Step | Hyp | Ref
| Expression |
1 | | cdvh 39937 |
. 2
class
DVecH |
2 | | vk |
. . 3
setvar π |
3 | | cvv 3474 |
. . 3
class
V |
4 | | vw |
. . . 4
setvar π€ |
5 | 2 | cv 1540 |
. . . . 5
class π |
6 | | clh 38843 |
. . . . 5
class
LHyp |
7 | 5, 6 | cfv 6540 |
. . . 4
class
(LHypβπ) |
8 | | cnx 17122 |
. . . . . . . 8
class
ndx |
9 | | cbs 17140 |
. . . . . . . 8
class
Base |
10 | 8, 9 | cfv 6540 |
. . . . . . 7
class
(Baseβndx) |
11 | 4 | cv 1540 |
. . . . . . . . 9
class π€ |
12 | | cltrn 38960 |
. . . . . . . . . 10
class
LTrn |
13 | 5, 12 | cfv 6540 |
. . . . . . . . 9
class
(LTrnβπ) |
14 | 11, 13 | cfv 6540 |
. . . . . . . 8
class
((LTrnβπ)βπ€) |
15 | | ctendo 39611 |
. . . . . . . . . 10
class
TEndo |
16 | 5, 15 | cfv 6540 |
. . . . . . . . 9
class
(TEndoβπ) |
17 | 11, 16 | cfv 6540 |
. . . . . . . 8
class
((TEndoβπ)βπ€) |
18 | 14, 17 | cxp 5673 |
. . . . . . 7
class
(((LTrnβπ)βπ€) Γ ((TEndoβπ)βπ€)) |
19 | 10, 18 | cop 4633 |
. . . . . 6
class
β¨(Baseβndx), (((LTrnβπ)βπ€) Γ ((TEndoβπ)βπ€))β© |
20 | | cplusg 17193 |
. . . . . . . 8
class
+g |
21 | 8, 20 | cfv 6540 |
. . . . . . 7
class
(+gβndx) |
22 | | vf |
. . . . . . . 8
setvar π |
23 | | vg |
. . . . . . . 8
setvar π |
24 | 22 | cv 1540 |
. . . . . . . . . . 11
class π |
25 | | c1st 7969 |
. . . . . . . . . . 11
class
1st |
26 | 24, 25 | cfv 6540 |
. . . . . . . . . 10
class
(1st βπ) |
27 | 23 | cv 1540 |
. . . . . . . . . . 11
class π |
28 | 27, 25 | cfv 6540 |
. . . . . . . . . 10
class
(1st βπ) |
29 | 26, 28 | ccom 5679 |
. . . . . . . . 9
class
((1st βπ) β (1st βπ)) |
30 | | vh |
. . . . . . . . . 10
setvar β |
31 | 30 | cv 1540 |
. . . . . . . . . . . 12
class β |
32 | | c2nd 7970 |
. . . . . . . . . . . . 13
class
2nd |
33 | 24, 32 | cfv 6540 |
. . . . . . . . . . . 12
class
(2nd βπ) |
34 | 31, 33 | cfv 6540 |
. . . . . . . . . . 11
class
((2nd βπ)ββ) |
35 | 27, 32 | cfv 6540 |
. . . . . . . . . . . 12
class
(2nd βπ) |
36 | 31, 35 | cfv 6540 |
. . . . . . . . . . 11
class
((2nd βπ)ββ) |
37 | 34, 36 | ccom 5679 |
. . . . . . . . . 10
class
(((2nd βπ)ββ) β ((2nd βπ)ββ)) |
38 | 30, 14, 37 | cmpt 5230 |
. . . . . . . . 9
class (β β ((LTrnβπ)βπ€) β¦ (((2nd βπ)ββ) β ((2nd βπ)ββ))) |
39 | 29, 38 | cop 4633 |
. . . . . . . 8
class
β¨((1st βπ) β (1st βπ)), (β β ((LTrnβπ)βπ€) β¦ (((2nd βπ)ββ) β ((2nd βπ)ββ)))β© |
40 | 22, 23, 18, 18, 39 | cmpo 7407 |
. . . . . . 7
class (π β (((LTrnβπ)βπ€) Γ ((TEndoβπ)βπ€)), π β (((LTrnβπ)βπ€) Γ ((TEndoβπ)βπ€)) β¦ β¨((1st
βπ) β
(1st βπ)),
(β β ((LTrnβπ)βπ€) β¦ (((2nd βπ)ββ) β ((2nd βπ)ββ)))β©) |
41 | 21, 40 | cop 4633 |
. . . . . 6
class
β¨(+gβndx), (π β (((LTrnβπ)βπ€) Γ ((TEndoβπ)βπ€)), π β (((LTrnβπ)βπ€) Γ ((TEndoβπ)βπ€)) β¦ β¨((1st
βπ) β
(1st βπ)),
(β β ((LTrnβπ)βπ€) β¦ (((2nd βπ)ββ) β ((2nd βπ)ββ)))β©)β© |
42 | | csca 17196 |
. . . . . . . 8
class
Scalar |
43 | 8, 42 | cfv 6540 |
. . . . . . 7
class
(Scalarβndx) |
44 | | cedring 39612 |
. . . . . . . . 9
class
EDRing |
45 | 5, 44 | cfv 6540 |
. . . . . . . 8
class
(EDRingβπ) |
46 | 11, 45 | cfv 6540 |
. . . . . . 7
class
((EDRingβπ)βπ€) |
47 | 43, 46 | cop 4633 |
. . . . . 6
class
β¨(Scalarβndx), ((EDRingβπ)βπ€)β© |
48 | 19, 41, 47 | ctp 4631 |
. . . . 5
class
{β¨(Baseβndx), (((LTrnβπ)βπ€) Γ ((TEndoβπ)βπ€))β©, β¨(+gβndx),
(π β
(((LTrnβπ)βπ€) Γ ((TEndoβπ)βπ€)), π β (((LTrnβπ)βπ€) Γ ((TEndoβπ)βπ€)) β¦ β¨((1st
βπ) β
(1st βπ)),
(β β ((LTrnβπ)βπ€) β¦ (((2nd βπ)ββ) β ((2nd βπ)ββ)))β©)β©, β¨(Scalarβndx),
((EDRingβπ)βπ€)β©} |
49 | | cvsca 17197 |
. . . . . . . 8
class
Β·π |
50 | 8, 49 | cfv 6540 |
. . . . . . 7
class (
Β·π βndx) |
51 | | vs |
. . . . . . . 8
setvar π |
52 | 51 | cv 1540 |
. . . . . . . . . 10
class π |
53 | 26, 52 | cfv 6540 |
. . . . . . . . 9
class (π β(1st
βπ)) |
54 | 52, 33 | ccom 5679 |
. . . . . . . . 9
class (π β (2nd
βπ)) |
55 | 53, 54 | cop 4633 |
. . . . . . . 8
class
β¨(π β(1st βπ)), (π β (2nd βπ))β© |
56 | 51, 22, 17, 18, 55 | cmpo 7407 |
. . . . . . 7
class (π β ((TEndoβπ)βπ€), π β (((LTrnβπ)βπ€) Γ ((TEndoβπ)βπ€)) β¦ β¨(π β(1st βπ)), (π β (2nd βπ))β©) |
57 | 50, 56 | cop 4633 |
. . . . . 6
class β¨(
Β·π βndx), (π β ((TEndoβπ)βπ€), π β (((LTrnβπ)βπ€) Γ ((TEndoβπ)βπ€)) β¦ β¨(π β(1st βπ)), (π β (2nd βπ))β©)β© |
58 | 57 | csn 4627 |
. . . . 5
class {β¨(
Β·π βndx), (π β ((TEndoβπ)βπ€), π β (((LTrnβπ)βπ€) Γ ((TEndoβπ)βπ€)) β¦ β¨(π β(1st βπ)), (π β (2nd βπ))β©)β©} |
59 | 48, 58 | cun 3945 |
. . . 4
class
({β¨(Baseβndx), (((LTrnβπ)βπ€) Γ ((TEndoβπ)βπ€))β©, β¨(+gβndx),
(π β
(((LTrnβπ)βπ€) Γ ((TEndoβπ)βπ€)), π β (((LTrnβπ)βπ€) Γ ((TEndoβπ)βπ€)) β¦ β¨((1st
βπ) β
(1st βπ)),
(β β ((LTrnβπ)βπ€) β¦ (((2nd βπ)ββ) β ((2nd βπ)ββ)))β©)β©, β¨(Scalarβndx),
((EDRingβπ)βπ€)β©} βͺ {β¨(
Β·π βndx), (π β ((TEndoβπ)βπ€), π β (((LTrnβπ)βπ€) Γ ((TEndoβπ)βπ€)) β¦ β¨(π β(1st βπ)), (π β (2nd βπ))β©)β©}) |
60 | 4, 7, 59 | cmpt 5230 |
. . 3
class (π€ β (LHypβπ) β¦
({β¨(Baseβndx), (((LTrnβπ)βπ€) Γ ((TEndoβπ)βπ€))β©, β¨(+gβndx),
(π β
(((LTrnβπ)βπ€) Γ ((TEndoβπ)βπ€)), π β (((LTrnβπ)βπ€) Γ ((TEndoβπ)βπ€)) β¦ β¨((1st
βπ) β
(1st βπ)),
(β β ((LTrnβπ)βπ€) β¦ (((2nd βπ)ββ) β ((2nd βπ)ββ)))β©)β©, β¨(Scalarβndx),
((EDRingβπ)βπ€)β©} βͺ {β¨(
Β·π βndx), (π β ((TEndoβπ)βπ€), π β (((LTrnβπ)βπ€) Γ ((TEndoβπ)βπ€)) β¦ β¨(π β(1st βπ)), (π β (2nd βπ))β©)β©})) |
61 | 2, 3, 60 | cmpt 5230 |
. 2
class (π β V β¦ (π€ β (LHypβπ) β¦
({β¨(Baseβndx), (((LTrnβπ)βπ€) Γ ((TEndoβπ)βπ€))β©, β¨(+gβndx),
(π β
(((LTrnβπ)βπ€) Γ ((TEndoβπ)βπ€)), π β (((LTrnβπ)βπ€) Γ ((TEndoβπ)βπ€)) β¦ β¨((1st
βπ) β
(1st βπ)),
(β β ((LTrnβπ)βπ€) β¦ (((2nd βπ)ββ) β ((2nd βπ)ββ)))β©)β©, β¨(Scalarβndx),
((EDRingβπ)βπ€)β©} βͺ {β¨(
Β·π βndx), (π β ((TEndoβπ)βπ€), π β (((LTrnβπ)βπ€) Γ ((TEndoβπ)βπ€)) β¦ β¨(π β(1st βπ)), (π β (2nd βπ))β©)β©}))) |
62 | 1, 61 | wceq 1541 |
1
wff DVecH =
(π β V β¦ (π€ β (LHypβπ) β¦
({β¨(Baseβndx), (((LTrnβπ)βπ€) Γ ((TEndoβπ)βπ€))β©, β¨(+gβndx),
(π β
(((LTrnβπ)βπ€) Γ ((TEndoβπ)βπ€)), π β (((LTrnβπ)βπ€) Γ ((TEndoβπ)βπ€)) β¦ β¨((1st
βπ) β
(1st βπ)),
(β β ((LTrnβπ)βπ€) β¦ (((2nd βπ)ββ) β ((2nd βπ)ββ)))β©)β©, β¨(Scalarβndx),
((EDRingβπ)βπ€)β©} βͺ {β¨(
Β·π βndx), (π β ((TEndoβπ)βπ€), π β (((LTrnβπ)βπ€) Γ ((TEndoβπ)βπ€)) β¦ β¨(π β(1st βπ)), (π β (2nd βπ))β©)β©}))) |