![]() |
Metamath
Proof Explorer Theorem List (p. 403 of 484) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30767) |
![]() (30768-32290) |
![]() (32291-48346) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | cdlemg17jq 40201* | cdlemg17j 40196 with π and π swapped. (Contributed by NM, 13-May-2013.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((LTrnβπΎ)βπ) & β’ π = ((trLβπΎ)βπ) β β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (πΉ β π β§ πΊ β π β§ π β π) β§ ((πΊβπ) β π β§ (π βπΊ) β€ (π β¨ π) β§ Β¬ βπ β π΄ (Β¬ π β€ π β§ (π β¨ π) = (π β¨ π)))) β (πΊβ(πΉβπ)) = (πΉβ(πΊβπ))) | ||
Theorem | cdlemg17 40202* | Part of Lemma G of [Crawley] p. 117, lines 7 and 8. We show an argument whose value at πΊ equals itself. TODO: fix comment. (Contributed by NM, 12-May-2013.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((LTrnβπΎ)βπ) & β’ π = ((trLβπΎ)βπ) β β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (πΉ β π β§ πΊ β π β§ π β π) β§ ((πΊβπ) β π β§ (π βπΊ) β€ (π β¨ π) β§ Β¬ βπ β π΄ (Β¬ π β€ π β§ (π β¨ π) = (π β¨ π)))) β (πΊβ((π β¨ (πΉβ(πΊβπ))) β§ (π β¨ (πΉβ(πΊβπ))))) = ((π β¨ (πΉβ(πΊβπ))) β§ (π β¨ (πΉβ(πΊβπ))))) | ||
Theorem | cdlemg18a 40203 | Show two lines are different. TODO: fix comment. (Contributed by NM, 14-May-2013.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((LTrnβπΎ)βπ) & β’ π = ((trLβπΎ)βπ) β β’ (((πΎ β HL β§ π β π») β§ (π β π΄ β§ π β π΄ β§ πΉ β π) β§ (π β π β§ ((πΉβπ) β¨ (πΉβπ)) β (π β¨ π))) β (π β¨ (πΉβπ)) β (π β¨ (πΉβπ))) | ||
Theorem | cdlemg18b 40204 | Lemma for cdlemg18c 40205. TODO: fix comment. (Contributed by NM, 15-May-2013.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((LTrnβπΎ)βπ) & β’ π = ((trLβπΎ)βπ) & β’ π = ((π β¨ π) β§ π) β β’ (((πΎ β HL β§ π β π») β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π) β§ πΉ β π) β§ (π β π β§ (πΉβπ) β π β§ ((πΉβπ) β¨ (πΉβπ)) β (π β¨ π))) β Β¬ π β€ (π β¨ (πΉβπ))) | ||
Theorem | cdlemg18c 40205 | Show two lines intersect at an atom. TODO: fix comment. (Contributed by NM, 15-May-2013.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((LTrnβπΎ)βπ) & β’ π = ((trLβπΎ)βπ) & β’ π = ((π β¨ π) β§ π) β β’ (((πΎ β HL β§ π β π») β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π) β§ πΉ β π) β§ (π β π β§ (πΉβπ) β π β§ ((πΉβπ) β¨ (πΉβπ)) β (π β¨ π))) β ((π β¨ (πΉβπ)) β§ (π β¨ (πΉβπ))) β π΄) | ||
Theorem | cdlemg18d 40206* | Show two lines intersect at an atom. TODO: fix comment. (Contributed by NM, 15-May-2013.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((LTrnβπΎ)βπ) & β’ π = ((trLβπΎ)βπ) β β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((πΉ β π β§ πΊ β π) β§ π β π β§ (πΊβπ) β π) β§ ((π βπΊ) β€ (π β¨ π) β§ ((πΉβ(πΊβπ)) β¨ (πΉβ(πΊβπ))) β (π β¨ π) β§ Β¬ βπ β π΄ (Β¬ π β€ π β§ (π β¨ π) = (π β¨ π)))) β ((π β¨ (πΉβ(πΊβπ))) β§ (π β¨ (πΉβ(πΊβπ)))) β π΄) | ||
Theorem | cdlemg18 40207* | Show two lines intersect at an atom. TODO: fix comment. (Contributed by NM, 15-May-2013.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((LTrnβπΎ)βπ) & β’ π = ((trLβπΎ)βπ) β β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((πΉ β π β§ πΊ β π) β§ π β π β§ (πΊβπ) β π) β§ ((π βπΊ) β€ (π β¨ π) β§ ((πΉβ(πΊβπ)) β¨ (πΉβ(πΊβπ))) β (π β¨ π) β§ Β¬ βπ β π΄ (Β¬ π β€ π β§ (π β¨ π) = (π β¨ π)))) β ((π β¨ (πΉβ(πΊβπ))) β§ (π β¨ (πΉβ(πΊβπ)))) β€ π) | ||
Theorem | cdlemg19a 40208* | Show two lines intersect at an atom. TODO: fix comment. (Contributed by NM, 15-May-2013.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((LTrnβπΎ)βπ) & β’ π = ((trLβπΎ)βπ) β β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((πΉ β π β§ πΊ β π) β§ π β π β§ (πΊβπ) β π) β§ ((π βπΊ) β€ (π β¨ π) β§ ((πΉβ(πΊβπ)) β¨ (πΉβ(πΊβπ))) β (π β¨ π) β§ Β¬ βπ β π΄ (Β¬ π β€ π β§ (π β¨ π) = (π β¨ π)))) β ((π β¨ (πΉβ(πΊβπ))) β§ (π β¨ (πΉβ(πΊβπ)))) = ((π β¨ (πΉβ(πΊβπ))) β§ π)) | ||
Theorem | cdlemg19 40209* | Show two lines intersect at an atom. TODO: fix comment. (Contributed by NM, 15-May-2013.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((LTrnβπΎ)βπ) & β’ π = ((trLβπΎ)βπ) β β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((πΉ β π β§ πΊ β π) β§ π β π β§ (πΊβπ) β π) β§ ((π βπΊ) β€ (π β¨ π) β§ ((πΉβ(πΊβπ)) β¨ (πΉβ(πΊβπ))) β (π β¨ π) β§ Β¬ βπ β π΄ (Β¬ π β€ π β§ (π β¨ π) = (π β¨ π)))) β ((π β¨ (πΉβ(πΊβπ))) β§ π) = ((π β¨ (πΉβ(πΊβπ))) β§ π)) | ||
Theorem | cdlemg20 40210* | Show two lines intersect at an atom. TODO: fix comment. (Contributed by NM, 23-May-2013.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((LTrnβπΎ)βπ) & β’ π = ((trLβπΎ)βπ) β β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (πΉ β π β§ πΊ β π β§ π β π) β§ ((π βπΊ) β€ (π β¨ π) β§ ((πΉβ(πΊβπ)) β¨ (πΉβ(πΊβπ))) β (π β¨ π) β§ Β¬ βπ β π΄ (Β¬ π β€ π β§ (π β¨ π) = (π β¨ π)))) β ((π β¨ (πΉβ(πΊβπ))) β§ π) = ((π β¨ (πΉβ(πΊβπ))) β§ π)) | ||
Theorem | cdlemg21 40211* | Version of cdlemg19 with (π βπΉ) β€ (π β¨ π) instead of (π βπΊ) β€ (π β¨ π) as a condition. (Contributed by NM, 23-May-2013.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((LTrnβπΎ)βπ) & β’ π = ((trLβπΎ)βπ) β β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((πΉ β π β§ πΊ β π) β§ π β π β§ (πΉβπ) β π) β§ ((π βπΉ) β€ (π β¨ π) β§ ((πΉβ(πΊβπ)) β¨ (πΉβ(πΊβπ))) β (π β¨ π) β§ Β¬ βπ β π΄ (Β¬ π β€ π β§ (π β¨ π) = (π β¨ π)))) β ((π β¨ (πΉβ(πΊβπ))) β§ π) = ((π β¨ (πΉβ(πΊβπ))) β§ π)) | ||
Theorem | cdlemg22 40212* | cdlemg21 40211 with (πΉβπ) β π condition removed. (Contributed by NM, 23-May-2013.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((LTrnβπΎ)βπ) & β’ π = ((trLβπΎ)βπ) β β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (πΉ β π β§ πΊ β π β§ π β π) β§ ((π βπΉ) β€ (π β¨ π) β§ ((πΉβ(πΊβπ)) β¨ (πΉβ(πΊβπ))) β (π β¨ π) β§ Β¬ βπ β π΄ (Β¬ π β€ π β§ (π β¨ π) = (π β¨ π)))) β ((π β¨ (πΉβ(πΊβπ))) β§ π) = ((π β¨ (πΉβ(πΊβπ))) β§ π)) | ||
Theorem | cdlemg24 40213* | Combine cdlemg16z 40184 and cdlemg22 40212. TODO: Fix comment. (Contributed by NM, 24-May-2013.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((LTrnβπΎ)βπ) & β’ π = ((trLβπΎ)βπ) β β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (πΉ β π β§ πΊ β π β§ π β π) β§ (((πΉβ(πΊβπ)) β¨ (πΉβ(πΊβπ))) β (π β¨ π) β§ Β¬ βπ β π΄ (Β¬ π β€ π β§ (π β¨ π) = (π β¨ π)))) β ((π β¨ (πΉβ(πΊβπ))) β§ π) = ((π β¨ (πΉβ(πΊβπ))) β§ π)) | ||
Theorem | cdlemg37 40214* | Use cdlemg8 40156 to eliminate the β (π β¨ π) condition of cdlemg24 40213. (Contributed by NM, 31-May-2013.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((LTrnβπΎ)βπ) & β’ π = ((trLβπΎ)βπ) β β’ (((πΎ β HL β§ π β π») β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π) β§ πΉ β π) β§ (πΊ β π β§ π β π β§ Β¬ βπ β π΄ (Β¬ π β€ π β§ (π β¨ π) = (π β¨ π)))) β ((π β¨ (πΉβ(πΊβπ))) β§ π) = ((π β¨ (πΉβ(πΊβπ))) β§ π)) | ||
Theorem | cdlemg25zz 40215 | cdlemg16zz 40185 restated for easier studying. TODO: Discard this after everything is figured out. (Contributed by NM, 26-May-2013.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((LTrnβπΎ)βπ) & β’ π = ((trLβπΎ)βπ) β β’ (((πΎ β HL β§ π β π») β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π§ β π΄ β§ Β¬ π§ β€ π) β§ πΉ β π) β§ (πΊ β π β§ Β¬ (π βπΉ) β€ (π β¨ π§) β§ Β¬ (π βπΊ) β€ (π β¨ π§))) β ((π β¨ (πΉβ(πΊβπ))) β§ π) = ((π§ β¨ (πΉβ(πΊβπ§))) β§ π)) | ||
Theorem | cdlemg26zz 40216 | cdlemg16zz 40185 restated for easier studying. TODO: Discard this after everything is figured out. (Contributed by NM, 26-May-2013.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((LTrnβπΎ)βπ) & β’ π = ((trLβπΎ)βπ) β β’ (((πΎ β HL β§ π β π») β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π§ β π΄ β§ Β¬ π§ β€ π) β§ πΉ β π) β§ (πΊ β π β§ Β¬ (π βπΉ) β€ (π β¨ π§) β§ Β¬ (π βπΊ) β€ (π β¨ π§))) β ((π β¨ (πΉβ(πΊβπ))) β§ π) = ((π§ β¨ (πΉβ(πΊβπ§))) β§ π)) | ||
Theorem | cdlemg27a 40217 | For use with case when (π β¨ π£) β§ (π β¨ (π βπΉ)) or (π β¨ π£) β§ (π β¨ (π βπΉ)) is zero, letting us establish Β¬ π§ β€ π β§ π§ β€ (π β¨ π£) via 4atex 39601. TODO: Fix comment. (Contributed by NM, 28-May-2013.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((LTrnβπΎ)βπ) & β’ π = ((trLβπΎ)βπ) β β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π£ β π΄ β§ π£ β€ π)) β§ (π§ β π΄ β§ πΉ β π) β§ (π£ β (π βπΉ) β§ π§ β€ (π β¨ π£) β§ (πΉβπ) β π)) β Β¬ (π βπΉ) β€ (π β¨ π§)) | ||
Theorem | cdlemg28a 40218 | Part of proof of Lemma G of [Crawley] p. 116. First equality of the equation of line 14 on p. 117. (Contributed by NM, 29-May-2013.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((LTrnβπΎ)βπ) & β’ π = ((trLβπΎ)βπ) β β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π£ β π΄ β§ π£ β€ π)) β§ ((π§ β π΄ β§ Β¬ π§ β€ π) β§ πΉ β π β§ πΊ β π) β§ ((π£ β (π βπΉ) β§ π£ β (π βπΊ)) β§ π§ β€ (π β¨ π£) β§ ((πΉβπ) β π β§ (πΊβπ) β π))) β ((π β¨ (πΉβ(πΊβπ))) β§ π) = ((π§ β¨ (πΉβ(πΊβπ§))) β§ π)) | ||
Theorem | cdlemg31b0N 40219 | TODO: Fix comment. (Contributed by NM, 30-May-2013.) (New usage is discouraged.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((LTrnβπΎ)βπ) & β’ π = ((trLβπΎ)βπ) & β’ π = ((π β¨ π£) β§ (π β¨ (π βπΉ))) β β’ (((πΎ β HL β§ π β π» β§ πΉ β π) β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π£ β π΄ β§ π£ β€ π) β§ π£ β (π βπΉ) β§ (πΉβπ) β π)) β (π β π΄ β¨ π = (0.βπΎ))) | ||
Theorem | cdlemg31b0a 40220 | TODO: Fix comment. (Contributed by NM, 30-May-2013.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((LTrnβπΎ)βπ) & β’ π = ((trLβπΎ)βπ) & β’ π = ((π β¨ π£) β§ (π β¨ (π βπΉ))) β β’ (((πΎ β HL β§ π β π») β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π) β§ (π£ β π΄ β§ π£ β€ π)) β§ (πΉ β π β§ π£ β (π βπΉ))) β (π β π΄ β¨ π = (0.βπΎ))) | ||
Theorem | cdlemg27b 40221 | TODO: Fix comment. (Contributed by NM, 28-May-2013.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((LTrnβπΎ)βπ) & β’ π = ((trLβπΎ)βπ) & β’ π = ((π β¨ π£) β§ (π β¨ (π βπΉ))) β β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π§ β π΄ β§ (π£ β π΄ β§ π£ β€ π) β§ (πΉ β π β§ π§ β π)) β§ (π£ β (π βπΉ) β§ π§ β€ (π β¨ π£) β§ (πΉβπ) β π)) β Β¬ (π βπΉ) β€ (π β¨ π§)) | ||
Theorem | cdlemg31a 40222 | TODO: fix comment. (Contributed by NM, 29-May-2013.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((LTrnβπΎ)βπ) & β’ π = ((trLβπΎ)βπ) & β’ π = ((π β¨ π£) β§ (π β¨ (π βπΉ))) β β’ (((πΎ β HL β§ π β π») β§ (π β π΄ β§ π β π΄) β§ (π£ β π΄ β§ πΉ β π)) β π β€ (π β¨ π£)) | ||
Theorem | cdlemg31b 40223 | TODO: fix comment. (Contributed by NM, 29-May-2013.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((LTrnβπΎ)βπ) & β’ π = ((trLβπΎ)βπ) & β’ π = ((π β¨ π£) β§ (π β¨ (π βπΉ))) β β’ (((πΎ β HL β§ π β π») β§ (π β π΄ β§ π β π΄) β§ (π£ β π΄ β§ πΉ β π)) β π β€ (π β¨ (π βπΉ))) | ||
Theorem | cdlemg31c 40224 | Show that when π is an atom, it is not under π. TODO: Is there a shorter direct proof? TODO: should we eliminate (πΉβπ) β π here? (Contributed by NM, 29-May-2013.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((LTrnβπΎ)βπ) & β’ π = ((trLβπΎ)βπ) & β’ π = ((π β¨ π£) β§ (π β¨ (π βπΉ))) β β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π£ β π΄ β§ π£ β€ π) β§ πΉ β π) β§ (π£ β (π βπΉ) β§ (πΉβπ) β π β§ π β π΄)) β Β¬ π β€ π) | ||
Theorem | cdlemg31d 40225 | Eliminate (πΉβπ) β π from cdlemg31c 40224. TODO: Prove directly. TODO: do we need to eliminate (πΉβπ) β π? It might be better to do this all at once at the end. See also cdlemg29 40230 versus cdlemg28 40229. (Contributed by NM, 29-May-2013.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((LTrnβπΎ)βπ) & β’ π = ((trLβπΎ)βπ) & β’ π = ((π β¨ π£) β§ (π β¨ (π βπΉ))) β β’ (((πΎ β HL β§ π β π») β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π) β§ (π£ β π΄ β§ π£ β€ π)) β§ (πΉ β π β§ π£ β (π βπΉ) β§ π β π΄)) β Β¬ π β€ π) | ||
Theorem | cdlemg33b0 40226* | TODO: Fix comment. (Contributed by NM, 30-May-2013.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((LTrnβπΎ)βπ) & β’ π = ((trLβπΎ)βπ) & β’ π = ((π β¨ π£) β§ (π β¨ (π βπΉ))) β β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π£ β π΄ β§ π£ β€ π) β§ π β π΄ β§ πΉ β π) β§ (π β π β§ π£ β (π βπΉ) β§ βπ β π΄ (Β¬ π β€ π β§ (π β¨ π) = (π β¨ π)))) β βπ§ β π΄ (Β¬ π§ β€ π β§ (π§ β π β§ π§ β€ (π β¨ π£)))) | ||
Theorem | cdlemg33c0 40227* | TODO: Fix comment. (Contributed by NM, 30-May-2013.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((LTrnβπΎ)βπ) & β’ π = ((trLβπΎ)βπ) & β’ π = ((π β¨ π£) β§ (π β¨ (π βπΉ))) β β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π£ β π΄ β§ π£ β€ π) β§ πΉ β π) β§ (π β π β§ π£ β (π βπΉ) β§ βπ β π΄ (Β¬ π β€ π β§ (π β¨ π) = (π β¨ π)))) β βπ§ β π΄ (Β¬ π§ β€ π β§ π§ β€ (π β¨ π£))) | ||
Theorem | cdlemg28b 40228* | Part of proof of Lemma G of [Crawley] p. 116. Second equality of the equation of line 14 on p. 117. Note that Β¬ π§ β€ π is redundant here (but simplifies cdlemg28 40229.) (Contributed by NM, 29-May-2013.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((LTrnβπΎ)βπ) & β’ π = ((trLβπΎ)βπ) & β’ π = ((π β¨ π£) β§ (π β¨ (π βπΉ))) & β’ π = ((π β¨ π£) β§ (π β¨ (π βπΊ))) β β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π£ β π΄ β§ π£ β€ π) β§ (π§ β π΄ β§ Β¬ π§ β€ π) β§ (πΉ β π β§ πΊ β π)) β§ ((π§ β π β§ π§ β π β§ π§ β€ (π β¨ π£)) β§ (π£ β (π βπΉ) β§ π£ β (π βπΊ)) β§ ((πΉβπ) β π β§ (πΊβπ) β π))) β ((π β¨ (πΉβ(πΊβπ))) β§ π) = ((π§ β¨ (πΉβ(πΊβπ§))) β§ π)) | ||
Theorem | cdlemg28 40229* | Part of proof of Lemma G of [Crawley] p. 116. Chain the equalities of line 14 on p. 117. TODO: rearrange hypotheses in the order of cdlemg29 40230 (and maybe leading up to this too)? (Contributed by NM, 29-May-2013.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((LTrnβπΎ)βπ) & β’ π = ((trLβπΎ)βπ) & β’ π = ((π β¨ π£) β§ (π β¨ (π βπΉ))) & β’ π = ((π β¨ π£) β§ (π β¨ (π βπΊ))) β β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π£ β π΄ β§ π£ β€ π) β§ (π§ β π΄ β§ Β¬ π§ β€ π) β§ (πΉ β π β§ πΊ β π)) β§ ((π§ β π β§ π§ β π β§ π§ β€ (π β¨ π£)) β§ (π£ β (π βπΉ) β§ π£ β (π βπΊ)) β§ ((πΉβπ) β π β§ (πΊβπ) β π))) β ((π β¨ (πΉβ(πΊβπ))) β§ π) = ((π β¨ (πΉβ(πΊβπ))) β§ π)) | ||
Theorem | cdlemg29 40230* | Eliminate (πΉβπ) β π and (πΊβπ) β π from cdlemg28 40229. TODO: would it be better to do this later? (Contributed by NM, 29-May-2013.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((LTrnβπΎ)βπ) & β’ π = ((trLβπΎ)βπ) & β’ π = ((π β¨ π£) β§ (π β¨ (π βπΉ))) & β’ π = ((π β¨ π£) β§ (π β¨ (π βπΊ))) β β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π£ β π΄ β§ π£ β€ π) β§ (π§ β π΄ β§ Β¬ π§ β€ π) β§ (πΉ β π β§ πΊ β π)) β§ ((π§ β π β§ π§ β π) β§ π§ β€ (π β¨ π£) β§ (π£ β (π βπΉ) β§ π£ β (π βπΊ)))) β ((π β¨ (πΉβ(πΊβπ))) β§ π) = ((π β¨ (πΉβ(πΊβπ))) β§ π)) | ||
Theorem | cdlemg33a 40231* | TODO: Fix comment. (Contributed by NM, 29-May-2013.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((LTrnβπΎ)βπ) & β’ π = ((trLβπΎ)βπ) & β’ π = ((π β¨ π£) β§ (π β¨ (π βπΉ))) & β’ π = ((π β¨ π£) β§ (π β¨ (π βπΊ))) β β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π£ β π΄ β§ π£ β€ π) β§ (π β π΄ β§ π β π΄) β§ (πΉ β π β§ πΊ β π)) β§ ((π β π β§ π β π) β§ π£ β (π βπΉ) β§ βπ β π΄ (Β¬ π β€ π β§ (π β¨ π) = (π β¨ π)))) β βπ§ β π΄ (Β¬ π§ β€ π β§ (π§ β π β§ π§ β π β§ π§ β€ (π β¨ π£)))) | ||
Theorem | cdlemg33b 40232* | TODO: Fix comment. (Contributed by NM, 30-May-2013.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((LTrnβπΎ)βπ) & β’ π = ((trLβπΎ)βπ) & β’ π = ((π β¨ π£) β§ (π β¨ (π βπΉ))) & β’ π = ((π β¨ π£) β§ (π β¨ (π βπΊ))) β β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π£ β π΄ β§ π£ β€ π) β§ (π β π΄ β§ π β π΄) β§ (πΉ β π β§ πΊ β π)) β§ (π β π β§ π£ β (π βπΉ) β§ βπ β π΄ (Β¬ π β€ π β§ (π β¨ π) = (π β¨ π)))) β βπ§ β π΄ (Β¬ π§ β€ π β§ (π§ β π β§ π§ β π β§ π§ β€ (π β¨ π£)))) | ||
Theorem | cdlemg33c 40233* | TODO: Fix comment. (Contributed by NM, 30-May-2013.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((LTrnβπΎ)βπ) & β’ π = ((trLβπΎ)βπ) & β’ π = ((π β¨ π£) β§ (π β¨ (π βπΉ))) & β’ π = ((π β¨ π£) β§ (π β¨ (π βπΊ))) β β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π£ β π΄ β§ π£ β€ π) β§ (π β π΄ β§ π = (0.βπΎ)) β§ (πΉ β π β§ πΊ β π)) β§ (π β π β§ π£ β (π βπΉ) β§ βπ β π΄ (Β¬ π β€ π β§ (π β¨ π) = (π β¨ π)))) β βπ§ β π΄ (Β¬ π§ β€ π β§ (π§ β π β§ π§ β π β§ π§ β€ (π β¨ π£)))) | ||
Theorem | cdlemg33d 40234* | TODO: Fix comment. (Contributed by NM, 30-May-2013.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((LTrnβπΎ)βπ) & β’ π = ((trLβπΎ)βπ) & β’ π = ((π β¨ π£) β§ (π β¨ (π βπΉ))) & β’ π = ((π β¨ π£) β§ (π β¨ (π βπΊ))) β β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π£ β π΄ β§ π£ β€ π) β§ (π = (0.βπΎ) β§ π β π΄) β§ (πΉ β π β§ πΊ β π)) β§ (π β π β§ π£ β (π βπΊ) β§ βπ β π΄ (Β¬ π β€ π β§ (π β¨ π) = (π β¨ π)))) β βπ§ β π΄ (Β¬ π§ β€ π β§ (π§ β π β§ π§ β π β§ π§ β€ (π β¨ π£)))) | ||
Theorem | cdlemg33e 40235* | TODO: Fix comment. (Contributed by NM, 30-May-2013.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((LTrnβπΎ)βπ) & β’ π = ((trLβπΎ)βπ) & β’ π = ((π β¨ π£) β§ (π β¨ (π βπΉ))) & β’ π = ((π β¨ π£) β§ (π β¨ (π βπΊ))) β β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π£ β π΄ β§ π£ β€ π) β§ (π = (0.βπΎ) β§ π = (0.βπΎ)) β§ (πΉ β π β§ πΊ β π)) β§ (π β π β§ π£ β (π βπΉ) β§ βπ β π΄ (Β¬ π β€ π β§ (π β¨ π) = (π β¨ π)))) β βπ§ β π΄ (Β¬ π§ β€ π β§ (π§ β π β§ π§ β π β§ π§ β€ (π β¨ π£)))) | ||
Theorem | cdlemg33 40236* | Combine cdlemg33b 40232, cdlemg33c 40233, cdlemg33d 40234, cdlemg33e 40235. TODO: Fix comment. (Contributed by NM, 30-May-2013.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((LTrnβπΎ)βπ) & β’ π = ((trLβπΎ)βπ) & β’ π = ((π β¨ π£) β§ (π β¨ (π βπΉ))) & β’ π = ((π β¨ π£) β§ (π β¨ (π βπΊ))) β β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π£ β π΄ β§ π£ β€ π) β§ (πΉ β π β§ πΊ β π) β§ π β π) β§ (π£ β (π βπΉ) β§ π£ β (π βπΊ) β§ βπ β π΄ (Β¬ π β€ π β§ (π β¨ π) = (π β¨ π)))) β βπ§ β π΄ (Β¬ π§ β€ π β§ (π§ β π β§ π§ β π β§ π§ β€ (π β¨ π£)))) | ||
Theorem | cdlemg34 40237* | Use cdlemg33 to eliminate π§ from cdlemg29 40230. TODO: Fix comment. (Contributed by NM, 31-May-2013.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((LTrnβπΎ)βπ) & β’ π = ((trLβπΎ)βπ) & β’ π = ((π β¨ π£) β§ (π β¨ (π βπΉ))) & β’ π = ((π β¨ π£) β§ (π β¨ (π βπΊ))) β β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((π£ β π΄ β§ π£ β€ π) β§ (πΉ β π β§ πΊ β π) β§ π β π) β§ (π£ β (π βπΉ) β§ π£ β (π βπΊ) β§ βπ β π΄ (Β¬ π β€ π β§ (π β¨ π) = (π β¨ π)))) β ((π β¨ (πΉβ(πΊβπ))) β§ π) = ((π β¨ (πΉβ(πΊβπ))) β§ π)) | ||
Theorem | cdlemg35 40238* | TODO: Fix comment. TODO: should we have a more general version of hlsupr 38911 to avoid the β conditions? (Contributed by NM, 31-May-2013.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((LTrnβπΎ)βπ) & β’ π = ((trLβπΎ)βπ) β β’ (((πΎ β HL β§ π β π») β§ ((π β π΄ β§ Β¬ π β€ π) β§ πΉ β π β§ πΊ β π) β§ ((πΉβπ) β π β§ (πΊβπ) β π β§ (π βπΉ) β (π βπΊ))) β βπ£ β π΄ (π£ β€ π β§ (π£ β (π βπΉ) β§ π£ β (π βπΊ)))) | ||
Theorem | cdlemg36 40239* | Use cdlemg35 to eliminate π£ from cdlemg34 40237. TODO: Fix comment. (Contributed by NM, 31-May-2013.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((LTrnβπΎ)βπ) & β’ π = ((trLβπΎ)βπ) β β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (πΉ β π β§ πΊ β π β§ π β π) β§ (((πΉβπ) β π β§ (πΊβπ) β π) β§ (π βπΉ) β (π βπΊ) β§ βπ β π΄ (Β¬ π β€ π β§ (π β¨ π) = (π β¨ π)))) β ((π β¨ (πΉβ(πΊβπ))) β§ π) = ((π β¨ (πΉβ(πΊβπ))) β§ π)) | ||
Theorem | cdlemg38 40240 | Use cdlemg37 40214 to eliminate βπ β π΄ from cdlemg36 40239. TODO: Fix comment. (Contributed by NM, 31-May-2013.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((LTrnβπΎ)βπ) & β’ π = ((trLβπΎ)βπ) β β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (πΉ β π β§ πΊ β π β§ π β π) β§ (((πΉβπ) β π β§ (πΊβπ) β π) β§ (π βπΉ) β (π βπΊ))) β ((π β¨ (πΉβ(πΊβπ))) β§ π) = ((π β¨ (πΉβ(πΊβπ))) β§ π)) | ||
Theorem | cdlemg39 40241 | Eliminate β conditions from cdlemg38 40240. TODO: Would this better be done at cdlemg35 40238? TODO: Fix comment. (Contributed by NM, 31-May-2013.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((LTrnβπΎ)βπ) & β’ π = ((trLβπΎ)βπ) β β’ (((πΎ β HL β§ π β π») β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (πΉ β π β§ πΊ β π β§ π β π)) β ((π β¨ (πΉβ(πΊβπ))) β§ π) = ((π β¨ (πΉβ(πΊβπ))) β§ π)) | ||
Theorem | cdlemg40 40242 | Eliminate π β π conditions from cdlemg39 40241. TODO: Fix comment. (Contributed by NM, 31-May-2013.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((LTrnβπΎ)βπ) β β’ (((πΎ β HL β§ π β π») β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (πΉ β π β§ πΊ β π)) β ((π β¨ (πΉβ(πΊβπ))) β§ π) = ((π β¨ (πΉβ(πΊβπ))) β§ π)) | ||
Theorem | cdlemg41 40243 | Convert cdlemg40 40242 to function composition. TODO: Fix comment. (Contributed by NM, 31-May-2013.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ β§ = (meetβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((LTrnβπΎ)βπ) β β’ (((πΎ β HL β§ π β π») β§ ((π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (πΉ β π β§ πΊ β π)) β ((π β¨ ((πΉ β πΊ)βπ)) β§ π) = ((π β¨ ((πΉ β πΊ)βπ)) β§ π)) | ||
Theorem | ltrnco 40244 | The composition of two translations is a translation. Part of proof of Lemma G of [Crawley] p. 116, line 15 on p. 117. (Contributed by NM, 31-May-2013.) |
β’ π» = (LHypβπΎ) & β’ π = ((LTrnβπΎ)βπ) β β’ (((πΎ β HL β§ π β π») β§ πΉ β π β§ πΊ β π) β (πΉ β πΊ) β π) | ||
Theorem | trlcocnv 40245 | Swap the arguments of the trace of a composition with converse. (Contributed by NM, 1-Jul-2013.) |
β’ π» = (LHypβπΎ) & β’ π = ((LTrnβπΎ)βπ) & β’ π = ((trLβπΎ)βπ) β β’ (((πΎ β HL β§ π β π») β§ πΉ β π β§ πΊ β π) β (π β(πΉ β β‘πΊ)) = (π β(πΊ β β‘πΉ))) | ||
Theorem | trlcoabs 40246 | Absorption into a composition by joining with trace. (Contributed by NM, 22-Jul-2013.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((LTrnβπΎ)βπ) & β’ π = ((trLβπΎ)βπ) β β’ (((πΎ β HL β§ π β π») β§ (πΉ β π β§ πΊ β π) β§ (π β π΄ β§ Β¬ π β€ π)) β (((πΉ β πΊ)βπ) β¨ (π βπΉ)) = ((πΊβπ) β¨ (π βπΉ))) | ||
Theorem | trlcoabs2N 40247 | Absorption of the trace of a composition. (Contributed by NM, 29-Jul-2013.) (New usage is discouraged.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((LTrnβπΎ)βπ) & β’ π = ((trLβπΎ)βπ) β β’ (((πΎ β HL β§ π β π») β§ (πΉ β π β§ πΊ β π) β§ (π β π΄ β§ Β¬ π β€ π)) β ((πΉβπ) β¨ (π β(πΊ β β‘πΉ))) = ((πΉβπ) β¨ (πΊβπ))) | ||
Theorem | trlcoat 40248 | The trace of a composition of two translations is an atom if their traces are different. (Contributed by NM, 15-Jun-2013.) |
β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((LTrnβπΎ)βπ) & β’ π = ((trLβπΎ)βπ) β β’ (((πΎ β HL β§ π β π») β§ (πΉ β π β§ πΊ β π) β§ (π βπΉ) β (π βπΊ)) β (π β(πΉ β πΊ)) β π΄) | ||
Theorem | trlcocnvat 40249 | Commonly used special case of trlcoat 40248. (Contributed by NM, 1-Jul-2013.) |
β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((LTrnβπΎ)βπ) & β’ π = ((trLβπΎ)βπ) β β’ (((πΎ β HL β§ π β π») β§ (πΉ β π β§ πΊ β π) β§ (π βπΉ) β (π βπΊ)) β (π β(πΉ β β‘πΊ)) β π΄) | ||
Theorem | trlconid 40250 | The composition of two different translations is not the identity translation. (Contributed by NM, 22-Jul-2013.) |
β’ π΅ = (BaseβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((LTrnβπΎ)βπ) & β’ π = ((trLβπΎ)βπ) β β’ (((πΎ β HL β§ π β π») β§ (πΉ β π β§ πΊ β π) β§ (π βπΉ) β (π βπΊ)) β (πΉ β πΊ) β ( I βΎ π΅)) | ||
Theorem | trlcolem 40251 | Lemma for trlco 40252. (Contributed by NM, 1-Jun-2013.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((LTrnβπΎ)βπ) & β’ π = ((trLβπΎ)βπ) & β’ β§ = (meetβπΎ) & β’ π΄ = (AtomsβπΎ) β β’ (((πΎ β HL β§ π β π») β§ (πΉ β π β§ πΊ β π) β§ (π β π΄ β§ Β¬ π β€ π)) β (π β(πΉ β πΊ)) β€ ((π βπΉ) β¨ (π βπΊ))) | ||
Theorem | trlco 40252 | The trace of a composition of translations is less than or equal to the join of their traces. Part of proof of Lemma G of [Crawley] p. 116, second paragraph on p. 117. (Contributed by NM, 2-Jun-2013.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((LTrnβπΎ)βπ) & β’ π = ((trLβπΎ)βπ) β β’ (((πΎ β HL β§ π β π») β§ πΉ β π β§ πΊ β π) β (π β(πΉ β πΊ)) β€ ((π βπΉ) β¨ (π βπΊ))) | ||
Theorem | trlcone 40253 | If two translations have different traces, the trace of their composition is also different. (Contributed by NM, 14-Jun-2013.) |
β’ π΅ = (BaseβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((LTrnβπΎ)βπ) & β’ π = ((trLβπΎ)βπ) β β’ (((πΎ β HL β§ π β π») β§ (πΉ β π β§ πΊ β π) β§ ((π βπΉ) β (π βπΊ) β§ πΊ β ( I βΎ π΅))) β (π βπΉ) β (π β(πΉ β πΊ))) | ||
Theorem | cdlemg42 40254 | Part of proof of Lemma G of [Crawley] p. 116, first line of third paragraph on p. 117. (Contributed by NM, 3-Jun-2013.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((LTrnβπΎ)βπ) & β’ π = ((trLβπΎ)βπ) β β’ (((πΎ β HL β§ π β π») β§ (πΉ β π β§ πΊ β π) β§ ((π β π΄ β§ Β¬ π β€ π) β§ (πΊβπ) β π β§ (π βπΉ) β (π βπΊ))) β Β¬ (πΊβπ) β€ (π β¨ (πΉβπ))) | ||
Theorem | cdlemg43 40255 | Part of proof of Lemma G of [Crawley] p. 116, third line of third paragraph on p. 117. (Contributed by NM, 3-Jun-2013.) |
β’ β€ = (leβπΎ) & β’ β¨ = (joinβπΎ) & β’ π΄ = (AtomsβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((LTrnβπΎ)βπ) & β’ π = ((trLβπΎ)βπ) & β’ β§ = (meetβπΎ) β β’ (((πΎ β HL β§ π β π») β§ (πΉ β π β§ πΊ β π) β§ ((π β π΄ β§ Β¬ π β€ π) β§ (πΊβπ) β π β§ (π βπΉ) β (π βπΊ))) β (πΉβ(πΊβπ)) = (((πΊβπ) β¨ (π βπΉ)) β§ ((πΉβπ) β¨ (π βπΊ)))) | ||
Theorem | cdlemg44a 40256 | Part of proof of Lemma G of [Crawley] p. 116, fourth line of third paragraph on p. 117: "so fg(p) = gf(p)." (Contributed by NM, 3-Jun-2013.) |
β’ π» = (LHypβπΎ) & β’ π = ((LTrnβπΎ)βπ) & β’ π = ((trLβπΎ)βπ) & β’ β€ = (leβπΎ) & β’ π΄ = (AtomsβπΎ) β β’ (((πΎ β HL β§ π β π») β§ (πΉ β π β§ πΊ β π β§ (π β π΄ β§ Β¬ π β€ π)) β§ ((πΉβπ) β π β§ (πΊβπ) β π β§ (π βπΉ) β (π βπΊ))) β (πΉβ(πΊβπ)) = (πΊβ(πΉβπ))) | ||
Theorem | cdlemg44b 40257 | Eliminate (πΉβπ) β π, (πΊβπ) β π from cdlemg44a 40256. (Contributed by NM, 3-Jun-2013.) |
β’ π» = (LHypβπΎ) & β’ π = ((LTrnβπΎ)βπ) & β’ π = ((trLβπΎ)βπ) & β’ β€ = (leβπΎ) & β’ π΄ = (AtomsβπΎ) β β’ (((πΎ β HL β§ π β π») β§ (πΉ β π β§ πΊ β π β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π βπΉ) β (π βπΊ)) β (πΉβ(πΊβπ)) = (πΊβ(πΉβπ))) | ||
Theorem | cdlemg44 40258 | Part of proof of Lemma G of [Crawley] p. 116, fifth line of third paragraph on p. 117: "and hence fg = gf." (Contributed by NM, 3-Jun-2013.) |
β’ π» = (LHypβπΎ) & β’ π = ((LTrnβπΎ)βπ) & β’ π = ((trLβπΎ)βπ) β β’ (((πΎ β HL β§ π β π») β§ (πΉ β π β§ πΊ β π) β§ (π βπΉ) β (π βπΊ)) β (πΉ β πΊ) = (πΊ β πΉ)) | ||
Theorem | cdlemg47a 40259 | TODO: fix comment. TODO: Use this above in place of (πΉβπ) = π antecedents? (Contributed by NM, 5-Jun-2013.) |
β’ π΅ = (BaseβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((LTrnβπΎ)βπ) β β’ (((πΎ β HL β§ π β π») β§ (πΉ β π β§ πΊ β π) β§ πΉ = ( I βΎ π΅)) β (πΉ β πΊ) = (πΊ β πΉ)) | ||
Theorem | cdlemg46 40260* | Part of proof of Lemma G of [Crawley] p. 116, seventh line of third paragraph on p. 117: "hf and f have different traces." (Contributed by NM, 5-Jun-2013.) |
β’ π΅ = (BaseβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((LTrnβπΎ)βπ) & β’ π = ((trLβπΎ)βπ) β β’ (((πΎ β HL β§ π β π») β§ (πΉ β π β§ β β π) β§ (πΉ β ( I βΎ π΅) β§ β β ( I βΎ π΅) β§ (π ββ) β (π βπΉ))) β (π β(β β πΉ)) β (π βπΉ)) | ||
Theorem | cdlemg47 40261* | Part of proof of Lemma G of [Crawley] p. 116, ninth line of third paragraph on p. 117: "we conclude that gf = fg." (Contributed by NM, 5-Jun-2013.) |
β’ π΅ = (BaseβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((LTrnβπΎ)βπ) & β’ π = ((trLβπΎ)βπ) β β’ ((((πΎ β HL β§ π β π») β§ πΉ β π β§ πΊ β π) β§ (β β π β§ (π βπΉ) = (π βπΊ)) β§ (πΉ β ( I βΎ π΅) β§ β β ( I βΎ π΅) β§ (π ββ) β (π βπΉ))) β (πΉ β πΊ) = (πΊ β πΉ)) | ||
Theorem | cdlemg48 40262 | Eliminate β from cdlemg47 40261. (Contributed by NM, 5-Jun-2013.) |
β’ π΅ = (BaseβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((LTrnβπΎ)βπ) & β’ π = ((trLβπΎ)βπ) β β’ (((πΎ β HL β§ π β π») β§ (πΉ β π β§ πΊ β π) β§ (πΉ β ( I βΎ π΅) β§ (π βπΉ) = (π βπΊ))) β (πΉ β πΊ) = (πΊ β πΉ)) | ||
Theorem | ltrncom 40263 | Composition is commutative for translations. Part of proof of Lemma G of [Crawley] p. 116. (Contributed by NM, 5-Jun-2013.) |
β’ π» = (LHypβπΎ) & β’ π = ((LTrnβπΎ)βπ) β β’ (((πΎ β HL β§ π β π») β§ πΉ β π β§ πΊ β π) β (πΉ β πΊ) = (πΊ β πΉ)) | ||
Theorem | ltrnco4 40264 | Rearrange a composition of 4 translations, analogous to an4 654. (Contributed by NM, 10-Jun-2013.) |
β’ π» = (LHypβπΎ) & β’ π = ((LTrnβπΎ)βπ) β β’ (((πΎ β HL β§ π β π») β§ πΈ β π β§ πΉ β π) β ((π· β πΈ) β (πΉ β πΊ)) = ((π· β πΉ) β (πΈ β πΊ))) | ||
Theorem | trljco 40265 | Trace joined with trace of composition. (Contributed by NM, 15-Jun-2013.) |
β’ β¨ = (joinβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((LTrnβπΎ)βπ) & β’ π = ((trLβπΎ)βπ) β β’ (((πΎ β HL β§ π β π») β§ πΉ β π β§ πΊ β π) β ((π βπΉ) β¨ (π β(πΉ β πΊ))) = ((π βπΉ) β¨ (π βπΊ))) | ||
Theorem | trljco2 40266 | Trace joined with trace of composition. (Contributed by NM, 16-Jun-2013.) |
β’ β¨ = (joinβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((LTrnβπΎ)βπ) & β’ π = ((trLβπΎ)βπ) β β’ (((πΎ β HL β§ π β π») β§ πΉ β π β§ πΊ β π) β ((π βπΉ) β¨ (π β(πΉ β πΊ))) = ((π βπΊ) β¨ (π β(πΉ β πΊ)))) | ||
Syntax | ctgrp 40267 | Extend class notation with translation group. |
class TGrp | ||
Definition | df-tgrp 40268* | Define the class of all translation groups. π is normally a member of HL. Each base set is the set of all lattice translations with respect to a hyperplane π€, and the operation is function composition. Similar to definition of G in [Crawley] p. 116, third paragraph (which defines this for geomodular lattices). (Contributed by NM, 5-Jun-2013.) |
β’ TGrp = (π β V β¦ (π€ β (LHypβπ) β¦ {β¨(Baseβndx), ((LTrnβπ)βπ€)β©, β¨(+gβndx), (π β ((LTrnβπ)βπ€), π β ((LTrnβπ)βπ€) β¦ (π β π))β©})) | ||
Theorem | tgrpfset 40269* | The translation group maps for a lattice πΎ. (Contributed by NM, 5-Jun-2013.) |
β’ π» = (LHypβπΎ) β β’ (πΎ β π β (TGrpβπΎ) = (π€ β π» β¦ {β¨(Baseβndx), ((LTrnβπΎ)βπ€)β©, β¨(+gβndx), (π β ((LTrnβπΎ)βπ€), π β ((LTrnβπΎ)βπ€) β¦ (π β π))β©})) | ||
Theorem | tgrpset 40270* | The translation group for a fiducial co-atom π. (Contributed by NM, 5-Jun-2013.) |
β’ π» = (LHypβπΎ) & β’ π = ((LTrnβπΎ)βπ) & β’ πΊ = ((TGrpβπΎ)βπ) β β’ ((πΎ β π β§ π β π») β πΊ = {β¨(Baseβndx), πβ©, β¨(+gβndx), (π β π, π β π β¦ (π β π))β©}) | ||
Theorem | tgrpbase 40271 | The base set of the translation group is the set of all translations (for a fiducial co-atom π). (Contributed by NM, 5-Jun-2013.) |
β’ π» = (LHypβπΎ) & β’ π = ((LTrnβπΎ)βπ) & β’ πΊ = ((TGrpβπΎ)βπ) & β’ πΆ = (BaseβπΊ) β β’ ((πΎ β π β§ π β π») β πΆ = π) | ||
Theorem | tgrpopr 40272* | The group operation of the translation group is function composition. (Contributed by NM, 5-Jun-2013.) |
β’ π» = (LHypβπΎ) & β’ π = ((LTrnβπΎ)βπ) & β’ πΊ = ((TGrpβπΎ)βπ) & β’ + = (+gβπΊ) β β’ ((πΎ β π β§ π β π») β + = (π β π, π β π β¦ (π β π))) | ||
Theorem | tgrpov 40273 | The group operation value of the translation group is the composition of translations. (Contributed by NM, 5-Jun-2013.) |
β’ π» = (LHypβπΎ) & β’ π = ((LTrnβπΎ)βπ) & β’ πΊ = ((TGrpβπΎ)βπ) & β’ + = (+gβπΊ) β β’ ((πΎ β π β§ π β π» β§ (π β π β§ π β π)) β (π + π) = (π β π)) | ||
Theorem | tgrpgrplem 40274 | Lemma for tgrpgrp 40275. (Contributed by NM, 6-Jun-2013.) |
β’ π» = (LHypβπΎ) & β’ π = ((LTrnβπΎ)βπ) & β’ πΊ = ((TGrpβπΎ)βπ) & β’ + = (+gβπΊ) & β’ π΅ = (BaseβπΎ) β β’ ((πΎ β HL β§ π β π») β πΊ β Grp) | ||
Theorem | tgrpgrp 40275 | The translation group is a group. (Contributed by NM, 6-Jun-2013.) |
β’ π» = (LHypβπΎ) & β’ πΊ = ((TGrpβπΎ)βπ) β β’ ((πΎ β HL β§ π β π») β πΊ β Grp) | ||
Theorem | tgrpabl 40276 | The translation group is an Abelian group. Lemma G of [Crawley] p. 116. (Contributed by NM, 6-Jun-2013.) |
β’ π» = (LHypβπΎ) & β’ πΊ = ((TGrpβπΎ)βπ) β β’ ((πΎ β HL β§ π β π») β πΊ β Abel) | ||
Syntax | ctendo 40277 | Extend class notation with translation group endomorphisms. |
class TEndo | ||
Syntax | cedring 40278 | Extend class notation with division ring on trace-preserving endomorphisms. |
class EDRing | ||
Syntax | cedring-rN 40279 | Extend class notation with division ring on trace-preserving endomorphisms, with multiplication reversed. TODO: remove EDRingR theorems if not used. |
class EDRingR | ||
Definition | df-tendo 40280* | Define trace-preserving endomorphisms on the set of translations. (Contributed by NM, 8-Jun-2013.) |
β’ TEndo = (π β V β¦ (π€ β (LHypβπ) β¦ {π β£ (π:((LTrnβπ)βπ€)βΆ((LTrnβπ)βπ€) β§ βπ₯ β ((LTrnβπ)βπ€)βπ¦ β ((LTrnβπ)βπ€)(πβ(π₯ β π¦)) = ((πβπ₯) β (πβπ¦)) β§ βπ₯ β ((LTrnβπ)βπ€)(((trLβπ)βπ€)β(πβπ₯))(leβπ)(((trLβπ)βπ€)βπ₯))})) | ||
Definition | df-edring-rN 40281* | Define division ring on trace-preserving endomorphisms. Definition of E of [Crawley] p. 117, 4th line from bottom. (Contributed by NM, 8-Jun-2013.) |
β’ EDRingR = (π β V β¦ (π€ β (LHypβπ) β¦ {β¨(Baseβndx), ((TEndoβπ)βπ€)β©, β¨(+gβndx), (π β ((TEndoβπ)βπ€), π‘ β ((TEndoβπ)βπ€) β¦ (π β ((LTrnβπ)βπ€) β¦ ((π βπ) β (π‘βπ))))β©, β¨(.rβndx), (π β ((TEndoβπ)βπ€), π‘ β ((TEndoβπ)βπ€) β¦ (π‘ β π ))β©})) | ||
Definition | df-edring 40282* | Define division ring on trace-preserving endomorphisms. The multiplication operation is reversed composition, per the definition of E of [Crawley] p. 117, 4th line from bottom. (Contributed by NM, 8-Jun-2013.) |
β’ EDRing = (π β V β¦ (π€ β (LHypβπ) β¦ {β¨(Baseβndx), ((TEndoβπ)βπ€)β©, β¨(+gβndx), (π β ((TEndoβπ)βπ€), π‘ β ((TEndoβπ)βπ€) β¦ (π β ((LTrnβπ)βπ€) β¦ ((π βπ) β (π‘βπ))))β©, β¨(.rβndx), (π β ((TEndoβπ)βπ€), π‘ β ((TEndoβπ)βπ€) β¦ (π β π‘))β©})) | ||
Theorem | tendofset 40283* | The set of all trace-preserving endomorphisms on the set of translations for a lattice πΎ. (Contributed by NM, 8-Jun-2013.) |
β’ β€ = (leβπΎ) & β’ π» = (LHypβπΎ) β β’ (πΎ β π β (TEndoβπΎ) = (π€ β π» β¦ {π β£ (π :((LTrnβπΎ)βπ€)βΆ((LTrnβπΎ)βπ€) β§ βπ β ((LTrnβπΎ)βπ€)βπ β ((LTrnβπΎ)βπ€)(π β(π β π)) = ((π βπ) β (π βπ)) β§ βπ β ((LTrnβπΎ)βπ€)(((trLβπΎ)βπ€)β(π βπ)) β€ (((trLβπΎ)βπ€)βπ))})) | ||
Theorem | tendoset 40284* | The set of trace-preserving endomorphisms on the set of translations for a fiducial co-atom π. (Contributed by NM, 8-Jun-2013.) |
β’ β€ = (leβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((LTrnβπΎ)βπ) & β’ π = ((trLβπΎ)βπ) & β’ πΈ = ((TEndoβπΎ)βπ) β β’ ((πΎ β π β§ π β π») β πΈ = {π β£ (π :πβΆπ β§ βπ β π βπ β π (π β(π β π)) = ((π βπ) β (π βπ)) β§ βπ β π (π β(π βπ)) β€ (π βπ))}) | ||
Theorem | istendo 40285* | The predicate "is a trace-preserving endomorphism". Similar to definition of trace-preserving endomorphism in [Crawley] p. 117, penultimate line. (Contributed by NM, 8-Jun-2013.) |
β’ β€ = (leβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((LTrnβπΎ)βπ) & β’ π = ((trLβπΎ)βπ) & β’ πΈ = ((TEndoβπΎ)βπ) β β’ ((πΎ β π β§ π β π») β (π β πΈ β (π:πβΆπ β§ βπ β π βπ β π (πβ(π β π)) = ((πβπ) β (πβπ)) β§ βπ β π (π β(πβπ)) β€ (π βπ)))) | ||
Theorem | tendotp 40286 | Trace-preserving property of a trace-preserving endomorphism. (Contributed by NM, 9-Jun-2013.) |
β’ β€ = (leβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((LTrnβπΎ)βπ) & β’ π = ((trLβπΎ)βπ) & β’ πΈ = ((TEndoβπΎ)βπ) β β’ (((πΎ β π β§ π β π») β§ π β πΈ β§ πΉ β π) β (π β(πβπΉ)) β€ (π βπΉ)) | ||
Theorem | istendod 40287* | Deduce the predicate "is a trace-preserving endomorphism". (Contributed by NM, 9-Jun-2013.) |
β’ β€ = (leβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((LTrnβπΎ)βπ) & β’ π = ((trLβπΎ)βπ) & β’ πΈ = ((TEndoβπΎ)βπ) & β’ (π β (πΎ β π β§ π β π»)) & β’ (π β π:πβΆπ) & β’ ((π β§ π β π β§ π β π) β (πβ(π β π)) = ((πβπ) β (πβπ))) & β’ ((π β§ π β π) β (π β(πβπ)) β€ (π βπ)) β β’ (π β π β πΈ) | ||
Theorem | tendof 40288 | Functionality of a trace-preserving endomorphism. (Contributed by NM, 9-Jun-2013.) |
β’ π» = (LHypβπΎ) & β’ π = ((LTrnβπΎ)βπ) & β’ πΈ = ((TEndoβπΎ)βπ) β β’ (((πΎ β π β§ π β π») β§ π β πΈ) β π:πβΆπ) | ||
Theorem | tendoeq1 40289* | Condition determining equality of two trace-preserving endomorphisms. (Contributed by NM, 11-Jun-2013.) |
β’ π» = (LHypβπΎ) & β’ π = ((LTrnβπΎ)βπ) & β’ πΈ = ((TEndoβπΎ)βπ) β β’ (((πΎ β HL β§ π β π») β§ (π β πΈ β§ π β πΈ) β§ βπ β π (πβπ) = (πβπ)) β π = π) | ||
Theorem | tendovalco 40290 | Value of composition of translations in a trace-preserving endomorphism. (Contributed by NM, 9-Jun-2013.) |
β’ π» = (LHypβπΎ) & β’ π = ((LTrnβπΎ)βπ) & β’ πΈ = ((TEndoβπΎ)βπ) β β’ (((πΎ β π β§ π β π» β§ π β πΈ) β§ (πΉ β π β§ πΊ β π)) β (πβ(πΉ β πΊ)) = ((πβπΉ) β (πβπΊ))) | ||
Theorem | tendocoval 40291 | Value of composition of endomorphisms in a trace-preserving endomorphism. (Contributed by NM, 9-Jun-2013.) |
β’ π» = (LHypβπΎ) & β’ π = ((LTrnβπΎ)βπ) & β’ πΈ = ((TEndoβπΎ)βπ) β β’ (((πΎ β π β§ π β π») β§ (π β πΈ β§ π β πΈ) β§ πΉ β π) β ((π β π)βπΉ) = (πβ(πβπΉ))) | ||
Theorem | tendocl 40292 | Closure of a trace-preserving endomorphism. (Contributed by NM, 9-Jun-2013.) |
β’ π» = (LHypβπΎ) & β’ π = ((LTrnβπΎ)βπ) & β’ πΈ = ((TEndoβπΎ)βπ) β β’ (((πΎ β π β§ π β π») β§ π β πΈ β§ πΉ β π) β (πβπΉ) β π) | ||
Theorem | tendoco2 40293 | Distribution of compositions in preparation for endomorphism sum definition. (Contributed by NM, 10-Jun-2013.) |
β’ π» = (LHypβπΎ) & β’ π = ((LTrnβπΎ)βπ) & β’ πΈ = ((TEndoβπΎ)βπ) β β’ (((πΎ β HL β§ π β π») β§ (π β πΈ β§ π β πΈ) β§ (πΉ β π β§ πΊ β π)) β ((πβ(πΉ β πΊ)) β (πβ(πΉ β πΊ))) = (((πβπΉ) β (πβπΉ)) β ((πβπΊ) β (πβπΊ)))) | ||
Theorem | tendoidcl 40294 | The identity is a trace-preserving endomorphism. (Contributed by NM, 30-Jul-2013.) |
β’ π» = (LHypβπΎ) & β’ π = ((LTrnβπΎ)βπ) & β’ πΈ = ((TEndoβπΎ)βπ) β β’ ((πΎ β HL β§ π β π») β ( I βΎ π) β πΈ) | ||
Theorem | tendo1mul 40295 | Multiplicative identity multiplied by a trace-preserving endomorphism. (Contributed by NM, 20-Nov-2013.) |
β’ π» = (LHypβπΎ) & β’ π = ((LTrnβπΎ)βπ) & β’ πΈ = ((TEndoβπΎ)βπ) β β’ (((πΎ β HL β§ π β π») β§ π β πΈ) β (( I βΎ π) β π) = π) | ||
Theorem | tendo1mulr 40296 | Multiplicative identity multiplied by a trace-preserving endomorphism. (Contributed by NM, 20-Nov-2013.) |
β’ π» = (LHypβπΎ) & β’ π = ((LTrnβπΎ)βπ) & β’ πΈ = ((TEndoβπΎ)βπ) β β’ (((πΎ β HL β§ π β π») β§ π β πΈ) β (π β ( I βΎ π)) = π) | ||
Theorem | tendococl 40297 | The composition of two trace-preserving endomorphisms (multiplication in the endormorphism ring) is a trace-preserving endomorphism. (Contributed by NM, 9-Jun-2013.) |
β’ π» = (LHypβπΎ) & β’ πΈ = ((TEndoβπΎ)βπ) β β’ (((πΎ β HL β§ π β π») β§ π β πΈ β§ π β πΈ) β (π β π) β πΈ) | ||
Theorem | tendoid 40298 | The identity value of a trace-preserving endomorphism. (Contributed by NM, 21-Jun-2013.) |
β’ π΅ = (BaseβπΎ) & β’ π» = (LHypβπΎ) & β’ πΈ = ((TEndoβπΎ)βπ) β β’ (((πΎ β HL β§ π β π») β§ π β πΈ) β (πβ( I βΎ π΅)) = ( I βΎ π΅)) | ||
Theorem | tendoeq2 40299* | Condition determining equality of two trace-preserving endomorphisms, showing it is unnecessary to consider the identity translation. In tendocan 40349, we show that we only need to consider a single non-identity translation. (Contributed by NM, 21-Jun-2013.) |
β’ π΅ = (BaseβπΎ) & β’ π» = (LHypβπΎ) & β’ π = ((LTrnβπΎ)βπ) & β’ πΈ = ((TEndoβπΎ)βπ) β β’ (((πΎ β HL β§ π β π») β§ (π β πΈ β§ π β πΈ) β§ βπ β π (π β ( I βΎ π΅) β (πβπ) = (πβπ))) β π = π) | ||
Theorem | tendoplcbv 40300* | Define sum operation for trace-preserving endomorphisms. Change bound variables to isolate them later. (Contributed by NM, 11-Jun-2013.) |
β’ π = (π β πΈ, π‘ β πΈ β¦ (π β π β¦ ((π βπ) β (π‘βπ)))) β β’ π = (π’ β πΈ, π£ β πΈ β¦ (π β π β¦ ((π’βπ) β (π£βπ)))) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |