() (32474-48899) |
Type | Label | Description |
---|---|---|
Statement | ||
Syntax | ccolin 36001 | Declare the syntax for the colinearity predicate. |
class Colinear | ||
Syntax | cfs 36002 | Declare the syntax for the five segment predicate. |
class FiveSeg | ||
Definition | df-colinear 36003* | The colinearity predicate states that the three points in its arguments sit on one line. Definition 4.10 of [Schwabhauser] p. 36. (Contributed by Scott Fenton, 25-Oct-2013.) |
⊢ Colinear = ◡{〈〈𝑏, 𝑐〉, 𝑎〉 ∣ ∃𝑛 ∈ ℕ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛) ∧ 𝑐 ∈ (𝔼‘𝑛)) ∧ (𝑎 Btwn 〈𝑏, 𝑐〉 ∨ 𝑏 Btwn 〈𝑐, 𝑎〉 ∨ 𝑐 Btwn 〈𝑎, 𝑏〉))} | ||
Definition | df-ifs 36004* | The inner five segment configuration is an abbreviation for another congruence condition. See brifs 36007 and ifscgr 36008 for how it is used. Definition 4.1 of [Schwabhauser] p. 34. (Contributed by Scott Fenton, 26-Sep-2013.) |
⊢ InnerFiveSeg = {〈𝑝, 𝑞〉 ∣ ∃𝑛 ∈ ℕ ∃𝑎 ∈ (𝔼‘𝑛)∃𝑏 ∈ (𝔼‘𝑛)∃𝑐 ∈ (𝔼‘𝑛)∃𝑑 ∈ (𝔼‘𝑛)∃𝑥 ∈ (𝔼‘𝑛)∃𝑦 ∈ (𝔼‘𝑛)∃𝑧 ∈ (𝔼‘𝑛)∃𝑤 ∈ (𝔼‘𝑛)(𝑝 = 〈〈𝑎, 𝑏〉, 〈𝑐, 𝑑〉〉 ∧ 𝑞 = 〈〈𝑥, 𝑦〉, 〈𝑧, 𝑤〉〉 ∧ ((𝑏 Btwn 〈𝑎, 𝑐〉 ∧ 𝑦 Btwn 〈𝑥, 𝑧〉) ∧ (〈𝑎, 𝑐〉Cgr〈𝑥, 𝑧〉 ∧ 〈𝑏, 𝑐〉Cgr〈𝑦, 𝑧〉) ∧ (〈𝑎, 𝑑〉Cgr〈𝑥, 𝑤〉 ∧ 〈𝑐, 𝑑〉Cgr〈𝑧, 𝑤〉)))} | ||
Definition | df-cgr3 36005* | The three place congruence predicate. This is an abbreviation for saying that all three pair in a triple are congruent with each other. Three place form of Definition 4.4 of [Schwabhauser] p. 35. (Contributed by Scott Fenton, 4-Oct-2013.) |
⊢ Cgr3 = {〈𝑝, 𝑞〉 ∣ ∃𝑛 ∈ ℕ ∃𝑎 ∈ (𝔼‘𝑛)∃𝑏 ∈ (𝔼‘𝑛)∃𝑐 ∈ (𝔼‘𝑛)∃𝑑 ∈ (𝔼‘𝑛)∃𝑒 ∈ (𝔼‘𝑛)∃𝑓 ∈ (𝔼‘𝑛)(𝑝 = 〈𝑎, 〈𝑏, 𝑐〉〉 ∧ 𝑞 = 〈𝑑, 〈𝑒, 𝑓〉〉 ∧ (〈𝑎, 𝑏〉Cgr〈𝑑, 𝑒〉 ∧ 〈𝑎, 𝑐〉Cgr〈𝑑, 𝑓〉 ∧ 〈𝑏, 𝑐〉Cgr〈𝑒, 𝑓〉))} | ||
Definition | df-fs 36006* | The general five segment configuration is a generalization of the outer and inner five segment configurations. See brfs 36043 and fscgr 36044 for its use. Definition 4.15 of [Schwabhauser] p. 37. (Contributed by Scott Fenton, 5-Oct-2013.) |
⊢ FiveSeg = {〈𝑝, 𝑞〉 ∣ ∃𝑛 ∈ ℕ ∃𝑎 ∈ (𝔼‘𝑛)∃𝑏 ∈ (𝔼‘𝑛)∃𝑐 ∈ (𝔼‘𝑛)∃𝑑 ∈ (𝔼‘𝑛)∃𝑥 ∈ (𝔼‘𝑛)∃𝑦 ∈ (𝔼‘𝑛)∃𝑧 ∈ (𝔼‘𝑛)∃𝑤 ∈ (𝔼‘𝑛)(𝑝 = 〈〈𝑎, 𝑏〉, 〈𝑐, 𝑑〉〉 ∧ 𝑞 = 〈〈𝑥, 𝑦〉, 〈𝑧, 𝑤〉〉 ∧ (𝑎 Colinear 〈𝑏, 𝑐〉 ∧ 〈𝑎, 〈𝑏, 𝑐〉〉Cgr3〈𝑥, 〈𝑦, 𝑧〉〉 ∧ (〈𝑎, 𝑑〉Cgr〈𝑥, 𝑤〉 ∧ 〈𝑏, 𝑑〉Cgr〈𝑦, 𝑤〉)))} | ||
Theorem | brifs 36007 | Binary relation form of the inner five segment predicate. (Contributed by Scott Fenton, 26-Sep-2013.) |
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) → (〈〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉〉 InnerFiveSeg 〈〈𝐸, 𝐹〉, 〈𝐺, 𝐻〉〉 ↔ ((𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐹 Btwn 〈𝐸, 𝐺〉) ∧ (〈𝐴, 𝐶〉Cgr〈𝐸, 𝐺〉 ∧ 〈𝐵, 𝐶〉Cgr〈𝐹, 𝐺〉) ∧ (〈𝐴, 𝐷〉Cgr〈𝐸, 𝐻〉 ∧ 〈𝐶, 𝐷〉Cgr〈𝐺, 𝐻〉)))) | ||
Theorem | ifscgr 36008 | Inner five segment congruence. Take two triangles, 𝐴𝐷𝐶 and 𝐸𝐻𝐺, with 𝐵 between 𝐴 and 𝐶 and 𝐹 between 𝐸 and 𝐺. If the other components of the triangles are congruent, then so are 𝐵𝐷 and 𝐹𝐻. Theorem 4.2 of [Schwabhauser] p. 34. (Contributed by Scott Fenton, 27-Sep-2013.) |
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) → (〈〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉〉 InnerFiveSeg 〈〈𝐸, 𝐹〉, 〈𝐺, 𝐻〉〉 → 〈𝐵, 𝐷〉Cgr〈𝐹, 𝐻〉)) | ||
Theorem | cgrsub 36009 | Removing identical parts from the end of a line segment preserves congruence. Theorem 4.3 of [Schwabhauser] p. 35. (Contributed by Scott Fenton, 4-Oct-2013.) |
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) → (((𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐸 Btwn 〈𝐷, 𝐹〉) ∧ (〈𝐴, 𝐶〉Cgr〈𝐷, 𝐹〉 ∧ 〈𝐵, 𝐶〉Cgr〈𝐸, 𝐹〉)) → 〈𝐴, 𝐵〉Cgr〈𝐷, 𝐸〉)) | ||
Theorem | brcgr3 36010 | Binary relation form of the three-place congruence predicate. (Contributed by Scott Fenton, 4-Oct-2013.) |
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) → (〈𝐴, 〈𝐵, 𝐶〉〉Cgr3〈𝐷, 〈𝐸, 𝐹〉〉 ↔ (〈𝐴, 𝐵〉Cgr〈𝐷, 𝐸〉 ∧ 〈𝐴, 𝐶〉Cgr〈𝐷, 𝐹〉 ∧ 〈𝐵, 𝐶〉Cgr〈𝐸, 𝐹〉))) | ||
Theorem | cgr3permute3 36011 | Permutation law for three-place congruence. (Contributed by Scott Fenton, 5-Oct-2013.) |
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) → (〈𝐴, 〈𝐵, 𝐶〉〉Cgr3〈𝐷, 〈𝐸, 𝐹〉〉 ↔ 〈𝐵, 〈𝐶, 𝐴〉〉Cgr3〈𝐸, 〈𝐹, 𝐷〉〉)) | ||
Theorem | cgr3permute1 36012 | Permutation law for three-place congruence. (Contributed by Scott Fenton, 5-Oct-2013.) |
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) → (〈𝐴, 〈𝐵, 𝐶〉〉Cgr3〈𝐷, 〈𝐸, 𝐹〉〉 ↔ 〈𝐴, 〈𝐶, 𝐵〉〉Cgr3〈𝐷, 〈𝐹, 𝐸〉〉)) | ||
