| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > df-euf | Structured version Visualization version GIF version | ||
| Description: Define the Euclidean function. (Contributed by Thierry Arnoux, 22-Mar-2025.) Use its index-independent form eufid 33231 instead. (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| df-euf | ⊢ EuclF = Slot ;21 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ceuf 33228 | . 2 class EuclF | |
| 2 | c2 12293 | . . . 4 class 2 | |
| 3 | c1 11128 | . . . 4 class 1 | |
| 4 | 2, 3 | cdc 12706 | . . 3 class ;21 |
| 5 | 4 | cslot 17198 | . 2 class Slot ;21 |
| 6 | 1, 5 | wceq 1540 | 1 wff EuclF = Slot ;21 |
| Colors of variables: wff setvar class |
| This definition is referenced by: eufndx 33230 eufid 33231 |
| Copyright terms: Public domain | W3C validator |