| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > df-bj-topmgmhom | Structured version Visualization version GIF version | ||
| Description: Define the set of topological magma morphisms (continuous magma morphisms) between two topological magmas. If domain and codomain are topological semigroups, monoids, or groups, then one obtains the set of morphisms of these structures. This definition is currently stated with topological monoid domain and codomain, since topological magmas are currently not defined in set.mm. (Contributed by BJ, 10-Feb-2022.) |
| Ref | Expression |
|---|---|
| df-bj-topmgmhom | ⊢ TopMgm⟶ = (𝑥 ∈ TopMnd, 𝑦 ∈ TopMnd ↦ ((𝑥 Top⟶ 𝑦) ∩ (𝑥 Mgm⟶ 𝑦))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ctopmgmhom 37113 | . 2 class TopMgm⟶ | |
| 2 | vx | . . 3 setvar 𝑥 | |
| 3 | vy | . . 3 setvar 𝑦 | |
| 4 | ctmd 23963 | . . 3 class TopMnd | |
| 5 | 2 | cv 1539 | . . . . 5 class 𝑥 |
| 6 | 3 | cv 1539 | . . . . 5 class 𝑦 |
| 7 | ctophom 37109 | . . . . 5 class Top⟶ | |
| 8 | 5, 6, 7 | co 7394 | . . . 4 class (𝑥 Top⟶ 𝑦) |
| 9 | cmgmhom 37111 | . . . . 5 class Mgm⟶ | |
| 10 | 5, 6, 9 | co 7394 | . . . 4 class (𝑥 Mgm⟶ 𝑦) |
| 11 | 8, 10 | cin 3921 | . . 3 class ((𝑥 Top⟶ 𝑦) ∩ (𝑥 Mgm⟶ 𝑦)) |
| 12 | 2, 3, 4, 4, 11 | cmpo 7396 | . 2 class (𝑥 ∈ TopMnd, 𝑦 ∈ TopMnd ↦ ((𝑥 Top⟶ 𝑦) ∩ (𝑥 Mgm⟶ 𝑦))) |
| 13 | 1, 12 | wceq 1540 | 1 wff TopMgm⟶ = (𝑥 ∈ TopMnd, 𝑦 ∈ TopMnd ↦ ((𝑥 Top⟶ 𝑦) ∩ (𝑥 Mgm⟶ 𝑦))) |
| Colors of variables: wff setvar class |
| This definition is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |