![]() |
Metamath
Proof Explorer Theorem List (p. 403 of 479) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30171) |
![]() (30172-31694) |
![]() (31695-47852) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | dih1dimat 40201 | Any 1-dimensional subspace is a value of isomorphism H. (Contributed by NM, 11-Apr-2014.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ π΄ = (LSAtomsβπ) β β’ (((πΎ β HL β§ π β π») β§ π β π΄) β π β ran πΌ) | ||
Theorem | dihlsprn 40202 | The span of a vector belongs to the range of isomorphism H. (Contributed by NM, 27-Apr-2014.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ π = (LSpanβπ) & β’ πΌ = ((DIsoHβπΎ)βπ) β β’ (((πΎ β HL β§ π β π») β§ π β π) β (πβ{π}) β ran πΌ) | ||
Theorem | dihlspsnssN 40203 | A subspace included in a 1-dim subspace belongs to the range of isomorphism H. (Contributed by NM, 26-Apr-2014.) (New usage is discouraged.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ π = (LSubSpβπ) & β’ π = (LSpanβπ) & β’ πΌ = ((DIsoHβπΎ)βπ) β β’ (((πΎ β HL β§ π β π») β§ π β π β§ π β (πβ{π})) β (π β π β π β ran πΌ)) | ||
Theorem | dihlspsnat 40204 | The inverse isomorphism H of the span of a singleton is a Hilbert lattice atom. (Contributed by NM, 27-Apr-2014.) |
β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ 0 = (0gβπ) & β’ π = (LSpanβπ) & β’ πΌ = ((DIsoHβπΎ)βπ) β β’ (((πΎ β HL β§ π β π») β§ π β π β§ π β 0 ) β (β‘πΌβ(πβ{π})) β π΄) | ||
Theorem | dihatlat 40205 | The isomorphism H of an atom is a 1-dim subspace. (Contributed by NM, 28-Apr-2014.) |
β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ πΏ = (LSAtomsβπ) β β’ (((πΎ β HL β§ π β π») β§ π β π΄) β (πΌβπ) β πΏ) | ||
Theorem | dihat 40206 | There exists at least one atom in the subspaces of vector space H. (Contributed by NM, 12-Aug-2014.) |
β’ π» = (LHypβπΎ) & β’ π = ((ocβπΎ)βπ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ π΄ = (LSAtomsβπ) & β’ (π β (πΎ β HL β§ π β π»)) β β’ (π β (πΌβπ) β π΄) | ||
Theorem | dihpN 40207* | The value of isomorphism H at the fiducial atom π is determined by the vector β¨0, πβ© (the zero translation ltrnid 39006 and a nonzero member of the endomorphism ring). In particular, π can be replaced with the ring unity ( I βΎ π). (Contributed by NM, 26-Aug-2014.) (New usage is discouraged.) |
β’ π΅ = (BaseβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((ocβπΎ)βπ) & β’ π = ((LTrnβπΎ)βπ) & β’ πΈ = ((TEndoβπΎ)βπ) & β’ π = (π β π β¦ ( I βΎ π΅)) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (LSpanβπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β (π β πΈ β§ π β π)) β β’ (π β (πΌβπ) = (πβ{β¨( I βΎ π΅), πβ©})) | ||
Theorem | dihlatat 40208 | The reverse isomorphism H of a 1-dim subspace is an atom. (Contributed by NM, 28-Apr-2014.) |
β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ πΏ = (LSAtomsβπ) β β’ (((πΎ β HL β§ π β π») β§ π β πΏ) β (β‘πΌβπ) β π΄) | ||
Theorem | dihatexv 40209* | There is a nonzero vector that maps to every lattice atom. (Contributed by NM, 16-Aug-2014.) |
β’ π΅ = (BaseβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ 0 = (0gβπ) & β’ π = (LSpanβπ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β π΅) β β’ (π β (π β π΄ β βπ₯ β (π β { 0 })(πΌβπ) = (πβ{π₯}))) | ||
Theorem | dihatexv2 40210* | There is a nonzero vector that maps to every lattice atom. (Contributed by NM, 17-Aug-2014.) |
β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ 0 = (0gβπ) & β’ π = (LSpanβπ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) β β’ (π β (π β π΄ β βπ₯ β (π β { 0 })π = (β‘πΌβ(πβ{π₯})))) | ||
Theorem | dihglblem6 40211* | Isomorphism H of a lattice glb. (Contributed by NM, 9-Apr-2014.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ β§ = (meetβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ πΊ = (glbβπΎ) & β’ π» = (LHypβπΎ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (LSubSpβπ) & β’ π· = (LSAtomsβπ) β β’ (((πΎ β HL β§ π β π») β§ (π β π΅ β§ π β β )) β (πΌβ(πΊβπ)) = β© π₯ β π (πΌβπ₯)) | ||
Theorem | dihglb 40212* | Isomorphism H of a lattice glb. (Contributed by NM, 11-Apr-2014.) |
β’ π΅ = (BaseβπΎ) & β’ πΊ = (glbβπΎ) & β’ π» = (LHypβπΎ) & β’ πΌ = ((DIsoHβπΎ)βπ) β β’ (((πΎ β HL β§ π β π») β§ (π β π΅ β§ π β β )) β (πΌβ(πΊβπ)) = β© π₯ β π (πΌβπ₯)) | ||
Theorem | dihglb2 40213* | Isomorphism H of a lattice glb. (Contributed by NM, 11-Apr-2014.) |
β’ π΅ = (BaseβπΎ) & β’ πΊ = (glbβπΎ) & β’ π» = (LHypβπΎ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) β β’ (((πΎ β HL β§ π β π») β§ π β π) β (πΌβ(πΊβ{π₯ β π΅ β£ π β (πΌβπ₯)})) = β© {π¦ β ran πΌ β£ π β π¦}) | ||
Theorem | dihmeet 40214 | Isomorphism H of a lattice meet. (Contributed by NM, 13-Apr-2014.) |
β’ π΅ = (BaseβπΎ) & β’ β§ = (meetβπΎ) & β’ π» = (LHypβπΎ) & β’ πΌ = ((DIsoHβπΎ)βπ) β β’ (((πΎ β HL β§ π β π») β§ π β π΅ β§ π β π΅) β (πΌβ(π β§ π)) = ((πΌβπ) β© (πΌβπ))) | ||
Theorem | dihintcl 40215 | The intersection of closed subspaces (the range of isomorphism H) is a closed subspace. (Contributed by NM, 14-Apr-2014.) |
β’ π» = (LHypβπΎ) & β’ πΌ = ((DIsoHβπΎ)βπ) β β’ (((πΎ β HL β§ π β π») β§ (π β ran πΌ β§ π β β )) β β© π β ran πΌ) | ||
Theorem | dihmeetcl 40216 | Closure of closed subspace meet for DVecH vector space. (Contributed by NM, 5-Aug-2014.) |
β’ π» = (LHypβπΎ) & β’ πΌ = ((DIsoHβπΎ)βπ) β β’ (((πΎ β HL β§ π β π») β§ (π β ran πΌ β§ π β ran πΌ)) β (π β© π) β ran πΌ) | ||
Theorem | dihmeet2 40217 | Reverse isomorphism H of a closed subspace intersection. (Contributed by NM, 15-Jan-2015.) |
β’ β§ = (meetβπΎ) & β’ π» = (LHypβπΎ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β ran πΌ) & β’ (π β π β ran πΌ) β β’ (π β (β‘πΌβ(π β© π)) = ((β‘πΌβπ) β§ (β‘πΌβπ))) | ||
Syntax | coch 40218 | Extend class notation with subspace orthocomplement for DVecH vector space. |
class ocH | ||
Definition | df-doch 40219* | Define subspace orthocomplement for DVecH vector space. Temporarily, we are using the range of the isomorphism instead of the set of closed subspaces. Later, when inner product is introduced, we will show that these are the same. (Contributed by NM, 14-Mar-2014.) |
β’ ocH = (π β V β¦ (π€ β (LHypβπ) β¦ (π₯ β π« (Baseβ((DVecHβπ)βπ€)) β¦ (((DIsoHβπ)βπ€)β((ocβπ)β((glbβπ)β{π¦ β (Baseβπ) β£ π₯ β (((DIsoHβπ)βπ€)βπ¦)})))))) | ||
Theorem | dochffval 40220* | Subspace orthocomplement for DVecH vector space. (Contributed by NM, 14-Mar-2014.) |
β’ π΅ = (BaseβπΎ) & β’ πΊ = (glbβπΎ) & β’ β₯ = (ocβπΎ) & β’ π» = (LHypβπΎ) β β’ (πΎ β π β (ocHβπΎ) = (π€ β π» β¦ (π₯ β π« (Baseβ((DVecHβπΎ)βπ€)) β¦ (((DIsoHβπΎ)βπ€)β( β₯ β(πΊβ{π¦ β π΅ β£ π₯ β (((DIsoHβπΎ)βπ€)βπ¦)})))))) | ||
Theorem | dochfval 40221* | Subspace orthocomplement for DVecH vector space. (Contributed by NM, 14-Mar-2014.) |
β’ π΅ = (BaseβπΎ) & β’ πΊ = (glbβπΎ) & β’ β₯ = (ocβπΎ) & β’ π» = (LHypβπΎ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ π = ((ocHβπΎ)βπ) β β’ ((πΎ β π β§ π β π») β π = (π₯ β π« π β¦ (πΌβ( β₯ β(πΊβ{π¦ β π΅ β£ π₯ β (πΌβπ¦)}))))) | ||
Theorem | dochval 40222* | Subspace orthocomplement for DVecH vector space. (Contributed by NM, 14-Mar-2014.) |
β’ π΅ = (BaseβπΎ) & β’ πΊ = (glbβπΎ) & β’ β₯ = (ocβπΎ) & β’ π» = (LHypβπΎ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ π = ((ocHβπΎ)βπ) β β’ (((πΎ β π β§ π β π») β§ π β π) β (πβπ) = (πΌβ( β₯ β(πΊβ{π¦ β π΅ β£ π β (πΌβπ¦)})))) | ||
Theorem | dochval2 40223* | Subspace orthocomplement for DVecH vector space. (Contributed by NM, 14-Apr-2014.) |
β’ β₯ = (ocβπΎ) & β’ π» = (LHypβπΎ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ π = ((ocHβπΎ)βπ) β β’ (((πΎ β HL β§ π β π») β§ π β π) β (πβπ) = (πΌβ( β₯ β(β‘πΌββ© {π§ β ran πΌ β£ π β π§})))) | ||
Theorem | dochcl 40224 | Closure of subspace orthocomplement for DVecH vector space. (Contributed by NM, 9-Mar-2014.) |
β’ π» = (LHypβπΎ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ β₯ = ((ocHβπΎ)βπ) β β’ (((πΎ β HL β§ π β π») β§ π β π) β ( β₯ βπ) β ran πΌ) | ||
Theorem | dochlss 40225 | A subspace orthocomplement is a subspace of the DVecH vector space. (Contributed by NM, 22-Jul-2014.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ π = (LSubSpβπ) & β’ β₯ = ((ocHβπΎ)βπ) β β’ (((πΎ β HL β§ π β π») β§ π β π) β ( β₯ βπ) β π) | ||
Theorem | dochssv 40226 | A subspace orthocomplement belongs to the DVecH vector space. (Contributed by NM, 22-Jul-2014.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ β₯ = ((ocHβπΎ)βπ) β β’ (((πΎ β HL β§ π β π») β§ π β π) β ( β₯ βπ) β π) | ||
Theorem | dochfN 40227 | Domain and codomain of the subspace orthocomplement for the DVecH vector space. (Contributed by NM, 27-Dec-2014.) (New usage is discouraged.) |
β’ π» = (LHypβπΎ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ β₯ = ((ocHβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) β β’ (π β β₯ :π« πβΆran πΌ) | ||
Theorem | dochvalr 40228 | Orthocomplement of a closed subspace. (Contributed by NM, 14-Mar-2014.) |
β’ β₯ = (ocβπΎ) & β’ π» = (LHypβπΎ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ π = ((ocHβπΎ)βπ) β β’ (((πΎ β HL β§ π β π») β§ π β ran πΌ) β (πβπ) = (πΌβ( β₯ β(β‘πΌβπ)))) | ||
Theorem | doch0 40229 | Orthocomplement of the zero subspace. (Contributed by NM, 19-Jun-2014.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ β₯ = ((ocHβπΎ)βπ) & β’ π = (Baseβπ) & β’ 0 = (0gβπ) β β’ ((πΎ β HL β§ π β π») β ( β₯ β{ 0 }) = π) | ||
Theorem | doch1 40230 | Orthocomplement of the unit subspace (all vectors). (Contributed by NM, 19-Jun-2014.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ β₯ = ((ocHβπΎ)βπ) & β’ π = (Baseβπ) & β’ 0 = (0gβπ) β β’ ((πΎ β HL β§ π β π») β ( β₯ βπ) = { 0 }) | ||
Theorem | dochoc0 40231 | The zero subspace is closed. (Contributed by NM, 16-Feb-2015.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ β₯ = ((ocHβπΎ)βπ) & β’ 0 = (0gβπ) & β’ (π β (πΎ β HL β§ π β π»)) β β’ (π β ( β₯ β( β₯ β{ 0 })) = { 0 }) | ||
Theorem | dochoc1 40232 | The unit subspace (all vectors) is closed. (Contributed by NM, 16-Feb-2015.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ β₯ = ((ocHβπΎ)βπ) & β’ π = (Baseβπ) & β’ (π β (πΎ β HL β§ π β π»)) β β’ (π β ( β₯ β( β₯ βπ)) = π) | ||
Theorem | dochvalr2 40233 | Orthocomplement of a closed subspace. (Contributed by NM, 21-Jul-2014.) |
β’ π΅ = (BaseβπΎ) & β’ β₯ = (ocβπΎ) & β’ π» = (LHypβπΎ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ π = ((ocHβπΎ)βπ) β β’ (((πΎ β HL β§ π β π») β§ π β π΅) β (πβ(πΌβπ)) = (πΌβ( β₯ βπ))) | ||
Theorem | dochvalr3 40234 | Orthocomplement of a closed subspace. (Contributed by NM, 15-Jan-2015.) |
β’ β₯ = (ocβπΎ) & β’ π» = (LHypβπΎ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ π = ((ocHβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β ran πΌ) β β’ (π β ( β₯ β(β‘πΌβπ)) = (β‘πΌβ(πβπ))) | ||
Theorem | doch2val2 40235* | Double orthocomplement for DVecH vector space. (Contributed by NM, 26-Jul-2014.) |
β’ π» = (LHypβπΎ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ β₯ = ((ocHβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β π) β β’ (π β ( β₯ β( β₯ βπ)) = β© {π§ β ran πΌ β£ π β π§}) | ||
Theorem | dochss 40236 | Subset law for orthocomplement. (Contributed by NM, 16-Apr-2014.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ β₯ = ((ocHβπΎ)βπ) β β’ (((πΎ β HL β§ π β π») β§ π β π β§ π β π) β ( β₯ βπ) β ( β₯ βπ)) | ||
Theorem | dochocss 40237 | Double negative law for orthocomplement of an arbitrary set of vectors. (Contributed by NM, 16-Apr-2014.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ β₯ = ((ocHβπΎ)βπ) β β’ (((πΎ β HL β§ π β π») β§ π β π) β π β ( β₯ β( β₯ βπ))) | ||
Theorem | dochoc 40238 | Double negative law for orthocomplement of a closed subspace. (Contributed by NM, 14-Mar-2014.) |
β’ π» = (LHypβπΎ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ β₯ = ((ocHβπΎ)βπ) β β’ (((πΎ β HL β§ π β π») β§ π β ran πΌ) β ( β₯ β( β₯ βπ)) = π) | ||
Theorem | dochsscl 40239 | If a set of vectors is included in a closed set, so is its closure. (Contributed by NM, 17-Jun-2015.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ β₯ = ((ocHβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β π) & β’ (π β π β ran πΌ) β β’ (π β (π β π β ( β₯ β( β₯ βπ)) β π)) | ||
Theorem | dochoccl 40240 | A set of vectors is closed iff it equals its double orthocomplent. (Contributed by NM, 1-Jan-2015.) |
β’ π» = (LHypβπΎ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ β₯ = ((ocHβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β π) β β’ (π β (π β ran πΌ β ( β₯ β( β₯ βπ)) = π)) | ||
Theorem | dochord 40241 | Ordering law for orthocomplement. (Contributed by NM, 12-Aug-2014.) |
β’ π» = (LHypβπΎ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ β₯ = ((ocHβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β ran πΌ) & β’ (π β π β ran πΌ) β β’ (π β (π β π β ( β₯ βπ) β ( β₯ βπ))) | ||
Theorem | dochord2N 40242 | Ordering law for orthocomplement. (Contributed by NM, 29-Oct-2014.) (New usage is discouraged.) |
β’ π» = (LHypβπΎ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ β₯ = ((ocHβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β ran πΌ) & β’ (π β π β ran πΌ) β β’ (π β (( β₯ βπ) β π β ( β₯ βπ) β π)) | ||
Theorem | dochord3 40243 | Ordering law for orthocomplement. (Contributed by NM, 9-Mar-2015.) |
β’ π» = (LHypβπΎ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ β₯ = ((ocHβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β ran πΌ) & β’ (π β π β ran πΌ) β β’ (π β (π β ( β₯ βπ) β π β ( β₯ βπ))) | ||
Theorem | doch11 40244 | Orthocomplement is one-to-one. (Contributed by NM, 12-Aug-2014.) |
β’ π» = (LHypβπΎ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ β₯ = ((ocHβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β ran πΌ) & β’ (π β π β ran πΌ) β β’ (π β (( β₯ βπ) = ( β₯ βπ) β π = π)) | ||
Theorem | dochsordN 40245 | Strict ordering law for orthocomplement. (Contributed by NM, 12-Aug-2014.) (New usage is discouraged.) |
β’ π» = (LHypβπΎ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ β₯ = ((ocHβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β ran πΌ) & β’ (π β π β ran πΌ) β β’ (π β (π β π β ( β₯ βπ) β ( β₯ βπ))) | ||
Theorem | dochn0nv 40246 | An orthocomplement is nonzero iff the double orthocomplement is not the whole vector space. (Contributed by NM, 1-Jan-2015.) |
β’ π» = (LHypβπΎ) & β’ β₯ = ((ocHβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ 0 = (0gβπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β π) β β’ (π β (( β₯ βπ) β { 0 } β ( β₯ β( β₯ βπ)) β π)) | ||
Theorem | dihoml4c 40247 | Version of dihoml4 40248 with closed subspaces. (Contributed by NM, 15-Jan-2015.) |
β’ π» = (LHypβπΎ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ β₯ = ((ocHβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β ran πΌ) & β’ (π β π β ran πΌ) & β’ (π β π β π) β β’ (π β (( β₯ β(( β₯ βπ) β© π)) β© π) = π) | ||
Theorem | dihoml4 40248 | Orthomodular law for constructed vector space H. Lemma 3.3(1) in [Holland95] p. 215. (poml4N 38824 analog.) (Contributed by NM, 15-Jan-2015.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (LSubSpβπ) & β’ β₯ = ((ocHβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β π) & β’ (π β π β π) & β’ (π β ( β₯ β( β₯ βπ)) = π) & β’ (π β π β π) β β’ (π β (( β₯ β(( β₯ βπ) β© π)) β© π) = ( β₯ β( β₯ βπ))) | ||
Theorem | dochspss 40249 | The span of a set of vectors is included in their double orthocomplement. (Contributed by NM, 26-Jul-2014.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ β₯ = ((ocHβπΎ)βπ) & β’ π = (Baseβπ) & β’ π = (LSpanβπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β π) β β’ (π β (πβπ) β ( β₯ β( β₯ βπ))) | ||
Theorem | dochocsp 40250 | The span of an orthocomplement equals the orthocomplement of the span. (Contributed by NM, 7-Aug-2014.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ β₯ = ((ocHβπΎ)βπ) & β’ π = (Baseβπ) & β’ π = (LSpanβπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β π) β β’ (π β ( β₯ β(πβπ)) = ( β₯ βπ)) | ||
Theorem | dochspocN 40251 | The span of an orthocomplement equals the orthocomplement of the span. (Contributed by NM, 7-Aug-2014.) (New usage is discouraged.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ β₯ = ((ocHβπΎ)βπ) & β’ π = (Baseβπ) & β’ π = (LSpanβπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β π) β β’ (π β (πβ( β₯ βπ)) = ( β₯ β(πβπ))) | ||
Theorem | dochocsn 40252 | The double orthocomplement of a singleton is its span. (Contributed by NM, 13-Jan-2015.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ β₯ = ((ocHβπΎ)βπ) & β’ π = (Baseβπ) & β’ π = (LSpanβπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β π) β β’ (π β ( β₯ β( β₯ β{π})) = (πβ{π})) | ||
Theorem | dochsncom 40253 | Swap vectors in an orthocomplement of a singleton. (Contributed by NM, 17-Jun-2015.) |
β’ π» = (LHypβπΎ) & β’ β₯ = ((ocHβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β π) & β’ (π β π β π) β β’ (π β (π β ( β₯ β{π}) β π β ( β₯ β{π}))) | ||
Theorem | dochsat 40254 | The double orthocomplement of an atom is an atom. (Contributed by NM, 29-Oct-2014.) |
β’ π» = (LHypβπΎ) & β’ β₯ = ((ocHβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (LSubSpβπ) & β’ π΄ = (LSAtomsβπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β π) β β’ (π β (( β₯ β( β₯ βπ)) β π΄ β π β π΄)) | ||
Theorem | dochshpncl 40255 | If a hyperplane is not closed, its closure equals the vector space. (Contributed by NM, 29-Oct-2014.) |
β’ π» = (LHypβπΎ) & β’ β₯ = ((ocHβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ π = (LSHypβπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β π) β β’ (π β (( β₯ β( β₯ βπ)) β π β ( β₯ β( β₯ βπ)) = π)) | ||
Theorem | dochlkr 40256 | Equivalent conditions for the closure of a kernel to be a hyperplane. (Contributed by NM, 29-Oct-2014.) |
β’ π» = (LHypβπΎ) & β’ β₯ = ((ocHβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ πΉ = (LFnlβπ) & β’ π = (LSHypβπ) & β’ πΏ = (LKerβπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β πΊ β πΉ) β β’ (π β (( β₯ β( β₯ β(πΏβπΊ))) β π β (( β₯ β( β₯ β(πΏβπΊ))) = (πΏβπΊ) β§ (πΏβπΊ) β π))) | ||
Theorem | dochkrshp 40257 | The closure of a kernel is a hyperplane iff it doesn't contain all vectors. (Contributed by NM, 1-Nov-2014.) |
β’ π» = (LHypβπΎ) & β’ β₯ = ((ocHβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ π = (LSHypβπ) & β’ πΉ = (LFnlβπ) & β’ πΏ = (LKerβπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β πΊ β πΉ) β β’ (π β (( β₯ β( β₯ β(πΏβπΊ))) β π β ( β₯ β( β₯ β(πΏβπΊ))) β π)) | ||
Theorem | dochkrshp2 40258 | Properties of the closure of the kernel of a functional. (Contributed by NM, 1-Jan-2015.) |
β’ π» = (LHypβπΎ) & β’ β₯ = ((ocHβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ π = (LSHypβπ) & β’ πΉ = (LFnlβπ) & β’ πΏ = (LKerβπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β πΊ β πΉ) β β’ (π β (( β₯ β( β₯ β(πΏβπΊ))) β π β (( β₯ β( β₯ β(πΏβπΊ))) = (πΏβπΊ) β§ (πΏβπΊ) β π))) | ||
Theorem | dochkrshp3 40259 | Properties of the closure of the kernel of a functional. (Contributed by NM, 1-Jan-2015.) |
β’ π» = (LHypβπΎ) & β’ β₯ = ((ocHβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ πΉ = (LFnlβπ) & β’ πΏ = (LKerβπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β πΊ β πΉ) β β’ (π β (( β₯ β( β₯ β(πΏβπΊ))) β π β (( β₯ β( β₯ β(πΏβπΊ))) = (πΏβπΊ) β§ (πΏβπΊ) β π))) | ||
Theorem | dochkrshp4 40260 | Properties of the closure of the kernel of a functional. (Contributed by NM, 1-Jan-2015.) |
β’ π» = (LHypβπΎ) & β’ β₯ = ((ocHβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ πΉ = (LFnlβπ) & β’ πΏ = (LKerβπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β πΊ β πΉ) β β’ (π β (( β₯ β( β₯ β(πΏβπΊ))) = (πΏβπΊ) β (( β₯ β( β₯ β(πΏβπΊ))) β π β¨ (πΏβπΊ) = π))) | ||
Theorem | dochdmj1 40261 | De Morgan-like law for subspace orthocomplement. (Contributed by NM, 5-Aug-2014.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ β₯ = ((ocHβπΎ)βπ) β β’ (((πΎ β HL β§ π β π») β§ π β π β§ π β π) β ( β₯ β(π βͺ π)) = (( β₯ βπ) β© ( β₯ βπ))) | ||
Theorem | dochnoncon 40262 | Law of noncontradiction. The intersection of a subspace and its orthocomplement is the zero subspace. (Contributed by NM, 16-Apr-2014.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (LSubSpβπ) & β’ 0 = (0gβπ) & β’ β₯ = ((ocHβπΎ)βπ) β β’ (((πΎ β HL β§ π β π») β§ π β π) β (π β© ( β₯ βπ)) = { 0 }) | ||
Theorem | dochnel2 40263 | A nonzero member of a subspace doesn't belong to the orthocomplement of the subspace. (Contributed by NM, 28-Feb-2015.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (LSubSpβπ) & β’ 0 = (0gβπ) & β’ β₯ = ((ocHβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β π) & β’ (π β π β (π β { 0 })) β β’ (π β Β¬ π β ( β₯ βπ)) | ||
Theorem | dochnel 40264 | A nonzero vector doesn't belong to the orthocomplement of its singleton. (Contributed by NM, 27-Oct-2014.) |
β’ π» = (LHypβπΎ) & β’ β₯ = ((ocHβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ 0 = (0gβπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β (π β { 0 })) β β’ (π β Β¬ π β ( β₯ β{π})) | ||
Syntax | cdjh 40265 | Extend class notation with subspace join for DVecH vector space. |
class joinH | ||
Definition | df-djh 40266* | Define (closed) subspace join for DVecH vector space. (Contributed by NM, 19-Jul-2014.) |
β’ joinH = (π β V β¦ (π€ β (LHypβπ) β¦ (π₯ β π« (Baseβ((DVecHβπ)βπ€)), π¦ β π« (Baseβ((DVecHβπ)βπ€)) β¦ (((ocHβπ)βπ€)β((((ocHβπ)βπ€)βπ₯) β© (((ocHβπ)βπ€)βπ¦)))))) | ||
Theorem | djhffval 40267* | Subspace join for DVecH vector space. (Contributed by NM, 19-Jul-2014.) |
β’ π» = (LHypβπΎ) β β’ (πΎ β π β (joinHβπΎ) = (π€ β π» β¦ (π₯ β π« (Baseβ((DVecHβπΎ)βπ€)), π¦ β π« (Baseβ((DVecHβπΎ)βπ€)) β¦ (((ocHβπΎ)βπ€)β((((ocHβπΎ)βπ€)βπ₯) β© (((ocHβπΎ)βπ€)βπ¦)))))) | ||
Theorem | djhfval 40268* | Subspace join for DVecH vector space. (Contributed by NM, 19-Jul-2014.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ β₯ = ((ocHβπΎ)βπ) & β’ β¨ = ((joinHβπΎ)βπ) β β’ ((πΎ β π β§ π β π») β β¨ = (π₯ β π« π, π¦ β π« π β¦ ( β₯ β(( β₯ βπ₯) β© ( β₯ βπ¦))))) | ||
Theorem | djhval 40269 | Subspace join for DVecH vector space. (Contributed by NM, 19-Jul-2014.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ β₯ = ((ocHβπΎ)βπ) & β’ β¨ = ((joinHβπΎ)βπ) β β’ (((πΎ β HL β§ π β π») β§ (π β π β§ π β π)) β (π β¨ π) = ( β₯ β(( β₯ βπ) β© ( β₯ βπ)))) | ||
Theorem | djhval2 40270 | Value of subspace join for DVecH vector space. (Contributed by NM, 6-Aug-2014.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ β₯ = ((ocHβπΎ)βπ) & β’ β¨ = ((joinHβπΎ)βπ) β β’ (((πΎ β HL β§ π β π») β§ π β π β§ π β π) β (π β¨ π) = ( β₯ β( β₯ β(π βͺ π)))) | ||
Theorem | djhcl 40271 | Closure of subspace join for DVecH vector space. (Contributed by NM, 19-Jul-2014.) |
β’ π» = (LHypβπΎ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ β¨ = ((joinHβπΎ)βπ) β β’ (((πΎ β HL β§ π β π») β§ (π β π β§ π β π)) β (π β¨ π) β ran πΌ) | ||
Theorem | djhlj 40272 | Transfer lattice join to DVecH vector space closed subspace join. (Contributed by NM, 19-Jul-2014.) |
β’ π΅ = (BaseβπΎ) & β’ β¨ = (joinβπΎ) & β’ π» = (LHypβπΎ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ π½ = ((joinHβπΎ)βπ) β β’ (((πΎ β HL β§ π β π») β§ (π β π΅ β§ π β π΅)) β (πΌβ(π β¨ π)) = ((πΌβπ)π½(πΌβπ))) | ||
Theorem | djhljjN 40273 | Lattice join in terms of DVecH vector space closed subspace join. (Contributed by NM, 17-Aug-2014.) (New usage is discouraged.) |
β’ π΅ = (BaseβπΎ) & β’ β¨ = (joinβπΎ) & β’ π» = (LHypβπΎ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ π½ = ((joinHβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β π΅) & β’ (π β π β π΅) β β’ (π β (π β¨ π) = (β‘πΌβ((πΌβπ)π½(πΌβπ)))) | ||
Theorem | djhjlj 40274 | DVecH vector space closed subspace join in terms of lattice join. (Contributed by NM, 9-Aug-2014.) |
β’ β¨ = (joinβπΎ) & β’ π» = (LHypβπΎ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ π½ = ((joinHβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β ran πΌ) & β’ (π β π β ran πΌ) β β’ (π β (ππ½π) = (πΌβ((β‘πΌβπ) β¨ (β‘πΌβπ)))) | ||
Theorem | djhj 40275 | DVecH vector space closed subspace join in terms of lattice join. (Contributed by NM, 17-Aug-2014.) |
β’ β¨ = (joinβπΎ) & β’ π» = (LHypβπΎ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ π½ = ((joinHβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β ran πΌ) & β’ (π β π β ran πΌ) β β’ (π β (β‘πΌβ(ππ½π)) = ((β‘πΌβπ) β¨ (β‘πΌβπ))) | ||
Theorem | djhcom 40276 | Subspace join commutes. (Contributed by NM, 8-Aug-2014.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ β¨ = ((joinHβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β π) & β’ (π β π β π) β β’ (π β (π β¨ π) = (π β¨ π)) | ||
Theorem | djhspss 40277 | Subspace span of union is a subset of subspace join. (Contributed by NM, 6-Aug-2014.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ π = (LSpanβπ) & β’ β¨ = ((joinHβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β π) & β’ (π β π β π) β β’ (π β (πβ(π βͺ π)) β (π β¨ π)) | ||
Theorem | djhsumss 40278 | Subspace sum is a subset of subspace join. (Contributed by NM, 6-Aug-2014.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ β = (LSSumβπ) & β’ β¨ = ((joinHβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β π) & β’ (π β π β π) β β’ (π β (π β π) β (π β¨ π)) | ||
Theorem | dihsumssj 40279 | The subspace sum of two isomorphisms of lattice elements is less than the isomorphism of their lattice join. (Contributed by NM, 23-Sep-2014.) |
β’ π΅ = (BaseβπΎ) & β’ π» = (LHypβπΎ) & β’ β¨ = (joinβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ β = (LSSumβπ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β π΅) & β’ (π β π β π΅) β β’ (π β ((πΌβπ) β (πΌβπ)) β (πΌβ(π β¨ π))) | ||
Theorem | djhunssN 40280 | Subspace union is a subset of subspace join. (Contributed by NM, 6-Aug-2014.) (New usage is discouraged.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ β¨ = ((joinHβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β π) & β’ (π β π β π) β β’ (π β (π βͺ π) β (π β¨ π)) | ||
Theorem | dochdmm1 40281 | De Morgan-like law for closed subspace orthocomplement. (Contributed by NM, 13-Jan-2015.) |
β’ π» = (LHypβπΎ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ β₯ = ((ocHβπΎ)βπ) & β’ β¨ = ((joinHβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β ran πΌ) & β’ (π β π β ran πΌ) β β’ (π β ( β₯ β(π β© π)) = (( β₯ βπ) β¨ ( β₯ βπ))) | ||
Theorem | djhexmid 40282 | Excluded middle property of DVecH vector space closed subspace join. (Contributed by NM, 22-Jul-2014.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ β₯ = ((ocHβπΎ)βπ) & β’ β¨ = ((joinHβπΎ)βπ) β β’ (((πΎ β HL β§ π β π») β§ π β π) β (π β¨ ( β₯ βπ)) = π) | ||
Theorem | djh01 40283 | Closed subspace join with zero. (Contributed by NM, 9-Aug-2014.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ 0 = (0gβπ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ β¨ = ((joinHβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β ran πΌ) β β’ (π β (π β¨ { 0 }) = π) | ||
Theorem | djh02 40284 | Closed subspace join with zero. (Contributed by NM, 9-Aug-2014.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ 0 = (0gβπ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ β¨ = ((joinHβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β ran πΌ) β β’ (π β ({ 0 } β¨ π) = π) | ||
Theorem | djhlsmcl 40285 | A closed subspace sum equals subspace join. (shjshseli 30746 analog.) (Contributed by NM, 13-Aug-2014.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ π = (LSubSpβπ) & β’ β = (LSSumβπ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ β¨ = ((joinHβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β π) & β’ (π β π β π) β β’ (π β ((π β π) β ran πΌ β (π β π) = (π β¨ π))) | ||
Theorem | djhcvat42 40286* | A covering property. (cvrat42 38315 analog.) (Contributed by NM, 17-Aug-2014.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ 0 = (0gβπ) & β’ π = (LSpanβπ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ β¨ = ((joinHβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β ran πΌ) & β’ (π β π β (π β { 0 })) & β’ (π β π β (π β { 0 })) β β’ (π β ((π β { 0 } β§ (πβ{π}) β (π β¨ (πβ{π}))) β βπ§ β (π β { 0 })((πβ{π§}) β π β§ (πβ{π}) β ((πβ{π§}) β¨ (πβ{π}))))) | ||
Theorem | dihjatb 40287 | Isomorphism H of lattice join of two atoms under the fiducial hyperplane. (Contributed by NM, 23-Sep-2014.) |
β’ β€ = (leβπΎ) & β’ π» = (LHypβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ β = (LSSumβπ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β (π β π΄ β§ π β€ π)) & β’ (π β (π β π΄ β§ π β€ π)) β β’ (π β (πΌβ(π β¨ π)) = ((πΌβπ) β (πΌβπ))) | ||
Theorem | dihjatc 40288 | Isomorphism H of lattice join of an element under the fiducial hyperplane with atom not under it. (Contributed by NM, 26-Aug-2014.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ π» = (LHypβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ β = (LSSumβπ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β (π β π΅ β§ π β€ π)) & β’ (π β (π β π΄ β§ Β¬ π β€ π)) β β’ (π β (πΌβ(π β¨ π)) = ((πΌβπ) β (πΌβπ))) | ||
Theorem | dihjatcclem1 40289 | Lemma for isomorphism H of lattice join of two atoms not under the fiducial hyperplane. (Contributed by NM, 26-Sep-2014.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ π» = (LHypβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ β = (LSSumβπ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ π = ((π β¨ π) β§ π) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β (π β π΄ β§ Β¬ π β€ π)) & β’ (π β (π β π΄ β§ Β¬ π β€ π)) β β’ (π β (πΌβ(π β¨ π)) = (((πΌβπ) β (πΌβπ)) β (πΌβπ))) | ||
Theorem | dihjatcclem2 40290 | Lemma for isomorphism H of lattice join of two atoms not under the fiducial hyperplane. (Contributed by NM, 26-Sep-2014.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ π» = (LHypβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ β = (LSSumβπ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ π = ((π β¨ π) β§ π) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β (π β π΄ β§ Β¬ π β€ π)) & β’ (π β (π β π΄ β§ Β¬ π β€ π)) & β’ (π β (πΌβπ) β ((πΌβπ) β (πΌβπ))) β β’ (π β (πΌβ(π β¨ π)) = ((πΌβπ) β (πΌβπ))) | ||
Theorem | dihjatcclem3 40291* | Lemma for dihjatcc 40293. (Contributed by NM, 28-Sep-2014.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ π» = (LHypβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ β = (LSSumβπ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ π = ((π β¨ π) β§ π) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β (π β π΄ β§ Β¬ π β€ π)) & β’ (π β (π β π΄ β§ Β¬ π β€ π)) & β’ πΆ = ((ocβπΎ)βπ) & β’ π = ((LTrnβπΎ)βπ) & β’ π = ((trLβπΎ)βπ) & β’ πΈ = ((TEndoβπΎ)βπ) & β’ πΊ = (β©π β π (πβπΆ) = π) & β’ π· = (β©π β π (πβπΆ) = π) β β’ (π β (π β(πΊ β β‘π·)) = π) | ||
Theorem | dihjatcclem4 40292* | Lemma for isomorphism H of lattice join of two atoms not under the fiducial hyperplane. (Contributed by NM, 29-Sep-2014.) |
β’ π΅ = (BaseβπΎ) & β’ β€ = (leβπΎ) & β’ π» = (LHypβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ β = (LSSumβπ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ π = ((π β¨ π) β§ π) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β (π β π΄ β§ Β¬ π β€ π)) & β’ (π β (π β π΄ β§ Β¬ π β€ π)) & β’ πΆ = ((ocβπΎ)βπ) & β’ π = ((LTrnβπΎ)βπ) & β’ π = ((trLβπΎ)βπ) & β’ πΈ = ((TEndoβπΎ)βπ) & β’ πΊ = (β©π β π (πβπΆ) = π) & β’ π· = (β©π β π (πβπΆ) = π) & β’ π = (π β πΈ β¦ (π β π β¦ β‘(πβπ))) & β’ 0 = (π β π β¦ ( I βΎ π΅)) & β’ π½ = (π β πΈ, π β πΈ β¦ (π β π β¦ ((πβπ) β (πβπ)))) β β’ (π β (πΌβπ) β ((πΌβπ) β (πΌβπ))) | ||
Theorem | dihjatcc 40293 | Isomorphism H of lattice join of two atoms not under the fiducial hyperplane. (Contributed by NM, 29-Sep-2014.) |
β’ β€ = (leβπΎ) & β’ π» = (LHypβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ β = (LSSumβπ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β (π β π΄ β§ Β¬ π β€ π)) & β’ (π β (π β π΄ β§ Β¬ π β€ π)) β β’ (π β (πΌβ(π β¨ π)) = ((πΌβπ) β (πΌβπ))) | ||
Theorem | dihjat 40294 | Isomorphism H of lattice join of two atoms. (Contributed by NM, 29-Sep-2014.) |
β’ π» = (LHypβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ β = (LSSumβπ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β π΄) & β’ (π β π β π΄) β β’ (π β (πΌβ(π β¨ π)) = ((πΌβπ) β (πΌβπ))) | ||
Theorem | dihprrnlem1N 40295 | Lemma for dihprrn 40297, showing one of 4 cases. (Contributed by NM, 30-Aug-2014.) (New usage is discouraged.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ π = (LSpanβπ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β π) & β’ (π β π β π) & β’ β€ = (leβπΎ) & β’ 0 = (0gβπ) & β’ (π β π β 0 ) & β’ (π β (β‘πΌβ(πβ{π})) β€ π) & β’ (π β Β¬ (β‘πΌβ(πβ{π})) β€ π) β β’ (π β (πβ{π, π}) β ran πΌ) | ||
Theorem | dihprrnlem2 40296 | Lemma for dihprrn 40297. (Contributed by NM, 29-Sep-2014.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ π = (LSpanβπ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β π) & β’ (π β π β π) & β’ 0 = (0gβπ) & β’ (π β π β 0 ) & β’ (π β π β 0 ) β β’ (π β (πβ{π, π}) β ran πΌ) | ||
Theorem | dihprrn 40297 | The span of a vector pair belongs to the range of isomorphism H i.e. is a closed subspace. (Contributed by NM, 29-Sep-2014.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ π = (LSpanβπ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β π) & β’ (π β π β π) β β’ (π β (πβ{π, π}) β ran πΌ) | ||
Theorem | djhlsmat 40298 | The sum of two subspace atoms equals their join. TODO: seems convoluted to go via dihprrn 40297; should we directly use dihjat 40294? (Contributed by NM, 13-Aug-2014.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ β = (LSSumβπ) & β’ π = (LSpanβπ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ β¨ = ((joinHβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β π) & β’ (π β π β π) β β’ (π β ((πβ{π}) β (πβ{π})) = ((πβ{π}) β¨ (πβ{π}))) | ||
Theorem | dihjat1lem 40299 | Subspace sum of a closed subspace and an atom. (pmapjat1 38724 analog.) TODO: merge into dihjat1 40300? (Contributed by NM, 18-Aug-2014.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ β = (LSSumβπ) & β’ π = (LSpanβπ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ β¨ = ((joinHβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β ran πΌ) & β’ 0 = (0gβπ) & β’ (π β π β (π β { 0 })) β β’ (π β (π β¨ (πβ{π})) = (π β (πβ{π}))) | ||
Theorem | dihjat1 40300 | Subspace sum of a closed subspace and an atom. (pmapjat1 38724 analog.) (Contributed by NM, 1-Oct-2014.) |
β’ π» = (LHypβπΎ) & β’ π = ((DVecHβπΎ)βπ) & β’ π = (Baseβπ) & β’ β = (LSSumβπ) & β’ π = (LSpanβπ) & β’ πΌ = ((DIsoHβπΎ)βπ) & β’ β¨ = ((joinHβπΎ)βπ) & β’ (π β (πΎ β HL β§ π β π»)) & β’ (π β π β ran πΌ) & β’ (π β π β π) β β’ (π β (π β¨ (πβ{π})) = (π β (πβ{π}))) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |