| Metamath
Proof Explorer Theorem List (p. 403 of 494) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30937) |
(30938-32460) |
(32461-49324) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | cdlemd2 40201 | Part of proof of Lemma D in [Crawley] p. 113. (Contributed by NM, 29-May-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) ⇒ ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑅 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄))) ∧ ((𝐹‘𝑃) = (𝐺‘𝑃) ∧ (𝐹‘𝑄) = (𝐺‘𝑄))) → (𝐹‘𝑅) = (𝐺‘𝑅)) | ||
| Theorem | cdlemd3 40202 | Part of proof of Lemma D in [Crawley] p. 113. The 𝑅 ≠ 𝑃 requirement is not mentioned in their proof. (Contributed by NM, 29-May-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑅 ≠ 𝑃)) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄))) → ¬ 𝑅 ≤ (𝑃 ∨ 𝑆)) | ||
| Theorem | cdlemd4 40203 | Part of proof of Lemma D in [Crawley] p. 113. (Contributed by NM, 30-May-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) ⇒ ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑅 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ 𝑅 ≠ 𝑃)) ∧ ((𝐹‘𝑃) = (𝐺‘𝑃) ∧ (𝐹‘𝑄) = (𝐺‘𝑄))) → (𝐹‘𝑅) = (𝐺‘𝑅)) | ||
| Theorem | cdlemd5 40204 | Part of proof of Lemma D in [Crawley] p. 113. (Contributed by NM, 30-May-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) ⇒ ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑅 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑃 ≠ 𝑄) ∧ ((𝐹‘𝑃) = (𝐺‘𝑃) ∧ (𝐹‘𝑄) = (𝐺‘𝑄))) → (𝐹‘𝑅) = (𝐺‘𝑅)) | ||
| Theorem | cdlemd6 40205 | Part of proof of Lemma D in [Crawley] p. 113. (Contributed by NM, 31-May-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) ⇒ ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ ¬ 𝑄 ≤ (𝑃 ∨ (𝐹‘𝑃))) ∧ (𝐹‘𝑃) = (𝐺‘𝑃)) → (𝐹‘𝑄) = (𝐺‘𝑄)) | ||
| Theorem | cdlemd7 40206 | Part of proof of Lemma D in [Crawley] p. 113. (Contributed by NM, 1-Jun-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) ⇒ ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑅 ∈ 𝐴) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝐹‘𝑃) = (𝐺‘𝑃) ∧ ¬ 𝑄 ≤ (𝑃 ∨ (𝐹‘𝑃)))) → (𝐹‘𝑅) = (𝐺‘𝑅)) | ||
| Theorem | cdlemd8 40207 | Part of proof of Lemma D in [Crawley] p. 113. (Contributed by NM, 1-Jun-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) ⇒ ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ ((𝐹‘𝑃) = (𝐺‘𝑃) ∧ (𝐹‘𝑃) = 𝑃)) → (𝐹‘𝑅) = (𝐺‘𝑅)) | ||
| Theorem | cdlemd9 40208 | Part of proof of Lemma D in [Crawley] p. 113. (Contributed by NM, 2-Jun-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) ⇒ ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝐹‘𝑃) = (𝐺‘𝑃)) → (𝐹‘𝑅) = (𝐺‘𝑅)) | ||
| Theorem | cdlemd 40209 | If two translations agree at any atom not under the fiducial co-atom 𝑊, then they are equal. Lemma D in [Crawley] p. 113. (Contributed by NM, 2-Jun-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) ⇒ ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝐹‘𝑃) = (𝐺‘𝑃)) → 𝐹 = 𝐺) | ||
| Theorem | ltrneq3 40210 | Two translations agree at any atom not under the fiducial co-atom 𝑊 iff they are equal. (Contributed by NM, 25-Jul-2013.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → ((𝐹‘𝑃) = (𝐺‘𝑃) ↔ 𝐹 = 𝐺)) | ||
| Theorem | cdleme00a 40211 | Part of proof of Lemma E in [Crawley] p. 113. (Contributed by NM, 14-Jun-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄)) → 𝑅 ≠ 𝑃) | ||
| Theorem | cdleme0aa 40212 | Part of proof of Lemma E in [Crawley] p. 113. (Contributed by NM, 14-Jun-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) & ⊢ 𝐵 = (Base‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → 𝑈 ∈ 𝐵) | ||
| Theorem | cdleme0a 40213 | Part of proof of Lemma E in [Crawley] p. 113. (Contributed by NM, 12-Jun-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄)) → 𝑈 ∈ 𝐴) | ||
| Theorem | cdleme0b 40214 | Part of proof of Lemma E in [Crawley] p. 113. (Contributed by NM, 13-Jun-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴) → 𝑈 ≠ 𝑃) | ||
| Theorem | cdleme0c 40215 | Part of proof of Lemma E in [Crawley] p. 113. (Contributed by NM, 12-Jun-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) → 𝑈 ≠ 𝑅) | ||
| Theorem | cdleme0cp 40216 | Part of proof of Lemma E in [Crawley] p. 113. TODO: Reformat as in cdlemg3a 40599- swap consequent equality; make antecedent use df-3an 1089. (Contributed by NM, 13-Jun-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴)) → (𝑃 ∨ 𝑈) = (𝑃 ∨ 𝑄)) | ||
| Theorem | cdleme0cq 40217 | Part of proof of Lemma E in [Crawley] p. 113. (Contributed by NM, 25-Apr-2013.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊))) → (𝑄 ∨ 𝑈) = (𝑃 ∨ 𝑄)) | ||
| Theorem | cdleme0dN 40218 | Part of proof of Lemma E in [Crawley] p. 113. (Contributed by NM, 13-Jun-2012.) (New usage is discouraged.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) & ⊢ 𝑉 = ((𝑃 ∨ 𝑅) ∧ 𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ 𝑃 ≠ 𝑅)) → 𝑉 ∈ 𝐴) | ||
| Theorem | cdleme0e 40219 | Part of proof of Lemma E in [Crawley] p. 113. (Contributed by NM, 13-Jun-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) & ⊢ 𝑉 = ((𝑃 ∨ 𝑅) ∧ 𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄))) → 𝑈 ≠ 𝑉) | ||
| Theorem | cdleme0fN 40220 | Part of proof of Lemma E in [Crawley] p. 113. (Contributed by NM, 14-Jun-2012.) (New usage is discouraged.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) & ⊢ 𝑉 = ((𝑃 ∨ 𝑅) ∧ 𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → 𝑉 ≠ 𝑃) | ||
