| Metamath
Proof Explorer Theorem List (p. 330 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30880) |
(30881-32403) |
(32404-49791) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | s3f1 32901 | Conditions for a length 3 string to be a one-to-one function. (Contributed by Thierry Arnoux, 19-Sep-2023.) |
| ⊢ (𝜑 → 𝐼 ∈ 𝐷) & ⊢ (𝜑 → 𝐽 ∈ 𝐷) & ⊢ (𝜑 → 𝐾 ∈ 𝐷) & ⊢ (𝜑 → 𝐼 ≠ 𝐽) & ⊢ (𝜑 → 𝐽 ≠ 𝐾) & ⊢ (𝜑 → 𝐾 ≠ 𝐼) ⇒ ⊢ (𝜑 → 〈“𝐼𝐽𝐾”〉:dom 〈“𝐼𝐽𝐾”〉–1-1→𝐷) | ||
| Theorem | s3clhash 32902 | Closure of the words of length 3 in a preimage using the hash function. (Contributed by Thierry Arnoux, 27-Sep-2023.) |
| ⊢ 〈“𝐼𝐽𝐾”〉 ∈ (◡♯ “ {3}) | ||
| Theorem | ccatf1 32903 | Conditions for a concatenation to be injective. (Contributed by Thierry Arnoux, 11-Dec-2023.) |
| ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → 𝐴 ∈ Word 𝑆) & ⊢ (𝜑 → 𝐵 ∈ Word 𝑆) & ⊢ (𝜑 → 𝐴:dom 𝐴–1-1→𝑆) & ⊢ (𝜑 → 𝐵:dom 𝐵–1-1→𝑆) & ⊢ (𝜑 → (ran 𝐴 ∩ ran 𝐵) = ∅) ⇒ ⊢ (𝜑 → (𝐴 ++ 𝐵):dom (𝐴 ++ 𝐵)–1-1→𝑆) | ||
| Theorem | ccatdmss 32904 | The domain of a concatenated word is a superset of the domain of the first word. (Contributed by Thierry Arnoux, 19-Jun-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ Word 𝑆) & ⊢ (𝜑 → 𝐵 ∈ Word 𝑆) ⇒ ⊢ (𝜑 → dom 𝐴 ⊆ dom (𝐴 ++ 𝐵)) | ||
| Theorem | pfxlsw2ccat 32905 | Reconstruct a word from its prefix and its last two symbols. (Contributed by Thierry Arnoux, 26-Sep-2023.) |
| ⊢ 𝑁 = (♯‘𝑊) ⇒ ⊢ ((𝑊 ∈ Word 𝑉 ∧ 2 ≤ 𝑁) → 𝑊 = ((𝑊 prefix (𝑁 − 2)) ++ 〈“(𝑊‘(𝑁 − 2))(𝑊‘(𝑁 − 1))”〉)) | ||
| Theorem | ccatws1f1o 32906 | Conditions for the concatenation of a word and a singleton word to be bijective. (Contributed by Thierry Arnoux, 27-May-2025.) |
| ⊢ 𝑁 = (♯‘𝑇) & ⊢ 𝐽 = (0..^(𝑁 + 1)) & ⊢ (𝜑 → 𝑇:(0..^𝑁)–1-1-onto→(0..^𝑁)) ⇒ ⊢ (𝜑 → (𝑇 ++ 〈“𝑁”〉):𝐽–1-1-onto→𝐽) | ||
| Theorem | ccatws1f1olast 32907 | Two ways to reorder symbols in a word 𝑊 according to permutation 𝑇, and add a last symbol 𝑋. (Contributed by Thierry Arnoux, 27-May-2025.) |
| ⊢ 𝑁 = (♯‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ Word 𝑆) & ⊢ (𝜑 → 𝑋 ∈ 𝑆) & ⊢ (𝜑 → 𝑇:(0..^𝑁)–1-1-onto→(0..^𝑁)) ⇒ ⊢ (𝜑 → ((𝑊 ++ 〈“𝑋”〉) ∘ (𝑇 ++ 〈“𝑁”〉)) = ((𝑊 ∘ 𝑇) ++ 〈“𝑋”〉)) | ||
| Theorem | wrdt2ind 32908* | Perform an induction over the structure of a word of even length. (Contributed by Thierry Arnoux, 26-Sep-2023.) |
| ⊢ (𝑥 = ∅ → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 = (𝑦 ++ 〈“𝑖𝑗”〉) → (𝜑 ↔ 𝜃)) & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) & ⊢ 𝜓 & ⊢ ((𝑦 ∈ Word 𝐵 ∧ 𝑖 ∈ 𝐵 ∧ 𝑗 ∈ 𝐵) → (𝜒 → 𝜃)) ⇒ ⊢ ((𝐴 ∈ Word 𝐵 ∧ 2 ∥ (♯‘𝐴)) → 𝜏) | ||
| Theorem | swrdrn2 32909 | The range of a subword is a subset of the range of that word. Stronger version of swrdrn 14577. (Contributed by Thierry Arnoux, 12-Dec-2023.) |
| ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) → ran (𝑊 substr 〈𝑀, 𝑁〉) ⊆ ran 𝑊) | ||
| Theorem | swrdrn3 32910 | Express the range of a subword. Stronger version of swrdrn2 32909. (Contributed by Thierry Arnoux, 13-Dec-2023.) |
| ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ (0...𝑁) ∧ 𝑁 ∈ (0...(♯‘𝑊))) → ran (𝑊 substr 〈𝑀, 𝑁〉) = (𝑊 “ (𝑀..^𝑁))) | ||
| Theorem | swrdf1 32911 | Condition for a subword to be injective. (Contributed by Thierry Arnoux, 12-Dec-2023.) |
| ⊢ (𝜑 → 𝑊 ∈ Word 𝐷) & ⊢ (𝜑 → 𝑀 ∈ (0...𝑁)) & ⊢ (𝜑 → 𝑁 ∈ (0...(♯‘𝑊))) & ⊢ (𝜑 → 𝑊:dom 𝑊–1-1→𝐷) ⇒ ⊢ (𝜑 → (𝑊 substr 〈𝑀, 𝑁〉):dom (𝑊 substr 〈𝑀, 𝑁〉)–1-1→𝐷) | ||
| Theorem | swrdrndisj 32912 | Condition for the range of two subwords of an injective word to be disjoint. (Contributed by Thierry Arnoux, 13-Dec-2023.) |
| ⊢ (𝜑 → 𝑊 ∈ Word 𝐷) & ⊢ (𝜑 → 𝑀 ∈ (0...𝑁)) & ⊢ (𝜑 → 𝑁 ∈ (0...(♯‘𝑊))) & ⊢ (𝜑 → 𝑊:dom 𝑊–1-1→𝐷) & ⊢ (𝜑 → 𝑂 ∈ (𝑁...𝑃)) & ⊢ (𝜑 → 𝑃 ∈ (𝑁...(♯‘𝑊))) ⇒ ⊢ (𝜑 → (ran (𝑊 substr 〈𝑀, 𝑁〉) ∩ ran (𝑊 substr 〈𝑂, 𝑃〉)) = ∅) | ||
| Theorem | splfv3 32913 | Symbols to the right of a splice are unaffected. (Contributed by Thierry Arnoux, 14-Dec-2023.) |
| ⊢ (𝜑 → 𝑆 ∈ Word 𝐴) & ⊢ (𝜑 → 𝐹 ∈ (0...𝑇)) & ⊢ (𝜑 → 𝑇 ∈ (0...(♯‘𝑆))) & ⊢ (𝜑 → 𝑅 ∈ Word 𝐴) & ⊢ (𝜑 → 𝑋 ∈ (0..^((♯‘𝑆) − 𝑇))) & ⊢ (𝜑 → 𝐾 = (𝐹 + (♯‘𝑅))) ⇒ ⊢ (𝜑 → ((𝑆 splice 〈𝐹, 𝑇, 𝑅〉)‘(𝑋 + 𝐾)) = (𝑆‘(𝑋 + 𝑇))) | ||
