Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-dvech Structured version   Visualization version   GIF version

Definition df-dvech 39938
Description: Define constructed full vector space H. (Contributed by NM, 17-Oct-2013.)
Assertion
Ref Expression
df-dvech DVecH = (π‘˜ ∈ V ↦ (𝑀 ∈ (LHypβ€˜π‘˜) ↦ ({⟨(Baseβ€˜ndx), (((LTrnβ€˜π‘˜)β€˜π‘€) Γ— ((TEndoβ€˜π‘˜)β€˜π‘€))⟩, ⟨(+gβ€˜ndx), (𝑓 ∈ (((LTrnβ€˜π‘˜)β€˜π‘€) Γ— ((TEndoβ€˜π‘˜)β€˜π‘€)), 𝑔 ∈ (((LTrnβ€˜π‘˜)β€˜π‘€) Γ— ((TEndoβ€˜π‘˜)β€˜π‘€)) ↦ ⟨((1st β€˜π‘“) ∘ (1st β€˜π‘”)), (β„Ž ∈ ((LTrnβ€˜π‘˜)β€˜π‘€) ↦ (((2nd β€˜π‘“)β€˜β„Ž) ∘ ((2nd β€˜π‘”)β€˜β„Ž)))⟩)⟩, ⟨(Scalarβ€˜ndx), ((EDRingβ€˜π‘˜)β€˜π‘€)⟩} βˆͺ {⟨( ·𝑠 β€˜ndx), (𝑠 ∈ ((TEndoβ€˜π‘˜)β€˜π‘€), 𝑓 ∈ (((LTrnβ€˜π‘˜)β€˜π‘€) Γ— ((TEndoβ€˜π‘˜)β€˜π‘€)) ↦ ⟨(π‘ β€˜(1st β€˜π‘“)), (𝑠 ∘ (2nd β€˜π‘“))⟩)⟩})))
Distinct variable group:   𝑓,𝑔,β„Ž,π‘˜,𝑠,𝑀

Detailed syntax breakdown of Definition df-dvech
StepHypRef Expression
1 cdvh 39937 . 2 class DVecH
2 vk . . 3 setvar π‘˜
3 cvv 3474 . . 3 class V
4 vw . . . 4 setvar 𝑀
52cv 1540 . . . . 5 class π‘˜
6 clh 38843 . . . . 5 class LHyp
75, 6cfv 6540 . . . 4 class (LHypβ€˜π‘˜)
8 cnx 17122 . . . . . . . 8 class ndx
9 cbs 17140 . . . . . . . 8 class Base
108, 9cfv 6540 . . . . . . 7 class (Baseβ€˜ndx)
114cv 1540 . . . . . . . . 9 class 𝑀
12 cltrn 38960 . . . . . . . . . 10 class LTrn
135, 12cfv 6540 . . . . . . . . 9 class (LTrnβ€˜π‘˜)
1411, 13cfv 6540 . . . . . . . 8 class ((LTrnβ€˜π‘˜)β€˜π‘€)
15 ctendo 39611 . . . . . . . . . 10 class TEndo
165, 15cfv 6540 . . . . . . . . 9 class (TEndoβ€˜π‘˜)
1711, 16cfv 6540 . . . . . . . 8 class ((TEndoβ€˜π‘˜)β€˜π‘€)
1814, 17cxp 5673 . . . . . . 7 class (((LTrnβ€˜π‘˜)β€˜π‘€) Γ— ((TEndoβ€˜π‘˜)β€˜π‘€))
1910, 18cop 4633 . . . . . 6 class ⟨(Baseβ€˜ndx), (((LTrnβ€˜π‘˜)β€˜π‘€) Γ— ((TEndoβ€˜π‘˜)β€˜π‘€))⟩
20 cplusg 17193 . . . . . . . 8 class +g
218, 20cfv 6540 . . . . . . 7 class (+gβ€˜ndx)
22 vf . . . . . . . 8 setvar 𝑓
23 vg . . . . . . . 8 setvar 𝑔
2422cv 1540 . . . . . . . . . . 11 class 𝑓
25 c1st 7969 . . . . . . . . . . 11 class 1st
2624, 25cfv 6540 . . . . . . . . . 10 class (1st β€˜π‘“)
2723cv 1540 . . . . . . . . . . 11 class 𝑔
2827, 25cfv 6540 . . . . . . . . . 10 class (1st β€˜π‘”)
2926, 28ccom 5679 . . . . . . . . 9 class ((1st β€˜π‘“) ∘ (1st β€˜π‘”))
30 vh . . . . . . . . . 10 setvar β„Ž
3130cv 1540 . . . . . . . . . . . 12 class β„Ž
32 c2nd 7970 . . . . . . . . . . . . 13 class 2nd
3324, 32cfv 6540 . . . . . . . . . . . 12 class (2nd β€˜π‘“)
3431, 33cfv 6540 . . . . . . . . . . 11 class ((2nd β€˜π‘“)β€˜β„Ž)
3527, 32cfv 6540 . . . . . . . . . . . 12 class (2nd β€˜π‘”)
3631, 35cfv 6540 . . . . . . . . . . 11 class ((2nd β€˜π‘”)β€˜β„Ž)
3734, 36ccom 5679 . . . . . . . . . 10 class (((2nd β€˜π‘“)β€˜β„Ž) ∘ ((2nd β€˜π‘”)β€˜β„Ž))
3830, 14, 37cmpt 5230 . . . . . . . . 9 class (β„Ž ∈ ((LTrnβ€˜π‘˜)β€˜π‘€) ↦ (((2nd β€˜π‘“)β€˜β„Ž) ∘ ((2nd β€˜π‘”)β€˜β„Ž)))
3929, 38cop 4633 . . . . . . . 8 class ⟨((1st β€˜π‘“) ∘ (1st β€˜π‘”)), (β„Ž ∈ ((LTrnβ€˜π‘˜)β€˜π‘€) ↦ (((2nd β€˜π‘“)β€˜β„Ž) ∘ ((2nd β€˜π‘”)β€˜β„Ž)))⟩
4022, 23, 18, 18, 39cmpo 7407 . . . . . . 7 class (𝑓 ∈ (((LTrnβ€˜π‘˜)β€˜π‘€) Γ— ((TEndoβ€˜π‘˜)β€˜π‘€)), 𝑔 ∈ (((LTrnβ€˜π‘˜)β€˜π‘€) Γ— ((TEndoβ€˜π‘˜)β€˜π‘€)) ↦ ⟨((1st β€˜π‘“) ∘ (1st β€˜π‘”)), (β„Ž ∈ ((LTrnβ€˜π‘˜)β€˜π‘€) ↦ (((2nd β€˜π‘“)β€˜β„Ž) ∘ ((2nd β€˜π‘”)β€˜β„Ž)))⟩)
4121, 40cop 4633 . . . . . 6 class ⟨(+gβ€˜ndx), (𝑓 ∈ (((LTrnβ€˜π‘˜)β€˜π‘€) Γ— ((TEndoβ€˜π‘˜)β€˜π‘€)), 𝑔 ∈ (((LTrnβ€˜π‘˜)β€˜π‘€) Γ— ((TEndoβ€˜π‘˜)β€˜π‘€)) ↦ ⟨((1st β€˜π‘“) ∘ (1st β€˜π‘”)), (β„Ž ∈ ((LTrnβ€˜π‘˜)β€˜π‘€) ↦ (((2nd β€˜π‘“)β€˜β„Ž) ∘ ((2nd β€˜π‘”)β€˜β„Ž)))⟩)⟩
42 csca 17196 . . . . . . . 8 class Scalar
438, 42cfv 6540 . . . . . . 7 class (Scalarβ€˜ndx)
44 cedring 39612 . . . . . . . . 9 class EDRing
455, 44cfv 6540 . . . . . . . 8 class (EDRingβ€˜π‘˜)
4611, 45cfv 6540 . . . . . . 7 class ((EDRingβ€˜π‘˜)β€˜π‘€)
4743, 46cop 4633 . . . . . 6 class ⟨(Scalarβ€˜ndx), ((EDRingβ€˜π‘˜)β€˜π‘€)⟩
4819, 41, 47ctp 4631 . . . . 5 class {⟨(Baseβ€˜ndx), (((LTrnβ€˜π‘˜)β€˜π‘€) Γ— ((TEndoβ€˜π‘˜)β€˜π‘€))⟩, ⟨(+gβ€˜ndx), (𝑓 ∈ (((LTrnβ€˜π‘˜)β€˜π‘€) Γ— ((TEndoβ€˜π‘˜)β€˜π‘€)), 𝑔 ∈ (((LTrnβ€˜π‘˜)β€˜π‘€) Γ— ((TEndoβ€˜π‘˜)β€˜π‘€)) ↦ ⟨((1st β€˜π‘“) ∘ (1st β€˜π‘”)), (β„Ž ∈ ((LTrnβ€˜π‘˜)β€˜π‘€) ↦ (((2nd β€˜π‘“)β€˜β„Ž) ∘ ((2nd β€˜π‘”)β€˜β„Ž)))⟩)⟩, ⟨(Scalarβ€˜ndx), ((EDRingβ€˜π‘˜)β€˜π‘€)⟩}
49 cvsca 17197 . . . . . . . 8 class ·𝑠
508, 49cfv 6540 . . . . . . 7 class ( ·𝑠 β€˜ndx)
51 vs . . . . . . . 8 setvar 𝑠
5251cv 1540 . . . . . . . . . 10 class 𝑠
5326, 52cfv 6540 . . . . . . . . 9 class (π‘ β€˜(1st β€˜π‘“))
5452, 33ccom 5679 . . . . . . . . 9 class (𝑠 ∘ (2nd β€˜π‘“))
5553, 54cop 4633 . . . . . . . 8 class ⟨(π‘ β€˜(1st β€˜π‘“)), (𝑠 ∘ (2nd β€˜π‘“))⟩
5651, 22, 17, 18, 55cmpo 7407 . . . . . . 7 class (𝑠 ∈ ((TEndoβ€˜π‘˜)β€˜π‘€), 𝑓 ∈ (((LTrnβ€˜π‘˜)β€˜π‘€) Γ— ((TEndoβ€˜π‘˜)β€˜π‘€)) ↦ ⟨(π‘ β€˜(1st β€˜π‘“)), (𝑠 ∘ (2nd β€˜π‘“))⟩)
5750, 56cop 4633 . . . . . 6 class ⟨( ·𝑠 β€˜ndx), (𝑠 ∈ ((TEndoβ€˜π‘˜)β€˜π‘€), 𝑓 ∈ (((LTrnβ€˜π‘˜)β€˜π‘€) Γ— ((TEndoβ€˜π‘˜)β€˜π‘€)) ↦ ⟨(π‘ β€˜(1st β€˜π‘“)), (𝑠 ∘ (2nd β€˜π‘“))⟩)⟩
5857csn 4627 . . . . 5 class {⟨( ·𝑠 β€˜ndx), (𝑠 ∈ ((TEndoβ€˜π‘˜)β€˜π‘€), 𝑓 ∈ (((LTrnβ€˜π‘˜)β€˜π‘€) Γ— ((TEndoβ€˜π‘˜)β€˜π‘€)) ↦ ⟨(π‘ β€˜(1st β€˜π‘“)), (𝑠 ∘ (2nd β€˜π‘“))⟩)⟩}
5948, 58cun 3945 . . . 4 class ({⟨(Baseβ€˜ndx), (((LTrnβ€˜π‘˜)β€˜π‘€) Γ— ((TEndoβ€˜π‘˜)β€˜π‘€))⟩, ⟨(+gβ€˜ndx), (𝑓 ∈ (((LTrnβ€˜π‘˜)β€˜π‘€) Γ— ((TEndoβ€˜π‘˜)β€˜π‘€)), 𝑔 ∈ (((LTrnβ€˜π‘˜)β€˜π‘€) Γ— ((TEndoβ€˜π‘˜)β€˜π‘€)) ↦ ⟨((1st β€˜π‘“) ∘ (1st β€˜π‘”)), (β„Ž ∈ ((LTrnβ€˜π‘˜)β€˜π‘€) ↦ (((2nd β€˜π‘“)β€˜β„Ž) ∘ ((2nd β€˜π‘”)β€˜β„Ž)))⟩)⟩, ⟨(Scalarβ€˜ndx), ((EDRingβ€˜π‘˜)β€˜π‘€)⟩} βˆͺ {⟨( ·𝑠 β€˜ndx), (𝑠 ∈ ((TEndoβ€˜π‘˜)β€˜π‘€), 𝑓 ∈ (((LTrnβ€˜π‘˜)β€˜π‘€) Γ— ((TEndoβ€˜π‘˜)β€˜π‘€)) ↦ ⟨(π‘ β€˜(1st β€˜π‘“)), (𝑠 ∘ (2nd β€˜π‘“))⟩)⟩})
604, 7, 59cmpt 5230 . . 3 class (𝑀 ∈ (LHypβ€˜π‘˜) ↦ ({⟨(Baseβ€˜ndx), (((LTrnβ€˜π‘˜)β€˜π‘€) Γ— ((TEndoβ€˜π‘˜)β€˜π‘€))⟩, ⟨(+gβ€˜ndx), (𝑓 ∈ (((LTrnβ€˜π‘˜)β€˜π‘€) Γ— ((TEndoβ€˜π‘˜)β€˜π‘€)), 𝑔 ∈ (((LTrnβ€˜π‘˜)β€˜π‘€) Γ— ((TEndoβ€˜π‘˜)β€˜π‘€)) ↦ ⟨((1st β€˜π‘“) ∘ (1st β€˜π‘”)), (β„Ž ∈ ((LTrnβ€˜π‘˜)β€˜π‘€) ↦ (((2nd β€˜π‘“)β€˜β„Ž) ∘ ((2nd β€˜π‘”)β€˜β„Ž)))⟩)⟩, ⟨(Scalarβ€˜ndx), ((EDRingβ€˜π‘˜)β€˜π‘€)⟩} βˆͺ {⟨( ·𝑠 β€˜ndx), (𝑠 ∈ ((TEndoβ€˜π‘˜)β€˜π‘€), 𝑓 ∈ (((LTrnβ€˜π‘˜)β€˜π‘€) Γ— ((TEndoβ€˜π‘˜)β€˜π‘€)) ↦ ⟨(π‘ β€˜(1st β€˜π‘“)), (𝑠 ∘ (2nd β€˜π‘“))⟩)⟩}))
612, 3, 60cmpt 5230 . 2 class (π‘˜ ∈ V ↦ (𝑀 ∈ (LHypβ€˜π‘˜) ↦ ({⟨(Baseβ€˜ndx), (((LTrnβ€˜π‘˜)β€˜π‘€) Γ— ((TEndoβ€˜π‘˜)β€˜π‘€))⟩, ⟨(+gβ€˜ndx), (𝑓 ∈ (((LTrnβ€˜π‘˜)β€˜π‘€) Γ— ((TEndoβ€˜π‘˜)β€˜π‘€)), 𝑔 ∈ (((LTrnβ€˜π‘˜)β€˜π‘€) Γ— ((TEndoβ€˜π‘˜)β€˜π‘€)) ↦ ⟨((1st β€˜π‘“) ∘ (1st β€˜π‘”)), (β„Ž ∈ ((LTrnβ€˜π‘˜)β€˜π‘€) ↦ (((2nd β€˜π‘“)β€˜β„Ž) ∘ ((2nd β€˜π‘”)β€˜β„Ž)))⟩)⟩, ⟨(Scalarβ€˜ndx), ((EDRingβ€˜π‘˜)β€˜π‘€)⟩} βˆͺ {⟨( ·𝑠 β€˜ndx), (𝑠 ∈ ((TEndoβ€˜π‘˜)β€˜π‘€), 𝑓 ∈ (((LTrnβ€˜π‘˜)β€˜π‘€) Γ— ((TEndoβ€˜π‘˜)β€˜π‘€)) ↦ ⟨(π‘ β€˜(1st β€˜π‘“)), (𝑠 ∘ (2nd β€˜π‘“))⟩)⟩})))
621, 61wceq 1541 1 wff DVecH = (π‘˜ ∈ V ↦ (𝑀 ∈ (LHypβ€˜π‘˜) ↦ ({⟨(Baseβ€˜ndx), (((LTrnβ€˜π‘˜)β€˜π‘€) Γ— ((TEndoβ€˜π‘˜)β€˜π‘€))⟩, ⟨(+gβ€˜ndx), (𝑓 ∈ (((LTrnβ€˜π‘˜)β€˜π‘€) Γ— ((TEndoβ€˜π‘˜)β€˜π‘€)), 𝑔 ∈ (((LTrnβ€˜π‘˜)β€˜π‘€) Γ— ((TEndoβ€˜π‘˜)β€˜π‘€)) ↦ ⟨((1st β€˜π‘“) ∘ (1st β€˜π‘”)), (β„Ž ∈ ((LTrnβ€˜π‘˜)β€˜π‘€) ↦ (((2nd β€˜π‘“)β€˜β„Ž) ∘ ((2nd β€˜π‘”)β€˜β„Ž)))⟩)⟩, ⟨(Scalarβ€˜ndx), ((EDRingβ€˜π‘˜)β€˜π‘€)⟩} βˆͺ {⟨( ·𝑠 β€˜ndx), (𝑠 ∈ ((TEndoβ€˜π‘˜)β€˜π‘€), 𝑓 ∈ (((LTrnβ€˜π‘˜)β€˜π‘€) Γ— ((TEndoβ€˜π‘˜)β€˜π‘€)) ↦ ⟨(π‘ β€˜(1st β€˜π‘“)), (𝑠 ∘ (2nd β€˜π‘“))⟩)⟩})))
Colors of variables: wff setvar class
This definition is referenced by:  dvhfset  39939
  Copyright terms: Public domain W3C validator