Theorem | cgr3permute2 36013 | Permutation law for three-place congruence. (Contributed by Scott Fenton, 5-Oct-2013.) |
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) → (〈𝐴, 〈𝐵, 𝐶〉〉Cgr3〈𝐷, 〈𝐸, 𝐹〉〉 ↔ 〈𝐵, 〈𝐴, 𝐶〉〉Cgr3〈𝐸, 〈𝐷, 𝐹〉〉)) | ||
Theorem | cgr3permute4 36014 | Permutation law for three-place congruence. (Contributed by Scott Fenton, 5-Oct-2013.) |
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) → (〈𝐴, 〈𝐵, 𝐶〉〉Cgr3〈𝐷, 〈𝐸, 𝐹〉〉 ↔ 〈𝐶, 〈𝐴, 𝐵〉〉Cgr3〈𝐹, 〈𝐷, 𝐸〉〉)) | ||
Theorem | cgr3permute5 36015 | Permutation law for three-place congruence. (Contributed by Scott Fenton, 5-Oct-2013.) |
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) → (〈𝐴, 〈𝐵, 𝐶〉〉Cgr3〈𝐷, 〈𝐸, 𝐹〉〉 ↔ 〈𝐶, 〈𝐵, 𝐴〉〉Cgr3〈𝐹, 〈𝐸, 𝐷〉〉)) | ||
Theorem | cgr3tr4 36016 | Transitivity law for three-place congruence. (Contributed by Scott Fenton, 5-Oct-2013.) |
⊢ ((𝑁 ∈ ℕ ∧ ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁)) ∧ (𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁) ∧ 𝐼 ∈ (𝔼‘𝑁)))) → ((〈𝐴, 〈𝐵, 𝐶〉〉Cgr3〈𝐷, 〈𝐸, 𝐹〉〉 ∧ 〈𝐴, 〈𝐵, 𝐶〉〉Cgr3〈𝐺, 〈𝐻, 𝐼〉〉) → 〈𝐷, 〈𝐸, 𝐹〉〉Cgr3〈𝐺, 〈𝐻, 𝐼〉〉)) | ||
Theorem | cgr3com 36017 | Commutativity law for three-place congruence. (Contributed by Scott Fenton, 5-Oct-2013.) |
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) → (〈𝐴, 〈𝐵, 𝐶〉〉Cgr3〈𝐷, 〈𝐸, 𝐹〉〉 ↔ 〈𝐷, 〈𝐸, 𝐹〉〉Cgr3〈𝐴, 〈𝐵, 𝐶〉〉)) | ||
Theorem | cgr3rflx 36018 | Identity law for three-place congruence. (Contributed by Scott Fenton, 6-Oct-2013.) |
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → 〈𝐴, 〈𝐵, 𝐶〉〉Cgr3〈𝐴, 〈𝐵, 𝐶〉〉) | ||
Theorem | cgrxfr 36019* | A line segment can be divided at the same place as a congruent line segment is divided. Theorem 4.5 of [Schwabhauser] p. 35. (Contributed by Scott Fenton, 4-Oct-2013.) |
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) → ((𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 〈𝐴, 𝐶〉Cgr〈𝐷, 𝐹〉) → ∃𝑒 ∈ (𝔼‘𝑁)(𝑒 Btwn 〈𝐷, 𝐹〉 ∧ 〈𝐴, 〈𝐵, 𝐶〉〉Cgr3〈𝐷, 〈𝑒, 𝐹〉〉))) | ||
Theorem | btwnxfr 36020 | A condition for extending betweenness to a new set of points based on congruence with another set of points. Theorem 4.6 of [Schwabhauser] p. 36. (Contributed by Scott Fenton, 4-Oct-2013.) |
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) → ((𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 〈𝐴, 〈𝐵, 𝐶〉〉Cgr3〈𝐷, 〈𝐸, 𝐹〉〉) → 𝐸 Btwn 〈𝐷, 𝐹〉)) | ||
Theorem | colinrel 36021 | Colinearity is a relationship. (Contributed by Scott Fenton, 7-Nov-2013.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ Rel Colinear | ||
Theorem | brcolinear2 36022* | Alternate colinearity binary relation. (Contributed by Scott Fenton, 7-Nov-2013.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ ((𝑄 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → (𝑃 Colinear 〈𝑄, 𝑅〉 ↔ ∃𝑛 ∈ ℕ ((𝑃 ∈ (𝔼‘𝑛) ∧ 𝑄 ∈ (𝔼‘𝑛) ∧ 𝑅 ∈ (𝔼‘𝑛)) ∧ (𝑃 Btwn 〈𝑄, 𝑅〉 ∨ 𝑄 Btwn 〈𝑅, 𝑃〉 ∨ 𝑅 Btwn 〈𝑃, 𝑄〉)))) | ||
Theorem | brcolinear 36023 | The binary relation form of the colinearity predicate. (Contributed by Scott Fenton, 5-Oct-2013.) |
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝐴 Colinear 〈𝐵, 𝐶〉 ↔ (𝐴 Btwn 〈𝐵, 𝐶〉 ∨ 𝐵 Btwn 〈𝐶, 𝐴〉 ∨ 𝐶 Btwn 〈𝐴, 𝐵〉))) | ||
Theorem | colinearex 36024 | The colinear predicate exists. (Contributed by Scott Fenton, 25-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ Colinear ∈ V | ||
Theorem | colineardim1 36025 | If 𝐴 is colinear with 𝐵 and 𝐶, then 𝐴 is in the same space as 𝐵. (Contributed by Scott Fenton, 25-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ 𝑊)) → (𝐴 Colinear 〈𝐵, 𝐶〉 → 𝐴 ∈ (𝔼‘𝑁))) | ||
Theorem | colinearperm1 36026 | Permutation law for colinearity. Part of theorem 4.11 of [Schwabhauser] p. 36. (Contributed by Scott Fenton, 5-Oct-2013.) |
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝐴 Colinear 〈𝐵, 𝐶〉 ↔ 𝐴 Colinear 〈𝐶, 𝐵〉)) | ||
Theorem | colinearperm3 36027 | Permutation law for colinearity. Part of theorem 4.11 of [Schwabhauser] p. 36. (Contributed by Scott Fenton, 5-Oct-2013.) |
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝐴 Colinear 〈𝐵, 𝐶〉 ↔ 𝐵 Colinear 〈𝐶, 𝐴〉)) | ||
Theorem | colinearperm2 36028 | Permutation law for colinearity. Part of theorem 4.11 of [Schwabhauser] p. 36. (Contributed by Scott Fenton, 5-Oct-2013.) |
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝐴 Colinear 〈𝐵, 𝐶〉 ↔ 𝐵 Colinear 〈𝐴, 𝐶〉)) | ||
Theorem | colinearperm4 36029 | Permutation law for colinearity. Part of theorem 4.11 of [Schwabhauser] p. 36. (Contributed by Scott Fenton, 5-Oct-2013.) |
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝐴 Colinear 〈𝐵, 𝐶〉 ↔ 𝐶 Colinear 〈𝐴, 𝐵〉)) | ||
Theorem | colinearperm5 36030 | Permutation law for colinearity. Part of theorem 4.11 of [Schwabhauser] p. 36. (Contributed by Scott Fenton, 5-Oct-2013.) |
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝐴 Colinear 〈𝐵, 𝐶〉 ↔ 𝐶 Colinear 〈𝐵, 𝐴〉)) | ||
Theorem | colineartriv1 36031 | Trivial case of colinearity. Theorem 4.12 of [Schwabhauser] p. 37. (Contributed by Scott Fenton, 5-Oct-2013.) |
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → 𝐴 Colinear 〈𝐴, 𝐵〉) | ||
Theorem | colineartriv2 36032 | Trivial case of colinearity. (Contributed by Scott Fenton, 18-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → 𝐴 Colinear 〈𝐵, 𝐵〉) | ||
Theorem | btwncolinear1 36033 | Betweenness implies colinearity. (Contributed by Scott Fenton, 7-Oct-2013.) |
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝐶 Btwn 〈𝐴, 𝐵〉 → 𝐴 Colinear 〈𝐵, 𝐶〉)) | ||
Theorem | btwncolinear2 36034 | Betweenness implies colinearity. (Contributed by Scott Fenton, 15-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝐶 Btwn 〈𝐴, 𝐵〉 → 𝐴 Colinear 〈𝐶, 𝐵〉)) | ||
Theorem | btwncolinear3 36035 | Betweenness implies colinearity. (Contributed by Scott Fenton, 15-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝐶 Btwn 〈𝐴, 𝐵〉 → 𝐵 Colinear 〈𝐴, 𝐶〉)) | ||
Theorem | btwncolinear4 36036 | Betweenness implies colinearity. (Contributed by Scott Fenton, 15-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝐶 Btwn 〈𝐴, 𝐵〉 → 𝐵 Colinear 〈𝐶, 𝐴〉)) | ||
Theorem | btwncolinear5 36037 | Betweenness implies colinearity. (Contributed by Scott Fenton, 15-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝐶 Btwn 〈𝐴, 𝐵〉 → 𝐶 Colinear 〈𝐴, 𝐵〉)) | ||
Theorem | btwncolinear6 36038 | Betweenness implies colinearity. (Contributed by Scott Fenton, 15-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝐶 Btwn 〈𝐴, 𝐵〉 → 𝐶 Colinear 〈𝐵, 𝐴〉)) | ||
Theorem | colinearxfr 36039 | Transfer law for colinearity. Theorem 4.13 of [Schwabhauser] p. 37. (Contributed by Scott Fenton, 5-Oct-2013.) |
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) → ((𝐵 Colinear 〈𝐴, 𝐶〉 ∧ 〈𝐴, 〈𝐵, 𝐶〉〉Cgr3〈𝐷, 〈𝐸, 𝐹〉〉) → 𝐸 Colinear 〈𝐷, 𝐹〉)) | ||
Theorem | lineext 36040* | Extend a line with a missing point. Theorem 4.14 of [Schwabhauser] p. 37. (Contributed by Scott Fenton, 6-Oct-2013.) |
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) → ((𝐴 Colinear 〈𝐵, 𝐶〉 ∧ 〈𝐴, 𝐵〉Cgr〈𝐷, 𝐸〉) → ∃𝑓 ∈ (𝔼‘𝑁)〈𝐴, 〈𝐵, 𝐶〉〉Cgr3〈𝐷, 〈𝐸, 𝑓〉〉)) | ||
Theorem | brofs2 36041 | Change some conditions for outer five segment predicate. (Contributed by Scott Fenton, 6-Oct-2013.) |
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) → (〈〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉〉 OuterFiveSeg 〈〈𝐸, 𝐹〉, 〈𝐺, 𝐻〉〉 ↔ (𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 〈𝐴, 〈𝐵, 𝐶〉〉Cgr3〈𝐸, 〈𝐹, 𝐺〉〉 ∧ (〈𝐴, 𝐷〉Cgr〈𝐸, 𝐻〉 ∧ 〈𝐵, 𝐷〉Cgr〈𝐹, 𝐻〉)))) | ||
Theorem | brifs2 36042 | Change some conditions for inner five segment predicate. (Contributed by Scott Fenton, 6-Oct-2013.) |
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) → (〈〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉〉 InnerFiveSeg 〈〈𝐸, 𝐹〉, 〈𝐺, 𝐻〉〉 ↔ (𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 〈𝐴, 〈𝐵, 𝐶〉〉Cgr3〈𝐸, 〈𝐹, 𝐺〉〉 ∧ (〈𝐴, 𝐷〉Cgr〈𝐸, 𝐻〉 ∧ 〈𝐶, 𝐷〉Cgr〈𝐺, 𝐻〉)))) | ||
Theorem | brfs 36043 | Binary relation form of the general five segment predicate. (Contributed by Scott Fenton, 5-Oct-2013.) |
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) → (〈〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉〉 FiveSeg 〈〈𝐸, 𝐹〉, 〈𝐺, 𝐻〉〉 ↔ (𝐴 Colinear 〈𝐵, 𝐶〉 ∧ 〈𝐴, 〈𝐵, 𝐶〉〉Cgr3〈𝐸, 〈𝐹, 𝐺〉〉 ∧ (〈𝐴, 𝐷〉Cgr〈𝐸, 𝐻〉 ∧ 〈𝐵, 𝐷〉Cgr〈𝐹, 𝐻〉)))) | ||
Theorem | fscgr 36044 | Congruence law for the general five segment configuration. Theorem 4.16 of [Schwabhauser] p. 37. (Contributed by Scott Fenton, 5-Oct-2013.) |
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) → ((〈〈𝐴, 𝐵〉, 〈𝐶, 𝐷〉〉 FiveSeg 〈〈𝐸, 𝐹〉, 〈𝐺, 𝐻〉〉 ∧ 𝐴 ≠ 𝐵) → 〈𝐶, 𝐷〉Cgr〈𝐺, 𝐻〉)) | ||
Theorem | linecgr 36045 | Congruence rule for lines. Theorem 4.17 of [Schwabhauser] p. 37. (Contributed by Scott Fenton, 6-Oct-2013.) |
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁))) → (((𝐴 ≠ 𝐵 ∧ 𝐴 Colinear 〈𝐵, 𝐶〉) ∧ (〈𝐴, 𝑃〉Cgr〈𝐴, 𝑄〉 ∧ 〈𝐵, 𝑃〉Cgr〈𝐵, 𝑄〉)) → 〈𝐶, 𝑃〉Cgr〈𝐶, 𝑄〉)) | ||
Theorem | linecgrand 36046 | Deduction form of linecgr 36045. (Contributed by Scott Fenton, 14-Oct-2013.) |
⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐴 ∈ (𝔼‘𝑁)) & ⊢ (𝜑 → 𝐵 ∈ (𝔼‘𝑁)) & ⊢ (𝜑 → 𝐶 ∈ (𝔼‘𝑁)) & ⊢ (𝜑 → 𝑃 ∈ (𝔼‘𝑁)) & ⊢ (𝜑 → 𝑄 ∈ (𝔼‘𝑁)) & ⊢ ((𝜑 ∧ 𝜓) → 𝐴 ≠ 𝐵) & ⊢ ((𝜑 ∧ 𝜓) → 𝐴 Colinear 〈𝐵, 𝐶〉) & ⊢ ((𝜑 ∧ 𝜓) → 〈𝐴, 𝑃〉Cgr〈𝐴, 𝑄〉) & ⊢ ((𝜑 ∧ 𝜓) → 〈𝐵, 𝑃〉Cgr〈𝐵, 𝑄〉) ⇒ ⊢ ((𝜑 ∧ 𝜓) → 〈𝐶, 𝑃〉Cgr〈𝐶, 𝑄〉) | ||
Theorem | lineid 36047 | Identity law for points on lines. Theorem 4.18 of [Schwabhauser] p. 38. (Contributed by Scott Fenton, 7-Oct-2013.) |
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (((𝐴 ≠ 𝐵 ∧ 𝐴 Colinear 〈𝐵, 𝐶〉) ∧ (〈𝐴, 𝐶〉Cgr〈𝐴, 𝐷〉 ∧ 〈𝐵, 𝐶〉Cgr〈𝐵, 𝐷〉)) → 𝐶 = 𝐷)) | ||
Theorem | idinside 36048 | Law for finding a point inside a segment. Theorem 4.19 of [Schwabhauser] p. 38. (Contributed by Scott Fenton, 7-Oct-2013.) |
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → ((𝐶 Btwn 〈𝐴, 𝐵〉 ∧ 〈𝐴, 𝐶〉Cgr〈𝐴, 𝐷〉 ∧ 〈𝐵, 𝐶〉Cgr〈𝐵, 𝐷〉) → 𝐶 = 𝐷)) | ||
Theorem | endofsegid 36049 | If 𝐴, 𝐵, and 𝐶 fall in order on a line, and 𝐴𝐵 and 𝐴𝐶 are congruent, then 𝐶 = 𝐵. (Contributed by Scott Fenton, 7-Oct-2013.) |
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → ((𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 〈𝐴, 𝐶〉Cgr〈𝐴, 𝐵〉) → 𝐶 = 𝐵)) | ||
Theorem | endofsegidand 36050 | Deduction form of endofsegid 36049. (Contributed by Scott Fenton, 15-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐴 ∈ (𝔼‘𝑁)) & ⊢ (𝜑 → 𝐵 ∈ (𝔼‘𝑁)) & ⊢ (𝜑 → 𝐶 ∈ (𝔼‘𝑁)) & ⊢ ((𝜑 ∧ 𝜓) → 𝐶 Btwn 〈𝐴, 𝐵〉) & ⊢ ((𝜑 ∧ 𝜓) → 〈𝐴, 𝐵〉Cgr〈𝐴, 𝐶〉) ⇒ ⊢ ((𝜑 ∧ 𝜓) → 𝐵 = 𝐶) | ||
Theorem | btwnconn1lem1 36051 | Lemma for btwnconn1 36065. The next several lemmas introduce various properties of hypothetical points that end up eliminating alternatives to connectivity. We begin by showing a congruence property of those hypothetical points. (Contributed by Scott Fenton, 8-Oct-2013.) |
⊢ ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁))) ∧ (((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶) ∧ (𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐵 Btwn 〈𝐴, 𝐷〉)) ∧ ((𝐷 Btwn 〈𝐴, 𝑐〉 ∧ 〈𝐷, 𝑐〉Cgr〈𝐶, 𝐷〉) ∧ (𝐶 Btwn 〈𝐴, 𝑑〉 ∧ 〈𝐶, 𝑑〉Cgr〈𝐶, 𝐷〉)) ∧ ((𝑐 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑐, 𝑏〉Cgr〈𝐶, 𝐵〉) ∧ (𝑑 Btwn 〈𝐴, 𝑋〉 ∧ 〈𝑑, 𝑋〉Cgr〈𝐷, 𝐵〉)))) → 〈𝐵, 𝑐〉Cgr〈𝑋, 𝐶〉) | ||
Theorem | btwnconn1lem2 36052 | Lemma for btwnconn1 36065. Now, we show that two of the hypotheticals we introduced in the first lemma are identical. (Contributed by Scott Fenton, 8-Oct-2013.) |
⊢ ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁))) ∧ (((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶) ∧ (𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐵 Btwn 〈𝐴, 𝐷〉)) ∧ ((𝐷 Btwn 〈𝐴, 𝑐〉 ∧ 〈𝐷, 𝑐〉Cgr〈𝐶, 𝐷〉) ∧ (𝐶 Btwn 〈𝐴, 𝑑〉 ∧ 〈𝐶, 𝑑〉Cgr〈𝐶, 𝐷〉)) ∧ ((𝑐 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑐, 𝑏〉Cgr〈𝐶, 𝐵〉) ∧ (𝑑 Btwn 〈𝐴, 𝑋〉 ∧ 〈𝑑, 𝑋〉Cgr〈𝐷, 𝐵〉)))) → 𝑋 = 𝑏) | ||
Theorem | btwnconn1lem3 36053 | Lemma for btwnconn1 36065. Establish the next congruence in the series. (Contributed by Scott Fenton, 8-Oct-2013.) |
⊢ ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁))) ∧ (((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶) ∧ (𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐵 Btwn 〈𝐴, 𝐷〉)) ∧ ((𝐷 Btwn 〈𝐴, 𝑐〉 ∧ 〈𝐷, 𝑐〉Cgr〈𝐶, 𝐷〉) ∧ (𝐶 Btwn 〈𝐴, 𝑑〉 ∧ 〈𝐶, 𝑑〉Cgr〈𝐶, 𝐷〉)) ∧ ((𝑐 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑐, 𝑏〉Cgr〈𝐶, 𝐵〉) ∧ (𝑑 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑑, 𝑏〉Cgr〈𝐷, 𝐵〉)))) → 〈𝐵, 𝑑〉Cgr〈𝑏, 𝐷〉) | ||
Theorem | btwnconn1lem4 36054 | Lemma for btwnconn1 36065. Assuming 𝐶 ≠ 𝑐, we now attempt to force 𝐷 = 𝑑 from here out via a series of congruences. (Contributed by Scott Fenton, 8-Oct-2013.) |
⊢ ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁))) ∧ (((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝑐) ∧ (𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐵 Btwn 〈𝐴, 𝐷〉)) ∧ ((𝐷 Btwn 〈𝐴, 𝑐〉 ∧ 〈𝐷, 𝑐〉Cgr〈𝐶, 𝐷〉) ∧ (𝐶 Btwn 〈𝐴, 𝑑〉 ∧ 〈𝐶, 𝑑〉Cgr〈𝐶, 𝐷〉)) ∧ ((𝑐 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑐, 𝑏〉Cgr〈𝐶, 𝐵〉) ∧ (𝑑 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑑, 𝑏〉Cgr〈𝐷, 𝐵〉)))) → 〈𝑑, 𝑐〉Cgr〈𝐷, 𝐶〉) | ||
Theorem | btwnconn1lem5 36055 | Lemma for btwnconn1 36065. Now, we introduce 𝐸, the intersection of 𝐶𝑐 and 𝐷𝑑. We begin by showing that it is the midpoint of 𝐶 and 𝑐. (Contributed by Scott Fenton, 8-Oct-2013.) |
⊢ ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ ((((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝑐) ∧ (𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐵 Btwn 〈𝐴, 𝐷〉)) ∧ ((𝐷 Btwn 〈𝐴, 𝑐〉 ∧ 〈𝐷, 𝑐〉Cgr〈𝐶, 𝐷〉) ∧ (𝐶 Btwn 〈𝐴, 𝑑〉 ∧ 〈𝐶, 𝑑〉Cgr〈𝐶, 𝐷〉)) ∧ ((𝑐 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑐, 𝑏〉Cgr〈𝐶, 𝐵〉) ∧ (𝑑 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑑, 𝑏〉Cgr〈𝐷, 𝐵〉))) ∧ (𝐸 Btwn 〈𝐶, 𝑐〉 ∧ 𝐸 Btwn 〈𝐷, 𝑑〉))) → 〈𝐸, 𝐶〉Cgr〈𝐸, 𝑐〉) | ||
Theorem | btwnconn1lem6 36056 | Lemma for btwnconn1 36065. Next, we show that 𝐸 is the midpoint of 𝐷 and 𝑑. (Contributed by Scott Fenton, 8-Oct-2013.) |
⊢ ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ ((((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝑐) ∧ (𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐵 Btwn 〈𝐴, 𝐷〉)) ∧ ((𝐷 Btwn 〈𝐴, 𝑐〉 ∧ 〈𝐷, 𝑐〉Cgr〈𝐶, 𝐷〉) ∧ (𝐶 Btwn 〈𝐴, 𝑑〉 ∧ 〈𝐶, 𝑑〉Cgr〈𝐶, 𝐷〉)) ∧ ((𝑐 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑐, 𝑏〉Cgr〈𝐶, 𝐵〉) ∧ (𝑑 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑑, 𝑏〉Cgr〈𝐷, 𝐵〉))) ∧ (𝐸 Btwn 〈𝐶, 𝑐〉 ∧ 𝐸 Btwn 〈𝐷, 𝑑〉))) → 〈𝐸, 𝐷〉Cgr〈𝐸, 𝑑〉) | ||
Theorem | btwnconn1lem7 36057 | Lemma for btwnconn1 36065. Under our assumptions, 𝐶 and 𝑑 are distinct. (Contributed by Scott Fenton, 8-Oct-2013.) |
⊢ ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ ((((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝑐) ∧ (𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐵 Btwn 〈𝐴, 𝐷〉)) ∧ ((𝐷 Btwn 〈𝐴, 𝑐〉 ∧ 〈𝐷, 𝑐〉Cgr〈𝐶, 𝐷〉) ∧ (𝐶 Btwn 〈𝐴, 𝑑〉 ∧ 〈𝐶, 𝑑〉Cgr〈𝐶, 𝐷〉)) ∧ ((𝑐 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑐, 𝑏〉Cgr〈𝐶, 𝐵〉) ∧ (𝑑 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑑, 𝑏〉Cgr〈𝐷, 𝐵〉))) ∧ (𝐸 Btwn 〈𝐶, 𝑐〉 ∧ 𝐸 Btwn 〈𝐷, 𝑑〉))) → 𝐶 ≠ 𝑑) | ||
Theorem | btwnconn1lem8 36058 | Lemma for btwnconn1 36065. Now, we introduce the last three points used in the construction: 𝑃, 𝑄, and 𝑅 will turn out to be equal further down, and will provide us with the key to the final statement. We begin by establishing congruence of 𝑅𝑃 and 𝐸𝑑. (Contributed by Scott Fenton, 8-Oct-2013.) |
⊢ ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) ∧ ((((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝑐) ∧ (𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐵 Btwn 〈𝐴, 𝐷〉)) ∧ ((𝐷 Btwn 〈𝐴, 𝑐〉 ∧ 〈𝐷, 𝑐〉Cgr〈𝐶, 𝐷〉) ∧ (𝐶 Btwn 〈𝐴, 𝑑〉 ∧ 〈𝐶, 𝑑〉Cgr〈𝐶, 𝐷〉)) ∧ ((𝑐 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑐, 𝑏〉Cgr〈𝐶, 𝐵〉) ∧ (𝑑 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑑, 𝑏〉Cgr〈𝐷, 𝐵〉))) ∧ ((𝐸 Btwn 〈𝐶, 𝑐〉 ∧ 𝐸 Btwn 〈𝐷, 𝑑〉) ∧ ((𝐶 Btwn 〈𝑐, 𝑃〉 ∧ 〈𝐶, 𝑃〉Cgr〈𝐶, 𝑑〉) ∧ (𝐶 Btwn 〈𝑑, 𝑅〉 ∧ 〈𝐶, 𝑅〉Cgr〈𝐶, 𝐸〉) ∧ (𝑅 Btwn 〈𝑃, 𝑄〉 ∧ 〈𝑅, 𝑄〉Cgr〈𝑅, 𝑃〉))))) → 〈𝑅, 𝑃〉Cgr〈𝐸, 𝑑〉) | ||
Theorem | btwnconn1lem9 36059 | Lemma for btwnconn1 36065. Now, a quick use of transitivity to establish congruence on 𝑅𝑄 and 𝐸𝐷. (Contributed by Scott Fenton, 8-Oct-2013.) |
⊢ ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) ∧ ((((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝑐) ∧ (𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐵 Btwn 〈𝐴, 𝐷〉)) ∧ ((𝐷 Btwn 〈𝐴, 𝑐〉 ∧ 〈𝐷, 𝑐〉Cgr〈𝐶, 𝐷〉) ∧ (𝐶 Btwn 〈𝐴, 𝑑〉 ∧ 〈𝐶, 𝑑〉Cgr〈𝐶, 𝐷〉)) ∧ ((𝑐 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑐, 𝑏〉Cgr〈𝐶, 𝐵〉) ∧ (𝑑 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑑, 𝑏〉Cgr〈𝐷, 𝐵〉))) ∧ ((𝐸 Btwn 〈𝐶, 𝑐〉 ∧ 𝐸 Btwn 〈𝐷, 𝑑〉) ∧ ((𝐶 Btwn 〈𝑐, 𝑃〉 ∧ 〈𝐶, 𝑃〉Cgr〈𝐶, 𝑑〉) ∧ (𝐶 Btwn 〈𝑑, 𝑅〉 ∧ 〈𝐶, 𝑅〉Cgr〈𝐶, 𝐸〉) ∧ (𝑅 Btwn 〈𝑃, 𝑄〉 ∧ 〈𝑅, 𝑄〉Cgr〈𝑅, 𝑃〉))))) → 〈𝑅, 𝑄〉Cgr〈𝐸, 𝐷〉) | ||
Theorem | btwnconn1lem10 36060 | Lemma for btwnconn1 36065. Now we establish a congruence that will give us 𝐷 = 𝑑 when we compute 𝑃 = 𝑄 later on. (Contributed by Scott Fenton, 8-Oct-2013.) |