| Theorem | 1cshid 32914 | Cyclically shifting a single letter word keeps it unchanged. (Contributed by Thierry Arnoux, 21-Nov-2023.) |
| ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ ∧ (♯‘𝑊) = 1) → (𝑊 cyclShift 𝑁) = 𝑊) | ||
| Theorem | cshw1s2 32915 | Cyclically shifting a length 2 word swaps its symbols. (Contributed by Thierry Arnoux, 19-Sep-2023.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (〈“𝐴𝐵”〉 cyclShift 1) = 〈“𝐵𝐴”〉) | ||
| Theorem | cshwrnid 32916 | Cyclically shifting a word preserves its range. (Contributed by Thierry Arnoux, 19-Sep-2023.) |
| ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ) → ran (𝑊 cyclShift 𝑁) = ran 𝑊) | ||
| Theorem | cshf1o 32917 | Condition for the cyclic shift to be a bijection. (Contributed by Thierry Arnoux, 4-Oct-2023.) |
| ⊢ ((𝑊 ∈ Word 𝐷 ∧ 𝑊:dom 𝑊–1-1→𝐷 ∧ 𝑁 ∈ ℤ) → (𝑊 cyclShift 𝑁):dom 𝑊–1-1-onto→ran 𝑊) | ||
| Theorem | ressplusf 32918 | The group operation function +𝑓 of a structure's restriction is the operation function's restriction to the new base. (Contributed by Thierry Arnoux, 26-Mar-2017.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝐻 = (𝐺 ↾s 𝐴) & ⊢ ⨣ = (+g‘𝐺) & ⊢ ⨣ Fn (𝐵 × 𝐵) & ⊢ 𝐴 ⊆ 𝐵 ⇒ ⊢ (+𝑓‘𝐻) = ( ⨣ ↾ (𝐴 × 𝐴)) | ||
| Theorem | ressnm 32919 | The norm in a restricted structure. (Contributed by Thierry Arnoux, 8-Oct-2017.) |
| ⊢ 𝐻 = (𝐺 ↾s 𝐴) & ⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ 𝑁 = (norm‘𝐺) ⇒ ⊢ ((𝐺 ∈ Mnd ∧ 0 ∈ 𝐴 ∧ 𝐴 ⊆ 𝐵) → (𝑁 ↾ 𝐴) = (norm‘𝐻)) | ||
| Theorem | abvpropd2 32920 | Weaker version of abvpropd 20738. (Contributed by Thierry Arnoux, 8-Nov-2017.) |
| ⊢ (𝜑 → (Base‘𝐾) = (Base‘𝐿)) & ⊢ (𝜑 → (+g‘𝐾) = (+g‘𝐿)) & ⊢ (𝜑 → (.r‘𝐾) = (.r‘𝐿)) ⇒ ⊢ (𝜑 → (AbsVal‘𝐾) = (AbsVal‘𝐿)) | ||
| Theorem | ressprs 32921 | The restriction of a proset is a proset. (Contributed by Thierry Arnoux, 11-Sep-2015.) |
| ⊢ 𝐵 = (Base‘𝐾) ⇒ ⊢ ((𝐾 ∈ Proset ∧ 𝐴 ⊆ 𝐵) → (𝐾 ↾s 𝐴) ∈ Proset ) | ||
| Theorem | posrasymb 32922 | A poset ordering is asymetric. (Contributed by Thierry Arnoux, 13-Sep-2018.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = ((le‘𝐾) ∩ (𝐵 × 𝐵)) ⇒ ⊢ ((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑋) ↔ 𝑋 = 𝑌)) | ||
| Theorem | odutos 32923 | Being a toset is a self-dual property. (Contributed by Thierry Arnoux, 13-Sep-2018.) |
| ⊢ 𝐷 = (ODual‘𝐾) ⇒ ⊢ (𝐾 ∈ Toset → 𝐷 ∈ Toset) | ||
| Theorem | tlt2 32924 | In a Toset, two elements must compare. (Contributed by Thierry Arnoux, 13-Apr-2018.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ < = (lt‘𝐾) ⇒ ⊢ ((𝐾 ∈ Toset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ 𝑌 ∨ 𝑌 < 𝑋)) | ||
| Theorem | tlt3 32925 | In a Toset, two elements must compare strictly, or be equal. (Contributed by Thierry Arnoux, 13-Apr-2018.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ < = (lt‘𝐾) ⇒ ⊢ ((𝐾 ∈ Toset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 = 𝑌 ∨ 𝑋 < 𝑌 ∨ 𝑌 < 𝑋)) | ||
| Theorem | trleile 32926 | In a Toset, two elements must compare. (Contributed by Thierry Arnoux, 12-Sep-2018.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = ((le‘𝐾) ∩ (𝐵 × 𝐵)) ⇒ ⊢ ((𝐾 ∈ Toset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ 𝑌 ∨ 𝑌 ≤ 𝑋)) | ||
| Theorem | toslublem 32927* | Lemma for toslub 32928 and xrsclat 32978. (Contributed by Thierry Arnoux, 17-Feb-2018.) (Revised by NM, 15-Sep-2018.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ < = (lt‘𝐾) & ⊢ (𝜑 → 𝐾 ∈ Toset) & ⊢ (𝜑 → 𝐴 ⊆ 𝐵) & ⊢ ≤ = (le‘𝐾) ⇒ ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → ((∀𝑏 ∈ 𝐴 𝑏 ≤ 𝑎 ∧ ∀𝑐 ∈ 𝐵 (∀𝑏 ∈ 𝐴 𝑏 ≤ 𝑐 → 𝑎 ≤ 𝑐)) ↔ (∀𝑏 ∈ 𝐴 ¬ 𝑎 < 𝑏 ∧ ∀𝑏 ∈ 𝐵 (𝑏 < 𝑎 → ∃𝑑 ∈ 𝐴 𝑏 < 𝑑)))) | ||
| Theorem | toslub 32928 | In a toset, the lowest upper bound lub, defined for partial orders is the supremum, sup(𝐴, 𝐵, < ), defined for total orders. (these are the set.mm definitions: lowest upper bound and supremum are normally synonymous). Note that those two values are also equal if such a supremum does not exist: in that case, both are equal to the empty set. (Contributed by Thierry Arnoux, 15-Feb-2018.) (Revised by Thierry Arnoux, 24-Sep-2018.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ < = (lt‘𝐾) & ⊢ (𝜑 → 𝐾 ∈ Toset) & ⊢ (𝜑 → 𝐴 ⊆ 𝐵) ⇒ ⊢ (𝜑 → ((lub‘𝐾)‘𝐴) = sup(𝐴, 𝐵, < )) | ||
| Theorem | tosglblem 32929* | Lemma for tosglb 32930 and xrsclat 32978. (Contributed by Thierry Arnoux, 17-Feb-2018.) (Revised by NM, 15-Sep-2018.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ < = (lt‘𝐾) & ⊢ (𝜑 → 𝐾 ∈ Toset) & ⊢ (𝜑 → 𝐴 ⊆ 𝐵) & ⊢ ≤ = (le‘𝐾) ⇒ ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → ((∀𝑏 ∈ 𝐴 𝑎 ≤ 𝑏 ∧ ∀𝑐 ∈ 𝐵 (∀𝑏 ∈ 𝐴 𝑐 ≤ 𝑏 → 𝑐 ≤ 𝑎)) ↔ (∀𝑏 ∈ 𝐴 ¬ 𝑎◡ < 𝑏 ∧ ∀𝑏 ∈ 𝐵 (𝑏◡ < 𝑎 → ∃𝑑 ∈ 𝐴 𝑏◡ < 𝑑)))) | ||
| Theorem | tosglb 32930 | Same theorem as toslub 32928, for infinimum. (Contributed by Thierry Arnoux, 17-Feb-2018.) (Revised by AV, 28-Sep-2020.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ < = (lt‘𝐾) & ⊢ (𝜑 → 𝐾 ∈ Toset) & ⊢ (𝜑 → 𝐴 ⊆ 𝐵) ⇒ ⊢ (𝜑 → ((glb‘𝐾)‘𝐴) = inf(𝐴, 𝐵, < )) | ||
| Theorem | clatp0cl 32931 | The poset zero of a complete lattice belongs to its base. (Contributed by Thierry Arnoux, 17-Feb-2018.) |
| ⊢ 𝐵 = (Base‘𝑊) & ⊢ 0 = (0.‘𝑊) ⇒ ⊢ (𝑊 ∈ CLat → 0 ∈ 𝐵) | ||
| Theorem | clatp1cl 32932 | The poset one of a complete lattice belongs to its base. (Contributed by Thierry Arnoux, 17-Feb-2018.) |
| ⊢ 𝐵 = (Base‘𝑊) & ⊢ 1 = (1.‘𝑊) ⇒ ⊢ (𝑊 ∈ CLat → 1 ∈ 𝐵) | ||
| Syntax | cmnt 32933 | Extend class notation with monotone functions. |
| class Monot | ||
| Syntax | cmgc 32934 | Extend class notation with the monotone Galois connection. |
| class MGalConn | ||
| Definition | df-mnt 32935* | Define a monotone function between two ordered sets. (Contributed by Thierry Arnoux, 20-Apr-2024.) |
| ⊢ Monot = (𝑣 ∈ V, 𝑤 ∈ V ↦ ⦋(Base‘𝑣) / 𝑎⦌{𝑓 ∈ ((Base‘𝑤) ↑m 𝑎) ∣ ∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑎 (𝑥(le‘𝑣)𝑦 → (𝑓‘𝑥)(le‘𝑤)(𝑓‘𝑦))}) | ||
| Definition | df-mgc 32936* | Define monotone Galois connections. See mgcval 32942 for an expanded version. (Contributed by Thierry Arnoux, 20-Apr-2024.) |
| ⊢ MGalConn = (𝑣 ∈ V, 𝑤 ∈ V ↦ ⦋(Base‘𝑣) / 𝑎⦌⦋(Base‘𝑤) / 𝑏⦌{〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ (𝑏 ↑m 𝑎) ∧ 𝑔 ∈ (𝑎 ↑m 𝑏)) ∧ ∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑏 ((𝑓‘𝑥)(le‘𝑤)𝑦 ↔ 𝑥(le‘𝑣)(𝑔‘𝑦)))}) | ||
| Theorem | mntoval 32937* | Operation value of the monotone function. (Contributed by Thierry Arnoux, 23-Apr-2024.) |
| ⊢ 𝐴 = (Base‘𝑉) & ⊢ 𝐵 = (Base‘𝑊) & ⊢ ≤ = (le‘𝑉) & ⊢ ≲ = (le‘𝑊) ⇒ ⊢ ((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) → (𝑉Monot𝑊) = {𝑓 ∈ (𝐵 ↑m 𝐴) ∣ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝑓‘𝑥) ≲ (𝑓‘𝑦))}) | ||
| Theorem | ismnt 32938* | Express the statement "𝐹 is monotone". (Contributed by Thierry Arnoux, 23-Apr-2024.) |
| ⊢ 𝐴 = (Base‘𝑉) & ⊢ 𝐵 = (Base‘𝑊) & ⊢ ≤ = (le‘𝑉) & ⊢ ≲ = (le‘𝑊) ⇒ ⊢ ((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) → (𝐹 ∈ (𝑉Monot𝑊) ↔ (𝐹:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≲ (𝐹‘𝑦))))) | ||
| Theorem | ismntd 32939 | Property of being a monotone increasing function, deduction version. (Contributed by Thierry Arnoux, 24-Apr-2024.) |
| ⊢ 𝐴 = (Base‘𝑉) & ⊢ 𝐵 = (Base‘𝑊) & ⊢ ≤ = (le‘𝑉) & ⊢ ≲ = (le‘𝑊) & ⊢ (𝜑 → 𝑉 ∈ 𝐶) & ⊢ (𝜑 → 𝑊 ∈ 𝐷) & ⊢ (𝜑 → 𝐹 ∈ (𝑉Monot𝑊)) & ⊢ (𝜑 → 𝑋 ∈ 𝐴) & ⊢ (𝜑 → 𝑌 ∈ 𝐴) & ⊢ (𝜑 → 𝑋 ≤ 𝑌) ⇒ ⊢ (𝜑 → (𝐹‘𝑋) ≲ (𝐹‘𝑌)) | ||
| Theorem | mntf 32940 | A monotone function is a function. (Contributed by Thierry Arnoux, 24-Apr-2024.) |
| ⊢ 𝐴 = (Base‘𝑉) & ⊢ 𝐵 = (Base‘𝑊) ⇒ ⊢ ((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌 ∧ 𝐹 ∈ (𝑉Monot𝑊)) → 𝐹:𝐴⟶𝐵) | ||
| Theorem | mgcoval 32941* | Operation value of the monotone Galois connection. (Contributed by Thierry Arnoux, 23-Apr-2024.) |
| ⊢ 𝐴 = (Base‘𝑉) & ⊢ 𝐵 = (Base‘𝑊) & ⊢ ≤ = (le‘𝑉) & ⊢ ≲ = (le‘𝑊) ⇒ ⊢ ((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) → (𝑉MGalConn𝑊) = {〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ (𝐵 ↑m 𝐴) ∧ 𝑔 ∈ (𝐴 ↑m 𝐵)) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ((𝑓‘𝑥) ≲ 𝑦 ↔ 𝑥 ≤ (𝑔‘𝑦)))}) | ||
| Theorem | mgcval 32942* |
Monotone Galois connection between two functions 𝐹 and 𝐺. If
this relation is satisfied, 𝐹 is called the lower adjoint of 𝐺,
and 𝐺 is called the upper adjoint of 𝐹.
Technically, this is implemented as an operation taking a pair of structures 𝑉 and 𝑊, expected to be posets, which gives a relation between pairs of functions 𝐹 and 𝐺. If such a relation exists, it can be proven to be unique. Galois connections generalize the fundamental theorem of Galois theory about the correspondence between subgroups and subfields. (Contributed by Thierry Arnoux, 23-Apr-2024.) |
| ⊢ 𝐴 = (Base‘𝑉) & ⊢ 𝐵 = (Base‘𝑊) & ⊢ ≤ = (le‘𝑉) & ⊢ ≲ = (le‘𝑊) & ⊢ 𝐻 = (𝑉MGalConn𝑊) & ⊢ (𝜑 → 𝑉 ∈ Proset ) & ⊢ (𝜑 → 𝑊 ∈ Proset ) ⇒ ⊢ (𝜑 → (𝐹𝐻𝐺 ↔ ((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐵⟶𝐴) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ((𝐹‘𝑥) ≲ 𝑦 ↔ 𝑥 ≤ (𝐺‘𝑦))))) | ||
| Theorem | mgcf1 32943 | The lower adjoint 𝐹 of a Galois connection is a function. (Contributed by Thierry Arnoux, 24-Apr-2024.) |
| ⊢ 𝐴 = (Base‘𝑉) & ⊢ 𝐵 = (Base‘𝑊) & ⊢ ≤ = (le‘𝑉) & ⊢ ≲ = (le‘𝑊) & ⊢ 𝐻 = (𝑉MGalConn𝑊) & ⊢ (𝜑 → 𝑉 ∈ Proset ) & ⊢ (𝜑 → 𝑊 ∈ Proset ) & ⊢ (𝜑 → 𝐹𝐻𝐺) ⇒ ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | ||
| Theorem | mgcf2 32944 | The upper adjoint 𝐺 of a Galois connection is a function. (Contributed by Thierry Arnoux, 24-Apr-2024.) |
| ⊢ 𝐴 = (Base‘𝑉) & ⊢ 𝐵 = (Base‘𝑊) & ⊢ ≤ = (le‘𝑉) & ⊢ ≲ = (le‘𝑊) & ⊢ 𝐻 = (𝑉MGalConn𝑊) & ⊢ (𝜑 → 𝑉 ∈ Proset ) & ⊢ (𝜑 → 𝑊 ∈ Proset ) & ⊢ (𝜑 → 𝐹𝐻𝐺) ⇒ ⊢ (𝜑 → 𝐺:𝐵⟶𝐴) | ||
| Theorem | mgccole1 32945 | An inequality for the kernel operator 𝐺 ∘ 𝐹. (Contributed by Thierry Arnoux, 26-Apr-2024.) |
| ⊢ 𝐴 = (Base‘𝑉) & ⊢ 𝐵 = (Base‘𝑊) & ⊢ ≤ = (le‘𝑉) & ⊢ ≲ = (le‘𝑊) & ⊢ 𝐻 = (𝑉MGalConn𝑊) & ⊢ (𝜑 → 𝑉 ∈ Proset ) & ⊢ (𝜑 → 𝑊 ∈ Proset ) & ⊢ (𝜑 → 𝐹𝐻𝐺) & ⊢ (𝜑 → 𝑋 ∈ 𝐴) ⇒ ⊢ (𝜑 → 𝑋 ≤ (𝐺‘(𝐹‘𝑋))) | ||
| Theorem | mgccole2 32946 | Inequality for the closure operator (𝐹 ∘ 𝐺) of the Galois connection 𝐻. (Contributed by Thierry Arnoux, 26-Apr-2024.) |
| ⊢ 𝐴 = (Base‘𝑉) & ⊢ 𝐵 = (Base‘𝑊) & ⊢ ≤ = (le‘𝑉) & ⊢ ≲ = (le‘𝑊) & ⊢ 𝐻 = (𝑉MGalConn𝑊) & ⊢ (𝜑 → 𝑉 ∈ Proset ) & ⊢ (𝜑 → 𝑊 ∈ Proset ) & ⊢ (𝜑 → 𝐹𝐻𝐺) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐹‘(𝐺‘𝑌)) ≲ 𝑌) | ||
| Theorem | mgcmnt1 32947 | The lower adjoint 𝐹 of a Galois connection is monotonically increasing. (Contributed by Thierry Arnoux, 26-Apr-2024.) |
| ⊢ 𝐴 = (Base‘𝑉) & ⊢ 𝐵 = (Base‘𝑊) & ⊢ ≤ = (le‘𝑉) & ⊢ ≲ = (le‘𝑊) & ⊢ 𝐻 = (𝑉MGalConn𝑊) & ⊢ (𝜑 → 𝑉 ∈ Proset ) & ⊢ (𝜑 → 𝑊 ∈ Proset ) & ⊢ (𝜑 → 𝐹𝐻𝐺) & ⊢ (𝜑 → 𝑋 ∈ 𝐴) & ⊢ (𝜑 → 𝑌 ∈ 𝐴) & ⊢ (𝜑 → 𝑋 ≤ 𝑌) ⇒ ⊢ (𝜑 → (𝐹‘𝑋) ≲ (𝐹‘𝑌)) | ||
| Theorem | mgcmnt2 32948 | The upper adjoint 𝐺 of a Galois connection is monotonically increasing. (Contributed by Thierry Arnoux, 26-Apr-2024.) |
| ⊢ 𝐴 = (Base‘𝑉) & ⊢ 𝐵 = (Base‘𝑊) & ⊢ ≤ = (le‘𝑉) & ⊢ ≲ = (le‘𝑊) & ⊢ 𝐻 = (𝑉MGalConn𝑊) & ⊢ (𝜑 → 𝑉 ∈ Proset ) & ⊢ (𝜑 → 𝑊 ∈ Proset ) & ⊢ (𝜑 → 𝐹𝐻𝐺) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑋 ≲ 𝑌) ⇒ ⊢ (𝜑 → (𝐺‘𝑋) ≤ (𝐺‘𝑌)) | ||
| Theorem | mgcmntco 32949* | A Galois connection like statement, for two functions with same range. (Contributed by Thierry Arnoux, 26-Apr-2024.) |
| ⊢ 𝐴 = (Base‘𝑉) & ⊢ 𝐵 = (Base‘𝑊) & ⊢ ≤ = (le‘𝑉) & ⊢ ≲ = (le‘𝑊) & ⊢ 𝐻 = (𝑉MGalConn𝑊) & ⊢ (𝜑 → 𝑉 ∈ Proset ) & ⊢ (𝜑 → 𝑊 ∈ Proset ) & ⊢ (𝜑 → 𝐹𝐻𝐺) & ⊢ 𝐶 = (Base‘𝑋) & ⊢ < = (le‘𝑋) & ⊢ (𝜑 → 𝑋 ∈ Proset ) & ⊢ (𝜑 → 𝐾 ∈ (𝑉Monot𝑋)) & ⊢ (𝜑 → 𝐿 ∈ (𝑊Monot𝑋)) ⇒ ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 (𝐾‘𝑥) < (𝐿‘(𝐹‘𝑥)) ↔ ∀𝑦 ∈ 𝐵 (𝐾‘(𝐺‘𝑦)) < (𝐿‘𝑦))) | ||
| Theorem | dfmgc2lem 32950* | Lemma for dfmgc2, backwards direction. (Contributed by Thierry Arnoux, 26-Apr-2024.) |
| ⊢ 𝐴 = (Base‘𝑉) & ⊢ 𝐵 = (Base‘𝑊) & ⊢ ≤ = (le‘𝑉) & ⊢ ≲ = (le‘𝑊) & ⊢ 𝐻 = (𝑉MGalConn𝑊) & ⊢ (𝜑 → 𝑉 ∈ Proset ) & ⊢ (𝜑 → 𝑊 ∈ Proset ) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ (𝜑 → 𝐺:𝐵⟶𝐴) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≲ (𝐹‘𝑦))) & ⊢ (𝜑 → ∀𝑢 ∈ 𝐵 ∀𝑣 ∈ 𝐵 (𝑢 ≲ 𝑣 → (𝐺‘𝑢) ≤ (𝐺‘𝑣))) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ≤ (𝐺‘(𝐹‘𝑥))) & ⊢ ((𝜑 ∧ 𝑢 ∈ 𝐵) → (𝐹‘(𝐺‘𝑢)) ≲ 𝑢) ⇒ ⊢ (𝜑 → 𝐹𝐻𝐺) | ||
| Theorem | dfmgc2 32951* | Alternate definition of the monotone Galois connection. (Contributed by Thierry Arnoux, 26-Apr-2024.) |
| ⊢ 𝐴 = (Base‘𝑉) & ⊢ 𝐵 = (Base‘𝑊) & ⊢ ≤ = (le‘𝑉) & ⊢ ≲ = (le‘𝑊) & ⊢ 𝐻 = (𝑉MGalConn𝑊) & ⊢ (𝜑 → 𝑉 ∈ Proset ) & ⊢ (𝜑 → 𝑊 ∈ Proset ) ⇒ ⊢ (𝜑 → (𝐹𝐻𝐺 ↔ ((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐵⟶𝐴) ∧ ((∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≲ (𝐹‘𝑦)) ∧ ∀𝑢 ∈ 𝐵 ∀𝑣 ∈ 𝐵 (𝑢 ≲ 𝑣 → (𝐺‘𝑢) ≤ (𝐺‘𝑣))) ∧ (∀𝑢 ∈ 𝐵 (𝐹‘(𝐺‘𝑢)) ≲ 𝑢 ∧ ∀𝑥 ∈ 𝐴 𝑥 ≤ (𝐺‘(𝐹‘𝑥))))))) | ||
| Theorem | mgcmnt1d 32952 | Galois connection implies monotonicity of the left adjoint. (Contributed by Thierry Arnoux, 21-Jul-2024.) |
| ⊢ 𝐻 = (𝑉MGalConn𝑊) & ⊢ (𝜑 → 𝑉 ∈ Proset ) & ⊢ (𝜑 → 𝑊 ∈ Proset ) & ⊢ (𝜑 → 𝐹𝐻𝐺) ⇒ ⊢ (𝜑 → 𝐹 ∈ (𝑉Monot𝑊)) | ||
| Theorem | mgcmnt2d 32953 | Galois connection implies monotonicity of the right adjoint. (Contributed by Thierry Arnoux, 21-Jul-2024.) |
| ⊢ 𝐻 = (𝑉MGalConn𝑊) & ⊢ (𝜑 → 𝑉 ∈ Proset ) & ⊢ (𝜑 → 𝑊 ∈ Proset ) & ⊢ (𝜑 → 𝐹𝐻𝐺) ⇒ ⊢ (𝜑 → 𝐺 ∈ (𝑊Monot𝑉)) | ||
| Theorem | mgccnv 32954 | The inverse Galois connection is the Galois connection of the dual orders. (Contributed by Thierry Arnoux, 26-Apr-2024.) |
| ⊢ 𝐻 = (𝑉MGalConn𝑊) & ⊢ 𝑀 = ((ODual‘𝑊)MGalConn(ODual‘𝑉)) ⇒ ⊢ ((𝑉 ∈ Proset ∧ 𝑊 ∈ Proset ) → (𝐹𝐻𝐺 ↔ 𝐺𝑀𝐹)) | ||
| Theorem | pwrssmgc 32955* | Given a function 𝐹, exhibit a Galois connection between subsets of its domain and subsets of its range. (Contributed by Thierry Arnoux, 26-Apr-2024.) |
| ⊢ 𝐺 = (𝑛 ∈ 𝒫 𝑌 ↦ (◡𝐹 “ 𝑛)) & ⊢ 𝐻 = (𝑚 ∈ 𝒫 𝑋 ↦ {𝑦 ∈ 𝑌 ∣ (◡𝐹 “ {𝑦}) ⊆ 𝑚}) & ⊢ 𝑉 = (toInc‘𝒫 𝑌) & ⊢ 𝑊 = (toInc‘𝒫 𝑋) & ⊢ (𝜑 → 𝑋 ∈ 𝐴) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝐹:𝑋⟶𝑌) ⇒ ⊢ (𝜑 → 𝐺(𝑉MGalConn𝑊)𝐻) | ||
| Theorem | mgcf1olem1 32956 | Property of a Galois connection, lemma for mgcf1o 32958. (Contributed by Thierry Arnoux, 26-Jul-2024.) |
| ⊢ 𝐻 = (𝑉MGalConn𝑊) & ⊢ 𝐴 = (Base‘𝑉) & ⊢ 𝐵 = (Base‘𝑊) & ⊢ ≤ = (le‘𝑉) & ⊢ ≲ = (le‘𝑊) & ⊢ (𝜑 → 𝑉 ∈ Poset) & ⊢ (𝜑 → 𝑊 ∈ Poset) & ⊢ (𝜑 → 𝐹𝐻𝐺) & ⊢ (𝜑 → 𝑋 ∈ 𝐴) ⇒ ⊢ (𝜑 → (𝐹‘(𝐺‘(𝐹‘𝑋))) = (𝐹‘𝑋)) | ||
| Theorem | mgcf1olem2 32957 | Property of a Galois connection, lemma for mgcf1o 32958. (Contributed by Thierry Arnoux, 26-Jul-2024.) |
| ⊢ 𝐻 = (𝑉MGalConn𝑊) & ⊢ 𝐴 = (Base‘𝑉) & ⊢ 𝐵 = (Base‘𝑊) & ⊢ ≤ = (le‘𝑉) & ⊢ ≲ = (le‘𝑊) & ⊢ (𝜑 → 𝑉 ∈ Poset) & ⊢ (𝜑 → 𝑊 ∈ Poset) & ⊢ (𝜑 → 𝐹𝐻𝐺) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐺‘(𝐹‘(𝐺‘𝑌))) = (𝐺‘𝑌)) | ||
| Theorem | mgcf1o 32958 | Given a Galois connection, exhibit an order isomorphism. (Contributed by Thierry Arnoux, 26-Jul-2024.) |
| ⊢ 𝐻 = (𝑉MGalConn𝑊) & ⊢ 𝐴 = (Base‘𝑉) & ⊢ 𝐵 = (Base‘𝑊) & ⊢ ≤ = (le‘𝑉) & ⊢ ≲ = (le‘𝑊) & ⊢ (𝜑 → 𝑉 ∈ Poset) & ⊢ (𝜑 → 𝑊 ∈ Poset) & ⊢ (𝜑 → 𝐹𝐻𝐺) ⇒ ⊢ (𝜑 → (𝐹 ↾ ran 𝐺) Isom ≤ , ≲ (ran 𝐺, ran 𝐹)) | ||
| Syntax | cchn 32959 | Extend class notation with the class of (finite) chains. |
| class ( < Chain𝐴) | ||
| Definition | df-chn 32960* | Define the class of (finite) chains. A chain is defined to be a sequence of objects, where each object is less than the next one in the sequence. The term "chain" is usually used in order theory. In the context of algebra, chains are often called "towers", for example for fields, or "series", for example for subgroup or subnormal series. (Contributed by Thierry Arnoux, 19-Jun-2025.) |
| ⊢ ( < Chain𝐴) = {𝑐 ∈ Word 𝐴 ∣ ∀𝑛 ∈ (dom 𝑐 ∖ {0})(𝑐‘(𝑛 − 1)) < (𝑐‘𝑛)} | ||
| Theorem | ischn 32961* | Property of being a chain. (Contributed by Thierry Arnoux, 19-Jun-2025.) |
| ⊢ (𝐶 ∈ ( < Chain𝐴) ↔ (𝐶 ∈ Word 𝐴 ∧ ∀𝑛 ∈ (dom 𝐶 ∖ {0})(𝐶‘(𝑛 − 1)) < (𝐶‘𝑛))) | ||
| Theorem | chnwrd 32962 | A chain is an ordered sequence, i.e. a word. (Contributed by Thierry Arnoux, 19-Jun-2025.) |
| ⊢ (𝜑 → 𝐶 ∈ ( < Chain𝐴)) ⇒ ⊢ (𝜑 → 𝐶 ∈ Word 𝐴) | ||
| Theorem | chnltm1 32963 | Basic property of a chain. (Contributed by Thierry Arnoux, 19-Jun-2025.) |
| ⊢ (𝜑 → 𝐶 ∈ ( < Chain𝐴)) & ⊢ (𝜑 → 𝑁 ∈ (dom 𝐶 ∖ {0})) ⇒ ⊢ (𝜑 → (𝐶‘(𝑁 − 1)) < (𝐶‘𝑁)) | ||
| Theorem | pfxchn 32964 | A prefix of a chain is still a chain. (Contributed by Thierry Arnoux, 19-Jun-2025.) |
| ⊢ (𝜑 → 𝐶 ∈ ( < Chain𝐴)) & ⊢ (𝜑 → 𝐿 ∈ (0...(♯‘𝐶))) ⇒ ⊢ (𝜑 → (𝐶 prefix 𝐿) ∈ ( < Chain𝐴)) | ||
| Theorem | s1chn 32965 | A singleton word is always a chain. (Contributed by Thierry Arnoux, 19-Oct-2025.) |
| ⊢ (𝜑 → 𝑋 ∈ 𝐴) ⇒ ⊢ (𝜑 → 〈“𝑋”〉 ∈ ( < Chain𝐴)) | ||
| Theorem | chnind 32966* | Induction over a chain. See nnind 12164 for an explanation about the hypotheses. (Contributed by Thierry Arnoux, 19-Jun-2025.) |
| ⊢ (𝑐 = ∅ → (𝜓 ↔ 𝜒)) & ⊢ (𝑐 = 𝑑 → (𝜓 ↔ 𝜃)) & ⊢ (𝑐 = (𝑑 ++ 〈“𝑥”〉) → (𝜓 ↔ 𝜏)) & ⊢ (𝑐 = 𝐶 → (𝜓 ↔ 𝜂)) & ⊢ (𝜑 → 𝐶 ∈ ( < Chain𝐴)) & ⊢ (𝜑 → 𝜒) & ⊢ (((((𝜑 ∧ 𝑑 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑑 = ∅ ∨ (lastS‘𝑑) < 𝑥)) ∧ 𝜃) → 𝜏) ⇒ ⊢ (𝜑 → 𝜂) | ||
| Theorem | chnub 32967 | In a chain, the last element is an upper bound. (Contributed by Thierry Arnoux, 19-Jun-2025.) |
| ⊢ (𝜑 → < Po 𝐴) & ⊢ (𝜑 → 𝐶 ∈ ( < Chain𝐴)) & ⊢ (𝜑 → 𝐼 ∈ (0..^((♯‘𝐶) − 1))) ⇒ ⊢ (𝜑 → (𝐶‘𝐼) < (lastS‘𝐶)) | ||
| Theorem | chnlt 32968 | Compare any two elements in a chain. (Contributed by Thierry Arnoux, 19-Jun-2025.) |
| ⊢ (𝜑 → < Po 𝐴) & ⊢ (𝜑 → 𝐶 ∈ ( < Chain𝐴)) & ⊢ (𝜑 → 𝐽 ∈ (0..^(♯‘𝐶))) & ⊢ (𝜑 → 𝐼 ∈ (0..^𝐽)) ⇒ ⊢ (𝜑 → (𝐶‘𝐼) < (𝐶‘𝐽)) | ||
| Theorem | chnso 32969 | A chain induces a total order. (Contributed by Thierry Arnoux, 19-Jun-2025.) |
| ⊢ (( < Po 𝐴 ∧ 𝐶 ∈ ( < Chain𝐴)) → < Or ran 𝐶) | ||
| Theorem | chnccats1 32970 | Extend a chain with a single element. (Contributed by Thierry Arnoux, 19-Oct-2025.) |
| ⊢ (𝜑 → 𝑋 ∈ 𝐴) & ⊢ (𝜑 → 𝑇 ∈ ( < Chain𝐴)) & ⊢ (𝜑 → (𝑇 = ∅ ∨ (lastS‘𝑇) < 𝑋)) ⇒ ⊢ (𝜑 → (𝑇 ++ 〈“𝑋”〉) ∈ ( < Chain𝐴)) | ||
| Axiom | ax-xrssca 32971 | Assume the scalar component of the extended real structure is the field of the real numbers (this has to be defined in the main body of set.mm). (Contributed by Thierry Arnoux, 22-Oct-2017.) |
| ⊢ ℝfld = (Scalar‘ℝ*𝑠) | ||
| Axiom | ax-xrsvsca 32972 | Assume the scalar product of the extended real structure is the extended real number multiplication operation (this has to be defined in the main body of set.mm). (Contributed by Thierry Arnoux, 22-Oct-2017.) |
| ⊢ ·e = ( ·𝑠 ‘ℝ*𝑠) | ||
| Theorem | xrs0 32973 | The zero of the extended real numbers. The extended real is not a group, as its addition is not associative. (cf. xaddass 13169 and df-xrs 17424), however it has a zero. (Contributed by Thierry Arnoux, 13-Jun-2017.) |
| ⊢ 0 = (0g‘ℝ*𝑠) | ||
| Theorem | xrslt 32974 | The "strictly less than" relation for the extended real structure. (Contributed by Thierry Arnoux, 30-Jan-2018.) |
| ⊢ < = (lt‘ℝ*𝑠) | ||
| Theorem | xrsinvgval 32975 | The inversion operation in the extended real numbers. The extended real is not a group, as its addition is not associative. (cf. xaddass 13169 and df-xrs 17424), however it has an inversion operation. (Contributed by Thierry Arnoux, 13-Jun-2017.) |
| ⊢ (𝐵 ∈ ℝ* → ((invg‘ℝ*𝑠)‘𝐵) = -𝑒𝐵) | ||
| Theorem | xrsmulgzz 32976 | The "multiple" function in the extended real numbers structure. (Contributed by Thierry Arnoux, 14-Jun-2017.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℝ*) → (𝐴(.g‘ℝ*𝑠)𝐵) = (𝐴 ·e 𝐵)) | ||
| Theorem | xrstos 32977 | The extended real numbers form a toset. (Contributed by Thierry Arnoux, 15-Feb-2018.) |
| ⊢ ℝ*𝑠 ∈ Toset | ||
| Theorem | xrsclat 32978 | The extended real numbers form a complete lattice. (Contributed by Thierry Arnoux, 15-Feb-2018.) |
| ⊢ ℝ*𝑠 ∈ CLat | ||
| Theorem | xrsp0 32979 | The poset 0 of the extended real numbers is minus infinity. (Contributed by Thierry Arnoux, 18-Feb-2018.) (Proof shortened by AV, 28-Sep-2020.) |
| ⊢ -∞ = (0.‘ℝ*𝑠) | ||
| Theorem | xrsp1 32980 | The poset 1 of the extended real numbers is plus infinity. (Contributed by Thierry Arnoux, 18-Feb-2018.) |
| ⊢ +∞ = (1.‘ℝ*𝑠) | ||
| Theorem | xrge00 32981 | The zero of the extended nonnegative real numbers monoid. (Contributed by Thierry Arnoux, 30-Jan-2017.) |
| ⊢ 0 = (0g‘(ℝ*𝑠 ↾s (0[,]+∞))) | ||
| Theorem | xrge0mulgnn0 32982 | The group multiple function in the extended nonnegative real numbers. (Contributed by Thierry Arnoux, 14-Jun-2017.) |
| ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ (0[,]+∞)) → (𝐴(.g‘(ℝ*𝑠 ↾s (0[,]+∞)))𝐵) = (𝐴 ·e 𝐵)) | ||
| Theorem | xrge0addass 32983 | Associativity of extended nonnegative real addition. (Contributed by Thierry Arnoux, 8-Jun-2017.) |
| ⊢ ((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) → ((𝐴 +𝑒 𝐵) +𝑒 𝐶) = (𝐴 +𝑒 (𝐵 +𝑒 𝐶))) | ||
| Theorem | xrge0addgt0 32984 | The sum of nonnegative and positive numbers is positive. See addgtge0 11626. (Contributed by Thierry Arnoux, 6-Jul-2017.) |
| ⊢ (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞)) ∧ 0 < 𝐴) → 0 < (𝐴 +𝑒 𝐵)) | ||
| Theorem | xrge0adddir 32985 | Right-distributivity of extended nonnegative real multiplication over addition. (Contributed by Thierry Arnoux, 30-Jun-2017.) |
| ⊢ ((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) → ((𝐴 +𝑒 𝐵) ·e 𝐶) = ((𝐴 ·e 𝐶) +𝑒 (𝐵 ·e 𝐶))) | ||
| Theorem | xrge0adddi 32986 | Left-distributivity of extended nonnegative real multiplication over addition. (Contributed by Thierry Arnoux, 6-Sep-2018.) |
| ⊢ ((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) → (𝐶 ·e (𝐴 +𝑒 𝐵)) = ((𝐶 ·e 𝐴) +𝑒 (𝐶 ·e 𝐵))) | ||
| Theorem | xrge0npcan 32987 | Extended nonnegative real version of npcan 11390. (Contributed by Thierry Arnoux, 9-Jun-2017.) |
| ⊢ ((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐵 ≤ 𝐴) → ((𝐴 +𝑒 -𝑒𝐵) +𝑒 𝐵) = 𝐴) | ||
| Theorem | fsumrp0cl 32988* | Closure of a finite sum of nonnegative reals. (Contributed by Thierry Arnoux, 25-Jun-2017.) |
| ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,)+∞)) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 ∈ (0[,)+∞)) | ||
| Theorem | mndcld 32989 | Closure of the operation of a monoid. (Contributed by Thierry Arnoux, 3-Aug-2025.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Mnd) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑋 + 𝑌) ∈ 𝐵) | ||
| Theorem | mndassd 32990 | A monoid operation is associative. (Contributed by Thierry Arnoux, 3-Aug-2025.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Mnd) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) ⇒ ⊢ (𝜑 → ((𝑋 + 𝑌) + 𝑍) = (𝑋 + (𝑌 + 𝑍))) | ||
| Theorem | mndlrinv 32991 | In a monoid, if an element 𝑋 has both a left inverse 𝑀 and a right inverse 𝑁, they are equal. (Contributed by Thierry Arnoux, 3-Aug-2025.) |
| ⊢ 𝐵 = (Base‘𝐸) & ⊢ 0 = (0g‘𝐸) & ⊢ + = (+g‘𝐸) & ⊢ (𝜑 → 𝐸 ∈ Mnd) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑀 ∈ 𝐵) & ⊢ (𝜑 → 𝑁 ∈ 𝐵) & ⊢ (𝜑 → (𝑀 + 𝑋) = 0 ) & ⊢ (𝜑 → (𝑋 + 𝑁) = 0 ) ⇒ ⊢ (𝜑 → 𝑀 = 𝑁) | ||
| Theorem | mndlrinvb 32992* | In a monoid, if an element has both a left-inverse and a right-inverse, they are equal. (Contributed by Thierry Arnoux, 3-Aug-2025.) |
| ⊢ 𝐵 = (Base‘𝐸) & ⊢ 0 = (0g‘𝐸) & ⊢ + = (+g‘𝐸) & ⊢ (𝜑 → 𝐸 ∈ Mnd) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → ((∃𝑢 ∈ 𝐵 (𝑋 + 𝑢) = 0 ∧ ∃𝑣 ∈ 𝐵 (𝑣 + 𝑋) = 0 ) ↔ ∃𝑦 ∈ 𝐵 ((𝑋 + 𝑦) = 0 ∧ (𝑦 + 𝑋) = 0 ))) | ||
| Theorem | mndlactf1 32993* | If an element 𝑋 of a monoid 𝐸 is right-invertible, with inverse 𝑌, then its left-translation 𝐹 is injective. See also grplactf1o 18941. Remark in chapter I. of [BourbakiAlg1] p. 17 . (Contributed by Thierry Arnoux, 3-Aug-2025.) |
| ⊢ 𝐵 = (Base‘𝐸) & ⊢ 0 = (0g‘𝐸) & ⊢ + = (+g‘𝐸) & ⊢ 𝐹 = (𝑎 ∈ 𝐵 ↦ (𝑋 + 𝑎)) & ⊢ (𝜑 → 𝐸 ∈ Mnd) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → (𝑌 + 𝑋) = 0 ) ⇒ ⊢ (𝜑 → 𝐹:𝐵–1-1→𝐵) | ||
| Theorem | mndlactfo 32994* | An element 𝑋 of a monoid 𝐸 is left-invertible iff its left-translation 𝐹 is surjective. See also grplactf1o 18941. (Contributed by Thierry Arnoux, 3-Aug-2025.) |
| ⊢ 𝐵 = (Base‘𝐸) & ⊢ 0 = (0g‘𝐸) & ⊢ + = (+g‘𝐸) & ⊢ 𝐹 = (𝑎 ∈ 𝐵 ↦ (𝑋 + 𝑎)) & ⊢ (𝜑 → 𝐸 ∈ Mnd) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐹:𝐵–onto→𝐵 ↔ ∃𝑦 ∈ 𝐵 (𝑋 + 𝑦) = 0 )) | ||
| Theorem | mndractf1 32995* | If an element 𝑋 of a monoid 𝐸 is right-invertible, with inverse 𝑌, then its left-translation 𝐺 is injective. See also grplactf1o 18941. Remark in chapter I. of [BourbakiAlg1] p. 17 . (Contributed by Thierry Arnoux, 3-Aug-2025.) |
| ⊢ 𝐵 = (Base‘𝐸) & ⊢ 0 = (0g‘𝐸) & ⊢ + = (+g‘𝐸) & ⊢ 𝐺 = (𝑎 ∈ 𝐵 ↦ (𝑎 + 𝑋)) & ⊢ (𝜑 → 𝐸 ∈ Mnd) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → (𝑋 + 𝑌) = 0 ) ⇒ ⊢ (𝜑 → 𝐺:𝐵–1-1→𝐵) | ||
| Theorem | mndractfo 32996* | An element 𝑋 of a monoid 𝐸 is right-invertible iff its right-translation 𝐺 is surjective. (Contributed by Thierry Arnoux, 3-Aug-2025.) |
| ⊢ 𝐵 = (Base‘𝐸) & ⊢ 0 = (0g‘𝐸) & ⊢ + = (+g‘𝐸) & ⊢ 𝐺 = (𝑎 ∈ 𝐵 ↦ (𝑎 + 𝑋)) & ⊢ (𝜑 → 𝐸 ∈ Mnd) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐺:𝐵–onto→𝐵 ↔ ∃𝑦 ∈ 𝐵 (𝑦 + 𝑋) = 0 )) | ||
| Theorem | mndlactf1o 32997* | An element 𝑋 of a monoid 𝐸 is invertible iff its left-translation 𝐹 is bijective. See also grplactf1o 18941. Remark in chapter I. of [BourbakiAlg1] p. 17. (Contributed by Thierry Arnoux, 3-Aug-2025.) |
| ⊢ 𝐵 = (Base‘𝐸) & ⊢ 0 = (0g‘𝐸) & ⊢ + = (+g‘𝐸) & ⊢ 𝐹 = (𝑎 ∈ 𝐵 ↦ (𝑋 + 𝑎)) & ⊢ (𝜑 → 𝐸 ∈ Mnd) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐹:𝐵–1-1-onto→𝐵 ↔ ∃𝑦 ∈ 𝐵 ((𝑋 + 𝑦) = 0 ∧ (𝑦 + 𝑋) = 0 ))) | ||
| Theorem | mndractf1o 32998* | An element 𝑋 of a monoid 𝐸 is invertible iff its right-translation 𝐺 is bijective. See also mndlactf1o 32997. Remark in chapter I. of [BourbakiAlg1] p. 17 . (Contributed by Thierry Arnoux, 3-Aug-2025.) |
| ⊢ 𝐵 = (Base‘𝐸) & ⊢ 0 = (0g‘𝐸) & ⊢ + = (+g‘𝐸) & ⊢ 𝐺 = (𝑎 ∈ 𝐵 ↦ (𝑎 + 𝑋)) & ⊢ (𝜑 → 𝐸 ∈ Mnd) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐺:𝐵–1-1-onto→𝐵 ↔ ∃𝑦 ∈ 𝐵 ((𝑋 + 𝑦) = 0 ∧ (𝑦 + 𝑋) = 0 ))) | ||
| Theorem | cmn4d 32999 | Commutative/associative law for commutative monoids. (Contributed by Thierry Arnoux, 4-May-2025.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) & ⊢ (𝜑 → 𝑊 ∈ 𝐵) ⇒ ⊢ (𝜑 → ((𝑋 + 𝑌) + (𝑍 + 𝑊)) = ((𝑋 + 𝑍) + (𝑌 + 𝑊))) | ||
| Theorem | cmn246135 33000 | Rearrange terms in a commutative monoid sum. Lemma for rlocaddval 33218. (Contributed by Thierry Arnoux, 4-May-2025.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) & ⊢ (𝜑 → 𝑈 ∈ 𝐵) & ⊢ (𝜑 → 𝑉 ∈ 𝐵) & ⊢ (𝜑 → 𝑊 ∈ 𝐵) ⇒ ⊢ (𝜑 → ((𝑋 + 𝑌) + ((𝑍 + 𝑈) + (𝑉 + 𝑊))) = ((𝑌 + (𝑈 + 𝑊)) + (𝑋 + (𝑍 + 𝑉)))) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |