Home | Metamath
Proof Explorer Theorem List (p. 364 of 469) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29568) |
Hilbert Space Explorer
(29569-31091) |
Users' Mathboxes
(31092-46881) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | inidl 36301 | The intersection of two ideals is an ideal. (Contributed by Jeff Madsen, 16-Jun-2011.) |
⊢ ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅) ∧ 𝐽 ∈ (Idl‘𝑅)) → (𝐼 ∩ 𝐽) ∈ (Idl‘𝑅)) | ||
Theorem | unichnidl 36302* | The union of a nonempty chain of ideals is an ideal. (Contributed by Jeff Madsen, 5-Jan-2011.) |
⊢ ((𝑅 ∈ RingOps ∧ (𝐶 ≠ ∅ ∧ 𝐶 ⊆ (Idl‘𝑅) ∧ ∀𝑖 ∈ 𝐶 ∀𝑗 ∈ 𝐶 (𝑖 ⊆ 𝑗 ∨ 𝑗 ⊆ 𝑖))) → ∪ 𝐶 ∈ (Idl‘𝑅)) | ||
Theorem | keridl 36303 | The kernel of a ring homomorphism is an ideal. (Contributed by Jeff Madsen, 3-Jan-2011.) |
⊢ 𝐺 = (1st ‘𝑆) & ⊢ 𝑍 = (GId‘𝐺) ⇒ ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) → (◡𝐹 “ {𝑍}) ∈ (Idl‘𝑅)) | ||
Theorem | pridlval 36304* | The class of prime ideals of a ring 𝑅. (Contributed by Jeff Madsen, 10-Jun-2010.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝐻 = (2nd ‘𝑅) & ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ (𝑅 ∈ RingOps → (PrIdl‘𝑅) = {𝑖 ∈ (Idl‘𝑅) ∣ (𝑖 ≠ 𝑋 ∧ ∀𝑎 ∈ (Idl‘𝑅)∀𝑏 ∈ (Idl‘𝑅)(∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑏 (𝑥𝐻𝑦) ∈ 𝑖 → (𝑎 ⊆ 𝑖 ∨ 𝑏 ⊆ 𝑖)))}) | ||
Theorem | ispridl 36305* | The predicate "is a prime ideal". (Contributed by Jeff Madsen, 10-Jun-2010.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝐻 = (2nd ‘𝑅) & ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ (𝑅 ∈ RingOps → (𝑃 ∈ (PrIdl‘𝑅) ↔ (𝑃 ∈ (Idl‘𝑅) ∧ 𝑃 ≠ 𝑋 ∧ ∀𝑎 ∈ (Idl‘𝑅)∀𝑏 ∈ (Idl‘𝑅)(∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑏 (𝑥𝐻𝑦) ∈ 𝑃 → (𝑎 ⊆ 𝑃 ∨ 𝑏 ⊆ 𝑃))))) | ||
Theorem | pridlidl 36306 | A prime ideal is an ideal. (Contributed by Jeff Madsen, 19-Jun-2010.) |
⊢ ((𝑅 ∈ RingOps ∧ 𝑃 ∈ (PrIdl‘𝑅)) → 𝑃 ∈ (Idl‘𝑅)) | ||
Theorem | pridlnr 36307 | A prime ideal is a proper ideal. (Contributed by Jeff Madsen, 19-Jun-2010.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ ((𝑅 ∈ RingOps ∧ 𝑃 ∈ (PrIdl‘𝑅)) → 𝑃 ≠ 𝑋) | ||
Theorem | pridl 36308* | The main property of a prime ideal. (Contributed by Jeff Madsen, 19-Jun-2010.) |
⊢ 𝐻 = (2nd ‘𝑅) ⇒ ⊢ (((𝑅 ∈ RingOps ∧ 𝑃 ∈ (PrIdl‘𝑅)) ∧ (𝐴 ∈ (Idl‘𝑅) ∧ 𝐵 ∈ (Idl‘𝑅) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝑥𝐻𝑦) ∈ 𝑃)) → (𝐴 ⊆ 𝑃 ∨ 𝐵 ⊆ 𝑃)) | ||
Theorem | ispridl2 36309* | A condition that shows an ideal is prime. For commutative rings, this is often taken to be the definition. See ispridlc 36341 for the equivalence in the commutative case. (Contributed by Jeff Madsen, 19-Jun-2010.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝐻 = (2nd ‘𝑅) & ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ ((𝑅 ∈ RingOps ∧ (𝑃 ∈ (Idl‘𝑅) ∧ 𝑃 ≠ 𝑋 ∧ ∀𝑎 ∈ 𝑋 ∀𝑏 ∈ 𝑋 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎 ∈ 𝑃 ∨ 𝑏 ∈ 𝑃)))) → 𝑃 ∈ (PrIdl‘𝑅)) | ||
Theorem | maxidlval 36310* | The set of maximal ideals of a ring. (Contributed by Jeff Madsen, 5-Jan-2011.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ (𝑅 ∈ RingOps → (MaxIdl‘𝑅) = {𝑖 ∈ (Idl‘𝑅) ∣ (𝑖 ≠ 𝑋 ∧ ∀𝑗 ∈ (Idl‘𝑅)(𝑖 ⊆ 𝑗 → (𝑗 = 𝑖 ∨ 𝑗 = 𝑋)))}) | ||
Theorem | ismaxidl 36311* | The predicate "is a maximal ideal". (Contributed by Jeff Madsen, 5-Jan-2011.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ (𝑅 ∈ RingOps → (𝑀 ∈ (MaxIdl‘𝑅) ↔ (𝑀 ∈ (Idl‘𝑅) ∧ 𝑀 ≠ 𝑋 ∧ ∀𝑗 ∈ (Idl‘𝑅)(𝑀 ⊆ 𝑗 → (𝑗 = 𝑀 ∨ 𝑗 = 𝑋))))) | ||
Theorem | maxidlidl 36312 | A maximal ideal is an ideal. (Contributed by Jeff Madsen, 5-Jan-2011.) |
⊢ ((𝑅 ∈ RingOps ∧ 𝑀 ∈ (MaxIdl‘𝑅)) → 𝑀 ∈ (Idl‘𝑅)) | ||
Theorem | maxidlnr 36313 | A maximal ideal is proper. (Contributed by Jeff Madsen, 16-Jun-2011.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ ((𝑅 ∈ RingOps ∧ 𝑀 ∈ (MaxIdl‘𝑅)) → 𝑀 ≠ 𝑋) | ||
Theorem | maxidlmax 36314 | A maximal ideal is a maximal proper ideal. (Contributed by Jeff Madsen, 16-Jun-2011.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ (((𝑅 ∈ RingOps ∧ 𝑀 ∈ (MaxIdl‘𝑅)) ∧ (𝐼 ∈ (Idl‘𝑅) ∧ 𝑀 ⊆ 𝐼)) → (𝐼 = 𝑀 ∨ 𝐼 = 𝑋)) | ||
Theorem | maxidln1 36315 | One is not contained in any maximal ideal. (Contributed by Jeff Madsen, 17-Jun-2011.) |
⊢ 𝐻 = (2nd ‘𝑅) & ⊢ 𝑈 = (GId‘𝐻) ⇒ ⊢ ((𝑅 ∈ RingOps ∧ 𝑀 ∈ (MaxIdl‘𝑅)) → ¬ 𝑈 ∈ 𝑀) | ||
Theorem | maxidln0 36316 | A ring with a maximal ideal is not the zero ring. (Contributed by Jeff Madsen, 17-Jun-2011.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝐻 = (2nd ‘𝑅) & ⊢ 𝑍 = (GId‘𝐺) & ⊢ 𝑈 = (GId‘𝐻) ⇒ ⊢ ((𝑅 ∈ RingOps ∧ 𝑀 ∈ (MaxIdl‘𝑅)) → 𝑈 ≠ 𝑍) | ||
Syntax | cprrng 36317 | Extend class notation with the class of prime rings. |
class PrRing | ||
Syntax | cdmn 36318 | Extend class notation with the class of domains. |
class Dmn | ||
Definition | df-prrngo 36319 | Define the class of prime rings. A ring is prime if the zero ideal is a prime ideal. (Contributed by Jeff Madsen, 10-Jun-2010.) |
⊢ PrRing = {𝑟 ∈ RingOps ∣ {(GId‘(1st ‘𝑟))} ∈ (PrIdl‘𝑟)} | ||
Definition | df-dmn 36320 | Define the class of (integral) domains. A domain is a commutative prime ring. (Contributed by Jeff Madsen, 10-Jun-2010.) |
⊢ Dmn = (PrRing ∩ Com2) | ||
Theorem | isprrngo 36321 | The predicate "is a prime ring". (Contributed by Jeff Madsen, 10-Jun-2010.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝑍 = (GId‘𝐺) ⇒ ⊢ (𝑅 ∈ PrRing ↔ (𝑅 ∈ RingOps ∧ {𝑍} ∈ (PrIdl‘𝑅))) | ||
Theorem | prrngorngo 36322 | A prime ring is a ring. (Contributed by Jeff Madsen, 10-Jun-2010.) |
⊢ (𝑅 ∈ PrRing → 𝑅 ∈ RingOps) | ||
Theorem | smprngopr 36323 | A simple ring (one whose only ideals are 0 and 𝑅) is a prime ring. (Contributed by Jeff Madsen, 6-Jan-2011.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝐻 = (2nd ‘𝑅) & ⊢ 𝑋 = ran 𝐺 & ⊢ 𝑍 = (GId‘𝐺) & ⊢ 𝑈 = (GId‘𝐻) ⇒ ⊢ ((𝑅 ∈ RingOps ∧ 𝑈 ≠ 𝑍 ∧ (Idl‘𝑅) = {{𝑍}, 𝑋}) → 𝑅 ∈ PrRing) | ||
Theorem | divrngpr 36324 | A division ring is a prime ring. (Contributed by Jeff Madsen, 6-Jan-2011.) |
⊢ (𝑅 ∈ DivRingOps → 𝑅 ∈ PrRing) | ||
Theorem | isdmn 36325 | The predicate "is a domain". (Contributed by Jeff Madsen, 10-Jun-2010.) |
⊢ (𝑅 ∈ Dmn ↔ (𝑅 ∈ PrRing ∧ 𝑅 ∈ Com2)) | ||
Theorem | isdmn2 36326 | The predicate "is a domain". (Contributed by Jeff Madsen, 10-Jun-2010.) |
⊢ (𝑅 ∈ Dmn ↔ (𝑅 ∈ PrRing ∧ 𝑅 ∈ CRingOps)) | ||
Theorem | dmncrng 36327 | A domain is a commutative ring. (Contributed by Jeff Madsen, 6-Jan-2011.) |
⊢ (𝑅 ∈ Dmn → 𝑅 ∈ CRingOps) | ||
Theorem | dmnrngo 36328 | A domain is a ring. (Contributed by Jeff Madsen, 6-Jan-2011.) |
⊢ (𝑅 ∈ Dmn → 𝑅 ∈ RingOps) | ||
Theorem | flddmn 36329 | A field is a domain. (Contributed by Jeff Madsen, 10-Jun-2010.) |
⊢ (𝐾 ∈ Fld → 𝐾 ∈ Dmn) | ||
Syntax | cigen 36330 | Extend class notation with the ideal generation function. |
class IdlGen | ||
Definition | df-igen 36331* | Define the ideal generated by a subset of a ring. (Contributed by Jeff Madsen, 10-Jun-2010.) |
⊢ IdlGen = (𝑟 ∈ RingOps, 𝑠 ∈ 𝒫 ran (1st ‘𝑟) ↦ ∩ {𝑗 ∈ (Idl‘𝑟) ∣ 𝑠 ⊆ 𝑗}) | ||
Theorem | igenval 36332* | The ideal generated by a subset of a ring. (Contributed by Jeff Madsen, 10-Jun-2010.) (Proof shortened by Mario Carneiro, 20-Dec-2013.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ⊆ 𝑋) → (𝑅 IdlGen 𝑆) = ∩ {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆 ⊆ 𝑗}) | ||
Theorem | igenss 36333 | A set is a subset of the ideal it generates. (Contributed by Jeff Madsen, 10-Jun-2010.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ⊆ 𝑋) → 𝑆 ⊆ (𝑅 IdlGen 𝑆)) | ||
Theorem | igenidl 36334 | The ideal generated by a set is an ideal. (Contributed by Jeff Madsen, 10-Jun-2010.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ⊆ 𝑋) → (𝑅 IdlGen 𝑆) ∈ (Idl‘𝑅)) | ||
Theorem | igenmin 36335 | The ideal generated by a set is the minimal ideal containing that set. (Contributed by Jeff Madsen, 10-Jun-2010.) |
⊢ ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅) ∧ 𝑆 ⊆ 𝐼) → (𝑅 IdlGen 𝑆) ⊆ 𝐼) | ||
Theorem | igenidl2 36336 | The ideal generated by an ideal is that ideal. (Contributed by Jeff Madsen, 10-Jun-2010.) |
⊢ ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) → (𝑅 IdlGen 𝐼) = 𝐼) | ||
Theorem | igenval2 36337* | The ideal generated by a subset of a ring. (Contributed by Jeff Madsen, 10-Jun-2010.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ⊆ 𝑋) → ((𝑅 IdlGen 𝑆) = 𝐼 ↔ (𝐼 ∈ (Idl‘𝑅) ∧ 𝑆 ⊆ 𝐼 ∧ ∀𝑗 ∈ (Idl‘𝑅)(𝑆 ⊆ 𝑗 → 𝐼 ⊆ 𝑗)))) | ||
Theorem | prnc 36338* | A principal ideal (an ideal generated by one element) in a commutative ring. (Contributed by Jeff Madsen, 10-Jun-2010.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝐻 = (2nd ‘𝑅) & ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ ((𝑅 ∈ CRingOps ∧ 𝐴 ∈ 𝑋) → (𝑅 IdlGen {𝐴}) = {𝑥 ∈ 𝑋 ∣ ∃𝑦 ∈ 𝑋 𝑥 = (𝑦𝐻𝐴)}) | ||
Theorem | isfldidl 36339 | Determine if a ring is a field based on its ideals. (Contributed by Jeff Madsen, 10-Jun-2010.) |
⊢ 𝐺 = (1st ‘𝐾) & ⊢ 𝐻 = (2nd ‘𝐾) & ⊢ 𝑋 = ran 𝐺 & ⊢ 𝑍 = (GId‘𝐺) & ⊢ 𝑈 = (GId‘𝐻) ⇒ ⊢ (𝐾 ∈ Fld ↔ (𝐾 ∈ CRingOps ∧ 𝑈 ≠ 𝑍 ∧ (Idl‘𝐾) = {{𝑍}, 𝑋})) | ||
Theorem | isfldidl2 36340 | Determine if a ring is a field based on its ideals. (Contributed by Jeff Madsen, 6-Jan-2011.) |
⊢ 𝐺 = (1st ‘𝐾) & ⊢ 𝐻 = (2nd ‘𝐾) & ⊢ 𝑋 = ran 𝐺 & ⊢ 𝑍 = (GId‘𝐺) ⇒ ⊢ (𝐾 ∈ Fld ↔ (𝐾 ∈ CRingOps ∧ 𝑋 ≠ {𝑍} ∧ (Idl‘𝐾) = {{𝑍}, 𝑋})) | ||
Theorem | ispridlc 36341* | The predicate "is a prime ideal". Alternate definition for commutative rings. (Contributed by Jeff Madsen, 19-Jun-2010.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝐻 = (2nd ‘𝑅) & ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ (𝑅 ∈ CRingOps → (𝑃 ∈ (PrIdl‘𝑅) ↔ (𝑃 ∈ (Idl‘𝑅) ∧ 𝑃 ≠ 𝑋 ∧ ∀𝑎 ∈ 𝑋 ∀𝑏 ∈ 𝑋 ((𝑎𝐻𝑏) ∈ 𝑃 → (𝑎 ∈ 𝑃 ∨ 𝑏 ∈ 𝑃))))) | ||
Theorem | pridlc 36342 | Property of a prime ideal in a commutative ring. (Contributed by Jeff Madsen, 17-Jun-2011.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝐻 = (2nd ‘𝑅) & ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ (((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (PrIdl‘𝑅)) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ (𝐴𝐻𝐵) ∈ 𝑃)) → (𝐴 ∈ 𝑃 ∨ 𝐵 ∈ 𝑃)) | ||
Theorem | pridlc2 36343 | Property of a prime ideal in a commutative ring. (Contributed by Jeff Madsen, 17-Jun-2011.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝐻 = (2nd ‘𝑅) & ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ (((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (PrIdl‘𝑅)) ∧ (𝐴 ∈ (𝑋 ∖ 𝑃) ∧ 𝐵 ∈ 𝑋 ∧ (𝐴𝐻𝐵) ∈ 𝑃)) → 𝐵 ∈ 𝑃) | ||
Theorem | pridlc3 36344 | Property of a prime ideal in a commutative ring. (Contributed by Jeff Madsen, 17-Jun-2011.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝐻 = (2nd ‘𝑅) & ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ (((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (PrIdl‘𝑅)) ∧ (𝐴 ∈ (𝑋 ∖ 𝑃) ∧ 𝐵 ∈ (𝑋 ∖ 𝑃))) → (𝐴𝐻𝐵) ∈ (𝑋 ∖ 𝑃)) | ||
Theorem | isdmn3 36345* | The predicate "is a domain", alternate expression. (Contributed by Jeff Madsen, 19-Jun-2010.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝐻 = (2nd ‘𝑅) & ⊢ 𝑋 = ran 𝐺 & ⊢ 𝑍 = (GId‘𝐺) & ⊢ 𝑈 = (GId‘𝐻) ⇒ ⊢ (𝑅 ∈ Dmn ↔ (𝑅 ∈ CRingOps ∧ 𝑈 ≠ 𝑍 ∧ ∀𝑎 ∈ 𝑋 ∀𝑏 ∈ 𝑋 ((𝑎𝐻𝑏) = 𝑍 → (𝑎 = 𝑍 ∨ 𝑏 = 𝑍)))) | ||
Theorem | dmnnzd 36346 | A domain has no zero-divisors (besides zero). (Contributed by Jeff Madsen, 19-Jun-2010.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝐻 = (2nd ‘𝑅) & ⊢ 𝑋 = ran 𝐺 & ⊢ 𝑍 = (GId‘𝐺) ⇒ ⊢ ((𝑅 ∈ Dmn ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ (𝐴𝐻𝐵) = 𝑍)) → (𝐴 = 𝑍 ∨ 𝐵 = 𝑍)) | ||
Theorem | dmncan1 36347 | Cancellation law for domains. (Contributed by Jeff Madsen, 6-Jan-2011.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝐻 = (2nd ‘𝑅) & ⊢ 𝑋 = ran 𝐺 & ⊢ 𝑍 = (GId‘𝐺) ⇒ ⊢ (((𝑅 ∈ Dmn ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) ∧ 𝐴 ≠ 𝑍) → ((𝐴𝐻𝐵) = (𝐴𝐻𝐶) → 𝐵 = 𝐶)) | ||
Theorem | dmncan2 36348 | Cancellation law for domains. (Contributed by Jeff Madsen, 6-Jan-2011.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝐻 = (2nd ‘𝑅) & ⊢ 𝑋 = ran 𝐺 & ⊢ 𝑍 = (GId‘𝐺) ⇒ ⊢ (((𝑅 ∈ Dmn ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) ∧ 𝐶 ≠ 𝑍) → ((𝐴𝐻𝐶) = (𝐵𝐻𝐶) → 𝐴 = 𝐵)) | ||
The results in this section are mostly meant for being used by automatic proof building programs. As a result, they might appear less useful or meaningful than others to human beings. | ||
Theorem | efald2 36349 | A proof by contradiction. (Contributed by Giovanni Mascellani, 15-Sep-2017.) |
⊢ (¬ 𝜑 → ⊥) ⇒ ⊢ 𝜑 | ||
Theorem | notbinot1 36350 | Simplification rule of negation across a biconditional. (Contributed by Giovanni Mascellani, 15-Sep-2017.) |
⊢ (¬ (¬ 𝜑 ↔ 𝜓) ↔ (𝜑 ↔ 𝜓)) | ||
Theorem | bicontr 36351 | Biconditional of its own negation is a contradiction. (Contributed by Giovanni Mascellani, 15-Sep-2017.) |
⊢ ((¬ 𝜑 ↔ 𝜑) ↔ ⊥) | ||
Theorem | impor 36352 | An equivalent formula for implying a disjunction. (Contributed by Giovanni Mascellani, 15-Sep-2017.) |
⊢ ((𝜑 → (𝜓 ∨ 𝜒)) ↔ ((¬ 𝜑 ∨ 𝜓) ∨ 𝜒)) | ||
Theorem | orfa 36353 | The falsum ⊥ can be removed from a disjunction. (Contributed by Giovanni Mascellani, 15-Sep-2017.) |
⊢ ((𝜑 ∨ ⊥) ↔ 𝜑) | ||
Theorem | notbinot2 36354 | Commutation rule between negation and biconditional. (Contributed by Giovanni Mascellani, 15-Sep-2017.) |
⊢ (¬ (𝜑 ↔ 𝜓) ↔ (¬ 𝜑 ↔ 𝜓)) | ||
Theorem | biimpor 36355 | A rewriting rule for biconditional. (Contributed by Giovanni Mascellani, 15-Sep-2017.) |
⊢ (((𝜑 ↔ 𝜓) → 𝜒) ↔ ((¬ 𝜑 ↔ 𝜓) ∨ 𝜒)) | ||
Theorem | orfa1 36356 | Add a contradicting disjunct to an antecedent. (Contributed by Giovanni Mascellani, 15-Sep-2017.) |
⊢ (𝜑 → 𝜓) ⇒ ⊢ ((𝜑 ∨ ⊥) → 𝜓) | ||
Theorem | orfa2 36357 | Remove a contradicting disjunct from an antecedent. (Contributed by Giovanni Mascellani, 15-Sep-2017.) |
⊢ (𝜑 → ⊥) ⇒ ⊢ ((𝜑 ∨ 𝜓) → 𝜓) | ||
Theorem | bifald 36358 | Infer the equivalence to a contradiction from a negation, in deduction form. (Contributed by Giovanni Mascellani, 15-Sep-2017.) |
⊢ (𝜑 → ¬ 𝜓) ⇒ ⊢ (𝜑 → (𝜓 ↔ ⊥)) | ||
Theorem | orsild 36359 | A lemma for not-or-not elimination, in deduction form. (Contributed by Giovanni Mascellani, 15-Sep-2017.) |
⊢ (𝜑 → ¬ (𝜓 ∨ 𝜒)) ⇒ ⊢ (𝜑 → ¬ 𝜓) | ||
Theorem | orsird 36360 | A lemma for not-or-not elimination, in deduction form. (Contributed by Giovanni Mascellani, 15-Sep-2017.) |
⊢ (𝜑 → ¬ (𝜓 ∨ 𝜒)) ⇒ ⊢ (𝜑 → ¬ 𝜒) | ||
Theorem | cnf1dd 36361 | A lemma for Conjunctive Normal Form unit propagation, in double deduction form. (Contributed by Giovanni Mascellani, 19-Mar-2018.) |
⊢ (𝜑 → (𝜓 → ¬ 𝜒)) & ⊢ (𝜑 → (𝜓 → (𝜒 ∨ 𝜃))) ⇒ ⊢ (𝜑 → (𝜓 → 𝜃)) | ||
Theorem | cnf2dd 36362 | A lemma for Conjunctive Normal Form unit propagation, in double deduction form. (Contributed by Giovanni Mascellani, 19-Mar-2018.) |
⊢ (𝜑 → (𝜓 → ¬ 𝜃)) & ⊢ (𝜑 → (𝜓 → (𝜒 ∨ 𝜃))) ⇒ ⊢ (𝜑 → (𝜓 → 𝜒)) | ||
Theorem | cnfn1dd 36363 | A lemma for Conjunctive Normal Form unit propagation, in double deduction form. (Contributed by Giovanni Mascellani, 19-Mar-2018.) |
⊢ (𝜑 → (𝜓 → 𝜒)) & ⊢ (𝜑 → (𝜓 → (¬ 𝜒 ∨ 𝜃))) ⇒ ⊢ (𝜑 → (𝜓 → 𝜃)) | ||
Theorem | cnfn2dd 36364 | A lemma for Conjunctive Normal Form unit propagation, in double deduction form. (Contributed by Giovanni Mascellani, 19-Mar-2018.) |
⊢ (𝜑 → (𝜓 → 𝜃)) & ⊢ (𝜑 → (𝜓 → (𝜒 ∨ ¬ 𝜃))) ⇒ ⊢ (𝜑 → (𝜓 → 𝜒)) | ||
Theorem | or32dd 36365 | A rearrangement of disjuncts, in double deduction form. (Contributed by Giovanni Mascellani, 19-Mar-2018.) |
⊢ (𝜑 → (𝜓 → ((𝜒 ∨ 𝜃) ∨ 𝜏))) ⇒ ⊢ (𝜑 → (𝜓 → ((𝜒 ∨ 𝜏) ∨ 𝜃))) | ||
Theorem | notornotel1 36366 | A lemma for not-or-not elimination, in deduction form. (Contributed by Giovanni Mascellani, 19-Mar-2018.) |
⊢ (𝜑 → ¬ (¬ 𝜓 ∨ 𝜒)) ⇒ ⊢ (𝜑 → 𝜓) | ||
Theorem | notornotel2 36367 | A lemma for not-or-not elimination, in deduction form. (Contributed by Giovanni Mascellani, 19-Mar-2018.) |
⊢ (𝜑 → ¬ (𝜓 ∨ ¬ 𝜒)) ⇒ ⊢ (𝜑 → 𝜒) | ||
Theorem | contrd 36368 | A proof by contradiction, in deduction form. (Contributed by Giovanni Mascellani, 19-Mar-2018.) |
⊢ (𝜑 → (¬ 𝜓 → 𝜒)) & ⊢ (𝜑 → (¬ 𝜓 → ¬ 𝜒)) ⇒ ⊢ (𝜑 → 𝜓) | ||
Theorem | an12i 36369 | An inference from commuting operands in a chain of conjunctions. (Contributed by Giovanni Mascellani, 22-May-2019.) |
⊢ (𝜑 ∧ (𝜓 ∧ 𝜒)) ⇒ ⊢ (𝜓 ∧ (𝜑 ∧ 𝜒)) | ||
Theorem | exmid2 36370 | An excluded middle law. (Contributed by Giovanni Mascellani, 23-May-2019.) |
⊢ ((𝜓 ∧ 𝜑) → 𝜒) & ⊢ ((¬ 𝜓 ∧ 𝜂) → 𝜒) ⇒ ⊢ ((𝜑 ∧ 𝜂) → 𝜒) | ||
Theorem | selconj 36371 | An inference for selecting one of a list of conjuncts. (Contributed by Giovanni Mascellani, 23-May-2019.) |
⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) ⇒ ⊢ ((𝜂 ∧ 𝜑) ↔ (𝜓 ∧ (𝜂 ∧ 𝜒))) | ||
Theorem | truconj 36372 | Add true as a conjunct. (Contributed by Giovanni Mascellani, 23-May-2019.) |
⊢ (𝜑 ↔ (⊤ ∧ 𝜑)) | ||
Theorem | orel 36373 | An inference for disjunction elimination. (Contributed by Giovanni Mascellani, 24-May-2019.) |
⊢ ((𝜓 ∧ 𝜂) → 𝜃) & ⊢ ((𝜒 ∧ 𝜌) → 𝜃) & ⊢ (𝜑 → (𝜓 ∨ 𝜒)) ⇒ ⊢ ((𝜑 ∧ (𝜂 ∧ 𝜌)) → 𝜃) | ||
Theorem | negel 36374 | An inference for negation elimination. (Contributed by Giovanni Mascellani, 24-May-2019.) |
⊢ (𝜓 → 𝜒) & ⊢ (𝜑 → ¬ 𝜒) ⇒ ⊢ ((𝜑 ∧ 𝜓) → ⊥) | ||
Theorem | botel 36375 | An inference for bottom elimination. (Contributed by Giovanni Mascellani, 24-May-2019.) |
⊢ (𝜑 → ⊥) ⇒ ⊢ (𝜑 → 𝜓) | ||
Theorem | tradd 36376 | Add top ad a conjunct. (Contributed by Giovanni Mascellani, 24-May-2019.) |
⊢ (𝜑 ↔ 𝜓) ⇒ ⊢ (𝜑 ↔ (⊤ ∧ 𝜓)) | ||
Theorem | gm-sbtru 36377 | Substitution does not change truth. (Contributed by Giovanni Mascellani, 24-May-2019.) |
⊢ 𝐴 ∈ V ⇒ ⊢ ([𝐴 / 𝑥]⊤ ↔ ⊤) | ||
Theorem | sbfal 36378 | Substitution does not change falsity. (Contributed by Giovanni Mascellani, 24-May-2019.) |
⊢ 𝐴 ∈ V ⇒ ⊢ ([𝐴 / 𝑥]⊥ ↔ ⊥) | ||
Theorem | sbcani 36379 | Distribution of class substitution over conjunction, in inference form. (Contributed by Giovanni Mascellani, 27-May-2019.) |
⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝜒) & ⊢ ([𝐴 / 𝑥]𝜓 ↔ 𝜂) ⇒ ⊢ ([𝐴 / 𝑥](𝜑 ∧ 𝜓) ↔ (𝜒 ∧ 𝜂)) | ||
Theorem | sbcori 36380 | Distribution of class substitution over disjunction, in inference form. (Contributed by Giovanni Mascellani, 27-May-2019.) |
⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝜒) & ⊢ ([𝐴 / 𝑥]𝜓 ↔ 𝜂) ⇒ ⊢ ([𝐴 / 𝑥](𝜑 ∨ 𝜓) ↔ (𝜒 ∨ 𝜂)) | ||
Theorem | sbcimi 36381 | Distribution of class substitution over implication, in inference form. (Contributed by Giovanni Mascellani, 27-May-2019.) |
⊢ 𝐴 ∈ V & ⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝜒) & ⊢ ([𝐴 / 𝑥]𝜓 ↔ 𝜂) ⇒ ⊢ ([𝐴 / 𝑥](𝜑 → 𝜓) ↔ (𝜒 → 𝜂)) | ||
Theorem | sbcni 36382 | Move class substitution inside a negation, in inference form. (Contributed by Giovanni Mascellani, 27-May-2019.) |
⊢ 𝐴 ∈ V & ⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝜓) ⇒ ⊢ ([𝐴 / 𝑥] ¬ 𝜑 ↔ ¬ 𝜓) | ||
Theorem | sbali 36383 | Discard class substitution in a universal quantification when substituting the quantified variable, in inference form. (Contributed by Giovanni Mascellani, 27-May-2019.) |
⊢ 𝐴 ∈ V ⇒ ⊢ ([𝐴 / 𝑥]∀𝑥𝜑 ↔ ∀𝑥𝜑) | ||
Theorem | sbexi 36384 | Discard class substitution in an existential quantification when substituting the quantified variable, in inference form. (Contributed by Giovanni Mascellani, 27-May-2019.) |
⊢ 𝐴 ∈ V ⇒ ⊢ ([𝐴 / 𝑥]∃𝑥𝜑 ↔ ∃𝑥𝜑) | ||
Theorem | sbcalf 36385* | Move universal quantifier in and out of class substitution, with an explicit nonfree variable condition. (Contributed by Giovanni Mascellani, 29-May-2019.) |
⊢ Ⅎ𝑦𝐴 ⇒ ⊢ ([𝐴 / 𝑥]∀𝑦𝜑 ↔ ∀𝑦[𝐴 / 𝑥]𝜑) | ||
Theorem | sbcexf 36386* | Move existential quantifier in and out of class substitution, with an explicit nonfree variable condition. (Contributed by Giovanni Mascellani, 29-May-2019.) |
⊢ Ⅎ𝑦𝐴 ⇒ ⊢ ([𝐴 / 𝑥]∃𝑦𝜑 ↔ ∃𝑦[𝐴 / 𝑥]𝜑) | ||
Theorem | sbcalfi 36387* | Move universal quantifier in and out of class substitution, with an explicit nonfree variable condition and in inference form. (Contributed by Giovanni Mascellani, 30-May-2019.) |
⊢ Ⅎ𝑦𝐴 & ⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝜓) ⇒ ⊢ ([𝐴 / 𝑥]∀𝑦𝜑 ↔ ∀𝑦𝜓) | ||
Theorem | sbcexfi 36388* | Move existential quantifier in and out of class substitution, with an explicit nonfree variable condition and in inference form. (Contributed by Giovanni Mascellani, 30-May-2019.) |
⊢ Ⅎ𝑦𝐴 & ⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝜓) ⇒ ⊢ ([𝐴 / 𝑥]∃𝑦𝜑 ↔ ∃𝑦𝜓) | ||
Theorem | spsbcdi 36389 | A lemma for eliminating a universal quantifier, in inference form. (Contributed by Giovanni Mascellani, 30-May-2019.) |
⊢ 𝐴 ∈ V & ⊢ (𝜑 → ∀𝑥𝜒) & ⊢ ([𝐴 / 𝑥]𝜒 ↔ 𝜓) ⇒ ⊢ (𝜑 → 𝜓) | ||
Theorem | alrimii 36390* | A lemma for introducing a universal quantifier, in inference form. (Contributed by Giovanni Mascellani, 30-May-2019.) |
⊢ Ⅎ𝑦𝜑 & ⊢ (𝜑 → 𝜓) & ⊢ ([𝑦 / 𝑥]𝜒 ↔ 𝜓) & ⊢ Ⅎ𝑦𝜒 ⇒ ⊢ (𝜑 → ∀𝑥𝜒) | ||
Theorem | spesbcdi 36391 | A lemma for introducing an existential quantifier, in inference form. (Contributed by Giovanni Mascellani, 30-May-2019.) |
⊢ (𝜑 → 𝜓) & ⊢ ([𝐴 / 𝑥]𝜒 ↔ 𝜓) ⇒ ⊢ (𝜑 → ∃𝑥𝜒) | ||
Theorem | exlimddvf 36392 | A lemma for eliminating an existential quantifier. (Contributed by Giovanni Mascellani, 30-May-2019.) |
⊢ (𝜑 → ∃𝑥𝜃) & ⊢ Ⅎ𝑥𝜓 & ⊢ ((𝜃 ∧ 𝜓) → 𝜒) & ⊢ Ⅎ𝑥𝜒 ⇒ ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | ||
Theorem | exlimddvfi 36393 | A lemma for eliminating an existential quantifier, in inference form. (Contributed by Giovanni Mascellani, 31-May-2019.) |
⊢ (𝜑 → ∃𝑥𝜃) & ⊢ Ⅎ𝑦𝜃 & ⊢ Ⅎ𝑦𝜓 & ⊢ ([𝑦 / 𝑥]𝜃 ↔ 𝜂) & ⊢ ((𝜂 ∧ 𝜓) → 𝜒) & ⊢ Ⅎ𝑦𝜒 ⇒ ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | ||
Theorem | sbceq1ddi 36394 | A lemma for eliminating inequality, in inference form. (Contributed by Giovanni Mascellani, 31-May-2019.) |
⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜓 → 𝜃) & ⊢ ([𝐴 / 𝑥]𝜒 ↔ 𝜃) & ⊢ ([𝐵 / 𝑥]𝜒 ↔ 𝜂) ⇒ ⊢ ((𝜑 ∧ 𝜓) → 𝜂) | ||
Theorem | sbccom2lem 36395* | Lemma for sbccom2 36396. (Contributed by Giovanni Mascellani, 31-May-2019.) |
⊢ 𝐴 ∈ V ⇒ ⊢ ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑 ↔ [⦋𝐴 / 𝑥⦌𝐵 / 𝑦][𝐴 / 𝑥]𝜑) | ||
Theorem | sbccom2 36396* | Commutative law for double class substitution. (Contributed by Giovanni Mascellani, 31-May-2019.) |
⊢ 𝐴 ∈ V ⇒ ⊢ ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑 ↔ [⦋𝐴 / 𝑥⦌𝐵 / 𝑦][𝐴 / 𝑥]𝜑) | ||
Theorem | sbccom2f 36397* | Commutative law for double class substitution, with nonfree variable condition. (Contributed by Giovanni Mascellani, 31-May-2019.) |
⊢ 𝐴 ∈ V & ⊢ Ⅎ𝑦𝐴 ⇒ ⊢ ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑 ↔ [⦋𝐴 / 𝑥⦌𝐵 / 𝑦][𝐴 / 𝑥]𝜑) | ||
Theorem | sbccom2fi 36398* | Commutative law for double class substitution, with nonfree variable condition and in inference form. (Contributed by Giovanni Mascellani, 1-Jun-2019.) |
⊢ 𝐴 ∈ V & ⊢ Ⅎ𝑦𝐴 & ⊢ ⦋𝐴 / 𝑥⦌𝐵 = 𝐶 & ⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝜓) ⇒ ⊢ ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑 ↔ [𝐶 / 𝑦]𝜓) | ||
Theorem | csbcom2fi 36399* | Commutative law for double class substitution in a class, with nonfree variable condition and in inference form. (Contributed by Giovanni Mascellani, 4-Jun-2019.) |
⊢ 𝐴 ∈ V & ⊢ Ⅎ𝑦𝐴 & ⊢ ⦋𝐴 / 𝑥⦌𝐵 = 𝐶 & ⊢ ⦋𝐴 / 𝑥⦌𝐷 = 𝐸 ⇒ ⊢ ⦋𝐴 / 𝑥⦌⦋𝐵 / 𝑦⦌𝐷 = ⦋𝐶 / 𝑦⦌𝐸 | ||
A collection of Tseitin axioms used to convert a wff to Conjunctive Normal Form. | ||
Theorem | fald 36400 | Refutation of falsity, in deduction form. (Contributed by Giovanni Mascellani, 24-Mar-2018.) |
⊢ (𝜃 → ¬ ⊥) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |