Home | Metamath
Proof Explorer Theorem List (p. 361 of 466) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29289) |
Hilbert Space Explorer
(29290-30812) |
Users' Mathboxes
(30813-46532) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | repwsmet 36001 | The supremum metric on ℝ↑𝐼 is a metric. (Contributed by Jeff Madsen, 15-Sep-2015.) |
⊢ 𝑌 = ((ℂfld ↾s ℝ) ↑s 𝐼) & ⊢ 𝐷 = (dist‘𝑌) & ⊢ 𝑋 = (ℝ ↑m 𝐼) ⇒ ⊢ (𝐼 ∈ Fin → 𝐷 ∈ (Met‘𝑋)) | ||
Theorem | rrnequiv 36002 | The supremum metric on ℝ↑𝐼 is equivalent to the ℝn metric. (Contributed by Jeff Madsen, 15-Sep-2015.) |
⊢ 𝑌 = ((ℂfld ↾s ℝ) ↑s 𝐼) & ⊢ 𝐷 = (dist‘𝑌) & ⊢ 𝑋 = (ℝ ↑m 𝐼) & ⊢ (𝜑 → 𝐼 ∈ Fin) ⇒ ⊢ ((𝜑 ∧ (𝐹 ∈ 𝑋 ∧ 𝐺 ∈ 𝑋)) → ((𝐹𝐷𝐺) ≤ (𝐹(ℝn‘𝐼)𝐺) ∧ (𝐹(ℝn‘𝐼)𝐺) ≤ ((√‘(♯‘𝐼)) · (𝐹𝐷𝐺)))) | ||
Theorem | rrntotbnd 36003 | A set in Euclidean space is totally bounded iff its is bounded. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 16-Sep-2015.) |
⊢ 𝑋 = (ℝ ↑m 𝐼) & ⊢ 𝑀 = ((ℝn‘𝐼) ↾ (𝑌 × 𝑌)) ⇒ ⊢ (𝐼 ∈ Fin → (𝑀 ∈ (TotBnd‘𝑌) ↔ 𝑀 ∈ (Bnd‘𝑌))) | ||
Theorem | rrnheibor 36004 | Heine-Borel theorem for Euclidean space. A subset of Euclidean space is compact iff it is closed and bounded. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 22-Sep-2015.) |
⊢ 𝑋 = (ℝ ↑m 𝐼) & ⊢ 𝑀 = ((ℝn‘𝐼) ↾ (𝑌 × 𝑌)) & ⊢ 𝑇 = (MetOpen‘𝑀) & ⊢ 𝑈 = (MetOpen‘(ℝn‘𝐼)) ⇒ ⊢ ((𝐼 ∈ Fin ∧ 𝑌 ⊆ 𝑋) → (𝑇 ∈ Comp ↔ (𝑌 ∈ (Clsd‘𝑈) ∧ 𝑀 ∈ (Bnd‘𝑌)))) | ||
Theorem | ismrer1 36005* | An isometry between ℝ and ℝ↑1. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 22-Sep-2015.) |
⊢ 𝑅 = ((abs ∘ − ) ↾ (ℝ × ℝ)) & ⊢ 𝐹 = (𝑥 ∈ ℝ ↦ ({𝐴} × {𝑥})) ⇒ ⊢ (𝐴 ∈ 𝑉 → 𝐹 ∈ (𝑅 Ismty (ℝn‘{𝐴}))) | ||
Theorem | reheibor 36006 | Heine-Borel theorem for real numbers. A subset of ℝ is compact iff it is closed and bounded. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 22-Sep-2015.) |
⊢ 𝑀 = ((abs ∘ − ) ↾ (𝑌 × 𝑌)) & ⊢ 𝑇 = (MetOpen‘𝑀) & ⊢ 𝑈 = (topGen‘ran (,)) ⇒ ⊢ (𝑌 ⊆ ℝ → (𝑇 ∈ Comp ↔ (𝑌 ∈ (Clsd‘𝑈) ∧ 𝑀 ∈ (Bnd‘𝑌)))) | ||
Theorem | iccbnd 36007 | A closed interval in ℝ is bounded. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 22-Sep-2015.) |
⊢ 𝐽 = (𝐴[,]𝐵) & ⊢ 𝑀 = ((abs ∘ − ) ↾ (𝐽 × 𝐽)) ⇒ ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝑀 ∈ (Bnd‘𝐽)) | ||
Theorem | icccmpALT 36008 | A closed interval in ℝ is compact. Alternate proof of icccmp 23997 using the Heine-Borel theorem heibor 35988. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 14-Aug-2014.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ 𝐽 = (𝐴[,]𝐵) & ⊢ 𝑀 = ((abs ∘ − ) ↾ (𝐽 × 𝐽)) & ⊢ 𝑇 = (MetOpen‘𝑀) ⇒ ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝑇 ∈ Comp) | ||
Syntax | cass 36009 | Extend class notation with a device to add associativity to internal operations. |
class Ass | ||
Definition | df-ass 36010* | A device to add associativity to various sorts of internal operations. The definition is meaningful when 𝑔 is a magma at least. (Contributed by FL, 1-Nov-2009.) (New usage is discouraged.) |
⊢ Ass = {𝑔 ∣ ∀𝑥 ∈ dom dom 𝑔∀𝑦 ∈ dom dom 𝑔∀𝑧 ∈ dom dom 𝑔((𝑥𝑔𝑦)𝑔𝑧) = (𝑥𝑔(𝑦𝑔𝑧))} | ||
Syntax | cexid 36011 | Extend class notation with the class of all the internal operations with an identity element. |
class ExId | ||
Definition | df-exid 36012* | A device to add an identity element to various sorts of internal operations. (Contributed by FL, 2-Nov-2009.) (New usage is discouraged.) |
⊢ ExId = {𝑔 ∣ ∃𝑥 ∈ dom dom 𝑔∀𝑦 ∈ dom dom 𝑔((𝑥𝑔𝑦) = 𝑦 ∧ (𝑦𝑔𝑥) = 𝑦)} | ||
Theorem | isass 36013* | The predicate "is an associative operation". (Contributed by FL, 1-Nov-2009.) (New usage is discouraged.) |
⊢ 𝑋 = dom dom 𝐺 ⇒ ⊢ (𝐺 ∈ 𝐴 → (𝐺 ∈ Ass ↔ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)))) | ||
Theorem | isexid 36014* | The predicate 𝐺 has a left and right identity element. (Contributed by FL, 2-Nov-2009.) (Revised by Mario Carneiro, 22-Dec-2013.) (New usage is discouraged.) |
⊢ 𝑋 = dom dom 𝐺 ⇒ ⊢ (𝐺 ∈ 𝐴 → (𝐺 ∈ ExId ↔ ∃𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝑥𝐺𝑦) = 𝑦 ∧ (𝑦𝐺𝑥) = 𝑦))) | ||
Syntax | cmagm 36015 | Extend class notation with the class of all magmas. |
class Magma | ||
Definition | df-mgmOLD 36016* | Obsolete version of df-mgm 18335 as of 3-Feb-2020. A magma is a binary internal operation. (Contributed by FL, 2-Nov-2009.) (New usage is discouraged.) |
⊢ Magma = {𝑔 ∣ ∃𝑡 𝑔:(𝑡 × 𝑡)⟶𝑡} | ||
Theorem | ismgmOLD 36017 | Obsolete version of ismgm 18336 as of 3-Feb-2020. The predicate "is a magma". (Contributed by FL, 2-Nov-2009.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ 𝑋 = dom dom 𝐺 ⇒ ⊢ (𝐺 ∈ 𝐴 → (𝐺 ∈ Magma ↔ 𝐺:(𝑋 × 𝑋)⟶𝑋)) | ||
Theorem | clmgmOLD 36018 | Obsolete version of mgmcl 18338 as of 3-Feb-2020. Closure of a magma. (Contributed by FL, 14-Sep-2010.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ 𝑋 = dom dom 𝐺 ⇒ ⊢ ((𝐺 ∈ Magma ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐺𝐵) ∈ 𝑋) | ||
Theorem | opidonOLD 36019 | Obsolete version of mndpfo 18417 as of 23-Jan-2020. An operation with a left and right identity element is onto. (Contributed by FL, 2-Nov-2009.) (Revised by Mario Carneiro, 22-Dec-2013.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ 𝑋 = dom dom 𝐺 ⇒ ⊢ (𝐺 ∈ (Magma ∩ ExId ) → 𝐺:(𝑋 × 𝑋)–onto→𝑋) | ||
Theorem | rngopidOLD 36020 | Obsolete version of mndpfo 18417 as of 23-Jan-2020. Range of an operation with a left and right identity element. (Contributed by FL, 2-Nov-2009.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ (𝐺 ∈ (Magma ∩ ExId ) → ran 𝐺 = dom dom 𝐺) | ||
Theorem | opidon2OLD 36021 | Obsolete version of mndpfo 18417 as of 23-Jan-2020. An operation with a left and right identity element is onto. (Contributed by FL, 2-Nov-2009.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ 𝑋 = ran 𝐺 ⇒ ⊢ (𝐺 ∈ (Magma ∩ ExId ) → 𝐺:(𝑋 × 𝑋)–onto→𝑋) | ||
Theorem | isexid2 36022* | If 𝐺 ∈ (Magma ∩ ExId ), then it has a left and right identity element that belongs to the range of the operation. (Contributed by FL, 12-Dec-2009.) (Revised by Mario Carneiro, 22-Dec-2013.) (New usage is discouraged.) |
⊢ 𝑋 = ran 𝐺 ⇒ ⊢ (𝐺 ∈ (Magma ∩ ExId ) → ∃𝑢 ∈ 𝑋 ∀𝑥 ∈ 𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥)) | ||
Theorem | exidu1 36023* | Uniqueness of the left and right identity element of a magma when it exists. (Contributed by FL, 12-Dec-2009.) (Revised by Mario Carneiro, 22-Dec-2013.) (New usage is discouraged.) |
⊢ 𝑋 = ran 𝐺 ⇒ ⊢ (𝐺 ∈ (Magma ∩ ExId ) → ∃!𝑢 ∈ 𝑋 ∀𝑥 ∈ 𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥)) | ||
Theorem | idrval 36024* | The value of the identity element. (Contributed by FL, 12-Dec-2009.) (Revised by Mario Carneiro, 22-Dec-2013.) (New usage is discouraged.) |
⊢ 𝑋 = ran 𝐺 & ⊢ 𝑈 = (GId‘𝐺) ⇒ ⊢ (𝐺 ∈ 𝐴 → 𝑈 = (℩𝑢 ∈ 𝑋 ∀𝑥 ∈ 𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥))) | ||
Theorem | iorlid 36025 | A magma right and left identity belongs to the underlying set of the operation. (Contributed by FL, 12-Dec-2009.) (Revised by Mario Carneiro, 22-Dec-2013.) (New usage is discouraged.) |
⊢ 𝑋 = ran 𝐺 & ⊢ 𝑈 = (GId‘𝐺) ⇒ ⊢ (𝐺 ∈ (Magma ∩ ExId ) → 𝑈 ∈ 𝑋) | ||
Theorem | cmpidelt 36026 | A magma right and left identity element keeps the other elements unchanged. (Contributed by FL, 12-Dec-2009.) (Revised by Mario Carneiro, 22-Dec-2013.) (New usage is discouraged.) |
⊢ 𝑋 = ran 𝐺 & ⊢ 𝑈 = (GId‘𝐺) ⇒ ⊢ ((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝐴 ∈ 𝑋) → ((𝑈𝐺𝐴) = 𝐴 ∧ (𝐴𝐺𝑈) = 𝐴)) | ||
Syntax | csem 36027 | Extend class notation with the class of all semigroups. |
class SemiGrp | ||
Definition | df-sgrOLD 36028 | Obsolete version of df-sgrp 18384 as of 3-Feb-2020. A semigroup is an associative magma. (Contributed by FL, 2-Nov-2009.) (New usage is discouraged.) |
⊢ SemiGrp = (Magma ∩ Ass) | ||
Theorem | smgrpismgmOLD 36029 | Obsolete version of sgrpmgm 18389 as of 3-Feb-2020. A semigroup is a magma. (Contributed by FL, 2-Nov-2009.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ (𝐺 ∈ SemiGrp → 𝐺 ∈ Magma) | ||
Theorem | issmgrpOLD 36030* | Obsolete version of issgrp 18385 as of 3-Feb-2020. The predicate "is a semigroup". (Contributed by FL, 2-Nov-2009.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ 𝑋 = dom dom 𝐺 ⇒ ⊢ (𝐺 ∈ 𝐴 → (𝐺 ∈ SemiGrp ↔ (𝐺:(𝑋 × 𝑋)⟶𝑋 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧))))) | ||
Theorem | smgrpmgm 36031 | A semigroup is a magma. (Contributed by FL, 2-Nov-2009.) (New usage is discouraged.) |
⊢ 𝑋 = dom dom 𝐺 ⇒ ⊢ (𝐺 ∈ SemiGrp → 𝐺:(𝑋 × 𝑋)⟶𝑋) | ||
Theorem | smgrpassOLD 36032* | Obsolete version of sgrpass 18390 as of 3-Feb-2020. A semigroup is associative. (Contributed by FL, 2-Nov-2009.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ 𝑋 = dom dom 𝐺 ⇒ ⊢ (𝐺 ∈ SemiGrp → ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧))) | ||
Syntax | cmndo 36033 | Extend class notation with the class of all monoids. |
class MndOp | ||
Definition | df-mndo 36034 | A monoid is a semigroup with an identity element. (Contributed by FL, 2-Nov-2009.) (New usage is discouraged.) |
⊢ MndOp = (SemiGrp ∩ ExId ) | ||
Theorem | mndoissmgrpOLD 36035 | Obsolete version of mndsgrp 18400 as of 3-Feb-2020. A monoid is a semigroup. (Contributed by FL, 2-Nov-2009.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ (𝐺 ∈ MndOp → 𝐺 ∈ SemiGrp) | ||
Theorem | mndoisexid 36036 | A monoid has an identity element. (Contributed by FL, 2-Nov-2009.) (New usage is discouraged.) |
⊢ (𝐺 ∈ MndOp → 𝐺 ∈ ExId ) | ||
Theorem | mndoismgmOLD 36037 | Obsolete version of mndmgm 18401 as of 3-Feb-2020. A monoid is a magma. (Contributed by FL, 2-Nov-2009.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ (𝐺 ∈ MndOp → 𝐺 ∈ Magma) | ||
Theorem | mndomgmid 36038 | A monoid is a magma with an identity element. (Contributed by FL, 18-Feb-2010.) (New usage is discouraged.) |
⊢ (𝐺 ∈ MndOp → 𝐺 ∈ (Magma ∩ ExId )) | ||
Theorem | ismndo 36039* | The predicate "is a monoid". (Contributed by FL, 2-Nov-2009.) (Revised by Mario Carneiro, 22-Dec-2013.) (New usage is discouraged.) |
⊢ 𝑋 = dom dom 𝐺 ⇒ ⊢ (𝐺 ∈ 𝐴 → (𝐺 ∈ MndOp ↔ (𝐺 ∈ SemiGrp ∧ ∃𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝑥𝐺𝑦) = 𝑦 ∧ (𝑦𝐺𝑥) = 𝑦)))) | ||
Theorem | ismndo1 36040* | The predicate "is a monoid". (Contributed by FL, 2-Nov-2009.) (Revised by Mario Carneiro, 22-Dec-2013.) (New usage is discouraged.) |
⊢ 𝑋 = dom dom 𝐺 ⇒ ⊢ (𝐺 ∈ 𝐴 → (𝐺 ∈ MndOp ↔ (𝐺:(𝑋 × 𝑋)⟶𝑋 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) ∧ ∃𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝑥𝐺𝑦) = 𝑦 ∧ (𝑦𝐺𝑥) = 𝑦)))) | ||
Theorem | ismndo2 36041* | The predicate "is a monoid". (Contributed by FL, 2-Nov-2009.) (Revised by Mario Carneiro, 22-Dec-2013.) (New usage is discouraged.) |
⊢ 𝑋 = ran 𝐺 ⇒ ⊢ (𝐺 ∈ 𝐴 → (𝐺 ∈ MndOp ↔ (𝐺:(𝑋 × 𝑋)⟶𝑋 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 ((𝑥𝐺𝑦)𝐺𝑧) = (𝑥𝐺(𝑦𝐺𝑧)) ∧ ∃𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝑥𝐺𝑦) = 𝑦 ∧ (𝑦𝐺𝑥) = 𝑦)))) | ||
Theorem | grpomndo 36042 | A group is a monoid. (Contributed by FL, 2-Nov-2009.) (Revised by Mario Carneiro, 22-Dec-2013.) (New usage is discouraged.) |
⊢ (𝐺 ∈ GrpOp → 𝐺 ∈ MndOp) | ||
Theorem | exidcl 36043 | Closure of the binary operation of a magma with identity. (Contributed by Jeff Madsen, 16-Jun-2011.) |
⊢ 𝑋 = ran 𝐺 ⇒ ⊢ ((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐺𝐵) ∈ 𝑋) | ||
Theorem | exidreslem 36044* | Lemma for exidres 36045 and exidresid 36046. (Contributed by Jeff Madsen, 8-Jun-2010.) (Revised by Mario Carneiro, 23-Dec-2013.) |
⊢ 𝑋 = ran 𝐺 & ⊢ 𝑈 = (GId‘𝐺) & ⊢ 𝐻 = (𝐺 ↾ (𝑌 × 𝑌)) ⇒ ⊢ ((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌 ⊆ 𝑋 ∧ 𝑈 ∈ 𝑌) → (𝑈 ∈ dom dom 𝐻 ∧ ∀𝑥 ∈ dom dom 𝐻((𝑈𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑈) = 𝑥))) | ||
Theorem | exidres 36045 | The restriction of a binary operation with identity to a subset containing the identity has an identity element. (Contributed by Jeff Madsen, 8-Jun-2010.) (Revised by Mario Carneiro, 23-Dec-2013.) |
⊢ 𝑋 = ran 𝐺 & ⊢ 𝑈 = (GId‘𝐺) & ⊢ 𝐻 = (𝐺 ↾ (𝑌 × 𝑌)) ⇒ ⊢ ((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌 ⊆ 𝑋 ∧ 𝑈 ∈ 𝑌) → 𝐻 ∈ ExId ) | ||
Theorem | exidresid 36046 | The restriction of a binary operation with identity to a subset containing the identity has the same identity element. (Contributed by Jeff Madsen, 8-Jun-2010.) (Revised by Mario Carneiro, 23-Dec-2013.) |
⊢ 𝑋 = ran 𝐺 & ⊢ 𝑈 = (GId‘𝐺) & ⊢ 𝐻 = (𝐺 ↾ (𝑌 × 𝑌)) ⇒ ⊢ (((𝐺 ∈ (Magma ∩ ExId ) ∧ 𝑌 ⊆ 𝑋 ∧ 𝑈 ∈ 𝑌) ∧ 𝐻 ∈ Magma) → (GId‘𝐻) = 𝑈) | ||
Theorem | ablo4pnp 36047 | A commutative/associative law for Abelian groups. (Contributed by Jeff Madsen, 11-Jun-2010.) |
⊢ 𝑋 = ran 𝐺 & ⊢ 𝐷 = ( /𝑔 ‘𝐺) ⇒ ⊢ ((𝐺 ∈ AbelOp ∧ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐶 ∈ 𝑋 ∧ 𝐹 ∈ 𝑋))) → ((𝐴𝐺𝐵)𝐷(𝐶𝐺𝐹)) = ((𝐴𝐷𝐶)𝐺(𝐵𝐷𝐹))) | ||
Theorem | grpoeqdivid 36048 | Two group elements are equal iff their quotient is the identity. (Contributed by Jeff Madsen, 6-Jan-2011.) |
⊢ 𝑋 = ran 𝐺 & ⊢ 𝑈 = (GId‘𝐺) & ⊢ 𝐷 = ( /𝑔 ‘𝐺) ⇒ ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴 = 𝐵 ↔ (𝐴𝐷𝐵) = 𝑈)) | ||
Theorem | grposnOLD 36049 | The group operation for the singleton group. Obsolete, use grp1 18691. instead. (Contributed by NM, 4-Nov-2006.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ 𝐴 ∈ V ⇒ ⊢ {〈〈𝐴, 𝐴〉, 𝐴〉} ∈ GrpOp | ||
Syntax | cghomOLD 36050 | Obsolete version of cghm 18840 as of 15-Mar-2020. Extend class notation to include the class of group homomorphisms. (New usage is discouraged.) |
class GrpOpHom | ||
Definition | df-ghomOLD 36051* | Obsolete version of df-ghm 18841 as of 15-Mar-2020. Define the set of group homomorphisms from 𝑔 to ℎ. (Contributed by Paul Chapman, 25-Feb-2008.) (New usage is discouraged.) |
⊢ GrpOpHom = (𝑔 ∈ GrpOp, ℎ ∈ GrpOp ↦ {𝑓 ∣ (𝑓:ran 𝑔⟶ran ℎ ∧ ∀𝑥 ∈ ran 𝑔∀𝑦 ∈ ran 𝑔((𝑓‘𝑥)ℎ(𝑓‘𝑦)) = (𝑓‘(𝑥𝑔𝑦)))}) | ||
Theorem | elghomlem1OLD 36052* | Obsolete as of 15-Mar-2020. Lemma for elghomOLD 36054. (Contributed by Paul Chapman, 25-Feb-2008.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ 𝑆 = {𝑓 ∣ (𝑓:ran 𝐺⟶ran 𝐻 ∧ ∀𝑥 ∈ ran 𝐺∀𝑦 ∈ ran 𝐺((𝑓‘𝑥)𝐻(𝑓‘𝑦)) = (𝑓‘(𝑥𝐺𝑦)))} ⇒ ⊢ ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp) → (𝐺 GrpOpHom 𝐻) = 𝑆) | ||
Theorem | elghomlem2OLD 36053* | Obsolete as of 15-Mar-2020. Lemma for elghomOLD 36054. (Contributed by Paul Chapman, 25-Feb-2008.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ 𝑆 = {𝑓 ∣ (𝑓:ran 𝐺⟶ran 𝐻 ∧ ∀𝑥 ∈ ran 𝐺∀𝑦 ∈ ran 𝐺((𝑓‘𝑥)𝐻(𝑓‘𝑦)) = (𝑓‘(𝑥𝐺𝑦)))} ⇒ ⊢ ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp) → (𝐹 ∈ (𝐺 GrpOpHom 𝐻) ↔ (𝐹:ran 𝐺⟶ran 𝐻 ∧ ∀𝑥 ∈ ran 𝐺∀𝑦 ∈ ran 𝐺((𝐹‘𝑥)𝐻(𝐹‘𝑦)) = (𝐹‘(𝑥𝐺𝑦))))) | ||
Theorem | elghomOLD 36054* | Obsolete version of isghm 18843 as of 15-Mar-2020. Membership in the set of group homomorphisms from 𝐺 to 𝐻. (Contributed by Paul Chapman, 3-Mar-2008.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ 𝑋 = ran 𝐺 & ⊢ 𝑊 = ran 𝐻 ⇒ ⊢ ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp) → (𝐹 ∈ (𝐺 GrpOpHom 𝐻) ↔ (𝐹:𝑋⟶𝑊 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝐹‘𝑥)𝐻(𝐹‘𝑦)) = (𝐹‘(𝑥𝐺𝑦))))) | ||
Theorem | ghomlinOLD 36055 | Obsolete version of ghmlin 18848 as of 15-Mar-2020. Linearity of a group homomorphism. (Contributed by Paul Chapman, 3-Mar-2008.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ 𝑋 = ran 𝐺 ⇒ ⊢ (((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → ((𝐹‘𝐴)𝐻(𝐹‘𝐵)) = (𝐹‘(𝐴𝐺𝐵))) | ||
Theorem | ghomidOLD 36056 | Obsolete version of ghmid 18849 as of 15-Mar-2020. A group homomorphism maps identity element to identity element. (Contributed by Paul Chapman, 3-Mar-2008.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ 𝑈 = (GId‘𝐺) & ⊢ 𝑇 = (GId‘𝐻) ⇒ ⊢ ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) → (𝐹‘𝑈) = 𝑇) | ||
Theorem | ghomf 36057 | Mapping property of a group homomorphism. (Contributed by Jeff Madsen, 1-Dec-2009.) |
⊢ 𝑋 = ran 𝐺 & ⊢ 𝑊 = ran 𝐻 ⇒ ⊢ ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) → 𝐹:𝑋⟶𝑊) | ||
Theorem | ghomco 36058 | The composition of two group homomorphisms is a group homomorphism. (Contributed by Jeff Madsen, 1-Dec-2009.) (Revised by Mario Carneiro, 27-Dec-2014.) |
⊢ (((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐾 ∈ GrpOp) ∧ (𝑆 ∈ (𝐺 GrpOpHom 𝐻) ∧ 𝑇 ∈ (𝐻 GrpOpHom 𝐾))) → (𝑇 ∘ 𝑆) ∈ (𝐺 GrpOpHom 𝐾)) | ||
Theorem | ghomdiv 36059 | Group homomorphisms preserve division. (Contributed by Jeff Madsen, 16-Jun-2011.) |
⊢ 𝑋 = ran 𝐺 & ⊢ 𝐷 = ( /𝑔 ‘𝐺) & ⊢ 𝐶 = ( /𝑔 ‘𝐻) ⇒ ⊢ (((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐹‘(𝐴𝐷𝐵)) = ((𝐹‘𝐴)𝐶(𝐹‘𝐵))) | ||
Theorem | grpokerinj 36060 | A group homomorphism is injective if and only if its kernel is zero. (Contributed by Jeff Madsen, 16-Jun-2011.) |
⊢ 𝑋 = ran 𝐺 & ⊢ 𝑊 = (GId‘𝐺) & ⊢ 𝑌 = ran 𝐻 & ⊢ 𝑈 = (GId‘𝐻) ⇒ ⊢ ((𝐺 ∈ GrpOp ∧ 𝐻 ∈ GrpOp ∧ 𝐹 ∈ (𝐺 GrpOpHom 𝐻)) → (𝐹:𝑋–1-1→𝑌 ↔ (◡𝐹 “ {𝑈}) = {𝑊})) | ||
Syntax | crngo 36061 | Extend class notation with the class of all unital rings. |
class RingOps | ||
Definition | df-rngo 36062* | Define the class of all unital rings. (Contributed by Jeff Hankins, 21-Nov-2006.) (New usage is discouraged.) |
⊢ RingOps = {〈𝑔, ℎ〉 ∣ ((𝑔 ∈ AbelOp ∧ ℎ:(ran 𝑔 × ran 𝑔)⟶ran 𝑔) ∧ (∀𝑥 ∈ ran 𝑔∀𝑦 ∈ ran 𝑔∀𝑧 ∈ ran 𝑔(((𝑥ℎ𝑦)ℎ𝑧) = (𝑥ℎ(𝑦ℎ𝑧)) ∧ (𝑥ℎ(𝑦𝑔𝑧)) = ((𝑥ℎ𝑦)𝑔(𝑥ℎ𝑧)) ∧ ((𝑥𝑔𝑦)ℎ𝑧) = ((𝑥ℎ𝑧)𝑔(𝑦ℎ𝑧))) ∧ ∃𝑥 ∈ ran 𝑔∀𝑦 ∈ ran 𝑔((𝑥ℎ𝑦) = 𝑦 ∧ (𝑦ℎ𝑥) = 𝑦)))} | ||
Theorem | relrngo 36063 | The class of all unital rings is a relation. (Contributed by FL, 31-Aug-2009.) (Revised by Mario Carneiro, 21-Dec-2013.) (New usage is discouraged.) |
⊢ Rel RingOps | ||
Theorem | isrngo 36064* | The predicate "is a (unital) ring." Definition of ring with unit in [Schechter] p. 187. (Contributed by Jeff Hankins, 21-Nov-2006.) (Revised by Mario Carneiro, 21-Dec-2013.) (New usage is discouraged.) |
⊢ 𝑋 = ran 𝐺 ⇒ ⊢ (𝐻 ∈ 𝐴 → (〈𝐺, 𝐻〉 ∈ RingOps ↔ ((𝐺 ∈ AbelOp ∧ 𝐻:(𝑋 × 𝑋)⟶𝑋) ∧ (∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 (((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)) ∧ (𝑥𝐻(𝑦𝐺𝑧)) = ((𝑥𝐻𝑦)𝐺(𝑥𝐻𝑧)) ∧ ((𝑥𝐺𝑦)𝐻𝑧) = ((𝑥𝐻𝑧)𝐺(𝑦𝐻𝑧))) ∧ ∃𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝑥𝐻𝑦) = 𝑦 ∧ (𝑦𝐻𝑥) = 𝑦))))) | ||
Theorem | isrngod 36065* | Conditions that determine a ring. (Changed label from isringd 19833 to isrngod 36065-NM 2-Aug-2013.) (Contributed by Jeff Madsen, 19-Jun-2010.) (Revised by Mario Carneiro, 21-Dec-2013.) (New usage is discouraged.) |
⊢ (𝜑 → 𝐺 ∈ AbelOp) & ⊢ (𝜑 → 𝑋 = ran 𝐺) & ⊢ (𝜑 → 𝐻:(𝑋 × 𝑋)⟶𝑋) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → ((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧))) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝑥𝐻(𝑦𝐺𝑧)) = ((𝑥𝐻𝑦)𝐺(𝑥𝐻𝑧))) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → ((𝑥𝐺𝑦)𝐻𝑧) = ((𝑥𝐻𝑧)𝐺(𝑦𝐻𝑧))) & ⊢ (𝜑 → 𝑈 ∈ 𝑋) & ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑋) → (𝑈𝐻𝑦) = 𝑦) & ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑋) → (𝑦𝐻𝑈) = 𝑦) ⇒ ⊢ (𝜑 → 〈𝐺, 𝐻〉 ∈ RingOps) | ||
Theorem | rngoi 36066* | The properties of a unital ring. (Contributed by Steve Rodriguez, 8-Sep-2007.) (Proof shortened by Mario Carneiro, 21-Dec-2013.) (New usage is discouraged.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝐻 = (2nd ‘𝑅) & ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ (𝑅 ∈ RingOps → ((𝐺 ∈ AbelOp ∧ 𝐻:(𝑋 × 𝑋)⟶𝑋) ∧ (∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 (((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)) ∧ (𝑥𝐻(𝑦𝐺𝑧)) = ((𝑥𝐻𝑦)𝐺(𝑥𝐻𝑧)) ∧ ((𝑥𝐺𝑦)𝐻𝑧) = ((𝑥𝐻𝑧)𝐺(𝑦𝐻𝑧))) ∧ ∃𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝑥𝐻𝑦) = 𝑦 ∧ (𝑦𝐻𝑥) = 𝑦)))) | ||
Theorem | rngosm 36067 | Functionality of the multiplication operation of a ring. (Contributed by Steve Rodriguez, 9-Sep-2007.) (Revised by Mario Carneiro, 21-Dec-2013.) (New usage is discouraged.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝐻 = (2nd ‘𝑅) & ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ (𝑅 ∈ RingOps → 𝐻:(𝑋 × 𝑋)⟶𝑋) | ||
Theorem | rngocl 36068 | Closure of the multiplication operation of a ring. (Contributed by Steve Rodriguez, 9-Sep-2007.) (New usage is discouraged.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝐻 = (2nd ‘𝑅) & ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐻𝐵) ∈ 𝑋) | ||
Theorem | rngoid 36069* | The multiplication operation of a unital ring has (one or more) identity elements. (Contributed by Steve Rodriguez, 9-Sep-2007.) (Revised by Mario Carneiro, 22-Dec-2013.) (New usage is discouraged.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝐻 = (2nd ‘𝑅) & ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) → ∃𝑢 ∈ 𝑋 ((𝑢𝐻𝐴) = 𝐴 ∧ (𝐴𝐻𝑢) = 𝐴)) | ||
Theorem | rngoideu 36070* | The unit element of a ring is unique. (Contributed by NM, 4-Apr-2009.) (Revised by Mario Carneiro, 21-Dec-2013.) (New usage is discouraged.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝐻 = (2nd ‘𝑅) & ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ (𝑅 ∈ RingOps → ∃!𝑢 ∈ 𝑋 ∀𝑥 ∈ 𝑋 ((𝑢𝐻𝑥) = 𝑥 ∧ (𝑥𝐻𝑢) = 𝑥)) | ||
Theorem | rngodi 36071 | Distributive law for the multiplication operation of a ring (left-distributivity). (Contributed by Steve Rodriguez, 9-Sep-2007.) (Revised by Mario Carneiro, 21-Dec-2013.) (New usage is discouraged.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝐻 = (2nd ‘𝑅) & ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ ((𝑅 ∈ RingOps ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴𝐻(𝐵𝐺𝐶)) = ((𝐴𝐻𝐵)𝐺(𝐴𝐻𝐶))) | ||
Theorem | rngodir 36072 | Distributive law for the multiplication operation of a ring (right-distributivity). (Contributed by Steve Rodriguez, 9-Sep-2007.) (Revised by Mario Carneiro, 21-Dec-2013.) (New usage is discouraged.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝐻 = (2nd ‘𝑅) & ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ ((𝑅 ∈ RingOps ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝐺𝐵)𝐻𝐶) = ((𝐴𝐻𝐶)𝐺(𝐵𝐻𝐶))) | ||
Theorem | rngoass 36073 | Associative law for the multiplication operation of a ring. (Contributed by Steve Rodriguez, 9-Sep-2007.) (Revised by Mario Carneiro, 21-Dec-2013.) (New usage is discouraged.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝐻 = (2nd ‘𝑅) & ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ ((𝑅 ∈ RingOps ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝐻𝐵)𝐻𝐶) = (𝐴𝐻(𝐵𝐻𝐶))) | ||
Theorem | rngo2 36074* | A ring element plus itself is two times the element. (Contributed by Steve Rodriguez, 9-Sep-2007.) (Revised by Mario Carneiro, 22-Dec-2013.) (New usage is discouraged.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝐻 = (2nd ‘𝑅) & ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) → ∃𝑥 ∈ 𝑋 (𝐴𝐺𝐴) = ((𝑥𝐺𝑥)𝐻𝐴)) | ||
Theorem | rngoablo 36075 | A ring's addition operation is an Abelian group operation. (Contributed by Steve Rodriguez, 9-Sep-2007.) (Revised by Mario Carneiro, 21-Dec-2013.) (New usage is discouraged.) |
⊢ 𝐺 = (1st ‘𝑅) ⇒ ⊢ (𝑅 ∈ RingOps → 𝐺 ∈ AbelOp) | ||
Theorem | rngoablo2 36076 | In a unital ring the addition is an abelian group. (Contributed by FL, 31-Aug-2009.) (New usage is discouraged.) |
⊢ (〈𝐺, 𝐻〉 ∈ RingOps → 𝐺 ∈ AbelOp) | ||
Theorem | rngogrpo 36077 | A ring's addition operation is a group operation. (Contributed by Steve Rodriguez, 9-Sep-2007.) (New usage is discouraged.) |
⊢ 𝐺 = (1st ‘𝑅) ⇒ ⊢ (𝑅 ∈ RingOps → 𝐺 ∈ GrpOp) | ||
Theorem | rngone0 36078 | The base set of a ring is not empty. (Contributed by FL, 24-Jan-2010.) (New usage is discouraged.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ (𝑅 ∈ RingOps → 𝑋 ≠ ∅) | ||
Theorem | rngogcl 36079 | Closure law for the addition (group) operation of a ring. (Contributed by Steve Rodriguez, 9-Sep-2007.) (New usage is discouraged.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐺𝐵) ∈ 𝑋) | ||
Theorem | rngocom 36080 | The addition operation of a ring is commutative. (Contributed by Steve Rodriguez, 9-Sep-2007.) (New usage is discouraged.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐺𝐵) = (𝐵𝐺𝐴)) | ||
Theorem | rngoaass 36081 | The addition operation of a ring is associative. (Contributed by Steve Rodriguez, 9-Sep-2007.) (New usage is discouraged.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ ((𝑅 ∈ RingOps ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝐺𝐵)𝐺𝐶) = (𝐴𝐺(𝐵𝐺𝐶))) | ||
Theorem | rngoa32 36082 | The addition operation of a ring is commutative. (Contributed by Steve Rodriguez, 9-Sep-2007.) (New usage is discouraged.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ ((𝑅 ∈ RingOps ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝐺𝐵)𝐺𝐶) = ((𝐴𝐺𝐶)𝐺𝐵)) | ||
Theorem | rngoa4 36083 | Rearrangement of 4 terms in a sum of ring elements. (Contributed by Steve Rodriguez, 9-Sep-2007.) (New usage is discouraged.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ ((𝑅 ∈ RingOps ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ (𝐶 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋)) → ((𝐴𝐺𝐵)𝐺(𝐶𝐺𝐷)) = ((𝐴𝐺𝐶)𝐺(𝐵𝐺𝐷))) | ||
Theorem | rngorcan 36084 | Right cancellation law for the addition operation of a ring. (Contributed by Steve Rodriguez, 9-Sep-2007.) (New usage is discouraged.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ ((𝑅 ∈ RingOps ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴𝐺𝐶) = (𝐵𝐺𝐶) ↔ 𝐴 = 𝐵)) | ||
Theorem | rngolcan 36085 | Left cancellation law for the addition operation of a ring. (Contributed by Steve Rodriguez, 9-Sep-2007.) (New usage is discouraged.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ ((𝑅 ∈ RingOps ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐶𝐺𝐴) = (𝐶𝐺𝐵) ↔ 𝐴 = 𝐵)) | ||
Theorem | rngo0cl 36086 | A ring has an additive identity element. (Contributed by Steve Rodriguez, 9-Sep-2007.) (New usage is discouraged.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝑋 = ran 𝐺 & ⊢ 𝑍 = (GId‘𝐺) ⇒ ⊢ (𝑅 ∈ RingOps → 𝑍 ∈ 𝑋) | ||
Theorem | rngo0rid 36087 | The additive identity of a ring is a right identity element. (Contributed by Steve Rodriguez, 9-Sep-2007.) (New usage is discouraged.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝑋 = ran 𝐺 & ⊢ 𝑍 = (GId‘𝐺) ⇒ ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) → (𝐴𝐺𝑍) = 𝐴) | ||
Theorem | rngo0lid 36088 | The additive identity of a ring is a left identity element. (Contributed by Steve Rodriguez, 9-Sep-2007.) (New usage is discouraged.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝑋 = ran 𝐺 & ⊢ 𝑍 = (GId‘𝐺) ⇒ ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) → (𝑍𝐺𝐴) = 𝐴) | ||
Theorem | rngolz 36089 | The zero of a unital ring is a left-absorbing element. (Contributed by FL, 31-Aug-2009.) (New usage is discouraged.) |
⊢ 𝑍 = (GId‘𝐺) & ⊢ 𝑋 = ran 𝐺 & ⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝐻 = (2nd ‘𝑅) ⇒ ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) → (𝑍𝐻𝐴) = 𝑍) | ||
Theorem | rngorz 36090 | The zero of a unital ring is a right-absorbing element. (Contributed by FL, 31-Aug-2009.) (New usage is discouraged.) |
⊢ 𝑍 = (GId‘𝐺) & ⊢ 𝑋 = ran 𝐺 & ⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝐻 = (2nd ‘𝑅) ⇒ ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) → (𝐴𝐻𝑍) = 𝑍) | ||
Theorem | rngosn3 36091 | Obsolete as of 25-Jan-2020. Use ring1zr 20555 or srg1zr 19774 instead. The only unital ring with a base set consisting in one element is the zero ring. (Contributed by FL, 13-Feb-2010.) (Proof shortened by Mario Carneiro, 30-Apr-2015.) (New usage is discouraged.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝐵) → (𝑋 = {𝐴} ↔ 𝑅 = 〈{〈〈𝐴, 𝐴〉, 𝐴〉}, {〈〈𝐴, 𝐴〉, 𝐴〉}〉)) | ||
Theorem | rngosn4 36092 | Obsolete as of 25-Jan-2020. Use rngen1zr 20556 instead. The only unital ring with one element is the zero ring. (Contributed by FL, 14-Feb-2010.) (Revised by Mario Carneiro, 30-Apr-2015.) (New usage is discouraged.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) → (𝑋 ≈ 1o ↔ 𝑅 = 〈{〈〈𝐴, 𝐴〉, 𝐴〉}, {〈〈𝐴, 𝐴〉, 𝐴〉}〉)) | ||
Theorem | rngosn6 36093 | Obsolete as of 25-Jan-2020. Use ringen1zr 20557 or srgen1zr 19775 instead. The only unital ring with one element is the zero ring. (Contributed by FL, 15-Feb-2010.) (New usage is discouraged.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝑋 = ran 𝐺 & ⊢ 𝑍 = (GId‘𝐺) ⇒ ⊢ (𝑅 ∈ RingOps → (𝑋 ≈ 1o ↔ 𝑅 = 〈{〈〈𝑍, 𝑍〉, 𝑍〉}, {〈〈𝑍, 𝑍〉, 𝑍〉}〉)) | ||
Theorem | rngonegcl 36094 | A ring is closed under negation. (Contributed by Jeff Madsen, 10-Jun-2010.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝑋 = ran 𝐺 & ⊢ 𝑁 = (inv‘𝐺) ⇒ ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) → (𝑁‘𝐴) ∈ 𝑋) | ||
Theorem | rngoaddneg1 36095 | Adding the negative in a ring gives zero. (Contributed by Jeff Madsen, 10-Jun-2010.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝑋 = ran 𝐺 & ⊢ 𝑁 = (inv‘𝐺) & ⊢ 𝑍 = (GId‘𝐺) ⇒ ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) → (𝐴𝐺(𝑁‘𝐴)) = 𝑍) | ||
Theorem | rngoaddneg2 36096 | Adding the negative in a ring gives zero. (Contributed by Jeff Madsen, 10-Jun-2010.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝑋 = ran 𝐺 & ⊢ 𝑁 = (inv‘𝐺) & ⊢ 𝑍 = (GId‘𝐺) ⇒ ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋) → ((𝑁‘𝐴)𝐺𝐴) = 𝑍) | ||
Theorem | rngosub 36097 | Subtraction in a ring, in terms of addition and negation. (Contributed by Jeff Madsen, 19-Jun-2010.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝑋 = ran 𝐺 & ⊢ 𝑁 = (inv‘𝐺) & ⊢ 𝐷 = ( /𝑔 ‘𝐺) ⇒ ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐵) = (𝐴𝐺(𝑁‘𝐵))) | ||
Theorem | rngmgmbs4 36098* | The range of an internal operation with a left and right identity element equals its base set. (Contributed by FL, 24-Jan-2010.) (Revised by Mario Carneiro, 22-Dec-2013.) (New usage is discouraged.) |
⊢ ((𝐺:(𝑋 × 𝑋)⟶𝑋 ∧ ∃𝑢 ∈ 𝑋 ∀𝑥 ∈ 𝑋 ((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥)) → ran 𝐺 = 𝑋) | ||
Theorem | rngodm1dm2 36099 | In a unital ring the domain of the first variable of the addition equals the domain of the first variable of the multiplication. (Contributed by FL, 24-Jan-2010.) (New usage is discouraged.) |
⊢ 𝐻 = (2nd ‘𝑅) & ⊢ 𝐺 = (1st ‘𝑅) ⇒ ⊢ (𝑅 ∈ RingOps → dom dom 𝐺 = dom dom 𝐻) | ||
Theorem | rngorn1 36100 | In a unital ring the range of the addition equals the domain of the first variable of the multiplication. (Contributed by FL, 24-Jan-2010.) (New usage is discouraged.) |
⊢ 𝐻 = (2nd ‘𝑅) & ⊢ 𝐺 = (1st ‘𝑅) ⇒ ⊢ (𝑅 ∈ RingOps → ran 𝐺 = dom dom 𝐻) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |