![]() |
Metamath
Proof Explorer Theorem List (p. 403 of 483) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30746) |
![]() (30747-32269) |
![]() (32270-48289) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | trlcocnvat 40201 | Commonly used special case of trlcoat 40200. (Contributed by NM, 1-Jul-2013.) |
⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺)) → (𝑅‘(𝐹 ∘ ◡𝐺)) ∈ 𝐴) | ||
Theorem | trlconid 40202 | The composition of two different translations is not the identity translation. (Contributed by NM, 22-Jul-2013.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺)) → (𝐹 ∘ 𝐺) ≠ ( I ↾ 𝐵)) | ||
Theorem | trlcolem 40203 | Lemma for trlco 40204. (Contributed by NM, 1-Jun-2013.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → (𝑅‘(𝐹 ∘ 𝐺)) ≤ ((𝑅‘𝐹) ∨ (𝑅‘𝐺))) | ||
Theorem | trlco 40204 | The trace of a composition of translations is less than or equal to the join of their traces. Part of proof of Lemma G of [Crawley] p. 116, second paragraph on p. 117. (Contributed by NM, 2-Jun-2013.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) → (𝑅‘(𝐹 ∘ 𝐺)) ≤ ((𝑅‘𝐹) ∨ (𝑅‘𝐺))) | ||
Theorem | trlcone 40205 | If two translations have different traces, the trace of their composition is also different. (Contributed by NM, 14-Jun-2013.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑅‘𝐹) ≠ (𝑅‘𝐺) ∧ 𝐺 ≠ ( I ↾ 𝐵))) → (𝑅‘𝐹) ≠ (𝑅‘(𝐹 ∘ 𝐺))) | ||
Theorem | cdlemg42 40206 | Part of proof of Lemma G of [Crawley] p. 116, first line of third paragraph on p. 117. (Contributed by NM, 3-Jun-2013.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝐺‘𝑃) ≠ 𝑃 ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺))) → ¬ (𝐺‘𝑃) ≤ (𝑃 ∨ (𝐹‘𝑃))) | ||
Theorem | cdlemg43 40207 | Part of proof of Lemma G of [Crawley] p. 116, third line of third paragraph on p. 117. (Contributed by NM, 3-Jun-2013.) |
⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) & ⊢ ∧ = (meet‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝐺‘𝑃) ≠ 𝑃 ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺))) → (𝐹‘(𝐺‘𝑃)) = (((𝐺‘𝑃) ∨ (𝑅‘𝐹)) ∧ ((𝐹‘𝑃) ∨ (𝑅‘𝐺)))) | ||
Theorem | cdlemg44a 40208 | Part of proof of Lemma G of [Crawley] p. 116, fourth line of third paragraph on p. 117: "so fg(p) = gf(p)." (Contributed by NM, 3-Jun-2013.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ ((𝐹‘𝑃) ≠ 𝑃 ∧ (𝐺‘𝑃) ≠ 𝑃 ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺))) → (𝐹‘(𝐺‘𝑃)) = (𝐺‘(𝐹‘𝑃))) | ||
Theorem | cdlemg44b 40209 | Eliminate (𝐹‘𝑃) ≠ 𝑃, (𝐺‘𝑃) ≠ 𝑃 from cdlemg44a 40208. (Contributed by NM, 3-Jun-2013.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺)) → (𝐹‘(𝐺‘𝑃)) = (𝐺‘(𝐹‘𝑃))) | ||
Theorem | cdlemg44 40210 | Part of proof of Lemma G of [Crawley] p. 116, fifth line of third paragraph on p. 117: "and hence fg = gf." (Contributed by NM, 3-Jun-2013.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺)) → (𝐹 ∘ 𝐺) = (𝐺 ∘ 𝐹)) | ||
Theorem | cdlemg47a 40211 | TODO: fix comment. TODO: Use this above in place of (𝐹‘𝑃) = 𝑃 antecedents? (Contributed by NM, 5-Jun-2013.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ 𝐹 = ( I ↾ 𝐵)) → (𝐹 ∘ 𝐺) = (𝐺 ∘ 𝐹)) | ||
Theorem | cdlemg46 40212* | Part of proof of Lemma G of [Crawley] p. 116, seventh line of third paragraph on p. 117: "hf and f have different traces." (Contributed by NM, 5-Jun-2013.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ ℎ ∈ 𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ℎ ≠ ( I ↾ 𝐵) ∧ (𝑅‘ℎ) ≠ (𝑅‘𝐹))) → (𝑅‘(ℎ ∘ 𝐹)) ≠ (𝑅‘𝐹)) | ||
Theorem | cdlemg47 40213* | Part of proof of Lemma G of [Crawley] p. 116, ninth line of third paragraph on p. 117: "we conclude that gf = fg." (Contributed by NM, 5-Jun-2013.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) ⇒ ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (ℎ ∈ 𝑇 ∧ (𝑅‘𝐹) = (𝑅‘𝐺)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ ℎ ≠ ( I ↾ 𝐵) ∧ (𝑅‘ℎ) ≠ (𝑅‘𝐹))) → (𝐹 ∘ 𝐺) = (𝐺 ∘ 𝐹)) | ||
Theorem | cdlemg48 40214 | Eliminate ℎ from cdlemg47 40213. (Contributed by NM, 5-Jun-2013.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝐹) = (𝑅‘𝐺))) → (𝐹 ∘ 𝐺) = (𝐺 ∘ 𝐹)) | ||
Theorem | ltrncom 40215 | Composition is commutative for translations. Part of proof of Lemma G of [Crawley] p. 116. (Contributed by NM, 5-Jun-2013.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) → (𝐹 ∘ 𝐺) = (𝐺 ∘ 𝐹)) | ||
Theorem | ltrnco4 40216 | Rearrange a composition of 4 translations, analogous to an4 654. (Contributed by NM, 10-Jun-2013.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐸 ∈ 𝑇 ∧ 𝐹 ∈ 𝑇) → ((𝐷 ∘ 𝐸) ∘ (𝐹 ∘ 𝐺)) = ((𝐷 ∘ 𝐹) ∘ (𝐸 ∘ 𝐺))) | ||
Theorem | trljco 40217 | Trace joined with trace of composition. (Contributed by NM, 15-Jun-2013.) |
⊢ ∨ = (join‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) → ((𝑅‘𝐹) ∨ (𝑅‘(𝐹 ∘ 𝐺))) = ((𝑅‘𝐹) ∨ (𝑅‘𝐺))) | ||
Theorem | trljco2 40218 | Trace joined with trace of composition. (Contributed by NM, 16-Jun-2013.) |
⊢ ∨ = (join‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) → ((𝑅‘𝐹) ∨ (𝑅‘(𝐹 ∘ 𝐺))) = ((𝑅‘𝐺) ∨ (𝑅‘(𝐹 ∘ 𝐺)))) | ||
Syntax | ctgrp 40219 | Extend class notation with translation group. |
class TGrp | ||
Definition | df-tgrp 40220* | Define the class of all translation groups. 𝑘 is normally a member of HL. Each base set is the set of all lattice translations with respect to a hyperplane 𝑤, and the operation is function composition. Similar to definition of G in [Crawley] p. 116, third paragraph (which defines this for geomodular lattices). (Contributed by NM, 5-Jun-2013.) |
⊢ TGrp = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ {〈(Base‘ndx), ((LTrn‘𝑘)‘𝑤)〉, 〈(+g‘ndx), (𝑓 ∈ ((LTrn‘𝑘)‘𝑤), 𝑔 ∈ ((LTrn‘𝑘)‘𝑤) ↦ (𝑓 ∘ 𝑔))〉})) | ||
Theorem | tgrpfset 40221* | The translation group maps for a lattice 𝐾. (Contributed by NM, 5-Jun-2013.) |
⊢ 𝐻 = (LHyp‘𝐾) ⇒ ⊢ (𝐾 ∈ 𝑉 → (TGrp‘𝐾) = (𝑤 ∈ 𝐻 ↦ {〈(Base‘ndx), ((LTrn‘𝐾)‘𝑤)〉, 〈(+g‘ndx), (𝑓 ∈ ((LTrn‘𝐾)‘𝑤), 𝑔 ∈ ((LTrn‘𝐾)‘𝑤) ↦ (𝑓 ∘ 𝑔))〉})) | ||
Theorem | tgrpset 40222* | The translation group for a fiducial co-atom 𝑊. (Contributed by NM, 5-Jun-2013.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝐺 = ((TGrp‘𝐾)‘𝑊) ⇒ ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → 𝐺 = {〈(Base‘ndx), 𝑇〉, 〈(+g‘ndx), (𝑓 ∈ 𝑇, 𝑔 ∈ 𝑇 ↦ (𝑓 ∘ 𝑔))〉}) | ||
Theorem | tgrpbase 40223 | The base set of the translation group is the set of all translations (for a fiducial co-atom 𝑊). (Contributed by NM, 5-Jun-2013.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝐺 = ((TGrp‘𝐾)‘𝑊) & ⊢ 𝐶 = (Base‘𝐺) ⇒ ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → 𝐶 = 𝑇) | ||
Theorem | tgrpopr 40224* | The group operation of the translation group is function composition. (Contributed by NM, 5-Jun-2013.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝐺 = ((TGrp‘𝐾)‘𝑊) & ⊢ + = (+g‘𝐺) ⇒ ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → + = (𝑓 ∈ 𝑇, 𝑔 ∈ 𝑇 ↦ (𝑓 ∘ 𝑔))) | ||
Theorem | tgrpov 40225 | The group operation value of the translation group is the composition of translations. (Contributed by NM, 5-Jun-2013.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝐺 = ((TGrp‘𝐾)‘𝑊) & ⊢ + = (+g‘𝐺) ⇒ ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ∧ (𝑋 ∈ 𝑇 ∧ 𝑌 ∈ 𝑇)) → (𝑋 + 𝑌) = (𝑋 ∘ 𝑌)) | ||
Theorem | tgrpgrplem 40226 | Lemma for tgrpgrp 40227. (Contributed by NM, 6-Jun-2013.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝐺 = ((TGrp‘𝐾)‘𝑊) & ⊢ + = (+g‘𝐺) & ⊢ 𝐵 = (Base‘𝐾) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝐺 ∈ Grp) | ||
Theorem | tgrpgrp 40227 | The translation group is a group. (Contributed by NM, 6-Jun-2013.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐺 = ((TGrp‘𝐾)‘𝑊) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝐺 ∈ Grp) | ||
Theorem | tgrpabl 40228 | The translation group is an Abelian group. Lemma G of [Crawley] p. 116. (Contributed by NM, 6-Jun-2013.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐺 = ((TGrp‘𝐾)‘𝑊) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝐺 ∈ Abel) | ||
Syntax | ctendo 40229 | Extend class notation with translation group endomorphisms. |
class TEndo | ||
Syntax | cedring 40230 | Extend class notation with division ring on trace-preserving endomorphisms. |
