![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > df-euf | Structured version Visualization version GIF version |
Description: Define the Euclidean function. (Contributed by Thierry Arnoux, 22-Mar-2025.) Use its index-independent form eufid 32970 instead. (New usage is discouraged.) |
Ref | Expression |
---|---|
df-euf | ⊢ EuclF = Slot ;21 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ceuf 32967 | . 2 class EuclF | |
2 | c2 12298 | . . . 4 class 2 | |
3 | c1 11140 | . . . 4 class 1 | |
4 | 2, 3 | cdc 12708 | . . 3 class ;21 |
5 | 4 | cslot 17150 | . 2 class Slot ;21 |
6 | 1, 5 | wceq 1534 | 1 wff EuclF = Slot ;21 |
Colors of variables: wff setvar class |
This definition is referenced by: eufndx 32969 eufid 32970 |
Copyright terms: Public domain | W3C validator |