Detailed syntax breakdown of Definition df-bj-unc
| Step | Hyp | Ref
| Expression |
| 1 | | cunc- 37117 |
. 2
class
uncurry_ |
| 2 | | vx |
. . 3
setvar 𝑥 |
| 3 | | vy |
. . 3
setvar 𝑦 |
| 4 | | vz |
. . 3
setvar 𝑧 |
| 5 | | cvv 3455 |
. . 3
class
V |
| 6 | | vf |
. . . 4
setvar 𝑓 |
| 7 | 2 | cv 1539 |
. . . . 5
class 𝑥 |
| 8 | 3 | cv 1539 |
. . . . . 6
class 𝑦 |
| 9 | 4 | cv 1539 |
. . . . . 6
class 𝑧 |
| 10 | | csethom 37107 |
. . . . . 6
class Set⟶ |
| 11 | 8, 9, 10 | co 7394 |
. . . . 5
class (𝑦 Set⟶ 𝑧) |
| 12 | 7, 11, 10 | co 7394 |
. . . 4
class (𝑥 Set⟶ (𝑦 Set⟶ 𝑧)) |
| 13 | | va |
. . . . 5
setvar 𝑎 |
| 14 | | vb |
. . . . 5
setvar 𝑏 |
| 15 | 14 | cv 1539 |
. . . . . 6
class 𝑏 |
| 16 | 13 | cv 1539 |
. . . . . . 7
class 𝑎 |
| 17 | 6 | cv 1539 |
. . . . . . 7
class 𝑓 |
| 18 | 16, 17 | cfv 6519 |
. . . . . 6
class (𝑓‘𝑎) |
| 19 | 15, 18 | cfv 6519 |
. . . . 5
class ((𝑓‘𝑎)‘𝑏) |
| 20 | 13, 14, 7, 8, 19 | cmpo 7396 |
. . . 4
class (𝑎 ∈ 𝑥, 𝑏 ∈ 𝑦 ↦ ((𝑓‘𝑎)‘𝑏)) |
| 21 | 6, 12, 20 | cmpt 5196 |
. . 3
class (𝑓 ∈ (𝑥 Set⟶ (𝑦 Set⟶ 𝑧)) ↦ (𝑎 ∈ 𝑥, 𝑏 ∈ 𝑦 ↦ ((𝑓‘𝑎)‘𝑏))) |
| 22 | 2, 3, 4, 5, 5, 5, 21 | cmpt3 37105 |
. 2
class (𝑥 ∈ V, 𝑦 ∈ V, 𝑧 ∈ V ↦ (𝑓 ∈ (𝑥 Set⟶ (𝑦 Set⟶ 𝑧)) ↦ (𝑎 ∈ 𝑥, 𝑏 ∈ 𝑦 ↦ ((𝑓‘𝑎)‘𝑏)))) |
| 23 | 1, 22 | wceq 1540 |
1
wff uncurry_ =
(𝑥 ∈ V, 𝑦 ∈ V, 𝑧 ∈ V ↦ (𝑓 ∈ (𝑥 Set⟶ (𝑦 Set⟶ 𝑧)) ↦ (𝑎 ∈ 𝑥, 𝑏 ∈ 𝑦 ↦ ((𝑓‘𝑎)‘𝑏)))) |