class EDRing | ||
Syntax | cedring-rN 40231 | Extend class notation with division ring on trace-preserving endomorphisms, with multiplication reversed. TODO: remove EDRingR theorems if not used. |
class EDRingR | ||
Definition | df-tendo 40232* | Define trace-preserving endomorphisms on the set of translations. (Contributed by NM, 8-Jun-2013.) |
⊢ TEndo = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ {𝑓 ∣ (𝑓:((LTrn‘𝑘)‘𝑤)⟶((LTrn‘𝑘)‘𝑤) ∧ ∀𝑥 ∈ ((LTrn‘𝑘)‘𝑤)∀𝑦 ∈ ((LTrn‘𝑘)‘𝑤)(𝑓‘(𝑥 ∘ 𝑦)) = ((𝑓‘𝑥) ∘ (𝑓‘𝑦)) ∧ ∀𝑥 ∈ ((LTrn‘𝑘)‘𝑤)(((trL‘𝑘)‘𝑤)‘(𝑓‘𝑥))(le‘𝑘)(((trL‘𝑘)‘𝑤)‘𝑥))})) | ||
Definition | df-edring-rN 40233* | Define division ring on trace-preserving endomorphisms. Definition of E of [Crawley] p. 117, 4th line from bottom. (Contributed by NM, 8-Jun-2013.) |
⊢ EDRingR = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ {〈(Base‘ndx), ((TEndo‘𝑘)‘𝑤)〉, 〈(+g‘ndx), (𝑠 ∈ ((TEndo‘𝑘)‘𝑤), 𝑡 ∈ ((TEndo‘𝑘)‘𝑤) ↦ (𝑓 ∈ ((LTrn‘𝑘)‘𝑤) ↦ ((𝑠‘𝑓) ∘ (𝑡‘𝑓))))〉, 〈(.r‘ndx), (𝑠 ∈ ((TEndo‘𝑘)‘𝑤), 𝑡 ∈ ((TEndo‘𝑘)‘𝑤) ↦ (𝑡 ∘ 𝑠))〉})) | ||
Definition | df-edring 40234* | Define division ring on trace-preserving endomorphisms. The multiplication operation is reversed composition, per the definition of E of [Crawley] p. 117, 4th line from bottom. (Contributed by NM, 8-Jun-2013.) |
⊢ EDRing = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ {〈(Base‘ndx), ((TEndo‘𝑘)‘𝑤)〉, 〈(+g‘ndx), (𝑠 ∈ ((TEndo‘𝑘)‘𝑤), 𝑡 ∈ ((TEndo‘𝑘)‘𝑤) ↦ (𝑓 ∈ ((LTrn‘𝑘)‘𝑤) ↦ ((𝑠‘𝑓) ∘ (𝑡‘𝑓))))〉, 〈(.r‘ndx), (𝑠 ∈ ((TEndo‘𝑘)‘𝑤), 𝑡 ∈ ((TEndo‘𝑘)‘𝑤) ↦ (𝑠 ∘ 𝑡))〉})) | ||
Theorem | tendofset 40235* | The set of all trace-preserving endomorphisms on the set of translations for a lattice 𝐾. (Contributed by NM, 8-Jun-2013.) |
⊢ ≤ = (le‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) ⇒ ⊢ (𝐾 ∈ 𝑉 → (TEndo‘𝐾) = (𝑤 ∈ 𝐻 ↦ {𝑠 ∣ (𝑠:((LTrn‘𝐾)‘𝑤)⟶((LTrn‘𝐾)‘𝑤) ∧ ∀𝑓 ∈ ((LTrn‘𝐾)‘𝑤)∀𝑔 ∈ ((LTrn‘𝐾)‘𝑤)(𝑠‘(𝑓 ∘ 𝑔)) = ((𝑠‘𝑓) ∘ (𝑠‘𝑔)) ∧ ∀𝑓 ∈ ((LTrn‘𝐾)‘𝑤)(((trL‘𝐾)‘𝑤)‘(𝑠‘𝑓)) ≤ (((trL‘𝐾)‘𝑤)‘𝑓))})) | ||
Theorem | tendoset 40236* | The set of trace-preserving endomorphisms on the set of translations for a fiducial co-atom 𝑊. (Contributed by NM, 8-Jun-2013.) |
⊢ ≤ = (le‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) & ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) ⇒ ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → 𝐸 = {𝑠 ∣ (𝑠:𝑇⟶𝑇 ∧ ∀𝑓 ∈ 𝑇 ∀𝑔 ∈ 𝑇 (𝑠‘(𝑓 ∘ 𝑔)) = ((𝑠‘𝑓) ∘ (𝑠‘𝑔)) ∧ ∀𝑓 ∈ 𝑇 (𝑅‘(𝑠‘𝑓)) ≤ (𝑅‘𝑓))}) | ||
Theorem | istendo 40237* | The predicate "is a trace-preserving endomorphism". Similar to definition of trace-preserving endomorphism in [Crawley] p. 117, penultimate line. (Contributed by NM, 8-Jun-2013.) |
⊢ ≤ = (le‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) & ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) ⇒ ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → (𝑆 ∈ 𝐸 ↔ (𝑆:𝑇⟶𝑇 ∧ ∀𝑓 ∈ 𝑇 ∀𝑔 ∈ 𝑇 (𝑆‘(𝑓 ∘ 𝑔)) = ((𝑆‘𝑓) ∘ (𝑆‘𝑔)) ∧ ∀𝑓 ∈ 𝑇 (𝑅‘(𝑆‘𝑓)) ≤ (𝑅‘𝑓)))) | ||
Theorem | tendotp 40238 | Trace-preserving property of a trace-preserving endomorphism. (Contributed by NM, 9-Jun-2013.) |
⊢ ≤ = (le‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) & ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇) → (𝑅‘(𝑆‘𝐹)) ≤ (𝑅‘𝐹)) | ||
Theorem | istendod 40239* | Deduce the predicate "is a trace-preserving endomorphism". (Contributed by NM, 9-Jun-2013.) |
⊢ ≤ = (le‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) & ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑆:𝑇⟶𝑇) & ⊢ ((𝜑 ∧ 𝑓 ∈ 𝑇 ∧ 𝑔 ∈ 𝑇) → (𝑆‘(𝑓 ∘ 𝑔)) = ((𝑆‘𝑓) ∘ (𝑆‘𝑔))) & ⊢ ((𝜑 ∧ 𝑓 ∈ 𝑇) → (𝑅‘(𝑆‘𝑓)) ≤ (𝑅‘𝑓)) ⇒ ⊢ (𝜑 → 𝑆 ∈ 𝐸) | ||
Theorem | tendof 40240 | Functionality of a trace-preserving endomorphism. (Contributed by NM, 9-Jun-2013.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) → 𝑆:𝑇⟶𝑇) | ||
Theorem | tendoeq1 40241* | Condition determining equality of two trace-preserving endomorphisms. (Contributed by NM, 11-Jun-2013.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ ∀𝑓 ∈ 𝑇 (𝑈‘𝑓) = (𝑉‘𝑓)) → 𝑈 = 𝑉) | ||
Theorem | tendovalco 40242 | Value of composition of translations in a trace-preserving endomorphism. (Contributed by NM, 9-Jun-2013.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻 ∧ 𝑆 ∈ 𝐸) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) → (𝑆‘(𝐹 ∘ 𝐺)) = ((𝑆‘𝐹) ∘ (𝑆‘𝐺))) | ||
Theorem | tendocoval 40243 | Value of composition of endomorphisms in a trace-preserving endomorphism. (Contributed by NM, 9-Jun-2013.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ 𝑋 ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ 𝐹 ∈ 𝑇) → ((𝑈 ∘ 𝑉)‘𝐹) = (𝑈‘(𝑉‘𝐹))) | ||
Theorem | tendocl 40244 | Closure of a trace-preserving endomorphism. (Contributed by NM, 9-Jun-2013.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇) → (𝑆‘𝐹) ∈ 𝑇) | ||
Theorem | tendoco2 40245 | Distribution of compositions in preparation for endomorphism sum definition. (Contributed by NM, 10-Jun-2013.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) → ((𝑈‘(𝐹 ∘ 𝐺)) ∘ (𝑉‘(𝐹 ∘ 𝐺))) = (((𝑈‘𝐹) ∘ (𝑉‘𝐹)) ∘ ((𝑈‘𝐺) ∘ (𝑉‘𝐺)))) | ||
Theorem | tendoidcl 40246 | The identity is a trace-preserving endomorphism. (Contributed by NM, 30-Jul-2013.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ( I ↾ 𝑇) ∈ 𝐸) | ||
Theorem | tendo1mul 40247 | Multiplicative identity multiplied by a trace-preserving endomorphism. (Contributed by NM, 20-Nov-2013.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑈 ∈ 𝐸) → (( I ↾ 𝑇) ∘ 𝑈) = 𝑈) | ||
Theorem | tendo1mulr 40248 | Multiplicative identity multiplied by a trace-preserving endomorphism. (Contributed by NM, 20-Nov-2013.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑈 ∈ 𝐸) → (𝑈 ∘ ( I ↾ 𝑇)) = 𝑈) | ||
Theorem | tendococl 40249 | The composition of two trace-preserving endomorphisms (multiplication in the endormorphism ring) is a trace-preserving endomorphism. (Contributed by NM, 9-Jun-2013.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸 ∧ 𝑇 ∈ 𝐸) → (𝑆 ∘ 𝑇) ∈ 𝐸) | ||
Theorem | tendoid 40250 | The identity value of a trace-preserving endomorphism. (Contributed by NM, 21-Jun-2013.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) → (𝑆‘( I ↾ 𝐵)) = ( I ↾ 𝐵)) | ||
Theorem | tendoeq2 40251* | Condition determining equality of two trace-preserving endomorphisms, showing it is unnecessary to consider the identity translation. In tendocan 40301, we show that we only need to consider a single non-identity translation. (Contributed by NM, 21-Jun-2013.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ ∀𝑓 ∈ 𝑇 (𝑓 ≠ ( I ↾ 𝐵) → (𝑈‘𝑓) = (𝑉‘𝑓))) → 𝑈 = 𝑉) | ||
Theorem | tendoplcbv 40252* | Define sum operation for trace-preserving endomorphisms. Change bound variables to isolate them later. (Contributed by NM, 11-Jun-2013.) |
⊢ 𝑃 = (𝑠 ∈ 𝐸, 𝑡 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ((𝑠‘𝑓) ∘ (𝑡‘𝑓)))) ⇒ ⊢ 𝑃 = (𝑢 ∈ 𝐸, 𝑣 ∈ 𝐸 ↦ (𝑔 ∈ 𝑇 ↦ ((𝑢‘𝑔) ∘ (𝑣‘𝑔)))) | ||
Theorem | tendopl 40253* | Value of endomorphism sum operation. (Contributed by NM, 10-Jun-2013.) |
⊢ 𝑃 = (𝑠 ∈ 𝐸, 𝑡 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ((𝑠‘𝑓) ∘ (𝑡‘𝑓)))) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) ⇒ ⊢ ((𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) → (𝑈𝑃𝑉) = (𝑔 ∈ 𝑇 ↦ ((𝑈‘𝑔) ∘ (𝑉‘𝑔)))) | ||
Theorem | tendopl2 40254* | Value of result of endomorphism sum operation. (Contributed by NM, 10-Jun-2013.) |
⊢ 𝑃 = (𝑠 ∈ 𝐸, 𝑡 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ((𝑠‘𝑓) ∘ (𝑡‘𝑓)))) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) ⇒ ⊢ ((𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇) → ((𝑈𝑃𝑉)‘𝐹) = ((𝑈‘𝐹) ∘ (𝑉‘𝐹))) | ||
Theorem | tendoplcl2 40255* | Value of result of endomorphism sum operation. (Contributed by NM, 10-Jun-2013.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) & ⊢ 𝑃 = (𝑠 ∈ 𝐸, 𝑡 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ((𝑠‘𝑓) ∘ (𝑡‘𝑓)))) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ 𝐹 ∈ 𝑇) → ((𝑈𝑃𝑉)‘𝐹) ∈ 𝑇) | ||
Theorem | tendoplco2 40256* | Value of result of endomorphism sum operation on a translation composition. (Contributed by NM, 10-Jun-2013.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) & ⊢ 𝑃 = (𝑠 ∈ 𝐸, 𝑡 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ((𝑠‘𝑓) ∘ (𝑡‘𝑓)))) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) → ((𝑈𝑃𝑉)‘(𝐹 ∘ 𝐺)) = (((𝑈𝑃𝑉)‘𝐹) ∘ ((𝑈𝑃𝑉)‘𝐺))) | ||
Theorem | tendopltp 40257* | Trace-preserving property of endomorphism sum operation 𝑃, based on Theorems trlco 40204. Part of remark in [Crawley] p. 118, 2nd line, "it is clear from the second part of G (our trlco 40204) that Delta is a subring of E." (In our development, we will bypass their E and go directly to their Delta, whose base set is our (TEndo‘𝐾)‘𝑊.) (Contributed by NM, 9-Jun-2013.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) & ⊢ 𝑃 = (𝑠 ∈ 𝐸, 𝑡 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ((𝑠‘𝑓) ∘ (𝑡‘𝑓)))) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) ∧ 𝐹 ∈ 𝑇) → (𝑅‘((𝑈𝑃𝑉)‘𝐹)) ≤ (𝑅‘𝐹)) | ||
Theorem | tendoplcl 40258* | Endomorphism sum is a trace-preserving endomorphism. (Contributed by NM, 10-Jun-2013.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) & ⊢ 𝑃 = (𝑠 ∈ 𝐸, 𝑡 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ((𝑠‘𝑓) ∘ (𝑡‘𝑓)))) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) → (𝑈𝑃𝑉) ∈ 𝐸) | ||
Theorem | tendoplcom 40259* | The endomorphism sum operation is commutative. (Contributed by NM, 11-Jun-2013.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) & ⊢ 𝑃 = (𝑠 ∈ 𝐸, 𝑡 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ((𝑠‘𝑓) ∘ (𝑡‘𝑓)))) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸) → (𝑈𝑃𝑉) = (𝑉𝑃𝑈)) | ||
Theorem | tendoplass 40260* | The endomorphism sum operation is associative. (Contributed by NM, 11-Jun-2013.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) & ⊢ 𝑃 = (𝑠 ∈ 𝐸, 𝑡 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ((𝑠‘𝑓) ∘ (𝑡‘𝑓)))) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ∈ 𝐸 ∧ 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸)) → ((𝑆𝑃𝑈)𝑃𝑉) = (𝑆𝑃(𝑈𝑃𝑉))) | ||
Theorem | tendodi1 40261* | Endomorphism composition distributes over sum. (Contributed by NM, 13-Jun-2013.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) & ⊢ 𝑃 = (𝑠 ∈ 𝐸, 𝑡 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ((𝑠‘𝑓) ∘ (𝑡‘𝑓)))) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ∈ 𝐸 ∧ 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸)) → (𝑆 ∘ (𝑈𝑃𝑉)) = ((𝑆 ∘ 𝑈)𝑃(𝑆 ∘ 𝑉))) | ||
Theorem | tendodi2 40262* | Endomorphism composition distributes over sum. (Contributed by NM, 13-Jun-2013.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) & ⊢ 𝑃 = (𝑠 ∈ 𝐸, 𝑡 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ((𝑠‘𝑓) ∘ (𝑡‘𝑓)))) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑆 ∈ 𝐸 ∧ 𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸)) → ((𝑆𝑃𝑈) ∘ 𝑉) = ((𝑆 ∘ 𝑉)𝑃(𝑈 ∘ 𝑉))) | ||
Theorem | tendo0cbv 40263* | Define additive identity for trace-preserving endomorphisms. Change bound variable to isolate it later. (Contributed by NM, 11-Jun-2013.) |
⊢ 𝑂 = (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) ⇒ ⊢ 𝑂 = (𝑔 ∈ 𝑇 ↦ ( I ↾ 𝐵)) | ||
Theorem | tendo02 40264* | Value of additive identity endomorphism. (Contributed by NM, 11-Jun-2013.) |
⊢ 𝑂 = (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) & ⊢ 𝐵 = (Base‘𝐾) ⇒ ⊢ (𝐹 ∈ 𝑇 → (𝑂‘𝐹) = ( I ↾ 𝐵)) | ||
Theorem | tendo0co2 40265* | The additive identity trace-preserving endormorphism preserves composition of translations. TODO: why isn't this a special case of tendospdi1 40497? (Contributed by NM, 11-Jun-2013.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) & ⊢ 𝑂 = (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) → (𝑂‘(𝐹 ∘ 𝐺)) = ((𝑂‘𝐹) ∘ (𝑂‘𝐺))) | ||
Theorem | tendo0tp 40266* | Trace-preserving property of endomorphism additive identity. (Contributed by NM, 11-Jun-2013.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) & ⊢ 𝑂 = (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇) → (𝑅‘(𝑂‘𝐹)) ≤ (𝑅‘𝐹)) | ||
Theorem | tendo0cl 40267* | The additive identity is a trace-preserving endormorphism. (Contributed by NM, 12-Jun-2013.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) & ⊢ 𝑂 = (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) ⇒ ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝑂 ∈ 𝐸) | ||
Theorem | tendo0pl 40268* | Property of the additive identity endormorphism. (Contributed by NM, 12-Jun-2013.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) & ⊢ 𝑂 = (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) & ⊢ 𝑃 = (𝑠 ∈ 𝐸, 𝑡 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ((𝑠‘𝑓) ∘ (𝑡‘𝑓)))) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) → (𝑂𝑃𝑆) = 𝑆) | ||
Theorem | tendo0plr 40269* | Property of the additive identity endormorphism. (Contributed by NM, 21-Feb-2014.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) & ⊢ 𝑂 = (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) & ⊢ 𝑃 = (𝑠 ∈ 𝐸, 𝑡 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ((𝑠‘𝑓) ∘ (𝑡‘𝑓)))) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) → (𝑆𝑃𝑂) = 𝑆) | ||
Theorem | tendoicbv 40270* | Define inverse function for trace-preserving endomorphisms. Change bound variable to isolate it later. (Contributed by NM, 12-Jun-2013.) |
⊢ 𝐼 = (𝑠 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ◡(𝑠‘𝑓))) ⇒ ⊢ 𝐼 = (𝑢 ∈ 𝐸 ↦ (𝑔 ∈ 𝑇 ↦ ◡(𝑢‘𝑔))) | ||
Theorem | tendoi 40271* | Value of inverse endomorphism. (Contributed by NM, 12-Jun-2013.) |
⊢ 𝐼 = (𝑠 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ◡(𝑠‘𝑓))) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) ⇒ ⊢ (𝑆 ∈ 𝐸 → (𝐼‘𝑆) = (𝑔 ∈ 𝑇 ↦ ◡(𝑆‘𝑔))) | ||
Theorem | tendoi2 40272* | Value of additive inverse endomorphism. (Contributed by NM, 12-Jun-2013.) |
⊢ 𝐼 = (𝑠 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ◡(𝑠‘𝑓))) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) ⇒ ⊢ ((𝑆 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇) → ((𝐼‘𝑆)‘𝐹) = ◡(𝑆‘𝐹)) | ||
Theorem | tendoicl 40273* | Closure of the additive inverse endomorphism. (Contributed by NM, 12-Jun-2013.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) & ⊢ 𝐼 = (𝑠 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ◡(𝑠‘𝑓))) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) → (𝐼‘𝑆) ∈ 𝐸) | ||
Theorem | tendoipl 40274* | Property of the additive inverse endomorphism. (Contributed by NM, 12-Jun-2013.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) & ⊢ 𝐼 = (𝑠 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ◡(𝑠‘𝑓))) & ⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝑃 = (𝑠 ∈ 𝐸, 𝑡 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ((𝑠‘𝑓) ∘ (𝑡‘𝑓)))) & ⊢ 𝑂 = (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) → ((𝐼‘𝑆)𝑃𝑆) = 𝑂) | ||
Theorem | tendoipl2 40275* | Property of the additive inverse endomorphism. (Contributed by NM, 29-Sep-2014.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) & ⊢ 𝐼 = (𝑠 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ◡(𝑠‘𝑓))) & ⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝑃 = (𝑠 ∈ 𝐸, 𝑡 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ((𝑠‘𝑓) ∘ (𝑡‘𝑓)))) & ⊢ 𝑂 = (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑆 ∈ 𝐸) → (𝑆𝑃(𝐼‘𝑆)) = 𝑂) | ||
Theorem | erngfset 40276* | The division rings on trace-preserving endomorphisms for a lattice 𝐾. (Contributed by NM, 8-Jun-2013.) |
⊢ 𝐻 = (LHyp‘𝐾) ⇒ ⊢ (𝐾 ∈ 𝑉 → (EDRing‘𝐾) = (𝑤 ∈ 𝐻 ↦ {〈(Base‘ndx), ((TEndo‘𝐾)‘𝑤)〉, 〈(+g‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑤), 𝑡 ∈ ((TEndo‘𝐾)‘𝑤) ↦ (𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ ((𝑠‘𝑓) ∘ (𝑡‘𝑓))))〉, 〈(.r‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑤), 𝑡 ∈ ((TEndo‘𝐾)‘𝑤) ↦ (𝑠 ∘ 𝑡))〉})) | ||
Theorem | erngset 40277* | The division ring on trace-preserving endomorphisms for a fiducial co-atom 𝑊. (Contributed by NM, 5-Jun-2013.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) & ⊢ 𝐷 = ((EDRing‘𝐾)‘𝑊) ⇒ ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → 𝐷 = {〈(Base‘ndx), 𝐸〉, 〈(+g‘ndx), (𝑠 ∈ 𝐸, 𝑡 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ((𝑠‘𝑓) ∘ (𝑡‘𝑓))))〉, 〈(.r‘ndx), (𝑠 ∈ 𝐸, 𝑡 ∈ 𝐸 ↦ (𝑠 ∘ 𝑡))〉}) | ||
Theorem | erngbase 40278 | The base set of the division ring on trace-preserving endomorphisms is the set of all trace-preserving endomorphisms (for a fiducial co-atom 𝑊). TODO: the .t hypothesis isn't used. (Also look at others.) (Contributed by NM, 9-Jun-2013.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) & ⊢ 𝐷 = ((EDRing‘𝐾)‘𝑊) & ⊢ 𝐶 = (Base‘𝐷) ⇒ ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → 𝐶 = 𝐸) | ||
Theorem | erngfplus 40279* | Ring addition operation. (Contributed by NM, 9-Jun-2013.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) & ⊢ 𝐷 = ((EDRing‘𝐾)‘𝑊) & ⊢ + = (+g‘𝐷) ⇒ ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → + = (𝑠 ∈ 𝐸, 𝑡 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ((𝑠‘𝑓) ∘ (𝑡‘𝑓))))) | ||
Theorem | erngplus 40280* | Ring addition operation. (Contributed by NM, 10-Jun-2013.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) & ⊢ 𝐷 = ((EDRing‘𝐾)‘𝑊) & ⊢ + = (+g‘𝐷) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸)) → (𝑈 + 𝑉) = (𝑓 ∈ 𝑇 ↦ ((𝑈‘𝑓) ∘ (𝑉‘𝑓)))) | ||
Theorem | erngplus2 40281 | Ring addition operation. (Contributed by NM, 10-Jun-2013.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) & ⊢ 𝐷 = ((EDRing‘𝐾)‘𝑊) & ⊢ + = (+g‘𝐷) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇)) → ((𝑈 + 𝑉)‘𝐹) = ((𝑈‘𝐹) ∘ (𝑉‘𝐹))) | ||
Theorem | erngfmul 40282* | Ring multiplication operation. (Contributed by NM, 9-Jun-2013.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) & ⊢ 𝐷 = ((EDRing‘𝐾)‘𝑊) & ⊢ · = (.r‘𝐷) ⇒ ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → · = (𝑠 ∈ 𝐸, 𝑡 ∈ 𝐸 ↦ (𝑠 ∘ 𝑡))) | ||
Theorem | erngmul 40283 | Ring addition operation. (Contributed by NM, 10-Jun-2013.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) & ⊢ 𝐷 = ((EDRing‘𝐾)‘𝑊) & ⊢ · = (.r‘𝐷) ⇒ ⊢ (((𝐾 ∈ 𝑋 ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸)) → (𝑈 · 𝑉) = (𝑈 ∘ 𝑉)) | ||
Theorem | erngfset-rN 40284* | The division rings on trace-preserving endomorphisms for a lattice 𝐾. (Contributed by NM, 8-Jun-2013.) (New usage is discouraged.) |
⊢ 𝐻 = (LHyp‘𝐾) ⇒ ⊢ (𝐾 ∈ 𝑉 → (EDRingR‘𝐾) = (𝑤 ∈ 𝐻 ↦ {〈(Base‘ndx), ((TEndo‘𝐾)‘𝑤)〉, 〈(+g‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑤), 𝑡 ∈ ((TEndo‘𝐾)‘𝑤) ↦ (𝑓 ∈ ((LTrn‘𝐾)‘𝑤) ↦ ((𝑠‘𝑓) ∘ (𝑡‘𝑓))))〉, 〈(.r‘ndx), (𝑠 ∈ ((TEndo‘𝐾)‘𝑤), 𝑡 ∈ ((TEndo‘𝐾)‘𝑤) ↦ (𝑡 ∘ 𝑠))〉})) | ||
Theorem | erngset-rN 40285* | The division ring on trace-preserving endomorphisms for a fiducial co-atom 𝑊. (Contributed by NM, 5-Jun-2013.) (New usage is discouraged.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) & ⊢ 𝐷 = ((EDRingR‘𝐾)‘𝑊) ⇒ ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → 𝐷 = {〈(Base‘ndx), 𝐸〉, 〈(+g‘ndx), (𝑠 ∈ 𝐸, 𝑡 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ((𝑠‘𝑓) ∘ (𝑡‘𝑓))))〉, 〈(.r‘ndx), (𝑠 ∈ 𝐸, 𝑡 ∈ 𝐸 ↦ (𝑡 ∘ 𝑠))〉}) | ||
Theorem | erngbase-rN 40286 | The base set of the division ring on trace-preserving endomorphisms is the set of all trace-preserving endomorphisms (for a fiducial co-atom 𝑊). (Contributed by NM, 9-Jun-2013.) (New usage is discouraged.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) & ⊢ 𝐷 = ((EDRingR‘𝐾)‘𝑊) & ⊢ 𝐶 = (Base‘𝐷) ⇒ ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → 𝐶 = 𝐸) | ||
Theorem | erngfplus-rN 40287* | Ring addition operation. (Contributed by NM, 9-Jun-2013.) (New usage is discouraged.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) & ⊢ 𝐷 = ((EDRingR‘𝐾)‘𝑊) & ⊢ + = (+g‘𝐷) ⇒ ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → + = (𝑠 ∈ 𝐸, 𝑡 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ((𝑠‘𝑓) ∘ (𝑡‘𝑓))))) | ||
Theorem | erngplus-rN 40288* | Ring addition operation. (Contributed by NM, 10-Jun-2013.) (New usage is discouraged.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) & ⊢ 𝐷 = ((EDRingR‘𝐾)‘𝑊) & ⊢ + = (+g‘𝐷) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸)) → (𝑈 + 𝑉) = (𝑓 ∈ 𝑇 ↦ ((𝑈‘𝑓) ∘ (𝑉‘𝑓)))) | ||
Theorem | erngplus2-rN 40289 | Ring addition operation. (Contributed by NM, 10-Jun-2013.) (New usage is discouraged.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) & ⊢ 𝐷 = ((EDRingR‘𝐾)‘𝑊) & ⊢ + = (+g‘𝐷) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇)) → ((𝑈 + 𝑉)‘𝐹) = ((𝑈‘𝐹) ∘ (𝑉‘𝐹))) | ||
Theorem | erngfmul-rN 40290* | Ring multiplication operation. (Contributed by NM, 9-Jun-2013.) (New usage is discouraged.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) & ⊢ 𝐷 = ((EDRingR‘𝐾)‘𝑊) & ⊢ · = (.r‘𝐷) ⇒ ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) → · = (𝑠 ∈ 𝐸, 𝑡 ∈ 𝐸 ↦ (𝑡 ∘ 𝑠))) | ||
Theorem | erngmul-rN 40291 | Ring addition operation. (Contributed by NM, 10-Jun-2013.) (New usage is discouraged.) |
⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) & ⊢ 𝐷 = ((EDRingR‘𝐾)‘𝑊) & ⊢ · = (.r‘𝐷) ⇒ ⊢ (((𝐾 ∈ 𝑋 ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸)) → (𝑈 · 𝑉) = (𝑉 ∘ 𝑈)) | ||
Theorem | cdlemh1 40292 | Part of proof of Lemma H of [Crawley] p. 118. (Contributed by NM, 17-Jun-2013.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) & ⊢ 𝑆 = ((𝑃 ∨ (𝑅‘𝐺)) ∧ (𝑄 ∨ (𝑅‘(𝐺 ∘ ◡𝐹)))) ⇒ ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑄 ≤ (𝑃 ∨ (𝑅‘𝐹)) ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺))) → (𝑆 ∨ (𝑅‘(𝐺 ∘ ◡𝐹))) = (𝑄 ∨ (𝑅‘(𝐺 ∘ ◡𝐹)))) | ||
Theorem | cdlemh2 40293 | Part of proof of Lemma H of [Crawley] p. 118. (Contributed by NM, 16-Jun-2013.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) & ⊢ 𝑆 = ((𝑃 ∨ (𝑅‘𝐺)) ∧ (𝑄 ∨ (𝑅‘(𝐺 ∘ ◡𝐹)))) & ⊢ 0 = (0.‘𝐾) ⇒ ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺))) → (𝑆 ∧ 𝑊) = 0 ) | ||
Theorem | cdlemh 40294 | Lemma H of [Crawley] p. 118. (Contributed by NM, 17-Jun-2013.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) & ⊢ 𝑆 = ((𝑃 ∨ (𝑅‘𝐺)) ∧ (𝑄 ∨ (𝑅‘(𝐺 ∘ ◡𝐹)))) ⇒ ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑄 ≤ (𝑃 ∨ (𝑅‘𝐹))) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺))) → (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) | ||
Theorem | cdlemi1 40295 | Part of proof of Lemma I of [Crawley] p. 118. (Contributed by NM, 18-Jun-2013.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) & ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → ((𝑈‘𝐺)‘𝑃) ≤ (𝑃 ∨ (𝑅‘𝐺))) | ||
Theorem | cdlemi2 40296 | Part of proof of Lemma I of [Crawley] p. 118. (Contributed by NM, 18-Jun-2013.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) & ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) ⇒ ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → ((𝑈‘𝐺)‘𝑃) ≤ (((𝑈‘𝐹)‘𝑃) ∨ (𝑅‘(𝐺 ∘ ◡𝐹)))) | ||
Theorem | cdlemi 40297 | Lemma I of [Crawley] p. 118. (Contributed by NM, 19-Jun-2013.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) & ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) & ⊢ 𝑆 = ((𝑃 ∨ (𝑅‘𝐺)) ∧ (((𝑈‘𝐹)‘𝑃) ∨ (𝑅‘(𝐺 ∘ ◡𝐹)))) ⇒ ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑈 ∈ 𝐸 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐺 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝐹) ≠ (𝑅‘𝐺))) → ((𝑈‘𝐺)‘𝑃) = 𝑆) | ||
Theorem | cdlemj1 40298 | Part of proof of Lemma J of [Crawley] p. 118. (Contributed by NM, 19-Jun-2013.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) & ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐴 = (Atoms‘𝐾) ⇒ ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ (𝑈‘𝐹) = (𝑉‘𝐹)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ ℎ ∈ 𝑇)) ∧ (ℎ ≠ ( I ↾ 𝐵) ∧ 𝑔 ∈ 𝑇 ∧ 𝑔 ≠ ( I ↾ 𝐵)) ∧ ((𝑅‘𝐹) ≠ (𝑅‘𝑔) ∧ (𝑅‘𝑔) ≠ (𝑅‘ℎ) ∧ (𝑝 ∈ 𝐴 ∧ ¬ 𝑝 ≤ 𝑊))) → ((𝑈‘ℎ)‘𝑝) = ((𝑉‘ℎ)‘𝑝)) | ||
Theorem | cdlemj2 40299 | Part of proof of Lemma J of [Crawley] p. 118. Eliminate 𝑝. (Contributed by NM, 20-Jun-2013.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) & ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) ⇒ ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ (𝑈‘𝐹) = (𝑉‘𝐹)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ ℎ ∈ 𝑇)) ∧ (ℎ ≠ ( I ↾ 𝐵) ∧ 𝑔 ∈ 𝑇 ∧ 𝑔 ≠ ( I ↾ 𝐵)) ∧ ((𝑅‘𝐹) ≠ (𝑅‘𝑔) ∧ (𝑅‘𝑔) ≠ (𝑅‘ℎ))) → (𝑈‘ℎ) = (𝑉‘ℎ)) | ||
Theorem | cdlemj3 40300 | Part of proof of Lemma J of [Crawley] p. 118. Eliminate 𝑔. (Contributed by NM, 20-Jun-2013.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) & ⊢ 𝑅 = ((trL‘𝐾)‘𝑊) & ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) ⇒ ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ (𝑈‘𝐹) = (𝑉‘𝐹)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵) ∧ ℎ ∈ 𝑇)) ∧ ℎ ≠ ( I ↾ 𝐵)) → (𝑈‘ℎ) = (𝑉‘ℎ)) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |