Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > df-bj-sethom | Structured version Visualization version GIF version |
Description: Define the set of
functions (morphisms of sets) between two sets. Same
as df-map 8575 with arguments swapped. TODO: prove the same
staple lemmas
as for ↑m.
Remark: one may define Set⟶ = (𝑥 ∈ dom Struct , 𝑦 ∈ dom Struct ↦ {𝑓 ∣ 𝑓:(Base‘𝑥)⟶(Base‘𝑦)}) so that for morphisms between other structures, one could write ... = {𝑓 ∈ (𝑥 Set⟶ 𝑦) ∣ ...}. (Contributed by BJ, 11-Apr-2020.) |
Ref | Expression |
---|---|
df-bj-sethom | ⊢ Set⟶ = (𝑥 ∈ V, 𝑦 ∈ V ↦ {𝑓 ∣ 𝑓:𝑥⟶𝑦}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csethom 35220 | . 2 class Set⟶ | |
2 | vx | . . 3 setvar 𝑥 | |
3 | vy | . . 3 setvar 𝑦 | |
4 | cvv 3422 | . . 3 class V | |
5 | 2 | cv 1538 | . . . . 5 class 𝑥 |
6 | 3 | cv 1538 | . . . . 5 class 𝑦 |
7 | vf | . . . . . 6 setvar 𝑓 | |
8 | 7 | cv 1538 | . . . . 5 class 𝑓 |
9 | 5, 6, 8 | wf 6414 | . . . 4 wff 𝑓:𝑥⟶𝑦 |
10 | 9, 7 | cab 2715 | . . 3 class {𝑓 ∣ 𝑓:𝑥⟶𝑦} |
11 | 2, 3, 4, 4, 10 | cmpo 7257 | . 2 class (𝑥 ∈ V, 𝑦 ∈ V ↦ {𝑓 ∣ 𝑓:𝑥⟶𝑦}) |
12 | 1, 11 | wceq 1539 | 1 wff Set⟶ = (𝑥 ∈ V, 𝑦 ∈ V ↦ {𝑓 ∣ 𝑓:𝑥⟶𝑦}) |
Colors of variables: wff setvar class |
This definition is referenced by: (None) |
Copyright terms: Public domain | W3C validator |