⊢ ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) ∧ ((((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝑐) ∧ (𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐵 Btwn 〈𝐴, 𝐷〉)) ∧ ((𝐷 Btwn 〈𝐴, 𝑐〉 ∧ 〈𝐷, 𝑐〉Cgr〈𝐶, 𝐷〉) ∧ (𝐶 Btwn 〈𝐴, 𝑑〉 ∧ 〈𝐶, 𝑑〉Cgr〈𝐶, 𝐷〉)) ∧ ((𝑐 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑐, 𝑏〉Cgr〈𝐶, 𝐵〉) ∧ (𝑑 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑑, 𝑏〉Cgr〈𝐷, 𝐵〉))) ∧ ((𝐸 Btwn 〈𝐶, 𝑐〉 ∧ 𝐸 Btwn 〈𝐷, 𝑑〉) ∧ ((𝐶 Btwn 〈𝑐, 𝑃〉 ∧ 〈𝐶, 𝑃〉Cgr〈𝐶, 𝑑〉) ∧ (𝐶 Btwn 〈𝑑, 𝑅〉 ∧ 〈𝐶, 𝑅〉Cgr〈𝐶, 𝐸〉) ∧ (𝑅 Btwn 〈𝑃, 𝑄〉 ∧ 〈𝑅, 𝑄〉Cgr〈𝑅, 𝑃〉))))) → 〈𝑑, 𝐷〉Cgr〈𝑃, 𝑄〉) | ||
Theorem | btwnconn1lem11 36061 | Lemma for btwnconn1 36065. Now, we establish that 𝐷 and 𝑄 are equidistant from 𝐶. (Contributed by Scott Fenton, 8-Oct-2013.) |
⊢ ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) ∧ ((((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝑐) ∧ (𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐵 Btwn 〈𝐴, 𝐷〉)) ∧ ((𝐷 Btwn 〈𝐴, 𝑐〉 ∧ 〈𝐷, 𝑐〉Cgr〈𝐶, 𝐷〉) ∧ (𝐶 Btwn 〈𝐴, 𝑑〉 ∧ 〈𝐶, 𝑑〉Cgr〈𝐶, 𝐷〉)) ∧ ((𝑐 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑐, 𝑏〉Cgr〈𝐶, 𝐵〉) ∧ (𝑑 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑑, 𝑏〉Cgr〈𝐷, 𝐵〉))) ∧ ((𝐸 Btwn 〈𝐶, 𝑐〉 ∧ 𝐸 Btwn 〈𝐷, 𝑑〉) ∧ ((𝐶 Btwn 〈𝑐, 𝑃〉 ∧ 〈𝐶, 𝑃〉Cgr〈𝐶, 𝑑〉) ∧ (𝐶 Btwn 〈𝑑, 𝑅〉 ∧ 〈𝐶, 𝑅〉Cgr〈𝐶, 𝐸〉) ∧ (𝑅 Btwn 〈𝑃, 𝑄〉 ∧ 〈𝑅, 𝑄〉Cgr〈𝑅, 𝑃〉))))) → 〈𝐷, 𝐶〉Cgr〈𝑄, 𝐶〉) | ||
Theorem | btwnconn1lem12 36062 | Lemma for btwnconn1 36065. Using a long string of invocations of linecgr 36045, we show that 𝐷 = 𝑑. (Contributed by Scott Fenton, 9-Oct-2013.) |
⊢ ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁))) ∧ ((((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ∧ 𝐶 ≠ 𝑐) ∧ (𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐵 Btwn 〈𝐴, 𝐷〉)) ∧ ((𝐷 Btwn 〈𝐴, 𝑐〉 ∧ 〈𝐷, 𝑐〉Cgr〈𝐶, 𝐷〉) ∧ (𝐶 Btwn 〈𝐴, 𝑑〉 ∧ 〈𝐶, 𝑑〉Cgr〈𝐶, 𝐷〉)) ∧ ((𝑐 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑐, 𝑏〉Cgr〈𝐶, 𝐵〉) ∧ (𝑑 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑑, 𝑏〉Cgr〈𝐷, 𝐵〉))) ∧ ((𝐸 Btwn 〈𝐶, 𝑐〉 ∧ 𝐸 Btwn 〈𝐷, 𝑑〉) ∧ ((𝐶 Btwn 〈𝑐, 𝑃〉 ∧ 〈𝐶, 𝑃〉Cgr〈𝐶, 𝑑〉) ∧ (𝐶 Btwn 〈𝑑, 𝑅〉 ∧ 〈𝐶, 𝑅〉Cgr〈𝐶, 𝐸〉) ∧ (𝑅 Btwn 〈𝑃, 𝑄〉 ∧ 〈𝑅, 𝑄〉Cgr〈𝑅, 𝑃〉))))) → 𝐷 = 𝑑) | ||
Theorem | btwnconn1lem13 36063 | Lemma for btwnconn1 36065. Begin back-filling and eliminating hypotheses. (Contributed by Scott Fenton, 9-Oct-2013.) |
⊢ ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑑 ∈ (𝔼‘𝑁) ∧ 𝑏 ∈ (𝔼‘𝑁)))) ∧ (((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶) ∧ (𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐵 Btwn 〈𝐴, 𝐷〉)) ∧ ((𝐷 Btwn 〈𝐴, 𝑐〉 ∧ 〈𝐷, 𝑐〉Cgr〈𝐶, 𝐷〉) ∧ (𝐶 Btwn 〈𝐴, 𝑑〉 ∧ 〈𝐶, 𝑑〉Cgr〈𝐶, 𝐷〉)) ∧ ((𝑐 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑐, 𝑏〉Cgr〈𝐶, 𝐵〉) ∧ (𝑑 Btwn 〈𝐴, 𝑏〉 ∧ 〈𝑑, 𝑏〉Cgr〈𝐷, 𝐵〉)))) → (𝐶 = 𝑐 ∨ 𝐷 = 𝑑)) | ||
Theorem | btwnconn1lem14 36064 | Lemma for btwnconn1 36065. Final statement of the theorem when 𝐵 ≠ 𝐶. (Contributed by Scott Fenton, 9-Oct-2013.) |
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ ((𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶) ∧ (𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐵 Btwn 〈𝐴, 𝐷〉))) → (𝐶 Btwn 〈𝐴, 𝐷〉 ∨ 𝐷 Btwn 〈𝐴, 𝐶〉)) | ||
Theorem | btwnconn1 36065 | Connectitivy law for betweenness. Theorem 5.1 of [Schwabhauser] p. 39-41. (Contributed by Scott Fenton, 9-Oct-2013.) |
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → ((𝐴 ≠ 𝐵 ∧ 𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐵 Btwn 〈𝐴, 𝐷〉) → (𝐶 Btwn 〈𝐴, 𝐷〉 ∨ 𝐷 Btwn 〈𝐴, 𝐶〉))) | ||
Theorem | btwnconn2 36066 | Another connectivity law for betweenness. Theorem 5.2 of [Schwabhauser] p. 41. (Contributed by Scott Fenton, 9-Oct-2013.) |
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → ((𝐴 ≠ 𝐵 ∧ 𝐵 Btwn 〈𝐴, 𝐶〉 ∧ 𝐵 Btwn 〈𝐴, 𝐷〉) → (𝐶 Btwn 〈𝐵, 𝐷〉 ∨ 𝐷 Btwn 〈𝐵, 𝐶〉))) | ||
Theorem | btwnconn3 36067 | Inner connectivity law for betweenness. Theorem 5.3 of [Schwabhauser] p. 41. (Contributed by Scott Fenton, 9-Oct-2013.) |
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → ((𝐵 Btwn 〈𝐴, 𝐷〉 ∧ 𝐶 Btwn 〈𝐴, 𝐷〉) → (𝐵 Btwn 〈𝐴, 𝐶〉 ∨ 𝐶 Btwn 〈𝐴, 𝐵〉))) | ||
Theorem | midofsegid 36068 | If two points fall in the same place in the middle of a segment, then they are identical. (Contributed by Scott Fenton, 16-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁))) → ((𝐷 Btwn 〈𝐴, 𝐵〉 ∧ 𝐸 Btwn 〈𝐴, 𝐵〉 ∧ 〈𝐴, 𝐷〉Cgr〈𝐴, 𝐸〉) → 𝐷 = 𝐸)) | ||
Theorem | segcon2 36069* | Generalization of axsegcon 28960. This time, we generate an endpoint for a segment on the ray 𝑄𝐴 congruent to 𝐵𝐶 and starting at 𝑄, as opposed to axsegcon 28960, where the segment starts at 𝐴 (Contributed by Scott Fenton, 14-Oct-2013.) Remove unneeded inequality. (Revised by Scott Fenton, 15-Oct-2013.) |
⊢ ((𝑁 ∈ ℕ ∧ (𝑄 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → ∃𝑥 ∈ (𝔼‘𝑁)((𝐴 Btwn 〈𝑄, 𝑥〉 ∨ 𝑥 Btwn 〈𝑄, 𝐴〉) ∧ 〈𝑄, 𝑥〉Cgr〈𝐵, 𝐶〉)) | ||
Syntax | csegle 36070 | Declare the constant for the segment less than or equal to relationship. |
class Seg≤ | ||
Definition | df-segle 36071* | Define the segment length comparison relationship. This relationship expresses that the segment 𝐴𝐵 is no longer than 𝐶𝐷. In this section, we establish various properties of this relationship showing that it is a transitive, reflexive relationship on pairs of points that is substitutive under congruence. Definition 5.4 of [Schwabhauser] p. 41. (Contributed by Scott Fenton, 11-Oct-2013.) |
⊢ Seg≤ = {〈𝑝, 𝑞〉 ∣ ∃𝑛 ∈ ℕ ∃𝑎 ∈ (𝔼‘𝑛)∃𝑏 ∈ (𝔼‘𝑛)∃𝑐 ∈ (𝔼‘𝑛)∃𝑑 ∈ (𝔼‘𝑛)(𝑝 = 〈𝑎, 𝑏〉 ∧ 𝑞 = 〈𝑐, 𝑑〉 ∧ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn 〈𝑐, 𝑑〉 ∧ 〈𝑎, 𝑏〉Cgr〈𝑐, 𝑦〉))} | ||
Theorem | brsegle 36072* | Binary relation form of the segment comparison relationship. (Contributed by Scott Fenton, 11-Oct-2013.) |
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (〈𝐴, 𝐵〉 Seg≤ 〈𝐶, 𝐷〉 ↔ ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn 〈𝐶, 𝐷〉 ∧ 〈𝐴, 𝐵〉Cgr〈𝐶, 𝑦〉))) | ||
Theorem | brsegle2 36073* | Alternate characterization of segment comparison. Theorem 5.5 of [Schwabhauser] p. 41-42. (Contributed by Scott Fenton, 11-Oct-2013.) |
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (〈𝐴, 𝐵〉 Seg≤ 〈𝐶, 𝐷〉 ↔ ∃𝑥 ∈ (𝔼‘𝑁)(𝐵 Btwn 〈𝐴, 𝑥〉 ∧ 〈𝐴, 𝑥〉Cgr〈𝐶, 𝐷〉))) | ||
Theorem | seglecgr12im 36074 | Substitution law for segment comparison under congruence. Theorem 5.6 of [Schwabhauser] p. 42. (Contributed by Scott Fenton, 11-Oct-2013.) |
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) → ((〈𝐴, 𝐵〉Cgr〈𝐸, 𝐹〉 ∧ 〈𝐶, 𝐷〉Cgr〈𝐺, 𝐻〉 ∧ 〈𝐴, 𝐵〉 Seg≤ 〈𝐶, 𝐷〉) → 〈𝐸, 𝐹〉 Seg≤ 〈𝐺, 𝐻〉)) | ||
Theorem | seglecgr12 36075 | Substitution law for segment comparison under congruence. Biconditional version. (Contributed by Scott Fenton, 15-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁)) ∧ (𝐹 ∈ (𝔼‘𝑁) ∧ 𝐺 ∈ (𝔼‘𝑁) ∧ 𝐻 ∈ (𝔼‘𝑁))) → ((〈𝐴, 𝐵〉Cgr〈𝐸, 𝐹〉 ∧ 〈𝐶, 𝐷〉Cgr〈𝐺, 𝐻〉) → (〈𝐴, 𝐵〉 Seg≤ 〈𝐶, 𝐷〉 ↔ 〈𝐸, 𝐹〉 Seg≤ 〈𝐺, 𝐻〉))) | ||
Theorem | seglerflx 36076 | Segment comparison is reflexive. Theorem 5.7 of [Schwabhauser] p. 42. (Contributed by Scott Fenton, 11-Oct-2013.) |
⊢ ((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → 〈𝐴, 𝐵〉 Seg≤ 〈𝐴, 𝐵〉) | ||
Theorem | seglemin 36077 | Any segment is at least as long as a degenerate segment. Theorem 5.11 of [Schwabhauser] p. 42. (Contributed by Scott Fenton, 11-Oct-2013.) |
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → 〈𝐴, 𝐴〉 Seg≤ 〈𝐵, 𝐶〉) | ||
Theorem | segletr 36078 | Segment less than is transitive. Theorem 5.8 of [Schwabhauser] p. 42. (Contributed by Scott Fenton, 11-Oct-2013.) |
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) → ((〈𝐴, 𝐵〉 Seg≤ 〈𝐶, 𝐷〉 ∧ 〈𝐶, 𝐷〉 Seg≤ 〈𝐸, 𝐹〉) → 〈𝐴, 𝐵〉 Seg≤ 〈𝐸, 𝐹〉)) | ||
Theorem | segleantisym 36079 | Antisymmetry law for segment comparison. Theorem 5.9 of [Schwabhauser] p. 42. (Contributed by Scott Fenton, 14-Oct-2013.) |
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → ((〈𝐴, 𝐵〉 Seg≤ 〈𝐶, 𝐷〉 ∧ 〈𝐶, 𝐷〉 Seg≤ 〈𝐴, 𝐵〉) → 〈𝐴, 𝐵〉Cgr〈𝐶, 𝐷〉)) | ||
Theorem | seglelin 36080 | Linearity law for segment comparison. Theorem 5.10 of [Schwabhauser] p. 42. (Contributed by Scott Fenton, 14-Oct-2013.) |
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (〈𝐴, 𝐵〉 Seg≤ 〈𝐶, 𝐷〉 ∨ 〈𝐶, 𝐷〉 Seg≤ 〈𝐴, 𝐵〉)) | ||
Theorem | btwnsegle 36081 | If 𝐵 falls between 𝐴 and 𝐶, then 𝐴𝐵 is no longer than 𝐴𝐶. (Contributed by Scott Fenton, 16-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝐵 Btwn 〈𝐴, 𝐶〉 → 〈𝐴, 𝐵〉 Seg≤ 〈𝐴, 𝐶〉)) | ||
Theorem | colinbtwnle 36082 | Given three colinear points 𝐴, 𝐵, and 𝐶, 𝐵 falls in the middle iff the two segments to 𝐵 are no longer than 𝐴𝐶. Theorem 5.12 of [Schwabhauser] p. 42. (Contributed by Scott Fenton, 15-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝐴 Colinear 〈𝐵, 𝐶〉 → (𝐵 Btwn 〈𝐴, 𝐶〉 ↔ (〈𝐴, 𝐵〉 Seg≤ 〈𝐴, 𝐶〉 ∧ 〈𝐵, 𝐶〉 Seg≤ 〈𝐴, 𝐶〉)))) | ||
Syntax | coutsideof 36083 | Declare the syntax for the outside of constant. |
class OutsideOf | ||
Definition | df-outsideof 36084 | The outside of relationship. This relationship expresses that 𝑃, 𝐴, and 𝐵 fall on a line, but 𝑃 is not on the segment 𝐴𝐵. This definition is taken from theorem 6.4 of [Schwabhauser] p. 43, since it requires no dummy variables. (Contributed by Scott Fenton, 17-Oct-2013.) |
⊢ OutsideOf = ( Colinear ∖ Btwn ) | ||
Theorem | broutsideof 36085 | Binary relation form of OutsideOf. Theorem 6.4 of [Schwabhauser] p. 43. (Contributed by Scott Fenton, 17-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ (𝑃OutsideOf〈𝐴, 𝐵〉 ↔ (𝑃 Colinear 〈𝐴, 𝐵〉 ∧ ¬ 𝑃 Btwn 〈𝐴, 𝐵〉)) | ||
Theorem | broutsideof2 36086 | Alternate form of OutsideOf. Definition 6.1 of [Schwabhauser] p. 43. (Contributed by Scott Fenton, 17-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) → (𝑃OutsideOf〈𝐴, 𝐵〉 ↔ (𝐴 ≠ 𝑃 ∧ 𝐵 ≠ 𝑃 ∧ (𝐴 Btwn 〈𝑃, 𝐵〉 ∨ 𝐵 Btwn 〈𝑃, 𝐴〉)))) | ||
Theorem | outsidene1 36087 | Outsideness implies inequality. (Contributed by Scott Fenton, 18-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) → (𝑃OutsideOf〈𝐴, 𝐵〉 → 𝐴 ≠ 𝑃)) | ||
Theorem | outsidene2 36088 | Outsideness implies inequality. (Contributed by Scott Fenton, 18-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) → (𝑃OutsideOf〈𝐴, 𝐵〉 → 𝐵 ≠ 𝑃)) | ||
Theorem | btwnoutside 36089 | A principle linking outsideness to betweenness. Theorem 6.2 of [Schwabhauser] p. 43. (Contributed by Scott Fenton, 18-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) → (((𝐴 ≠ 𝑃 ∧ 𝐵 ≠ 𝑃 ∧ 𝐶 ≠ 𝑃) ∧ 𝑃 Btwn 〈𝐴, 𝐶〉) → (𝑃 Btwn 〈𝐵, 𝐶〉 ↔ 𝑃OutsideOf〈𝐴, 𝐵〉))) | ||
Theorem | broutsideof3 36090* | Characterization of outsideness in terms of relationship to a fourth point. Theorem 6.3 of [Schwabhauser] p. 43. (Contributed by Scott Fenton, 18-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) → (𝑃OutsideOf〈𝐴, 𝐵〉 ↔ (𝐴 ≠ 𝑃 ∧ 𝐵 ≠ 𝑃 ∧ ∃𝑐 ∈ (𝔼‘𝑁)(𝑐 ≠ 𝑃 ∧ 𝑃 Btwn 〈𝐴, 𝑐〉 ∧ 𝑃 Btwn 〈𝐵, 𝑐〉)))) | ||
Theorem | outsideofrflx 36091 | Reflexivity of outsideness. Theorem 6.5 of [Schwabhauser] p. 44. (Contributed by Scott Fenton, 18-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ ((𝑁 ∈ ℕ ∧ 𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) → (𝐴 ≠ 𝑃 → 𝑃OutsideOf〈𝐴, 𝐴〉)) | ||
Theorem | outsideofcom 36092 | Commutativity law for outsideness. Theorem 6.6 of [Schwabhauser] p. 44. (Contributed by Scott Fenton, 18-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) → (𝑃OutsideOf〈𝐴, 𝐵〉 ↔ 𝑃OutsideOf〈𝐵, 𝐴〉)) | ||
Theorem | outsideoftr 36093 | Transitivity law for outsideness. Theorem 6.7 of [Schwabhauser] p. 44. (Contributed by Scott Fenton, 18-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) → ((𝑃OutsideOf〈𝐴, 𝐵〉 ∧ 𝑃OutsideOf〈𝐵, 𝐶〉) → 𝑃OutsideOf〈𝐴, 𝐶〉)) | ||
Theorem | outsideofeq 36094 | Uniqueness law for OutsideOf. Analogue of segconeq 35974. (Contributed by Scott Fenton, 24-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑋 ∈ (𝔼‘𝑁) ∧ 𝑌 ∈ (𝔼‘𝑁))) → (((𝐴OutsideOf〈𝑋, 𝑅〉 ∧ 〈𝐴, 𝑋〉Cgr〈𝐵, 𝐶〉) ∧ (𝐴OutsideOf〈𝑌, 𝑅〉 ∧ 〈𝐴, 𝑌〉Cgr〈𝐵, 𝐶〉)) → 𝑋 = 𝑌)) | ||
Theorem | outsideofeu 36095* | Given a nondegenerate ray, there is a unique point congruent to the segment 𝐵𝐶 lying on the ray 𝐴𝑅. Theorem 6.11 of [Schwabhauser] p. 44. (Contributed by Scott Fenton, 23-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑅 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → ((𝑅 ≠ 𝐴 ∧ 𝐵 ≠ 𝐶) → ∃!𝑥 ∈ (𝔼‘𝑁)(𝐴OutsideOf〈𝑥, 𝑅〉 ∧ 〈𝐴, 𝑥〉Cgr〈𝐵, 𝐶〉))) | ||
Theorem | outsidele 36096 | Relate OutsideOf to Seg≤. Theorem 6.13 of [Schwabhauser] p. 45. (Contributed by Scott Fenton, 24-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) → (𝑃OutsideOf〈𝐴, 𝐵〉 → (〈𝑃, 𝐴〉 Seg≤ 〈𝑃, 𝐵〉 ↔ 𝐴 Btwn 〈𝑃, 𝐵〉))) | ||
Theorem | outsideofcol 36097 | Outside of implies colinearity. (Contributed by Scott Fenton, 26-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.) |
⊢ (𝑃OutsideOf〈𝑄, 𝑅〉 → 𝑃 Colinear 〈𝑄, 𝑅〉) | ||
Syntax | cline2 36098 | Declare the constant for the line function. |
class Line | ||
Syntax | cray 36099 | Declare the constant for the ray function. |
class Ray | ||
Syntax | clines2 36100 | Declare the constant for the set of all lines. |
class LinesEE |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |