Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-bj-fractemp Structured version   Visualization version   GIF version

Definition df-bj-fractemp 35368
Description: Temporary definition: fractional part of a temporary real.

To understand this definition, recall the canonical injection ω⟶R, 𝑛 ↦ [{𝑥Q𝑥 <Q ⟨suc 𝑛, 1o⟩}, 1P] ~R where we successively take the successor of 𝑛 to land in positive integers, then take the couple with 1o as second component to land in positive rationals, then take the Dedekind cut that positive rational forms, and finally take the equivalence class of the couple with 1P as second component. Adding one at the beginning and subtracting it at the end is necessary since the constructions used in set.mm use the positive integers, positive rationals, and positive reals as intermediate number systems. (Contributed by BJ, 22-Jan-2023.) The precise definition is irrelevant and should generally not be used. One could even inline it. The definitive fractional part of an extended or projective complex number will be defined later. (New usage is discouraged.)

Assertion
Ref Expression
df-bj-fractemp {R = (𝑥R ↦ (𝑦R ((𝑦 = 0R ∨ (0R <R 𝑦𝑦 <R 1R)) ∧ ∃𝑛 ∈ ω ([⟨{𝑧Q𝑧 <Q ⟨suc 𝑛, 1o⟩}, 1P⟩] ~R +R 𝑦) = 𝑥)))
Distinct variable group:   𝑥,𝑦,𝑧,𝑛

Detailed syntax breakdown of Definition df-bj-fractemp
StepHypRef Expression
1 cfractemp 35367 . 2 class {R
2 vx . . 3 setvar 𝑥
3 cnr 10621 . . 3 class R
4 vy . . . . . . . 8 setvar 𝑦
54cv 1538 . . . . . . 7 class 𝑦
6 c0r 10622 . . . . . . 7 class 0R
75, 6wceq 1539 . . . . . 6 wff 𝑦 = 0R
8 cltr 10627 . . . . . . . 8 class <R
96, 5, 8wbr 5074 . . . . . . 7 wff 0R <R 𝑦
10 c1r 10623 . . . . . . . 8 class 1R
115, 10, 8wbr 5074 . . . . . . 7 wff 𝑦 <R 1R
129, 11wa 396 . . . . . 6 wff (0R <R 𝑦𝑦 <R 1R)
137, 12wo 844 . . . . 5 wff (𝑦 = 0R ∨ (0R <R 𝑦𝑦 <R 1R))
14 vz . . . . . . . . . . . . 13 setvar 𝑧
1514cv 1538 . . . . . . . . . . . 12 class 𝑧
16 vn . . . . . . . . . . . . . . 15 setvar 𝑛
1716cv 1538 . . . . . . . . . . . . . 14 class 𝑛
1817csuc 6268 . . . . . . . . . . . . 13 class suc 𝑛
19 c1o 8290 . . . . . . . . . . . . 13 class 1o
2018, 19cop 4567 . . . . . . . . . . . 12 class ⟨suc 𝑛, 1o
21 cltq 10614 . . . . . . . . . . . 12 class <Q
2215, 20, 21wbr 5074 . . . . . . . . . . 11 wff 𝑧 <Q ⟨suc 𝑛, 1o
23 cnq 10608 . . . . . . . . . . 11 class Q
2422, 14, 23crab 3068 . . . . . . . . . 10 class {𝑧Q𝑧 <Q ⟨suc 𝑛, 1o⟩}
25 c1p 10616 . . . . . . . . . 10 class 1P
2624, 25cop 4567 . . . . . . . . 9 class ⟨{𝑧Q𝑧 <Q ⟨suc 𝑛, 1o⟩}, 1P
27 cer 10620 . . . . . . . . 9 class ~R
2826, 27cec 8496 . . . . . . . 8 class [⟨{𝑧Q𝑧 <Q ⟨suc 𝑛, 1o⟩}, 1P⟩] ~R
29 cplr 10625 . . . . . . . 8 class +R
3028, 5, 29co 7275 . . . . . . 7 class ([⟨{𝑧Q𝑧 <Q ⟨suc 𝑛, 1o⟩}, 1P⟩] ~R +R 𝑦)
312cv 1538 . . . . . . 7 class 𝑥
3230, 31wceq 1539 . . . . . 6 wff ([⟨{𝑧Q𝑧 <Q ⟨suc 𝑛, 1o⟩}, 1P⟩] ~R +R 𝑦) = 𝑥
33 com 7712 . . . . . 6 class ω
3432, 16, 33wrex 3065 . . . . 5 wff 𝑛 ∈ ω ([⟨{𝑧Q𝑧 <Q ⟨suc 𝑛, 1o⟩}, 1P⟩] ~R +R 𝑦) = 𝑥
3513, 34wa 396 . . . 4 wff ((𝑦 = 0R ∨ (0R <R 𝑦𝑦 <R 1R)) ∧ ∃𝑛 ∈ ω ([⟨{𝑧Q𝑧 <Q ⟨suc 𝑛, 1o⟩}, 1P⟩] ~R +R 𝑦) = 𝑥)
3635, 4, 3crio 7231 . . 3 class (𝑦R ((𝑦 = 0R ∨ (0R <R 𝑦𝑦 <R 1R)) ∧ ∃𝑛 ∈ ω ([⟨{𝑧Q𝑧 <Q ⟨suc 𝑛, 1o⟩}, 1P⟩] ~R +R 𝑦) = 𝑥))
372, 3, 36cmpt 5157 . 2 class (𝑥R ↦ (𝑦R ((𝑦 = 0R ∨ (0R <R 𝑦𝑦 <R 1R)) ∧ ∃𝑛 ∈ ω ([⟨{𝑧Q𝑧 <Q ⟨suc 𝑛, 1o⟩}, 1P⟩] ~R +R 𝑦) = 𝑥)))
381, 37wceq 1539 1 wff {R = (𝑥R ↦ (𝑦R ((𝑦 = 0R ∨ (0R <R 𝑦𝑦 <R 1R)) ∧ ∃𝑛 ∈ ω ([⟨{𝑧Q𝑧 <Q ⟨suc 𝑛, 1o⟩}, 1P⟩] ~R +R 𝑦) = 𝑥)))
Colors of variables: wff setvar class
This definition is referenced by: (None)
  Copyright terms: Public domain W3C validator