| Theorem | cdleme0gN 40221 | Part of proof of Lemma E in [Crawley] p. 113. (Contributed by NM, 14-Jun-2012.) (New usage is discouraged.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) & ⊢ 𝑉 = ((𝑃 ∨ 𝑅) ∧ 𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → 𝑉 ≠ 𝑄) | ||
| Theorem | cdlemeulpq 40222 | Part of proof of Lemma E in [Crawley] p. 113. (Contributed by NM, 5-Dec-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → 𝑈 ≤ (𝑃 ∨ 𝑄)) | ||
| Theorem | cdleme01N 40223 | Part of proof of Lemma E in [Crawley] p. 113. (Contributed by NM, 5-Nov-2012.) (New usage is discouraged.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑃 ≠ 𝑄) → ((𝑈 ≠ 𝑃 ∧ 𝑈 ≠ 𝑄 ∧ 𝑈 ≤ (𝑃 ∨ 𝑄)) ∧ 𝑈 ≤ 𝑊)) | ||
| Theorem | cdleme02N 40224 | Part of proof of Lemma E in [Crawley] p. 113. (Contributed by NM, 9-Nov-2012.) (New usage is discouraged.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑃 ≠ 𝑄) → ((𝑃 ∨ 𝑈) = (𝑄 ∨ 𝑈) ∧ 𝑈 ≤ 𝑊)) | ||
| Theorem | cdleme0ex1N 40225* | Part of proof of Lemma E in [Crawley] p. 113. (Contributed by NM, 9-Nov-2012.) (New usage is discouraged.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → ∃𝑢 ∈ 𝐴 (𝑢 ≤ (𝑃 ∨ 𝑄) ∧ 𝑢 ≤ 𝑊)) | ||
| Theorem | cdleme0ex2N 40226* | Part of proof of Lemma E in [Crawley] p. 113. Note that (𝑃 ∨ 𝑢) = (𝑄 ∨ 𝑢) is a shorter way to express 𝑢 ≠ 𝑃 ∧ 𝑢 ≠ 𝑄 ∧ 𝑢 ≤ (𝑃 ∨ 𝑄). (Contributed by NM, 9-Nov-2012.) (New usage is discouraged.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ 𝑃 ≠ 𝑄) → ∃𝑢 ∈ 𝐴 ((𝑃 ∨ 𝑢) = (𝑄 ∨ 𝑢) ∧ 𝑢 ≤ 𝑊)) | ||
| Theorem | cdleme0moN 40227* | Part of proof of Lemma E in [Crawley] p. 113. (Contributed by NM, 9-Nov-2012.) (New usage is discouraged.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ∃*𝑟(𝑟 ∈ 𝐴 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) → (𝑅 = 𝑃 ∨ 𝑅 = 𝑄)) | ||
| Theorem | cdleme1b 40228 | Part of proof of Lemma E in [Crawley] p. 113. Utility lemma showing 𝐹 is a lattice element. 𝐹 represents their f(r). (Contributed by NM, 6-Jun-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) & ⊢ 𝐹 = ((𝑅 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑅) ∧ 𝑊))) & ⊢ 𝐵 = (Base‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → 𝐹 ∈ 𝐵) | ||
| Theorem | cdleme1 40229 | Part of proof of Lemma E in [Crawley] p. 113. 𝐹 represents their f(r). Here we show r ∨ f(r) = r ∨ u (7th through 5th lines from bottom on p. 113). (Contributed by NM, 4-Jun-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) & ⊢ 𝐹 = ((𝑅 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑅) ∧ 𝑊))) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊))) → (𝑅 ∨ 𝐹) = (𝑅 ∨ 𝑈)) | ||
| Theorem | cdleme2 40230 | Part of proof of Lemma E in [Crawley] p. 113. 𝐹 represents f(r). 𝑊 is the fiducial co-atom (hyperplane) w. Here we show that (r ∨ f(r)) ∧ w = u in their notation (4th line from bottom on p. 113). (Contributed by NM, 5-Jun-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) & ⊢ 𝐹 = ((𝑅 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑅) ∧ 𝑊))) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊))) → ((𝑅 ∨ 𝐹) ∧ 𝑊) = 𝑈) | ||
| Theorem | cdleme3b 40231 | Part of proof of Lemma E in [Crawley] p. 113. Lemma leading to cdleme3fa 40238 and cdleme3 40239. (Contributed by NM, 6-Jun-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) & ⊢ 𝐹 = ((𝑅 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑅) ∧ 𝑊))) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊))) → 𝐹 ≠ 𝑅) | ||
| Theorem | cdleme3c 40232 | Part of proof of Lemma E in [Crawley] p. 113. Lemma leading to cdleme3fa 40238 and cdleme3 40239. (Contributed by NM, 6-Jun-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) & ⊢ 𝐹 = ((𝑅 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑅) ∧ 𝑊))) & ⊢ 0 = (0.‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊))) → 𝐹 ≠ 0 ) | ||
| Theorem | cdleme3d 40233 | Part of proof of Lemma E in [Crawley] p. 113. Lemma leading to cdleme3fa 40238 and cdleme3 40239. (Contributed by NM, 6-Jun-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) & ⊢ 𝐹 = ((𝑅 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑅) ∧ 𝑊))) & ⊢ 𝑉 = ((𝑃 ∨ 𝑅) ∧ 𝑊) ⇒ ⊢ 𝐹 = ((𝑅 ∨ 𝑈) ∧ (𝑄 ∨ 𝑉)) | ||
| Theorem | cdleme3e 40234 | Part of proof of Lemma E in [Crawley] p. 113. Lemma leading to cdleme3fa 40238 and cdleme3 40239. (Contributed by NM, 6-Jun-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) & ⊢ 𝐹 = ((𝑅 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑅) ∧ 𝑊))) & ⊢ 𝑉 = ((𝑃 ∨ 𝑅) ∧ 𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄)))) → 𝑉 ∈ 𝐴) | ||
| Theorem | cdleme3fN 40235 | Part of proof of Lemma E in [Crawley] p. 113. Lemma leading to cdleme3fa 40238 and cdleme3 40239. TODO: Delete - duplicates cdleme0e 40219. (Contributed by NM, 6-Jun-2012.) (New usage is discouraged.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) & ⊢ 𝐹 = ((𝑅 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑅) ∧ 𝑊))) & ⊢ 𝑉 = ((𝑃 ∨ 𝑅) ∧ 𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄))) → 𝑈 ≠ 𝑉) | ||
| Theorem | cdleme3g 40236 | Part of proof of Lemma E in [Crawley] p. 113. Lemma leading to cdleme3fa 40238 and cdleme3 40239. (Contributed by NM, 7-Jun-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) & ⊢ 𝐹 = ((𝑅 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑅) ∧ 𝑊))) & ⊢ 𝑉 = ((𝑃 ∨ 𝑅) ∧ 𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄))) → 𝐹 ≠ 𝑈) | ||
| Theorem | cdleme3h 40237 | Part of proof of Lemma E in [Crawley] p. 113. Lemma leading to cdleme3fa 40238 and cdleme3 40239. (Contributed by NM, 6-Jun-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) & ⊢ 𝐹 = ((𝑅 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑅) ∧ 𝑊))) & ⊢ 𝑉 = ((𝑃 ∨ 𝑅) ∧ 𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄))) → 𝐹 ∈ 𝐴) | ||
| Theorem | cdleme3fa 40238 | Part of proof of Lemma E in [Crawley] p. 113. See cdleme3 40239. (Contributed by NM, 6-Oct-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) & ⊢ 𝐹 = ((𝑅 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑅) ∧ 𝑊))) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄))) → 𝐹 ∈ 𝐴) | ||
| Theorem | cdleme3 40239 | Part of proof of Lemma E in [Crawley] p. 113. 𝐹 represents f(r). 𝑊 is the fiducial co-atom (hyperplane) w. Here and in cdleme3fa 40238 above, we show that f(r) ∈ W (4th line from bottom on p. 113), meaning it is an atom and not under w, which in our notation is expressed as 𝐹 ∈ 𝐴 ∧ ¬ 𝐹 ≤ 𝑊. Their proof provides no details of our lemmas cdleme3b 40231 through cdleme3 40239, so there may be a simpler proof that we have overlooked. (Contributed by NM, 7-Jun-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) & ⊢ 𝐹 = ((𝑅 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑅) ∧ 𝑊))) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄))) → ¬ 𝐹 ≤ 𝑊) | ||
| Theorem | cdleme4 40240 | Part of proof of Lemma E in [Crawley] p. 113. 𝐹 and 𝐺 represent f(s) and fs(r). Here show p ∨ q = r ∨ u at the top of p. 114. (Contributed by NM, 7-Jun-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ 𝑅 ≤ (𝑃 ∨ 𝑄)) → (𝑃 ∨ 𝑄) = (𝑅 ∨ 𝑈)) | ||
| Theorem | cdleme4a 40241 | Part of proof of Lemma E in [Crawley] p. 114 top. 𝐺 represents fs(r). Auxiliary lemma derived from cdleme5 40242. We show fs(r) ≤ p ∨ q. (Contributed by NM, 10-Nov-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) & ⊢ 𝐹 = ((𝑆 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ 𝑊))) & ⊢ 𝐺 = ((𝑃 ∨ 𝑄) ∧ (𝐹 ∨ ((𝑅 ∨ 𝑆) ∧ 𝑊))) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑆 ∈ 𝐴) → 𝐺 ≤ (𝑃 ∨ 𝑄)) | ||
| Theorem | cdleme5 40242 | Part of proof of Lemma E in [Crawley] p. 113. 𝐺 represents fs(r). We show r ∨ fs(r)) = p ∨ q at the top of p. 114. (Contributed by NM, 7-Jun-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) & ⊢ 𝐹 = ((𝑆 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ 𝑊))) & ⊢ 𝐺 = ((𝑃 ∨ 𝑄) ∧ (𝐹 ∨ ((𝑅 ∨ 𝑆) ∧ 𝑊))) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) → (𝑅 ∨ 𝐺) = (𝑃 ∨ 𝑄)) | ||
| Theorem | cdleme6 40243 | Part of proof of Lemma E in [Crawley] p. 113. This expresses (r ∨ fs(r)) ∧ w = u at the top of p. 114. (Contributed by NM, 7-Jun-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) & ⊢ 𝐹 = ((𝑆 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ 𝑊))) & ⊢ 𝐺 = ((𝑃 ∨ 𝑄) ∧ (𝐹 ∨ ((𝑅 ∨ 𝑆) ∧ 𝑊))) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) → ((𝑅 ∨ 𝐺) ∧ 𝑊) = 𝑈) | ||
| Theorem | cdleme7aa 40244 | Part of proof of Lemma E in [Crawley] p. 113. Lemma leading to cdleme7ga 40250 and cdleme7 40251. (Contributed by NM, 7-Jun-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) & ⊢ 𝐹 = ((𝑆 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ 𝑊))) & ⊢ 𝐺 = ((𝑃 ∨ 𝑄) ∧ (𝐹 ∨ ((𝑅 ∨ 𝑆) ∧ 𝑊))) ⇒ ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄))) → ¬ 𝑅 ≤ (𝑈 ∨ 𝑆)) | ||
| Theorem | cdleme7a 40245 | Part of proof of Lemma E in [Crawley] p. 113. Lemma leading to cdleme7ga 40250 and cdleme7 40251. (Contributed by NM, 7-Jun-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) & ⊢ 𝐹 = ((𝑆 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ 𝑊))) & ⊢ 𝐺 = ((𝑃 ∨ 𝑄) ∧ (𝐹 ∨ ((𝑅 ∨ 𝑆) ∧ 𝑊))) & ⊢ 𝑉 = ((𝑅 ∨ 𝑆) ∧ 𝑊) ⇒ ⊢ 𝐺 = ((𝑃 ∨ 𝑄) ∧ (𝐹 ∨ 𝑉)) | ||
| Theorem | cdleme7b 40246 | Part of proof of Lemma E in [Crawley] p. 113. Lemma leading to cdleme7ga 40250 and cdleme7 40251. (Contributed by NM, 7-Jun-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) & ⊢ 𝐹 = ((𝑆 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ 𝑊))) & ⊢ 𝐺 = ((𝑃 ∨ 𝑄) ∧ (𝐹 ∨ ((𝑅 ∨ 𝑆) ∧ 𝑊))) & ⊢ 𝑉 = ((𝑅 ∨ 𝑆) ∧ 𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ 𝑅 ≤ (𝑃 ∨ 𝑄))) → 𝑉 ∈ 𝐴) | ||
| Theorem | cdleme7c 40247 | Part of proof of Lemma E in [Crawley] p. 113. Lemma leading to cdleme7ga 40250 and cdleme7 40251. (Contributed by NM, 7-Jun-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) & ⊢ 𝐹 = ((𝑆 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ 𝑊))) & ⊢ 𝐺 = ((𝑃 ∨ 𝑄) ∧ (𝐹 ∨ ((𝑅 ∨ 𝑆) ∧ 𝑊))) & ⊢ 𝑉 = ((𝑅 ∨ 𝑆) ∧ 𝑊) ⇒ ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄))) → 𝑈 ≠ 𝑉) | ||
| Theorem | cdleme7d 40248 | Part of proof of Lemma E in [Crawley] p. 113. Lemma leading to cdleme7ga 40250 and cdleme7 40251. (Contributed by NM, 8-Jun-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) & ⊢ 𝐹 = ((𝑆 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ 𝑊))) & ⊢ 𝐺 = ((𝑃 ∨ 𝑄) ∧ (𝐹 ∨ ((𝑅 ∨ 𝑆) ∧ 𝑊))) & ⊢ 𝑉 = ((𝑅 ∨ 𝑆) ∧ 𝑊) ⇒ ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄))) → 𝐺 ≠ 𝑈) | ||
| Theorem | cdleme7e 40249 | Part of proof of Lemma E in [Crawley] p. 113. Lemma leading to cdleme7ga 40250 and cdleme7 40251. (Contributed by NM, 8-Jun-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) & ⊢ 𝐹 = ((𝑆 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ 𝑊))) & ⊢ 𝐺 = ((𝑃 ∨ 𝑄) ∧ (𝐹 ∨ ((𝑅 ∨ 𝑆) ∧ 𝑊))) & ⊢ 𝑉 = ((𝑅 ∨ 𝑆) ∧ 𝑊) ⇒ ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄))) → 𝐺 ≠ (0.‘𝐾)) | ||
| Theorem | cdleme7ga 40250 | Part of proof of Lemma E in [Crawley] p. 113. See cdleme7 40251. (Contributed by NM, 8-Jun-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) & ⊢ 𝐹 = ((𝑆 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ 𝑊))) & ⊢ 𝐺 = ((𝑃 ∨ 𝑄) ∧ (𝐹 ∨ ((𝑅 ∨ 𝑆) ∧ 𝑊))) ⇒ ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄))) → 𝐺 ∈ 𝐴) | ||
| Theorem | cdleme7 40251 | Part of proof of Lemma E in [Crawley] p. 113. 𝐺 and 𝐹 represent fs(r) and f(s) respectively. 𝑊 is the fiducial co-atom (hyperplane) that they call w. Here and in cdleme7ga 40250 above, we show that fs(r) ∈ W (top of p. 114), meaning it is an atom and not under w, which in our notation is expressed as 𝐺 ∈ 𝐴 ∧ ¬ 𝐺 ≤ 𝑊. (Note that we do not have a symbol for their W.) Their proof provides no details of our cdleme7aa 40244 through cdleme7 40251, so there may be a simpler proof that we have overlooked. (Contributed by NM, 9-Jun-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) & ⊢ 𝐹 = ((𝑆 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ 𝑊))) & ⊢ 𝐺 = ((𝑃 ∨ 𝑄) ∧ (𝐹 ∨ ((𝑅 ∨ 𝑆) ∧ 𝑊))) ⇒ ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄))) → ¬ 𝐺 ≤ 𝑊) | ||
| Theorem | cdleme8 40252 | Part of proof of Lemma E in [Crawley] p. 113, 2nd paragraph on p. 114. 𝐶 represents s1. In their notation, we prove p ∨ s1 = p ∨ s. (Contributed by NM, 9-Jun-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐶 = ((𝑃 ∨ 𝑆) ∧ 𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑆 ∈ 𝐴) → (𝑃 ∨ 𝐶) = (𝑃 ∨ 𝑆)) | ||
| Theorem | cdleme9a 40253 | Part of proof of Lemma E in [Crawley] p. 113. 𝐶 represents s1, which we prove is an atom. (Contributed by NM, 10-Jun-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐶 = ((𝑃 ∨ 𝑆) ∧ 𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ 𝑃 ≠ 𝑆)) → 𝐶 ∈ 𝐴) | ||
| Theorem | cdleme9b 40254 | Utility lemma for Lemma E in [Crawley] p. 113. (Contributed by NM, 9-Oct-2012.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐶 = ((𝑃 ∨ 𝑆) ∧ 𝑊) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑊 ∈ 𝐻)) → 𝐶 ∈ 𝐵) | ||
| Theorem | cdleme9 40255 | Part of proof of Lemma E in [Crawley] p. 113, 2nd paragraph on p. 114. 𝐶 and 𝐹 represent s1 and f(s) respectively. In their notation, we prove f(s) ∨ s1 = q ∨ s1. (Contributed by NM, 10-Jun-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) & ⊢ 𝐹 = ((𝑆 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ 𝑊))) & ⊢ 𝐶 = ((𝑃 ∨ 𝑆) ∧ 𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴 ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄)) → (𝐹 ∨ 𝐶) = (𝑄 ∨ 𝐶)) | ||
| Theorem | cdleme10 40256 | Part of proof of Lemma E in [Crawley] p. 113, 2nd paragraph on p. 114. 𝐷 represents s2. In their notation, we prove s ∨ s2 = s ∨ r. (Contributed by NM, 9-Jun-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐷 = ((𝑅 ∨ 𝑆) ∧ 𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑅 ∈ 𝐴 ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) → (𝑆 ∨ 𝐷) = (𝑆 ∨ 𝑅)) | ||
| Theorem | cdleme8tN 40257 | Part of proof of Lemma E in [Crawley] p. 113, 2nd paragraph on p. 114. 𝑋 represents t1. In their notation, we prove p ∨ t1 = p ∨ t. (Contributed by NM, 8-Oct-2012.) (New usage is discouraged.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑋 = ((𝑃 ∨ 𝑇) ∧ 𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑇 ∈ 𝐴) → (𝑃 ∨ 𝑋) = (𝑃 ∨ 𝑇)) | ||
| Theorem | cdleme9taN 40258 | Part of proof of Lemma E in [Crawley] p. 113. 𝑋 represents t1, which we prove is an atom. (Contributed by NM, 8-Oct-2012.) (New usage is discouraged.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑋 = ((𝑃 ∨ 𝑇) ∧ 𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ 𝑃 ≠ 𝑇)) → 𝑋 ∈ 𝐴) | ||
| Theorem | cdleme9tN 40259 | Part of proof of Lemma E in [Crawley] p. 113, 2nd paragraph on p. 114. 𝑋 and 𝐹 represent t1 and f(t) respectively. In their notation, we prove f(t) ∨ t1 = q ∨ t1. (Contributed by NM, 8-Oct-2012.) (New usage is discouraged.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) & ⊢ 𝐹 = ((𝑇 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑇) ∧ 𝑊))) & ⊢ 𝑋 = ((𝑃 ∨ 𝑇) ∧ 𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴 ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊)) ∧ ¬ 𝑇 ≤ (𝑃 ∨ 𝑄)) → (𝐹 ∨ 𝑋) = (𝑄 ∨ 𝑋)) | ||
| Theorem | cdleme10tN 40260 | Part of proof of Lemma E in [Crawley] p. 113, 2nd paragraph on p. 114. 𝑌 represents t2. In their notation, we prove t ∨ t2 = t ∨ r. (Contributed by NM, 8-Oct-2012.) (New usage is discouraged.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑌 = ((𝑅 ∨ 𝑇) ∧ 𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑅 ∈ 𝐴 ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊)) → (𝑇 ∨ 𝑌) = (𝑇 ∨ 𝑅)) | ||
| Theorem | cdleme16aN 40261 | Part of proof of Lemma E in [Crawley] p. 113, 3rd paragraph on p. 114, showing, in their notation, s ∨ u ≠ t ∨ u. (Contributed by NM, 9-Oct-2012.) (New usage is discouraged.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) ⇒ ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ (𝑄 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇 ∧ ¬ 𝑈 ≤ (𝑆 ∨ 𝑇))) → (𝑆 ∨ 𝑈) ≠ (𝑇 ∨ 𝑈)) | ||
| Theorem | cdleme11a 40262 | Part of proof of Lemma E in [Crawley] p. 113. Lemma leading to cdleme11 40272. (Contributed by NM, 12-Jun-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ 𝑈 ≤ (𝑆 ∨ 𝑇)))) → (𝑆 ∨ 𝑈) = (𝑆 ∨ 𝑇)) | ||
| Theorem | cdleme11c 40263 | Part of proof of Lemma E in [Crawley] p. 113. Lemma leading to cdleme11 40272. (Contributed by NM, 13-Jun-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) ⇒ ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ 𝑇 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ 𝑈 ≤ (𝑆 ∨ 𝑇))) → ¬ 𝑃 ≤ (𝑆 ∨ 𝑇)) | ||
| Theorem | cdleme11dN 40264 | Part of proof of Lemma E in [Crawley] p. 113. Lemma leading to cdleme11 40272. (Contributed by NM, 13-Jun-2012.) (New usage is discouraged.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) ⇒ ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ 𝑇 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑆 ≠ 𝑇 ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ 𝑈 ≤ (𝑆 ∨ 𝑇))) → (𝑃 ∨ 𝑆) ≠ (𝑃 ∨ 𝑇)) | ||
| Theorem | cdleme11e 40265 | Part of proof of Lemma E in [Crawley] p. 113. Lemma leading to cdleme11 40272. (Contributed by NM, 13-Jun-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) & ⊢ 𝐶 = ((𝑃 ∨ 𝑆) ∧ 𝑊) & ⊢ 𝐷 = ((𝑃 ∨ 𝑇) ∧ 𝑊) ⇒ ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ 𝑇 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑆 ≠ 𝑇 ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ 𝑈 ≤ (𝑆 ∨ 𝑇))) → 𝐶 ≠ 𝐷) | ||
| Theorem | cdleme11fN 40266 | Part of proof of Lemma E in [Crawley] p. 113. Lemma leading to cdleme11 40272. (Contributed by NM, 14-Jun-2012.) (New usage is discouraged.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) & ⊢ 𝐶 = ((𝑃 ∨ 𝑆) ∧ 𝑊) & ⊢ 𝐷 = ((𝑃 ∨ 𝑇) ∧ 𝑊) & ⊢ 𝐹 = ((𝑆 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ 𝑊))) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄))) → 𝐹 ≠ 𝐶) | ||
| Theorem | cdleme11g 40267 | Part of proof of Lemma E in [Crawley] p. 113. Lemma leading to cdleme11 40272. (Contributed by NM, 14-Jun-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) & ⊢ 𝐶 = ((𝑃 ∨ 𝑆) ∧ 𝑊) & ⊢ 𝐷 = ((𝑃 ∨ 𝑇) ∧ 𝑊) & ⊢ 𝐹 = ((𝑆 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ 𝑊))) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑆 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → (𝑄 ∨ 𝐹) = (𝑄 ∨ 𝐶)) | ||
| Theorem | cdleme11h 40268 | Part of proof of Lemma E in [Crawley] p. 113. Lemma leading to cdleme11 40272. (Contributed by NM, 14-Jun-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) & ⊢ 𝐶 = ((𝑃 ∨ 𝑆) ∧ 𝑊) & ⊢ 𝐷 = ((𝑃 ∨ 𝑇) ∧ 𝑊) & ⊢ 𝐹 = ((𝑆 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ 𝑊))) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄))) → 𝐹 ≠ 𝑄) | ||
| Theorem | cdleme11j 40269 | Part of proof of Lemma E in [Crawley] p. 113. Lemma leading to cdleme11 40272. (Contributed by NM, 14-Jun-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) & ⊢ 𝐶 = ((𝑃 ∨ 𝑆) ∧ 𝑊) & ⊢ 𝐷 = ((𝑃 ∨ 𝑇) ∧ 𝑊) & ⊢ 𝐹 = ((𝑆 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ 𝑊))) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄))) → 𝐶 ≤ (𝑄 ∨ 𝐹)) | ||
| Theorem | cdleme11k 40270 | Part of proof of Lemma E in [Crawley] p. 113. Lemma leading to cdleme11 40272. (Contributed by NM, 15-Jun-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) & ⊢ 𝐶 = ((𝑃 ∨ 𝑆) ∧ 𝑊) & ⊢ 𝐷 = ((𝑃 ∨ 𝑇) ∧ 𝑊) & ⊢ 𝐹 = ((𝑆 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ 𝑊))) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄))) → 𝐶 = ((𝑄 ∨ 𝐹) ∧ 𝑊)) | ||
| Theorem | cdleme11l 40271 | Part of proof of Lemma E in [Crawley] p. 113. Lemma leading to cdleme11 40272. (Contributed by NM, 15-Jun-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) & ⊢ 𝐹 = ((𝑆 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ 𝑊))) & ⊢ 𝐺 = ((𝑇 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑇) ∧ 𝑊))) ⇒ ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇)) ∧ (¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑇 ≤ (𝑃 ∨ 𝑄) ∧ 𝑈 ≤ (𝑆 ∨ 𝑇))) → 𝐹 ≠ 𝐺) | ||
| Theorem | cdleme11 40272 | Part of proof of Lemma E in [Crawley] p. 113, 1st sentence of 3rd paragraph on p. 114. 𝐹 and 𝐺 represent f(s) and f(t) respectively. Their proof provides no details of our cdleme11a 40262 through cdleme11 40272, so there may be a simpler proof that we have overlooked. (Contributed by NM, 15-Jun-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) & ⊢ 𝐹 = ((𝑆 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ 𝑊))) & ⊢ 𝐺 = ((𝑇 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑇) ∧ 𝑊))) ⇒ ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇)) ∧ (¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑇 ≤ (𝑃 ∨ 𝑄) ∧ 𝑈 ≤ (𝑆 ∨ 𝑇))) → (𝐹 ∨ 𝐺) = (𝑆 ∨ 𝑇)) | ||
| Theorem | cdleme12 40273 | Part of proof of Lemma E in [Crawley] p. 113, 3rd paragraph on p. 114, first part of 3rd sentence. 𝐹 and 𝐺 represent f(s) and f(t) respectively. (Contributed by NM, 16-Jun-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) & ⊢ 𝐹 = ((𝑆 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ 𝑊))) & ⊢ 𝐺 = ((𝑇 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑇) ∧ 𝑊))) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (𝑆 ≠ 𝑇 ∧ ¬ 𝑈 ≤ (𝑆 ∨ 𝑇)))) → ((𝑆 ∨ 𝐹) ∧ (𝑇 ∨ 𝐺)) = 𝑈) | ||
| Theorem | cdleme13 40274 | Part of proof of Lemma E in [Crawley] p. 113, 3rd paragraph on p. 114, "<s,t,p> and <f(s),f(t),q> are centrally perspective." 𝐹 and 𝐺 represent f(s) and f(t) respectively. (Contributed by NM, 7-Oct-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) & ⊢ 𝐹 = ((𝑆 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ 𝑊))) & ⊢ 𝐺 = ((𝑇 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑇) ∧ 𝑊))) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (𝑆 ≠ 𝑇 ∧ ¬ 𝑈 ≤ (𝑆 ∨ 𝑇)))) → ((𝑆 ∨ 𝐹) ∧ (𝑇 ∨ 𝐺)) ≤ (𝑃 ∨ 𝑄)) | ||
| Theorem | cdleme14 40275 | Part of proof of Lemma E in [Crawley] p. 113, 3rd paragraph on p. 114, "<s,t,p> and <f(s),f(t),q> ... are axially perspective." We apply dalaw 39888 to cdleme13 40274. 𝐹 and 𝐺 represent f(s) and f(t) respectively. (Contributed by NM, 8-Oct-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) & ⊢ 𝐹 = ((𝑆 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ 𝑊))) & ⊢ 𝐺 = ((𝑇 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑇) ∧ 𝑊))) ⇒ ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇)) ∧ (¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑇 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑈 ≤ (𝑆 ∨ 𝑇))) → ((𝑆 ∨ 𝑇) ∧ (𝐹 ∨ 𝐺)) ≤ (((𝑇 ∨ 𝑃) ∧ (𝐺 ∨ 𝑄)) ∨ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝐹)))) | ||
| Theorem | cdleme15a 40276 | Part of proof of Lemma E in [Crawley] p. 113, 3rd paragraph on p. 114, showing, in their notation, ((s ∨ p) ∧ (f(s) ∨ q)) ∨ ((t ∨ p) ∧ (f(t) ∨ q))=((p ∨ s1) ∧ (q ∨ s1)) ∨ ((p ∨ t1) ∧ (q ∨ t1)). We represent f(s), f(t), s1, and t1 with 𝐹, 𝐺, 𝐶, and 𝑋 respectively. The order of our operations is slightly different. (Contributed by NM, 9-Oct-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) & ⊢ 𝐹 = ((𝑆 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ 𝑊))) & ⊢ 𝐺 = ((𝑇 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑇) ∧ 𝑊))) & ⊢ 𝐶 = ((𝑃 ∨ 𝑆) ∧ 𝑊) & ⊢ 𝑋 = ((𝑃 ∨ 𝑇) ∧ 𝑊) ⇒ ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇)) ∧ (¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑇 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑈 ≤ (𝑆 ∨ 𝑇))) → (((𝑇 ∨ 𝑃) ∧ (𝐺 ∨ 𝑄)) ∨ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝐹))) = (((𝑃 ∨ 𝑋) ∧ (𝑄 ∨ 𝑋)) ∨ ((𝑃 ∨ 𝐶) ∧ (𝑄 ∨ 𝐶)))) | ||
| Theorem | cdleme15b 40277 | Part of proof of Lemma E in [Crawley] p. 113, 3rd paragraph on p. 114, showing, in their notation, (p ∨ s1) ∧ (q ∨ s1)=s1. We represent s1 with 𝐶. (Contributed by NM, 10-Oct-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) & ⊢ 𝐹 = ((𝑆 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ 𝑊))) & ⊢ 𝐺 = ((𝑇 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑇) ∧ 𝑊))) & ⊢ 𝐶 = ((𝑃 ∨ 𝑆) ∧ 𝑊) & ⊢ 𝑋 = ((𝑃 ∨ 𝑇) ∧ 𝑊) ⇒ ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇)) ∧ (¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑇 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑈 ≤ (𝑆 ∨ 𝑇))) → ((𝑃 ∨ 𝐶) ∧ (𝑄 ∨ 𝐶)) = 𝐶) | ||
| Theorem | cdleme15c 40278 | Part of proof of Lemma E in [Crawley] p. 113, 3rd paragraph on p. 114, showing, in their notation, ((p ∨ s1) ∧ (q ∨ s1)) ∨ ((p ∨ t1) ∧ (q ∨ t1))=s1 ∨ t1. 𝐶 and 𝑋 represent s1 and t1 respectively. The order of our operations is slightly different. (Contributed by NM, 10-Oct-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) & ⊢ 𝐹 = ((𝑆 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ 𝑊))) & ⊢ 𝐺 = ((𝑇 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑇) ∧ 𝑊))) & ⊢ 𝐶 = ((𝑃 ∨ 𝑆) ∧ 𝑊) & ⊢ 𝑋 = ((𝑃 ∨ 𝑇) ∧ 𝑊) ⇒ ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇)) ∧ (¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑇 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑈 ≤ (𝑆 ∨ 𝑇))) → (((𝑃 ∨ 𝑋) ∧ (𝑄 ∨ 𝑋)) ∨ ((𝑃 ∨ 𝐶) ∧ (𝑄 ∨ 𝐶))) = (𝑋 ∨ 𝐶)) | ||
| Theorem | cdleme15d 40279 | Part of proof of Lemma E in [Crawley] p. 113, 3rd paragraph on p. 114, showing, in their notation, s1 ∨ t1 ≤ w. 𝐶 and 𝑋 represent s1 and t1 respectively. The order of our operations is slightly different. (Contributed by NM, 10-Oct-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) & ⊢ 𝐹 = ((𝑆 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ 𝑊))) & ⊢ 𝐺 = ((𝑇 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑇) ∧ 𝑊))) & ⊢ 𝐶 = ((𝑃 ∨ 𝑆) ∧ 𝑊) & ⊢ 𝑋 = ((𝑃 ∨ 𝑇) ∧ 𝑊) ⇒ ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇)) ∧ (¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑇 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑈 ≤ (𝑆 ∨ 𝑇))) → (𝑋 ∨ 𝐶) ≤ 𝑊) | ||
| Theorem | cdleme15 40280 | Part of proof of Lemma E in [Crawley] p. 113, 3rd paragraph on p. 114, showing, in their notation, (s ∨ t) ∧ (f(s) ∨ f(t)) ≤ w. We use 𝐹, 𝐺 for f(s), f(t) respectively. (Contributed by NM, 10-Oct-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) & ⊢ 𝐹 = ((𝑆 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ 𝑊))) & ⊢ 𝐺 = ((𝑇 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑇) ∧ 𝑊))) ⇒ ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇)) ∧ (¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑇 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑈 ≤ (𝑆 ∨ 𝑇))) → ((𝑆 ∨ 𝑇) ∧ (𝐹 ∨ 𝐺)) ≤ 𝑊) | ||
| Theorem | cdleme16b 40281 | Part of proof of Lemma E in [Crawley] p. 113, 3rd paragraph on p. 114, first part of 3rd sentence. 𝐹 and 𝐺 represent f(s) and f(t) respectively. It is unclear how this follows from s ∨ u ≠ t ∨ u, as the authors state, and we used a different proof. (Note: the antecedent ¬ 𝑇 ≤ (𝑃 ∨ 𝑄) is not used.) (Contributed by NM, 11-Oct-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) & ⊢ 𝐹 = ((𝑆 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ 𝑊))) & ⊢ 𝐺 = ((𝑇 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑇) ∧ 𝑊))) ⇒ ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇)) ∧ (¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑇 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑈 ≤ (𝑆 ∨ 𝑇))) → 𝐹 ≠ 𝐺) | ||
| Theorem | cdleme16c 40282 | Part of proof of Lemma E in [Crawley] p. 113, 3rd paragraph on p. 114, 2nd part of 3rd sentence. 𝐹 and 𝐺 represent f(s) and f(t) respectively. We show, in their notation, s ∨ t ∨ f(s) ∨ f(t)=s ∨ t ∨ u. (Contributed by NM, 11-Oct-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) & ⊢ 𝐹 = ((𝑆 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ 𝑊))) & ⊢ 𝐺 = ((𝑇 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑇) ∧ 𝑊))) ⇒ ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇)) ∧ (¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑇 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑈 ≤ (𝑆 ∨ 𝑇))) → ((𝑆 ∨ 𝑇) ∨ (𝐹 ∨ 𝐺)) = ((𝑆 ∨ 𝑇) ∨ 𝑈)) | ||
| Theorem | cdleme16d 40283 | Part of proof of Lemma E in [Crawley] p. 113, 3rd paragraph on p. 114, 3rd part of 3rd sentence. 𝐹 and 𝐺 represent f(s) and f(t) respectively. We show, in their notation, (s ∨ t) ∧ (f(s) ∨ f(t)) is an atom. (Contributed by NM, 11-Oct-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) & ⊢ 𝐹 = ((𝑆 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ 𝑊))) & ⊢ 𝐺 = ((𝑇 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑇) ∧ 𝑊))) ⇒ ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇)) ∧ (¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑇 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑈 ≤ (𝑆 ∨ 𝑇))) → ((𝑆 ∨ 𝑇) ∧ (𝐹 ∨ 𝐺)) ∈ 𝐴) | ||
| Theorem | cdleme16e 40284 | Part of proof of Lemma E in [Crawley] p. 113, 3rd paragraph on p. 114, 3rd part of 3rd sentence. 𝐹 and 𝐺 represent f(s) and f(t) respectively. We show, in their notation, (s ∨ t) ∧ (f(s) ∨ f(t))=(s ∨ t) ∧ w. (Contributed by NM, 11-Oct-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) & ⊢ 𝐹 = ((𝑆 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ 𝑊))) & ⊢ 𝐺 = ((𝑇 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑇) ∧ 𝑊))) ⇒ ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇)) ∧ (¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑇 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑈 ≤ (𝑆 ∨ 𝑇))) → ((𝑆 ∨ 𝑇) ∧ (𝐹 ∨ 𝐺)) = ((𝑆 ∨ 𝑇) ∧ 𝑊)) | ||
| Theorem | cdleme16f 40285 | Part of proof of Lemma E in [Crawley] p. 113, 3rd paragraph on p. 114, 3rd part of 3rd sentence. 𝐹 and 𝐺 represent f(s) and f(t) respectively. We show, in their notation, (s ∨ t) ∧ (f(s) ∨ f(t))=(f(s) ∨ f(t)) ∧ w. (Contributed by NM, 11-Oct-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) & ⊢ 𝐹 = ((𝑆 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ 𝑊))) & ⊢ 𝐺 = ((𝑇 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑇) ∧ 𝑊))) ⇒ ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇)) ∧ (¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑇 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑈 ≤ (𝑆 ∨ 𝑇))) → ((𝑆 ∨ 𝑇) ∧ (𝐹 ∨ 𝐺)) = ((𝐹 ∨ 𝐺) ∧ 𝑊)) | ||
| Theorem | cdleme16g 40286 | Part of proof of Lemma E in [Crawley] p. 113, 3rd paragraph on p. 114, Eq. (1). 𝐹 and 𝐺 represent f(s) and f(t) respectively. We show, in their notation, (s ∨ t) ∧ w=(f(s) ∨ f(t)) ∧ w. (Contributed by NM, 11-Oct-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) & ⊢ 𝐹 = ((𝑆 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ 𝑊))) & ⊢ 𝐺 = ((𝑇 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑇) ∧ 𝑊))) ⇒ ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇)) ∧ (¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑇 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑈 ≤ (𝑆 ∨ 𝑇))) → ((𝑆 ∨ 𝑇) ∧ 𝑊) = ((𝐹 ∨ 𝐺) ∧ 𝑊)) | ||
| Theorem | cdleme16 40287 | Part of proof of Lemma E in [Crawley] p. 113, conclusion of 3rd paragraph on p. 114. 𝐹 and 𝐺 represent f(s) and f(t) respectively. We show, in their notation, (s ∨ t) ∧ w=(f(s) ∨ f(t)) ∧ w, whether or not u ≤ s ∨ t. (Contributed by NM, 11-Oct-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) & ⊢ 𝐹 = ((𝑆 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ 𝑊))) & ⊢ 𝐺 = ((𝑇 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑇) ∧ 𝑊))) ⇒ ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊) ∧ (𝑃 ≠ 𝑄 ∧ 𝑆 ≠ 𝑇)) ∧ (¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑇 ≤ (𝑃 ∨ 𝑄))) → ((𝑆 ∨ 𝑇) ∧ 𝑊) = ((𝐹 ∨ 𝐺) ∧ 𝑊)) | ||
| Theorem | cdleme17a 40288 | Part of proof of Lemma E in [Crawley] p. 114, first part of 4th paragraph. 𝐹, 𝐺, and 𝐶 represent f(s), fs(p), and s1 respectively. We show, in their notation, fs(p)=(p ∨ q) ∧ (q ∨ s1). (Contributed by NM, 11-Oct-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) & ⊢ 𝐹 = ((𝑆 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ 𝑊))) & ⊢ 𝐺 = ((𝑃 ∨ 𝑄) ∧ (𝐹 ∨ ((𝑃 ∨ 𝑆) ∧ 𝑊))) & ⊢ 𝐶 = ((𝑃 ∨ 𝑆) ∧ 𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴 ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄)) → 𝐺 = ((𝑃 ∨ 𝑄) ∧ (𝑄 ∨ 𝐶))) | ||
| Theorem | cdleme17b 40289 | Lemma leading to cdleme17c 40290. (Contributed by NM, 11-Oct-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) & ⊢ 𝐹 = ((𝑆 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ 𝑊))) & ⊢ 𝐺 = ((𝑃 ∨ 𝑄) ∧ (𝐹 ∨ ((𝑃 ∨ 𝑆) ∧ 𝑊))) & ⊢ 𝐶 = ((𝑃 ∨ 𝑆) ∧ 𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄))) → ¬ 𝐶 ≤ (𝑃 ∨ 𝑄)) | ||
| Theorem | cdleme17c 40290 | Part of proof of Lemma E in [Crawley] p. 114, first part of 4th paragraph. 𝐶 represents s1. We show, in their notation, (p ∨ q) ∧ (q ∨ s1)=q. (Contributed by NM, 11-Oct-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) & ⊢ 𝐹 = ((𝑆 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ 𝑊))) & ⊢ 𝐺 = ((𝑃 ∨ 𝑄) ∧ (𝐹 ∨ ((𝑃 ∨ 𝑆) ∧ 𝑊))) & ⊢ 𝐶 = ((𝑃 ∨ 𝑆) ∧ 𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄))) → ((𝑃 ∨ 𝑄) ∧ (𝑄 ∨ 𝐶)) = 𝑄) | ||
| Theorem | cdleme17d1 40291 | Part of proof of Lemma E in [Crawley] p. 114, first part of 4th paragraph. 𝐹, 𝐺 represent f(s), fs(p) respectively. We show, in their notation, fs(p)=q. (Contributed by NM, 11-Oct-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) & ⊢ 𝐹 = ((𝑆 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ 𝑊))) & ⊢ 𝐺 = ((𝑃 ∨ 𝑄) ∧ (𝐹 ∨ ((𝑃 ∨ 𝑆) ∧ 𝑊))) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ 𝑄 ∈ 𝐴 ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄)) → 𝐺 = 𝑄) | ||
| Theorem | cdleme0nex 40292* | Part of proof of Lemma E in [Crawley] p. 114, 4th line of 4th paragraph. Whenever (in their terminology) p ∨ q/0 (i.e. the sublattice from 0 to p ∨ q) contains precisely three atoms, any atom not under w must equal either p or q. (In case of 3 atoms, one of them must be u - see cdleme0a 40213- which is under w, so the only 2 left not under w are p and q themselves.) Note that by cvlsupr2 39344, our (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟) is a shorter way to express 𝑟 ≠ 𝑃 ∧ 𝑟 ≠ 𝑄 ∧ 𝑟 ≤ (𝑃 ∨ 𝑄). Thus, the negated existential condition states there are no atoms different from p or q that are also not under w. (Contributed by NM, 12-Nov-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟))) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) → (𝑅 = 𝑃 ∨ 𝑅 = 𝑄)) | ||
| Theorem | cdleme18a 40293 | Part of proof of Lemma E in [Crawley] p. 114, 2nd sentence of 4th paragraph. 𝐹, 𝐺 represent f(s), fs(q) respectively. We show ¬ fs(q) ≤ w. (Contributed by NM, 12-Oct-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) & ⊢ 𝐹 = ((𝑆 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ 𝑊))) & ⊢ 𝐺 = ((𝑃 ∨ 𝑄) ∧ (𝐹 ∨ ((𝑄 ∨ 𝑆) ∧ 𝑊))) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄))) → ¬ 𝐺 ≤ 𝑊) | ||
| Theorem | cdleme18b 40294 | Part of proof of Lemma E in [Crawley] p. 114, 2nd sentence of 4th paragraph. 𝐹, 𝐺 represent f(s), fs(q) respectively. We show ¬ fs(q) ≠ q. (Contributed by NM, 12-Oct-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) & ⊢ 𝐹 = ((𝑆 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ 𝑊))) & ⊢ 𝐺 = ((𝑃 ∨ 𝑄) ∧ (𝐹 ∨ ((𝑄 ∨ 𝑆) ∧ 𝑊))) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄))) → 𝐺 ≠ 𝑄) | ||
| Theorem | cdleme18c 40295* | Part of proof of Lemma E in [Crawley] p. 114, 2nd sentence of 4th paragraph. 𝐹, 𝐺 represent f(s), fs(q) respectively. We show ¬ fs(q) = p whenever p ∨ q has three atoms under it (implied by the negated existential condition). (Contributed by NM, 10-Nov-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) & ⊢ 𝐹 = ((𝑆 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ 𝑊))) & ⊢ 𝐺 = ((𝑃 ∨ 𝑄) ∧ (𝐹 ∨ ((𝑄 ∨ 𝑆) ∧ 𝑊))) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ ¬ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) → 𝐺 = 𝑃) | ||
| Theorem | cdleme22gb 40296 | Utility lemma for Lemma E in [Crawley] p. 115. (Contributed by NM, 5-Dec-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) & ⊢ 𝐹 = ((𝑆 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ 𝑊))) & ⊢ 𝐺 = ((𝑃 ∨ 𝑄) ∧ (𝐹 ∨ ((𝑅 ∨ 𝑆) ∧ 𝑊))) & ⊢ 𝐵 = (Base‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → 𝐺 ∈ 𝐵) | ||
| Theorem | cdleme18d 40297* | Part of proof of Lemma E in [Crawley] p. 114, 4th sentence of 4th paragraph. 𝐹, 𝐺, 𝐷, 𝐸 represent f(s), fs(r), f(t), ft(r) respectively. We show fs(r) = ft(r) for all possible r (which must equal p or q in the case of exactly 3 atoms in p ∨ q/0 , i.e., when ¬ ∃𝑟 ∈ 𝐴...). (Contributed by NM, 12-Nov-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) & ⊢ 𝐹 = ((𝑆 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑆) ∧ 𝑊))) & ⊢ 𝐺 = ((𝑃 ∨ 𝑄) ∧ (𝐹 ∨ ((𝑅 ∨ 𝑆) ∧ 𝑊))) & ⊢ 𝐷 = ((𝑇 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑇) ∧ 𝑊))) & ⊢ 𝐸 = ((𝑃 ∨ 𝑄) ∧ (𝐷 ∨ ((𝑅 ∨ 𝑇) ∧ 𝑊))) ⇒ ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ ((𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑇 ∈ 𝐴 ∧ ¬ 𝑇 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑇 ≤ (𝑃 ∨ 𝑄)) ∧ ¬ ∃𝑟 ∈ 𝐴 (¬ 𝑟 ≤ 𝑊 ∧ (𝑃 ∨ 𝑟) = (𝑄 ∨ 𝑟)))) → 𝐺 = 𝐸) | ||
| Theorem | cdlemesner 40298 | Part of proof of Lemma E in [Crawley] p. 113. Utility lemma. (Contributed by NM, 13-Nov-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄))) → 𝑆 ≠ 𝑅) | ||
| Theorem | cdlemedb 40299 | Part of proof of Lemma E in [Crawley] p. 113. Utility lemma. 𝐷 represents s2. (Contributed by NM, 20-Nov-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐷 = ((𝑅 ∨ 𝑆) ∧ 𝑊) & ⊢ 𝐵 = (Base‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴)) → 𝐷 ∈ 𝐵) | ||
| Theorem | cdlemeda 40300 | Part of proof of Lemma E in [Crawley] p. 113. Utility lemma. 𝐷 represents s2. (Contributed by NM, 13-Nov-2012.) |
| ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐷 = ((𝑅 ∨ 𝑆) ∧ 𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊) ∧ (𝑅 ∈ 𝐴 ∧ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ (𝑃 ∨ 𝑄))) → 𝐷 ∈ 𝐴) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |