Detailed syntax breakdown of Definition df-bj-unc
Step | Hyp | Ref
| Expression |
1 | | cunc- 35230 |
. 2
class
uncurry_ |
2 | | vx |
. . 3
setvar 𝑥 |
3 | | vy |
. . 3
setvar 𝑦 |
4 | | vz |
. . 3
setvar 𝑧 |
5 | | cvv 3422 |
. . 3
class
V |
6 | | vf |
. . . 4
setvar 𝑓 |
7 | 2 | cv 1538 |
. . . . 5
class 𝑥 |
8 | 3 | cv 1538 |
. . . . . 6
class 𝑦 |
9 | 4 | cv 1538 |
. . . . . 6
class 𝑧 |
10 | | csethom 35220 |
. . . . . 6
class Set⟶ |
11 | 8, 9, 10 | co 7255 |
. . . . 5
class (𝑦 Set⟶ 𝑧) |
12 | 7, 11, 10 | co 7255 |
. . . 4
class (𝑥 Set⟶ (𝑦 Set⟶ 𝑧)) |
13 | | va |
. . . . 5
setvar 𝑎 |
14 | | vb |
. . . . 5
setvar 𝑏 |
15 | 14 | cv 1538 |
. . . . . 6
class 𝑏 |
16 | 13 | cv 1538 |
. . . . . . 7
class 𝑎 |
17 | 6 | cv 1538 |
. . . . . . 7
class 𝑓 |
18 | 16, 17 | cfv 6418 |
. . . . . 6
class (𝑓‘𝑎) |
19 | 15, 18 | cfv 6418 |
. . . . 5
class ((𝑓‘𝑎)‘𝑏) |
20 | 13, 14, 7, 8, 19 | cmpo 7257 |
. . . 4
class (𝑎 ∈ 𝑥, 𝑏 ∈ 𝑦 ↦ ((𝑓‘𝑎)‘𝑏)) |
21 | 6, 12, 20 | cmpt 5153 |
. . 3
class (𝑓 ∈ (𝑥 Set⟶ (𝑦 Set⟶ 𝑧)) ↦ (𝑎 ∈ 𝑥, 𝑏 ∈ 𝑦 ↦ ((𝑓‘𝑎)‘𝑏))) |
22 | 2, 3, 4, 5, 5, 5, 21 | cmpt3 35218 |
. 2
class (𝑥 ∈ V, 𝑦 ∈ V, 𝑧 ∈ V ↦ (𝑓 ∈ (𝑥 Set⟶ (𝑦 Set⟶ 𝑧)) ↦ (𝑎 ∈ 𝑥, 𝑏 ∈ 𝑦 ↦ ((𝑓‘𝑎)‘𝑏)))) |
23 | 1, 22 | wceq 1539 |
1
wff uncurry_ =
(𝑥 ∈ V, 𝑦 ∈ V, 𝑧 ∈ V ↦ (𝑓 ∈ (𝑥 Set⟶ (𝑦 Set⟶ 𝑧)) ↦ (𝑎 ∈ 𝑥, 𝑏 ∈ 𝑦 ↦ ((𝑓‘𝑎)‘𝑏)))) |