Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-nnclavi Structured version   Visualization version   GIF version

Theorem bj-nnclavi 34727
Description: Inference associated with bj-nnclav 34726. Its associated inference is an instance of syl 17. Notice the non-intuitionistic proof from bj-peircei 34746 and bj-poni 34725. (Contributed by BJ, 30-Jul-2024.)
Hypothesis
Ref Expression
bj-nnclavi.1 ((𝜑𝜓) → 𝜑)
Assertion
Ref Expression
bj-nnclavi ((𝜑𝜓) → 𝜓)

Proof of Theorem bj-nnclavi
StepHypRef Expression
1 bj-nnclavi.1 . 2 ((𝜑𝜓) → 𝜑)
2 bj-nnclav 34726 . 2 (((𝜑𝜓) → 𝜑) → ((𝜑𝜓) → 𝜓))
31, 2ax-mp 5 1 ((𝜑𝜓) → 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator