![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > df-bj-topmgmhom | Structured version Visualization version GIF version |
Description: Define the set of topological magma morphisms (continuous magma morphisms) between two topological magmas. If domain and codomain are topological semigroups, monoids, or groups, then one obtains the set of morphisms of these structures. This definition is currently stated with topological monoid domain and codomain, since topological magmas are currently not defined in set.mm. (Contributed by BJ, 10-Feb-2022.) |
Ref | Expression |
---|---|
df-bj-topmgmhom | ⊢ TopMgm⟶ = (𝑥 ∈ TopMnd, 𝑦 ∈ TopMnd ↦ ((𝑥 Top⟶ 𝑦) ∩ (𝑥 Mgm⟶ 𝑦))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ctopmgmhom 37111 | . 2 class TopMgm⟶ | |
2 | vx | . . 3 setvar 𝑥 | |
3 | vy | . . 3 setvar 𝑦 | |
4 | ctmd 24094 | . . 3 class TopMnd | |
5 | 2 | cv 1536 | . . . . 5 class 𝑥 |
6 | 3 | cv 1536 | . . . . 5 class 𝑦 |
7 | ctophom 37107 | . . . . 5 class Top⟶ | |
8 | 5, 6, 7 | co 7431 | . . . 4 class (𝑥 Top⟶ 𝑦) |
9 | cmgmhom 37109 | . . . . 5 class Mgm⟶ | |
10 | 5, 6, 9 | co 7431 | . . . 4 class (𝑥 Mgm⟶ 𝑦) |
11 | 8, 10 | cin 3962 | . . 3 class ((𝑥 Top⟶ 𝑦) ∩ (𝑥 Mgm⟶ 𝑦)) |
12 | 2, 3, 4, 4, 11 | cmpo 7433 | . 2 class (𝑥 ∈ TopMnd, 𝑦 ∈ TopMnd ↦ ((𝑥 Top⟶ 𝑦) ∩ (𝑥 Mgm⟶ 𝑦))) |
13 | 1, 12 | wceq 1537 | 1 wff TopMgm⟶ = (𝑥 ∈ TopMnd, 𝑦 ∈ TopMnd ↦ ((𝑥 Top⟶ 𝑦) ∩ (𝑥 Mgm⟶ 𝑦))) |
Colors of variables: wff setvar class |
This definition is referenced by: (None) |
Copyright terms: Public domain | W3C validator |