Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > df-bj-topmgmhom | Structured version Visualization version GIF version |
Description: Define the set of topological magma morphisms (continuous magma morphisms) between two topological magmas. If domain and codomain are topological semigroups, monoids, or groups, then one obtains the set of morphisms of these structures. This definition is currently stated with topological monoid domain and codomain, since topological magmas are currently not defined in set.mm. (Contributed by BJ, 10-Feb-2022.) |
Ref | Expression |
---|---|
df-bj-topmgmhom | ⊢ TopMgm⟶ = (𝑥 ∈ TopMnd, 𝑦 ∈ TopMnd ↦ ((𝑥 Top⟶ 𝑦) ∩ (𝑥 Mgm⟶ 𝑦))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ctopmgmhom 35226 | . 2 class TopMgm⟶ | |
2 | vx | . . 3 setvar 𝑥 | |
3 | vy | . . 3 setvar 𝑦 | |
4 | ctmd 23129 | . . 3 class TopMnd | |
5 | 2 | cv 1538 | . . . . 5 class 𝑥 |
6 | 3 | cv 1538 | . . . . 5 class 𝑦 |
7 | ctophom 35222 | . . . . 5 class Top⟶ | |
8 | 5, 6, 7 | co 7255 | . . . 4 class (𝑥 Top⟶ 𝑦) |
9 | cmgmhom 35224 | . . . . 5 class Mgm⟶ | |
10 | 5, 6, 9 | co 7255 | . . . 4 class (𝑥 Mgm⟶ 𝑦) |
11 | 8, 10 | cin 3882 | . . 3 class ((𝑥 Top⟶ 𝑦) ∩ (𝑥 Mgm⟶ 𝑦)) |
12 | 2, 3, 4, 4, 11 | cmpo 7257 | . 2 class (𝑥 ∈ TopMnd, 𝑦 ∈ TopMnd ↦ ((𝑥 Top⟶ 𝑦) ∩ (𝑥 Mgm⟶ 𝑦))) |
13 | 1, 12 | wceq 1539 | 1 wff TopMgm⟶ = (𝑥 ∈ TopMnd, 𝑦 ∈ TopMnd ↦ ((𝑥 Top⟶ 𝑦) ∩ (𝑥 Mgm⟶ 𝑦))) |
Colors of variables: wff setvar class |
This definition is referenced by: (None) |
Copyright terms: Public domain | W3C validator |