Detailed syntax breakdown of Definition df-dvech
Step | Hyp | Ref
| Expression |
1 | | cdvh 38654 |
. 2
class
DVecH |
2 | | vk |
. . 3
setvar 𝑘 |
3 | | cvv 3409 |
. . 3
class
V |
4 | | vw |
. . . 4
setvar 𝑤 |
5 | 2 | cv 1537 |
. . . . 5
class 𝑘 |
6 | | clh 37560 |
. . . . 5
class
LHyp |
7 | 5, 6 | cfv 6335 |
. . . 4
class
(LHyp‘𝑘) |
8 | | cnx 16538 |
. . . . . . . 8
class
ndx |
9 | | cbs 16541 |
. . . . . . . 8
class
Base |
10 | 8, 9 | cfv 6335 |
. . . . . . 7
class
(Base‘ndx) |
11 | 4 | cv 1537 |
. . . . . . . . 9
class 𝑤 |
12 | | cltrn 37677 |
. . . . . . . . . 10
class
LTrn |
13 | 5, 12 | cfv 6335 |
. . . . . . . . 9
class
(LTrn‘𝑘) |
14 | 11, 13 | cfv 6335 |
. . . . . . . 8
class
((LTrn‘𝑘)‘𝑤) |
15 | | ctendo 38328 |
. . . . . . . . . 10
class
TEndo |
16 | 5, 15 | cfv 6335 |
. . . . . . . . 9
class
(TEndo‘𝑘) |
17 | 11, 16 | cfv 6335 |
. . . . . . . 8
class
((TEndo‘𝑘)‘𝑤) |
18 | 14, 17 | cxp 5522 |
. . . . . . 7
class
(((LTrn‘𝑘)‘𝑤) × ((TEndo‘𝑘)‘𝑤)) |
19 | 10, 18 | cop 4528 |
. . . . . 6
class
〈(Base‘ndx), (((LTrn‘𝑘)‘𝑤) × ((TEndo‘𝑘)‘𝑤))〉 |
20 | | cplusg 16623 |
. . . . . . . 8
class
+g |
21 | 8, 20 | cfv 6335 |
. . . . . . 7
class
(+g‘ndx) |
22 | | vf |
. . . . . . . 8
setvar 𝑓 |
23 | | vg |
. . . . . . . 8
setvar 𝑔 |
24 | 22 | cv 1537 |
. . . . . . . . . . 11
class 𝑓 |
25 | | c1st 7691 |
. . . . . . . . . . 11
class
1st |
26 | 24, 25 | cfv 6335 |
. . . . . . . . . 10
class
(1st ‘𝑓) |
27 | 23 | cv 1537 |
. . . . . . . . . . 11
class 𝑔 |
28 | 27, 25 | cfv 6335 |
. . . . . . . . . 10
class
(1st ‘𝑔) |
29 | 26, 28 | ccom 5528 |
. . . . . . . . 9
class
((1st ‘𝑓) ∘ (1st ‘𝑔)) |
30 | | vh |
. . . . . . . . . 10
setvar ℎ |
31 | 30 | cv 1537 |
. . . . . . . . . . . 12
class ℎ |
32 | | c2nd 7692 |
. . . . . . . . . . . . 13
class
2nd |
33 | 24, 32 | cfv 6335 |
. . . . . . . . . . . 12
class
(2nd ‘𝑓) |
34 | 31, 33 | cfv 6335 |
. . . . . . . . . . 11
class
((2nd ‘𝑓)‘ℎ) |
35 | 27, 32 | cfv 6335 |
. . . . . . . . . . . 12
class
(2nd ‘𝑔) |
36 | 31, 35 | cfv 6335 |
. . . . . . . . . . 11
class
((2nd ‘𝑔)‘ℎ) |
37 | 34, 36 | ccom 5528 |
. . . . . . . . . 10
class
(((2nd ‘𝑓)‘ℎ) ∘ ((2nd ‘𝑔)‘ℎ)) |
38 | 30, 14, 37 | cmpt 5112 |
. . . . . . . . 9
class (ℎ ∈ ((LTrn‘𝑘)‘𝑤) ↦ (((2nd ‘𝑓)‘ℎ) ∘ ((2nd ‘𝑔)‘ℎ))) |
39 | 29, 38 | cop 4528 |
. . . . . . . 8
class
〈((1st ‘𝑓) ∘ (1st ‘𝑔)), (ℎ ∈ ((LTrn‘𝑘)‘𝑤) ↦ (((2nd ‘𝑓)‘ℎ) ∘ ((2nd ‘𝑔)‘ℎ)))〉 |
40 | 22, 23, 18, 18, 39 | cmpo 7152 |
. . . . . . 7
class (𝑓 ∈ (((LTrn‘𝑘)‘𝑤) × ((TEndo‘𝑘)‘𝑤)), 𝑔 ∈ (((LTrn‘𝑘)‘𝑤) × ((TEndo‘𝑘)‘𝑤)) ↦ 〈((1st
‘𝑓) ∘
(1st ‘𝑔)),
(ℎ ∈ ((LTrn‘𝑘)‘𝑤) ↦ (((2nd ‘𝑓)‘ℎ) ∘ ((2nd ‘𝑔)‘ℎ)))〉) |
41 | 21, 40 | cop 4528 |
. . . . . 6
class
〈(+g‘ndx), (𝑓 ∈ (((LTrn‘𝑘)‘𝑤) × ((TEndo‘𝑘)‘𝑤)), 𝑔 ∈ (((LTrn‘𝑘)‘𝑤) × ((TEndo‘𝑘)‘𝑤)) ↦ 〈((1st
‘𝑓) ∘
(1st ‘𝑔)),
(ℎ ∈ ((LTrn‘𝑘)‘𝑤) ↦ (((2nd ‘𝑓)‘ℎ) ∘ ((2nd ‘𝑔)‘ℎ)))〉)〉 |
42 | | csca 16626 |
. . . . . . . 8
class
Scalar |
43 | 8, 42 | cfv 6335 |
. . . . . . 7
class
(Scalar‘ndx) |
44 | | cedring 38329 |
. . . . . . . . 9
class
EDRing |
45 | 5, 44 | cfv 6335 |
. . . . . . . 8
class
(EDRing‘𝑘) |
46 | 11, 45 | cfv 6335 |
. . . . . . 7
class
((EDRing‘𝑘)‘𝑤) |
47 | 43, 46 | cop 4528 |
. . . . . 6
class
〈(Scalar‘ndx), ((EDRing‘𝑘)‘𝑤)〉 |
48 | 19, 41, 47 | ctp 4526 |
. . . . 5
class
{〈(Base‘ndx), (((LTrn‘𝑘)‘𝑤) × ((TEndo‘𝑘)‘𝑤))〉, 〈(+g‘ndx),
(𝑓 ∈
(((LTrn‘𝑘)‘𝑤) × ((TEndo‘𝑘)‘𝑤)), 𝑔 ∈ (((LTrn‘𝑘)‘𝑤) × ((TEndo‘𝑘)‘𝑤)) ↦ 〈((1st
‘𝑓) ∘
(1st ‘𝑔)),
(ℎ ∈ ((LTrn‘𝑘)‘𝑤) ↦ (((2nd ‘𝑓)‘ℎ) ∘ ((2nd ‘𝑔)‘ℎ)))〉)〉, 〈(Scalar‘ndx),
((EDRing‘𝑘)‘𝑤)〉} |
49 | | cvsca 16627 |
. . . . . . . 8
class
·𝑠 |
50 | 8, 49 | cfv 6335 |
. . . . . . 7
class (
·𝑠 ‘ndx) |
51 | | vs |
. . . . . . . 8
setvar 𝑠 |
52 | 51 | cv 1537 |
. . . . . . . . . 10
class 𝑠 |
53 | 26, 52 | cfv 6335 |
. . . . . . . . 9
class (𝑠‘(1st
‘𝑓)) |
54 | 52, 33 | ccom 5528 |
. . . . . . . . 9
class (𝑠 ∘ (2nd
‘𝑓)) |
55 | 53, 54 | cop 4528 |
. . . . . . . 8
class
〈(𝑠‘(1st ‘𝑓)), (𝑠 ∘ (2nd ‘𝑓))〉 |
56 | 51, 22, 17, 18, 55 | cmpo 7152 |
. . . . . . 7
class (𝑠 ∈ ((TEndo‘𝑘)‘𝑤), 𝑓 ∈ (((LTrn‘𝑘)‘𝑤) × ((TEndo‘𝑘)‘𝑤)) ↦ 〈(𝑠‘(1st ‘𝑓)), (𝑠 ∘ (2nd ‘𝑓))〉) |
57 | 50, 56 | cop 4528 |
. . . . . 6
class 〈(
·𝑠 ‘ndx), (𝑠 ∈ ((TEndo‘𝑘)‘𝑤), 𝑓 ∈ (((LTrn‘𝑘)‘𝑤) × ((TEndo‘𝑘)‘𝑤)) ↦ 〈(𝑠‘(1st ‘𝑓)), (𝑠 ∘ (2nd ‘𝑓))〉)〉 |
58 | 57 | csn 4522 |
. . . . 5
class {〈(
·𝑠 ‘ndx), (𝑠 ∈ ((TEndo‘𝑘)‘𝑤), 𝑓 ∈ (((LTrn‘𝑘)‘𝑤) × ((TEndo‘𝑘)‘𝑤)) ↦ 〈(𝑠‘(1st ‘𝑓)), (𝑠 ∘ (2nd ‘𝑓))〉)〉} |
59 | 48, 58 | cun 3856 |
. . . 4
class
({〈(Base‘ndx), (((LTrn‘𝑘)‘𝑤) × ((TEndo‘𝑘)‘𝑤))〉, 〈(+g‘ndx),
(𝑓 ∈
(((LTrn‘𝑘)‘𝑤) × ((TEndo‘𝑘)‘𝑤)), 𝑔 ∈ (((LTrn‘𝑘)‘𝑤) × ((TEndo‘𝑘)‘𝑤)) ↦ 〈((1st
‘𝑓) ∘
(1st ‘𝑔)),
(ℎ ∈ ((LTrn‘𝑘)‘𝑤) ↦ (((2nd ‘𝑓)‘ℎ) ∘ ((2nd ‘𝑔)‘ℎ)))〉)〉, 〈(Scalar‘ndx),
((EDRing‘𝑘)‘𝑤)〉} ∪ {〈(
·𝑠 ‘ndx), (𝑠 ∈ ((TEndo‘𝑘)‘𝑤), 𝑓 ∈ (((LTrn‘𝑘)‘𝑤) × ((TEndo‘𝑘)‘𝑤)) ↦ 〈(𝑠‘(1st ‘𝑓)), (𝑠 ∘ (2nd ‘𝑓))〉)〉}) |
60 | 4, 7, 59 | cmpt 5112 |
. . 3
class (𝑤 ∈ (LHyp‘𝑘) ↦
({〈(Base‘ndx), (((LTrn‘𝑘)‘𝑤) × ((TEndo‘𝑘)‘𝑤))〉, 〈(+g‘ndx),
(𝑓 ∈
(((LTrn‘𝑘)‘𝑤) × ((TEndo‘𝑘)‘𝑤)), 𝑔 ∈ (((LTrn‘𝑘)‘𝑤) × ((TEndo‘𝑘)‘𝑤)) ↦ 〈((1st
‘𝑓) ∘
(1st ‘𝑔)),
(ℎ ∈ ((LTrn‘𝑘)‘𝑤) ↦ (((2nd ‘𝑓)‘ℎ) ∘ ((2nd ‘𝑔)‘ℎ)))〉)〉, 〈(Scalar‘ndx),
((EDRing‘𝑘)‘𝑤)〉} ∪ {〈(
·𝑠 ‘ndx), (𝑠 ∈ ((TEndo‘𝑘)‘𝑤), 𝑓 ∈ (((LTrn‘𝑘)‘𝑤) × ((TEndo‘𝑘)‘𝑤)) ↦ 〈(𝑠‘(1st ‘𝑓)), (𝑠 ∘ (2nd ‘𝑓))〉)〉})) |
61 | 2, 3, 60 | cmpt 5112 |
. 2
class (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦
({〈(Base‘ndx), (((LTrn‘𝑘)‘𝑤) × ((TEndo‘𝑘)‘𝑤))〉, 〈(+g‘ndx),
(𝑓 ∈
(((LTrn‘𝑘)‘𝑤) × ((TEndo‘𝑘)‘𝑤)), 𝑔 ∈ (((LTrn‘𝑘)‘𝑤) × ((TEndo‘𝑘)‘𝑤)) ↦ 〈((1st
‘𝑓) ∘
(1st ‘𝑔)),
(ℎ ∈ ((LTrn‘𝑘)‘𝑤) ↦ (((2nd ‘𝑓)‘ℎ) ∘ ((2nd ‘𝑔)‘ℎ)))〉)〉, 〈(Scalar‘ndx),
((EDRing‘𝑘)‘𝑤)〉} ∪ {〈(
·𝑠 ‘ndx), (𝑠 ∈ ((TEndo‘𝑘)‘𝑤), 𝑓 ∈ (((LTrn‘𝑘)‘𝑤) × ((TEndo‘𝑘)‘𝑤)) ↦ 〈(𝑠‘(1st ‘𝑓)), (𝑠 ∘ (2nd ‘𝑓))〉)〉}))) |
62 | 1, 61 | wceq 1538 |
1
wff DVecH =
(𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦
({〈(Base‘ndx), (((LTrn‘𝑘)‘𝑤) × ((TEndo‘𝑘)‘𝑤))〉, 〈(+g‘ndx),
(𝑓 ∈
(((LTrn‘𝑘)‘𝑤) × ((TEndo‘𝑘)‘𝑤)), 𝑔 ∈ (((LTrn‘𝑘)‘𝑤) × ((TEndo‘𝑘)‘𝑤)) ↦ 〈((1st
‘𝑓) ∘
(1st ‘𝑔)),
(ℎ ∈ ((LTrn‘𝑘)‘𝑤) ↦ (((2nd ‘𝑓)‘ℎ) ∘ ((2nd ‘𝑔)‘ℎ)))〉)〉, 〈(Scalar‘ndx),
((EDRing‘𝑘)‘𝑤)〉} ∪ {〈(
·𝑠 ‘ndx), (𝑠 ∈ ((TEndo‘𝑘)‘𝑤), 𝑓 ∈ (((LTrn‘𝑘)‘𝑤) × ((TEndo‘𝑘)‘𝑤)) ↦ 〈(𝑠‘(1st ‘𝑓)), (𝑠 ∘ (2nd ‘𝑓))〉)〉}))) |