HomeHome Metamath Proof Explorer
Theorem List (p. 330 of 497)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-30845)
  Hilbert Space Explorer  Hilbert Space Explorer
(30846-32368)
  Users' Mathboxes  Users' Mathboxes
(32369-49617)
 

Theorem List for Metamath Proof Explorer - 32901-33000   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremtosglb 32901 Same theorem as toslub 32899, for infinimum. (Contributed by Thierry Arnoux, 17-Feb-2018.) (Revised by AV, 28-Sep-2020.)
𝐵 = (Base‘𝐾)    &    < = (lt‘𝐾)    &   (𝜑𝐾 ∈ Toset)    &   (𝜑𝐴𝐵)       (𝜑 → ((glb‘𝐾)‘𝐴) = inf(𝐴, 𝐵, < ))
 
21.3.9.4  Complete lattices
 
Theoremclatp0cl 32902 The poset zero of a complete lattice belongs to its base. (Contributed by Thierry Arnoux, 17-Feb-2018.)
𝐵 = (Base‘𝑊)    &    0 = (0.‘𝑊)       (𝑊 ∈ CLat → 0𝐵)
 
Theoremclatp1cl 32903 The poset one of a complete lattice belongs to its base. (Contributed by Thierry Arnoux, 17-Feb-2018.)
𝐵 = (Base‘𝑊)    &    1 = (1.‘𝑊)       (𝑊 ∈ CLat → 1𝐵)
 
21.3.9.5  Order Theory
 
Syntaxcmnt 32904 Extend class notation with monotone functions.
class Monot
 
Syntaxcmgc 32905 Extend class notation with the monotone Galois connection.
class MGalConn
 
Definitiondf-mnt 32906* Define a monotone function between two ordered sets. (Contributed by Thierry Arnoux, 20-Apr-2024.)
Monot = (𝑣 ∈ V, 𝑤 ∈ V ↦ (Base‘𝑣) / 𝑎{𝑓 ∈ ((Base‘𝑤) ↑m 𝑎) ∣ ∀𝑥𝑎𝑦𝑎 (𝑥(le‘𝑣)𝑦 → (𝑓𝑥)(le‘𝑤)(𝑓𝑦))})
 
Definitiondf-mgc 32907* Define monotone Galois connections. See mgcval 32913 for an expanded version. (Contributed by Thierry Arnoux, 20-Apr-2024.)
MGalConn = (𝑣 ∈ V, 𝑤 ∈ V ↦ (Base‘𝑣) / 𝑎(Base‘𝑤) / 𝑏{⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (𝑏m 𝑎) ∧ 𝑔 ∈ (𝑎m 𝑏)) ∧ ∀𝑥𝑎𝑦𝑏 ((𝑓𝑥)(le‘𝑤)𝑦𝑥(le‘𝑣)(𝑔𝑦)))})
 
Theoremmntoval 32908* Operation value of the monotone function. (Contributed by Thierry Arnoux, 23-Apr-2024.)
𝐴 = (Base‘𝑉)    &   𝐵 = (Base‘𝑊)    &    = (le‘𝑉)    &    = (le‘𝑊)       ((𝑉𝑋𝑊𝑌) → (𝑉Monot𝑊) = {𝑓 ∈ (𝐵m 𝐴) ∣ ∀𝑥𝐴𝑦𝐴 (𝑥 𝑦 → (𝑓𝑥) (𝑓𝑦))})
 
Theoremismnt 32909* Express the statement "𝐹 is monotone". (Contributed by Thierry Arnoux, 23-Apr-2024.)
𝐴 = (Base‘𝑉)    &   𝐵 = (Base‘𝑊)    &    = (le‘𝑉)    &    = (le‘𝑊)       ((𝑉𝑋𝑊𝑌) → (𝐹 ∈ (𝑉Monot𝑊) ↔ (𝐹:𝐴𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦)))))
 
Theoremismntd 32910 Property of being a monotone increasing function, deduction version. (Contributed by Thierry Arnoux, 24-Apr-2024.)
𝐴 = (Base‘𝑉)    &   𝐵 = (Base‘𝑊)    &    = (le‘𝑉)    &    = (le‘𝑊)    &   (𝜑𝑉𝐶)    &   (𝜑𝑊𝐷)    &   (𝜑𝐹 ∈ (𝑉Monot𝑊))    &   (𝜑𝑋𝐴)    &   (𝜑𝑌𝐴)    &   (𝜑𝑋 𝑌)       (𝜑 → (𝐹𝑋) (𝐹𝑌))
 
Theoremmntf 32911 A monotone function is a function. (Contributed by Thierry Arnoux, 24-Apr-2024.)
𝐴 = (Base‘𝑉)    &   𝐵 = (Base‘𝑊)       ((𝑉𝑋𝑊𝑌𝐹 ∈ (𝑉Monot𝑊)) → 𝐹:𝐴𝐵)
 
Theoremmgcoval 32912* Operation value of the monotone Galois connection. (Contributed by Thierry Arnoux, 23-Apr-2024.)
𝐴 = (Base‘𝑉)    &   𝐵 = (Base‘𝑊)    &    = (le‘𝑉)    &    = (le‘𝑊)       ((𝑉𝑋𝑊𝑌) → (𝑉MGalConn𝑊) = {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (𝐵m 𝐴) ∧ 𝑔 ∈ (𝐴m 𝐵)) ∧ ∀𝑥𝐴𝑦𝐵 ((𝑓𝑥) 𝑦𝑥 (𝑔𝑦)))})
 
Theoremmgcval 32913* Monotone Galois connection between two functions 𝐹 and 𝐺. If this relation is satisfied, 𝐹 is called the lower adjoint of 𝐺, and 𝐺 is called the upper adjoint of 𝐹.

Technically, this is implemented as an operation taking a pair of structures 𝑉 and 𝑊, expected to be posets, which gives a relation between pairs of functions 𝐹 and 𝐺.

If such a relation exists, it can be proven to be unique.

Galois connections generalize the fundamental theorem of Galois theory about the correspondence between subgroups and subfields. (Contributed by Thierry Arnoux, 23-Apr-2024.)

𝐴 = (Base‘𝑉)    &   𝐵 = (Base‘𝑊)    &    = (le‘𝑉)    &    = (le‘𝑊)    &   𝐻 = (𝑉MGalConn𝑊)    &   (𝜑𝑉 ∈ Proset )    &   (𝜑𝑊 ∈ Proset )       (𝜑 → (𝐹𝐻𝐺 ↔ ((𝐹:𝐴𝐵𝐺:𝐵𝐴) ∧ ∀𝑥𝐴𝑦𝐵 ((𝐹𝑥) 𝑦𝑥 (𝐺𝑦)))))
 
Theoremmgcf1 32914 The lower adjoint 𝐹 of a Galois connection is a function. (Contributed by Thierry Arnoux, 24-Apr-2024.)
𝐴 = (Base‘𝑉)    &   𝐵 = (Base‘𝑊)    &    = (le‘𝑉)    &    = (le‘𝑊)    &   𝐻 = (𝑉MGalConn𝑊)    &   (𝜑𝑉 ∈ Proset )    &   (𝜑𝑊 ∈ Proset )    &   (𝜑𝐹𝐻𝐺)       (𝜑𝐹:𝐴𝐵)
 
Theoremmgcf2 32915 The upper adjoint 𝐺 of a Galois connection is a function. (Contributed by Thierry Arnoux, 24-Apr-2024.)
𝐴 = (Base‘𝑉)    &   𝐵 = (Base‘𝑊)    &    = (le‘𝑉)    &    = (le‘𝑊)    &   𝐻 = (𝑉MGalConn𝑊)    &   (𝜑𝑉 ∈ Proset )    &   (𝜑𝑊 ∈ Proset )    &   (𝜑𝐹𝐻𝐺)       (𝜑𝐺:𝐵𝐴)
 
Theoremmgccole1 32916 An inequality for the kernel operator 𝐺𝐹. (Contributed by Thierry Arnoux, 26-Apr-2024.)
𝐴 = (Base‘𝑉)    &   𝐵 = (Base‘𝑊)    &    = (le‘𝑉)    &    = (le‘𝑊)    &   𝐻 = (𝑉MGalConn𝑊)    &   (𝜑𝑉 ∈ Proset )    &   (𝜑𝑊 ∈ Proset )    &   (𝜑𝐹𝐻𝐺)    &   (𝜑𝑋𝐴)       (𝜑𝑋 (𝐺‘(𝐹𝑋)))
 
Theoremmgccole2 32917 Inequality for the closure operator (𝐹𝐺) of the Galois connection 𝐻. (Contributed by Thierry Arnoux, 26-Apr-2024.)
𝐴 = (Base‘𝑉)    &   𝐵 = (Base‘𝑊)    &    = (le‘𝑉)    &    = (le‘𝑊)    &   𝐻 = (𝑉MGalConn𝑊)    &   (𝜑𝑉 ∈ Proset )    &   (𝜑𝑊 ∈ Proset )    &   (𝜑𝐹𝐻𝐺)    &   (𝜑𝑌𝐵)       (𝜑 → (𝐹‘(𝐺𝑌)) 𝑌)
 
Theoremmgcmnt1 32918 The lower adjoint 𝐹 of a Galois connection is monotonically increasing. (Contributed by Thierry Arnoux, 26-Apr-2024.)
𝐴 = (Base‘𝑉)    &   𝐵 = (Base‘𝑊)    &    = (le‘𝑉)    &    = (le‘𝑊)    &   𝐻 = (𝑉MGalConn𝑊)    &   (𝜑𝑉 ∈ Proset )    &   (𝜑𝑊 ∈ Proset )    &   (𝜑𝐹𝐻𝐺)    &   (𝜑𝑋𝐴)    &   (𝜑𝑌𝐴)    &   (𝜑𝑋 𝑌)       (𝜑 → (𝐹𝑋) (𝐹𝑌))
 
Theoremmgcmnt2 32919 The upper adjoint 𝐺 of a Galois connection is monotonically increasing. (Contributed by Thierry Arnoux, 26-Apr-2024.)
𝐴 = (Base‘𝑉)    &   𝐵 = (Base‘𝑊)    &    = (le‘𝑉)    &    = (le‘𝑊)    &   𝐻 = (𝑉MGalConn𝑊)    &   (𝜑𝑉 ∈ Proset )    &   (𝜑𝑊 ∈ Proset )    &   (𝜑𝐹𝐻𝐺)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   (𝜑𝑋 𝑌)       (𝜑 → (𝐺𝑋) (𝐺𝑌))
 
Theoremmgcmntco 32920* A Galois connection like statement, for two functions with same range. (Contributed by Thierry Arnoux, 26-Apr-2024.)
𝐴 = (Base‘𝑉)    &   𝐵 = (Base‘𝑊)    &    = (le‘𝑉)    &    = (le‘𝑊)    &   𝐻 = (𝑉MGalConn𝑊)    &   (𝜑𝑉 ∈ Proset )    &   (𝜑𝑊 ∈ Proset )    &   (𝜑𝐹𝐻𝐺)    &   𝐶 = (Base‘𝑋)    &    < = (le‘𝑋)    &   (𝜑𝑋 ∈ Proset )    &   (𝜑𝐾 ∈ (𝑉Monot𝑋))    &   (𝜑𝐿 ∈ (𝑊Monot𝑋))       (𝜑 → (∀𝑥𝐴 (𝐾𝑥) < (𝐿‘(𝐹𝑥)) ↔ ∀𝑦𝐵 (𝐾‘(𝐺𝑦)) < (𝐿𝑦)))
 
Theoremdfmgc2lem 32921* Lemma for dfmgc2, backwards direction. (Contributed by Thierry Arnoux, 26-Apr-2024.)
𝐴 = (Base‘𝑉)    &   𝐵 = (Base‘𝑊)    &    = (le‘𝑉)    &    = (le‘𝑊)    &   𝐻 = (𝑉MGalConn𝑊)    &   (𝜑𝑉 ∈ Proset )    &   (𝜑𝑊 ∈ Proset )    &   (𝜑𝐹:𝐴𝐵)    &   (𝜑𝐺:𝐵𝐴)    &   (𝜑 → ∀𝑥𝐴𝑦𝐴 (𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦)))    &   (𝜑 → ∀𝑢𝐵𝑣𝐵 (𝑢 𝑣 → (𝐺𝑢) (𝐺𝑣)))    &   ((𝜑𝑥𝐴) → 𝑥 (𝐺‘(𝐹𝑥)))    &   ((𝜑𝑢𝐵) → (𝐹‘(𝐺𝑢)) 𝑢)       (𝜑𝐹𝐻𝐺)
 
Theoremdfmgc2 32922* Alternate definition of the monotone Galois connection. (Contributed by Thierry Arnoux, 26-Apr-2024.)
𝐴 = (Base‘𝑉)    &   𝐵 = (Base‘𝑊)    &    = (le‘𝑉)    &    = (le‘𝑊)    &   𝐻 = (𝑉MGalConn𝑊)    &   (𝜑𝑉 ∈ Proset )    &   (𝜑𝑊 ∈ Proset )       (𝜑 → (𝐹𝐻𝐺 ↔ ((𝐹:𝐴𝐵𝐺:𝐵𝐴) ∧ ((∀𝑥𝐴𝑦𝐴 (𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦)) ∧ ∀𝑢𝐵𝑣𝐵 (𝑢 𝑣 → (𝐺𝑢) (𝐺𝑣))) ∧ (∀𝑢𝐵 (𝐹‘(𝐺𝑢)) 𝑢 ∧ ∀𝑥𝐴 𝑥 (𝐺‘(𝐹𝑥)))))))
 
Theoremmgcmnt1d 32923 Galois connection implies monotonicity of the left adjoint. (Contributed by Thierry Arnoux, 21-Jul-2024.)
𝐻 = (𝑉MGalConn𝑊)    &   (𝜑𝑉 ∈ Proset )    &   (𝜑𝑊 ∈ Proset )    &   (𝜑𝐹𝐻𝐺)       (𝜑𝐹 ∈ (𝑉Monot𝑊))
 
Theoremmgcmnt2d 32924 Galois connection implies monotonicity of the right adjoint. (Contributed by Thierry Arnoux, 21-Jul-2024.)
𝐻 = (𝑉MGalConn𝑊)    &   (𝜑𝑉 ∈ Proset )    &   (𝜑𝑊 ∈ Proset )    &   (𝜑𝐹𝐻𝐺)       (𝜑𝐺 ∈ (𝑊Monot𝑉))
 
Theoremmgccnv 32925 The inverse Galois connection is the Galois connection of the dual orders. (Contributed by Thierry Arnoux, 26-Apr-2024.)
𝐻 = (𝑉MGalConn𝑊)    &   𝑀 = ((ODual‘𝑊)MGalConn(ODual‘𝑉))       ((𝑉 ∈ Proset ∧ 𝑊 ∈ Proset ) → (𝐹𝐻𝐺𝐺𝑀𝐹))
 
Theorempwrssmgc 32926* Given a function 𝐹, exhibit a Galois connection between subsets of its domain and subsets of its range. (Contributed by Thierry Arnoux, 26-Apr-2024.)
𝐺 = (𝑛 ∈ 𝒫 𝑌 ↦ (𝐹𝑛))    &   𝐻 = (𝑚 ∈ 𝒫 𝑋 ↦ {𝑦𝑌 ∣ (𝐹 “ {𝑦}) ⊆ 𝑚})    &   𝑉 = (toInc‘𝒫 𝑌)    &   𝑊 = (toInc‘𝒫 𝑋)    &   (𝜑𝑋𝐴)    &   (𝜑𝑌𝐵)    &   (𝜑𝐹:𝑋𝑌)       (𝜑𝐺(𝑉MGalConn𝑊)𝐻)
 
Theoremmgcf1olem1 32927 Property of a Galois connection, lemma for mgcf1o 32929. (Contributed by Thierry Arnoux, 26-Jul-2024.)
𝐻 = (𝑉MGalConn𝑊)    &   𝐴 = (Base‘𝑉)    &   𝐵 = (Base‘𝑊)    &    = (le‘𝑉)    &    = (le‘𝑊)    &   (𝜑𝑉 ∈ Poset)    &   (𝜑𝑊 ∈ Poset)    &   (𝜑𝐹𝐻𝐺)    &   (𝜑𝑋𝐴)       (𝜑 → (𝐹‘(𝐺‘(𝐹𝑋))) = (𝐹𝑋))
 
Theoremmgcf1olem2 32928 Property of a Galois connection, lemma for mgcf1o 32929. (Contributed by Thierry Arnoux, 26-Jul-2024.)
𝐻 = (𝑉MGalConn𝑊)    &   𝐴 = (Base‘𝑉)    &   𝐵 = (Base‘𝑊)    &    = (le‘𝑉)    &    = (le‘𝑊)    &   (𝜑𝑉 ∈ Poset)    &   (𝜑𝑊 ∈ Poset)    &   (𝜑𝐹𝐻𝐺)    &   (𝜑𝑌𝐵)       (𝜑 → (𝐺‘(𝐹‘(𝐺𝑌))) = (𝐺𝑌))
 
Theoremmgcf1o 32929 Given a Galois connection, exhibit an order isomorphism. (Contributed by Thierry Arnoux, 26-Jul-2024.)
𝐻 = (𝑉MGalConn𝑊)    &   𝐴 = (Base‘𝑉)    &   𝐵 = (Base‘𝑊)    &    = (le‘𝑉)    &    = (le‘𝑊)    &   (𝜑𝑉 ∈ Poset)    &   (𝜑𝑊 ∈ Poset)    &   (𝜑𝐹𝐻𝐺)       (𝜑 → (𝐹 ↾ ran 𝐺) Isom , (ran 𝐺, ran 𝐹))
 
21.3.9.6  Chains
 
Syntaxcchn 32930 Extend class notation with the class of (finite) chains.
class ( < Chain𝐴)
 
Definitiondf-chn 32931* Define the class of (finite) chains. A chain is defined to be a sequence of objects, where each object is less than the next one in the sequence. The term "chain" is usually used in order theory. In the context of algebra, chains are often called "towers", for example for fields, or "series", for example for subgroup or subnormal series. (Contributed by Thierry Arnoux, 19-Jun-2025.)
( < Chain𝐴) = {𝑐 ∈ Word 𝐴 ∣ ∀𝑛 ∈ (dom 𝑐 ∖ {0})(𝑐‘(𝑛 − 1)) < (𝑐𝑛)}
 
Theoremischn 32932* Property of being a chain. (Contributed by Thierry Arnoux, 19-Jun-2025.)
(𝐶 ∈ ( < Chain𝐴) ↔ (𝐶 ∈ Word 𝐴 ∧ ∀𝑛 ∈ (dom 𝐶 ∖ {0})(𝐶‘(𝑛 − 1)) < (𝐶𝑛)))
 
Theoremchnwrd 32933 A chain is an ordered sequence, i.e. a word. (Contributed by Thierry Arnoux, 19-Jun-2025.)
(𝜑𝐶 ∈ ( < Chain𝐴))       (𝜑𝐶 ∈ Word 𝐴)
 
Theoremchnltm1 32934 Basic property of a chain. (Contributed by Thierry Arnoux, 19-Jun-2025.)
(𝜑𝐶 ∈ ( < Chain𝐴))    &   (𝜑𝑁 ∈ (dom 𝐶 ∖ {0}))       (𝜑 → (𝐶‘(𝑁 − 1)) < (𝐶𝑁))
 
Theorempfxchn 32935 A prefix of a chain is still a chain. (Contributed by Thierry Arnoux, 19-Jun-2025.)
(𝜑𝐶 ∈ ( < Chain𝐴))    &   (𝜑𝐿 ∈ (0...(♯‘𝐶)))       (𝜑 → (𝐶 prefix 𝐿) ∈ ( < Chain𝐴))
 
Theorems1chn 32936 A singleton word is always a chain. (Contributed by Thierry Arnoux, 19-Oct-2025.)
(𝜑𝑋𝐴)       (𝜑 → ⟨“𝑋”⟩ ∈ ( < Chain𝐴))
 
Theoremchnind 32937* Induction over a chain. See nnind 12256 for an explanation about the hypotheses. (Contributed by Thierry Arnoux, 19-Jun-2025.)
(𝑐 = ∅ → (𝜓𝜒))    &   (𝑐 = 𝑑 → (𝜓𝜃))    &   (𝑐 = (𝑑 ++ ⟨“𝑥”⟩) → (𝜓𝜏))    &   (𝑐 = 𝐶 → (𝜓𝜂))    &   (𝜑𝐶 ∈ ( < Chain𝐴))    &   (𝜑𝜒)    &   (((((𝜑𝑑 ∈ ( < Chain𝐴)) ∧ 𝑥𝐴) ∧ (𝑑 = ∅ ∨ (lastS‘𝑑) < 𝑥)) ∧ 𝜃) → 𝜏)       (𝜑𝜂)
 
Theoremchnub 32938 In a chain, the last element is an upper bound. (Contributed by Thierry Arnoux, 19-Jun-2025.)
(𝜑< Po 𝐴)    &   (𝜑𝐶 ∈ ( < Chain𝐴))    &   (𝜑𝐼 ∈ (0..^((♯‘𝐶) − 1)))       (𝜑 → (𝐶𝐼) < (lastS‘𝐶))
 
Theoremchnlt 32939 Compare any two elements in a chain. (Contributed by Thierry Arnoux, 19-Jun-2025.)
(𝜑< Po 𝐴)    &   (𝜑𝐶 ∈ ( < Chain𝐴))    &   (𝜑𝐽 ∈ (0..^(♯‘𝐶)))    &   (𝜑𝐼 ∈ (0..^𝐽))       (𝜑 → (𝐶𝐼) < (𝐶𝐽))
 
Theoremchnso 32940 A chain induces a total order. (Contributed by Thierry Arnoux, 19-Jun-2025.)
(( < Po 𝐴𝐶 ∈ ( < Chain𝐴)) → < Or ran 𝐶)
 
Theoremchnccats1 32941 Extend a chain with a single element. (Contributed by Thierry Arnoux, 19-Oct-2025.)
(𝜑𝑋𝐴)    &   (𝜑𝑇 ∈ ( < Chain𝐴))    &   (𝜑 → (𝑇 = ∅ ∨ (lastS‘𝑇) < 𝑋))       (𝜑 → (𝑇 ++ ⟨“𝑋”⟩) ∈ ( < Chain𝐴))
 
21.3.9.7  Extended reals Structure - misc additions
 
Axiomax-xrssca 32942 Assume the scalar component of the extended real structure is the field of the real numbers (this has to be defined in the main body of set.mm). (Contributed by Thierry Arnoux, 22-Oct-2017.)
fld = (Scalar‘ℝ*𝑠)
 
Axiomax-xrsvsca 32943 Assume the scalar product of the extended real structure is the extended real number multiplication operation (this has to be defined in the main body of set.mm). (Contributed by Thierry Arnoux, 22-Oct-2017.)
·e = ( ·𝑠 ‘ℝ*𝑠)
 
Theoremxrs0 32944 The zero of the extended real numbers. The extended real is not a group, as its addition is not associative. (cf. xaddass 13263 and df-xrs 17514), however it has a zero. (Contributed by Thierry Arnoux, 13-Jun-2017.)
0 = (0g‘ℝ*𝑠)
 
Theoremxrslt 32945 The "strictly less than" relation for the extended real structure. (Contributed by Thierry Arnoux, 30-Jan-2018.)
< = (lt‘ℝ*𝑠)
 
Theoremxrsinvgval 32946 The inversion operation in the extended real numbers. The extended real is not a group, as its addition is not associative. (cf. xaddass 13263 and df-xrs 17514), however it has an inversion operation. (Contributed by Thierry Arnoux, 13-Jun-2017.)
(𝐵 ∈ ℝ* → ((invg‘ℝ*𝑠)‘𝐵) = -𝑒𝐵)
 
Theoremxrsmulgzz 32947 The "multiple" function in the extended real numbers structure. (Contributed by Thierry Arnoux, 14-Jun-2017.)
((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℝ*) → (𝐴(.g‘ℝ*𝑠)𝐵) = (𝐴 ·e 𝐵))
 
Theoremxrstos 32948 The extended real numbers form a toset. (Contributed by Thierry Arnoux, 15-Feb-2018.)
*𝑠 ∈ Toset
 
Theoremxrsclat 32949 The extended real numbers form a complete lattice. (Contributed by Thierry Arnoux, 15-Feb-2018.)
*𝑠 ∈ CLat
 
Theoremxrsp0 32950 The poset 0 of the extended real numbers is minus infinity. (Contributed by Thierry Arnoux, 18-Feb-2018.) (Proof shortened by AV, 28-Sep-2020.)
-∞ = (0.‘ℝ*𝑠)
 
Theoremxrsp1 32951 The poset 1 of the extended real numbers is plus infinity. (Contributed by Thierry Arnoux, 18-Feb-2018.)
+∞ = (1.‘ℝ*𝑠)
 
21.3.9.8  The extended nonnegative real numbers commutative monoid
 
Theoremxrge0base 32952 The base of the extended nonnegative real numbers. (Contributed by Thierry Arnoux, 30-Jan-2017.)
(0[,]+∞) = (Base‘(ℝ*𝑠s (0[,]+∞)))
 
Theoremxrge00 32953 The zero of the extended nonnegative real numbers monoid. (Contributed by Thierry Arnoux, 30-Jan-2017.)
0 = (0g‘(ℝ*𝑠s (0[,]+∞)))
 
Theoremxrge0plusg 32954 The additive law of the extended nonnegative real numbers monoid is the addition in the extended real numbers. (Contributed by Thierry Arnoux, 20-Mar-2017.)
+𝑒 = (+g‘(ℝ*𝑠s (0[,]+∞)))
 
Theoremxrge0le 32955 The "less than or equal to" relation in the extended real numbers. (Contributed by Thierry Arnoux, 14-Mar-2018.)
≤ = (le‘(ℝ*𝑠s (0[,]+∞)))
 
Theoremxrge0mulgnn0 32956 The group multiple function in the extended nonnegative real numbers. (Contributed by Thierry Arnoux, 14-Jun-2017.)
((𝐴 ∈ ℕ0𝐵 ∈ (0[,]+∞)) → (𝐴(.g‘(ℝ*𝑠s (0[,]+∞)))𝐵) = (𝐴 ·e 𝐵))
 
Theoremxrge0addass 32957 Associativity of extended nonnegative real addition. (Contributed by Thierry Arnoux, 8-Jun-2017.)
((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) → ((𝐴 +𝑒 𝐵) +𝑒 𝐶) = (𝐴 +𝑒 (𝐵 +𝑒 𝐶)))
 
Theoremxrge0addgt0 32958 The sum of nonnegative and positive numbers is positive. See addgtge0 11723. (Contributed by Thierry Arnoux, 6-Jul-2017.)
(((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞)) ∧ 0 < 𝐴) → 0 < (𝐴 +𝑒 𝐵))
 
Theoremxrge0adddir 32959 Right-distributivity of extended nonnegative real multiplication over addition. (Contributed by Thierry Arnoux, 30-Jun-2017.)
((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) → ((𝐴 +𝑒 𝐵) ·e 𝐶) = ((𝐴 ·e 𝐶) +𝑒 (𝐵 ·e 𝐶)))
 
Theoremxrge0adddi 32960 Left-distributivity of extended nonnegative real multiplication over addition. (Contributed by Thierry Arnoux, 6-Sep-2018.)
((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) → (𝐶 ·e (𝐴 +𝑒 𝐵)) = ((𝐶 ·e 𝐴) +𝑒 (𝐶 ·e 𝐵)))
 
Theoremxrge0npcan 32961 Extended nonnegative real version of npcan 11489. (Contributed by Thierry Arnoux, 9-Jun-2017.)
((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐵𝐴) → ((𝐴 +𝑒 -𝑒𝐵) +𝑒 𝐵) = 𝐴)
 
Theoremfsumrp0cl 32962* Closure of a finite sum of nonnegative reals. (Contributed by Thierry Arnoux, 25-Jun-2017.)
(𝜑𝐴 ∈ Fin)    &   ((𝜑𝑘𝐴) → 𝐵 ∈ (0[,)+∞))       (𝜑 → Σ𝑘𝐴 𝐵 ∈ (0[,)+∞))
 
21.3.10  Algebra
 
21.3.10.1  Monoids
 
Theoremmndcld 32963 Closure of the operation of a monoid. (Contributed by Thierry Arnoux, 3-Aug-2025.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)    &   (𝜑𝐺 ∈ Mnd)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)       (𝜑 → (𝑋 + 𝑌) ∈ 𝐵)
 
Theoremmndassd 32964 A monoid operation is associative. (Contributed by Thierry Arnoux, 3-Aug-2025.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)    &   (𝜑𝐺 ∈ Mnd)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   (𝜑𝑍𝐵)       (𝜑 → ((𝑋 + 𝑌) + 𝑍) = (𝑋 + (𝑌 + 𝑍)))
 
Theoremmndlrinv 32965 In a monoid, if an element 𝑋 has both a left inverse 𝑀 and a right inverse 𝑁, they are equal. (Contributed by Thierry Arnoux, 3-Aug-2025.)
𝐵 = (Base‘𝐸)    &    0 = (0g𝐸)    &    + = (+g𝐸)    &   (𝜑𝐸 ∈ Mnd)    &   (𝜑𝑋𝐵)    &   (𝜑𝑀𝐵)    &   (𝜑𝑁𝐵)    &   (𝜑 → (𝑀 + 𝑋) = 0 )    &   (𝜑 → (𝑋 + 𝑁) = 0 )       (𝜑𝑀 = 𝑁)
 
Theoremmndlrinvb 32966* In a monoid, if an element has both a left-inverse and a right-inverse, they are equal. (Contributed by Thierry Arnoux, 3-Aug-2025.)
𝐵 = (Base‘𝐸)    &    0 = (0g𝐸)    &    + = (+g𝐸)    &   (𝜑𝐸 ∈ Mnd)    &   (𝜑𝑋𝐵)       (𝜑 → ((∃𝑢𝐵 (𝑋 + 𝑢) = 0 ∧ ∃𝑣𝐵 (𝑣 + 𝑋) = 0 ) ↔ ∃𝑦𝐵 ((𝑋 + 𝑦) = 0 ∧ (𝑦 + 𝑋) = 0 )))
 
Theoremmndlactf1 32967* If an element 𝑋 of a monoid 𝐸 is right-invertible, with inverse 𝑌, then its left-translation 𝐹 is injective. See also grplactf1o 19025. Remark in chapter I. of [BourbakiAlg1] p. 17 . (Contributed by Thierry Arnoux, 3-Aug-2025.)
𝐵 = (Base‘𝐸)    &    0 = (0g𝐸)    &    + = (+g𝐸)    &   𝐹 = (𝑎𝐵 ↦ (𝑋 + 𝑎))    &   (𝜑𝐸 ∈ Mnd)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   (𝜑 → (𝑌 + 𝑋) = 0 )       (𝜑𝐹:𝐵1-1𝐵)
 
Theoremmndlactfo 32968* An element 𝑋 of a monoid 𝐸 is left-invertible iff its left-translation 𝐹 is surjective. See also grplactf1o 19025. (Contributed by Thierry Arnoux, 3-Aug-2025.)
𝐵 = (Base‘𝐸)    &    0 = (0g𝐸)    &    + = (+g𝐸)    &   𝐹 = (𝑎𝐵 ↦ (𝑋 + 𝑎))    &   (𝜑𝐸 ∈ Mnd)    &   (𝜑𝑋𝐵)       (𝜑 → (𝐹:𝐵onto𝐵 ↔ ∃𝑦𝐵 (𝑋 + 𝑦) = 0 ))
 
Theoremmndractf1 32969* If an element 𝑋 of a monoid 𝐸 is right-invertible, with inverse 𝑌, then its left-translation 𝐺 is injective. See also grplactf1o 19025. Remark in chapter I. of [BourbakiAlg1] p. 17 . (Contributed by Thierry Arnoux, 3-Aug-2025.)
𝐵 = (Base‘𝐸)    &    0 = (0g𝐸)    &    + = (+g𝐸)    &   𝐺 = (𝑎𝐵 ↦ (𝑎 + 𝑋))    &   (𝜑𝐸 ∈ Mnd)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   (𝜑 → (𝑋 + 𝑌) = 0 )       (𝜑𝐺:𝐵1-1𝐵)
 
Theoremmndractfo 32970* An element 𝑋 of a monoid 𝐸 is right-invertible iff its right-translation 𝐺 is surjective. (Contributed by Thierry Arnoux, 3-Aug-2025.)
𝐵 = (Base‘𝐸)    &    0 = (0g𝐸)    &    + = (+g𝐸)    &   𝐺 = (𝑎𝐵 ↦ (𝑎 + 𝑋))    &   (𝜑𝐸 ∈ Mnd)    &   (𝜑𝑋𝐵)       (𝜑 → (𝐺:𝐵onto𝐵 ↔ ∃𝑦𝐵 (𝑦 + 𝑋) = 0 ))
 
Theoremmndlactf1o 32971* An element 𝑋 of a monoid 𝐸 is invertible iff its left-translation 𝐹 is bijective. See also grplactf1o 19025. Remark in chapter I. of [BourbakiAlg1] p. 17. (Contributed by Thierry Arnoux, 3-Aug-2025.)
𝐵 = (Base‘𝐸)    &    0 = (0g𝐸)    &    + = (+g𝐸)    &   𝐹 = (𝑎𝐵 ↦ (𝑋 + 𝑎))    &   (𝜑𝐸 ∈ Mnd)    &   (𝜑𝑋𝐵)       (𝜑 → (𝐹:𝐵1-1-onto𝐵 ↔ ∃𝑦𝐵 ((𝑋 + 𝑦) = 0 ∧ (𝑦 + 𝑋) = 0 )))
 
Theoremmndractf1o 32972* An element 𝑋 of a monoid 𝐸 is invertible iff its right-translation 𝐺 is bijective. See also mndlactf1o 32971. Remark in chapter I. of [BourbakiAlg1] p. 17 . (Contributed by Thierry Arnoux, 3-Aug-2025.)
𝐵 = (Base‘𝐸)    &    0 = (0g𝐸)    &    + = (+g𝐸)    &   𝐺 = (𝑎𝐵 ↦ (𝑎 + 𝑋))    &   (𝜑𝐸 ∈ Mnd)    &   (𝜑𝑋𝐵)       (𝜑 → (𝐺:𝐵1-1-onto𝐵 ↔ ∃𝑦𝐵 ((𝑋 + 𝑦) = 0 ∧ (𝑦 + 𝑋) = 0 )))
 
Theoremcmn4d 32973 Commutative/associative law for commutative monoids. (Contributed by Thierry Arnoux, 4-May-2025.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)    &   (𝜑𝐺 ∈ CMnd)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   (𝜑𝑍𝐵)    &   (𝜑𝑊𝐵)       (𝜑 → ((𝑋 + 𝑌) + (𝑍 + 𝑊)) = ((𝑋 + 𝑍) + (𝑌 + 𝑊)))
 
Theoremcmn246135 32974 Rearrange terms in a commutative monoid sum. Lemma for rlocaddval 33209. (Contributed by Thierry Arnoux, 4-May-2025.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)    &   (𝜑𝐺 ∈ CMnd)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   (𝜑𝑍𝐵)    &   (𝜑𝑈𝐵)    &   (𝜑𝑉𝐵)    &   (𝜑𝑊𝐵)       (𝜑 → ((𝑋 + 𝑌) + ((𝑍 + 𝑈) + (𝑉 + 𝑊))) = ((𝑌 + (𝑈 + 𝑊)) + (𝑋 + (𝑍 + 𝑉))))
 
Theoremcmn145236 32975 Rearrange terms in a commutative monoid sum. Lemma for rlocaddval 33209. (Contributed by Thierry Arnoux, 4-May-2025.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)    &   (𝜑𝐺 ∈ CMnd)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   (𝜑𝑍𝐵)    &   (𝜑𝑈𝐵)    &   (𝜑𝑉𝐵)    &   (𝜑𝑊𝐵)       (𝜑 → ((𝑋 + 𝑌) + ((𝑍 + 𝑈) + (𝑉 + 𝑊))) = ((𝑋 + (𝑈 + 𝑉)) + (𝑌 + (𝑍 + 𝑊))))
 
Theoremsubmcld 32976 Submonoids are closed under the monoid operation. (Contributed by Thierry Arnoux, 4-May-2025.)
+ = (+g𝑀)    &   (𝜑𝑆 ∈ (SubMnd‘𝑀))    &   (𝜑𝑋𝑆)    &   (𝜑𝑌𝑆)       (𝜑 → (𝑋 + 𝑌) ∈ 𝑆)
 
21.3.10.2  Monoids Homomorphisms
 
Theoremabliso 32977 The image of an Abelian group by a group isomorphism is also Abelian. (Contributed by Thierry Arnoux, 8-Mar-2018.)
((𝑀 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpIso 𝑁)) → 𝑁 ∈ Abel)
 
Theoremlmhmghmd 32978 A module homomorphism is a group homomorphism. (Contributed by Thierry Arnoux, 2-Apr-2025.)
(𝜑𝐹 ∈ (𝑆 LMHom 𝑇))       (𝜑𝐹 ∈ (𝑆 GrpHom 𝑇))
 
Theoremmhmimasplusg 32979 Value of the operation of the surjective image. (Contributed by Thierry Arnoux, 2-Apr-2025.)
𝑊 = (𝐹s 𝑉)    &   𝐵 = (Base‘𝑉)    &   𝐶 = (Base‘𝑊)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   (𝜑𝐹:𝐵onto𝐶)    &   (𝜑𝐹 ∈ (𝑉 MndHom 𝑊))    &    + = (+g𝑉)    &    = (+g𝑊)       (𝜑 → ((𝐹𝑋) (𝐹𝑌)) = (𝐹‘(𝑋 + 𝑌)))
 
Theoremlmhmimasvsca 32980 Value of the scalar product of the surjective image of a module. (Contributed by Thierry Arnoux, 2-Apr-2025.)
𝑊 = (𝐹s 𝑉)    &   𝐵 = (Base‘𝑉)    &   𝐶 = (Base‘𝑊)    &   (𝜑𝑋𝐾)    &   (𝜑𝑌𝐵)    &   (𝜑𝐹:𝐵onto𝐶)    &   (𝜑𝐹 ∈ (𝑉 LMHom 𝑊))    &    · = ( ·𝑠𝑉)    &    × = ( ·𝑠𝑊)    &   𝐾 = (Base‘(Scalar‘𝑉))       (𝜑 → (𝑋 × (𝐹𝑌)) = (𝐹‘(𝑋 · 𝑌)))
 
21.3.10.3  Groups - misc additions
 
Theoremgrpsubcld 32981 Closure of group subtraction. (Contributed by Thierry Arnoux, 3-Aug-2025.)
𝐵 = (Base‘𝐺)    &    = (-g𝐺)    &   (𝜑𝐺 ∈ Grp)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)       (𝜑 → (𝑋 𝑌) ∈ 𝐵)
 
Theoremsubgcld 32982 A subgroup is closed under group operation. (Contributed by Thierry Arnoux, 3-Jun-2025.)
+ = (+g𝐺)    &   (𝜑𝑆 ∈ (SubGrp‘𝐺))    &   (𝜑𝑋𝑆)    &   (𝜑𝑌𝑆)       (𝜑 → (𝑋 + 𝑌) ∈ 𝑆)
 
Theoremsubgsubcld 32983 A subgroup is closed under group subtraction. (Contributed by Thierry Arnoux, 6-Jul-2025.)
= (-g𝐺)    &   (𝜑𝑆 ∈ (SubGrp‘𝐺))    &   (𝜑𝑋𝑆)    &   (𝜑𝑌𝑆)       (𝜑 → (𝑋 𝑌) ∈ 𝑆)
 
Theoremsubgmulgcld 32984 Closure of the group multiple within a subgroup. (Contributed by Thierry Arnoux, 5-Oct-2025.)
𝐵 = (Base‘𝑅)    &    · = (.g𝑅)    &   (𝜑𝑅 ∈ Grp)    &   (𝜑𝐴𝑆)    &   (𝜑𝑆 ∈ (SubGrp‘𝑅))    &   (𝜑𝑍 ∈ ℤ)       (𝜑 → (𝑍 · 𝐴) ∈ 𝑆)
 
Theoremressmulgnn0d 32985 Values for the group multiple function in a restricted structure. (Contributed by Thierry Arnoux, 14-Jun-2017.)
(𝜑 → (𝐺s 𝐴) = 𝐻)    &   (𝜑 → (0g𝐺) = (0g𝐻))    &   (𝜑𝐴 ⊆ (Base‘𝐺))    &   (𝜑𝑁 ∈ ℕ0)    &   (𝜑𝑋𝐴)       (𝜑 → (𝑁(.g𝐻)𝑋) = (𝑁(.g𝐺)𝑋))
 
21.3.10.4  Finitely supported group sums - misc additions
 
Theoremgsumsubg 32986 The group sum in a subgroup is the same as the group sum. (Contributed by Thierry Arnoux, 28-May-2023.)
𝐻 = (𝐺s 𝐵)    &   (𝜑𝐴𝑉)    &   (𝜑𝐹:𝐴𝐵)    &   (𝜑𝐵 ∈ (SubGrp‘𝐺))       (𝜑 → (𝐺 Σg 𝐹) = (𝐻 Σg 𝐹))
 
Theoremgsumsra 32987 The group sum in a subring algebra is the same as the ring's group sum. (Contributed by Thierry Arnoux, 28-May-2023.)
𝐴 = ((subringAlg ‘𝑅)‘𝐵)    &   (𝜑𝐹𝑈)    &   (𝜑𝑅𝑉)    &   (𝜑𝐴𝑊)    &   (𝜑𝐵 ⊆ (Base‘𝑅))       (𝜑 → (𝑅 Σg 𝐹) = (𝐴 Σg 𝐹))
 
Theoremgsummpt2co 32988* Split a finite sum into a sum of a collection of sums over disjoint subsets. (Contributed by Thierry Arnoux, 27-Mar-2018.)
𝐵 = (Base‘𝑊)    &    0 = (0g𝑊)    &   (𝜑𝑊 ∈ CMnd)    &   (𝜑𝐴 ∈ Fin)    &   (𝜑𝐸𝑉)    &   ((𝜑𝑥𝐴) → 𝐶𝐵)    &   ((𝜑𝑥𝐴) → 𝐷𝐸)    &   𝐹 = (𝑥𝐴𝐷)       (𝜑 → (𝑊 Σg (𝑥𝐴𝐶)) = (𝑊 Σg (𝑦𝐸 ↦ (𝑊 Σg (𝑥 ∈ (𝐹 “ {𝑦}) ↦ 𝐶)))))
 
Theoremgsummpt2d 32989* Express a finite sum over a two-dimensional range as a double sum. See also gsum2d 19951. (Contributed by Thierry Arnoux, 27-Apr-2020.)
𝑧𝐶    &   𝑦𝜑    &   𝐵 = (Base‘𝑊)    &   (𝑥 = ⟨𝑦, 𝑧⟩ → 𝐶 = 𝐷)    &   (𝜑 → Rel 𝐴)    &   (𝜑𝐴 ∈ Fin)    &   (𝜑𝑊 ∈ CMnd)    &   ((𝜑𝑥𝐴) → 𝐶𝐵)       (𝜑 → (𝑊 Σg (𝑥𝐴𝐶)) = (𝑊 Σg (𝑦 ∈ dom 𝐴 ↦ (𝑊 Σg (𝑧 ∈ (𝐴 “ {𝑦}) ↦ 𝐷)))))
 
Theoremlmodvslmhm 32990* Scalar multiplication in a left module by a fixed element is a group homomorphism. (Contributed by Thierry Arnoux, 12-Jun-2023.)
𝑉 = (Base‘𝑊)    &   𝐹 = (Scalar‘𝑊)    &    · = ( ·𝑠𝑊)    &   𝐾 = (Base‘𝐹)       ((𝑊 ∈ LMod ∧ 𝑌𝑉) → (𝑥𝐾 ↦ (𝑥 · 𝑌)) ∈ (𝐹 GrpHom 𝑊))
 
Theoremgsumvsmul1 32991* Pull a scalar multiplication out of a sum of vectors. This theorem properly generalizes gsummulc1 20274, since every ring is a left module over itself. (Contributed by Thierry Arnoux, 12-Jun-2023.)
𝐵 = (Base‘𝑅)    &   𝑆 = (Scalar‘𝑅)    &   𝐾 = (Base‘𝑆)    &    0 = (0g𝑆)    &    · = ( ·𝑠𝑅)    &   (𝜑𝑅 ∈ LMod)    &   (𝜑𝑆 ∈ CMnd)    &   (𝜑𝐴𝑉)    &   (𝜑𝑌𝐵)    &   ((𝜑𝑘𝐴) → 𝑋𝐾)    &   (𝜑 → (𝑘𝐴𝑋) finSupp 0 )       (𝜑 → (𝑅 Σg (𝑘𝐴 ↦ (𝑋 · 𝑌))) = ((𝑆 Σg (𝑘𝐴𝑋)) · 𝑌))
 
Theoremgsummptres 32992* Extend a finite group sum by padding outside with zeroes. Proof generated using OpenAI's proof assistant. (Contributed by Thierry Arnoux, 11-Jul-2020.)
𝐵 = (Base‘𝐺)    &    0 = (0g𝐺)    &   (𝜑𝐺 ∈ CMnd)    &   (𝜑𝐴 ∈ Fin)    &   ((𝜑𝑥𝐴) → 𝐶𝐵)    &   ((𝜑𝑥 ∈ (𝐴𝐷)) → 𝐶 = 0 )       (𝜑 → (𝐺 Σg (𝑥𝐴𝐶)) = (𝐺 Σg (𝑥 ∈ (𝐴𝐷) ↦ 𝐶)))
 
Theoremgsummptres2 32993* Extend a finite group sum by padding outside with zeroes. (Contributed by Thierry Arnoux, 22-Jun-2024.)
𝐵 = (Base‘𝐺)    &    0 = (0g𝐺)    &   (𝜑𝐺 ∈ CMnd)    &   (𝜑𝐴𝑉)    &   ((𝜑𝑥 ∈ (𝐴𝑆)) → 𝑌 = 0 )    &   (𝜑𝑆 ∈ Fin)    &   ((𝜑𝑥𝐴) → 𝑌𝐵)    &   (𝜑𝑆𝐴)       (𝜑 → (𝐺 Σg (𝑥𝐴𝑌)) = (𝐺 Σg (𝑥𝑆𝑌)))
 
Theoremgsummptfsf1o 32994* Re-index a finite group sum using a bijection. A version of gsummptf1o 19942 expressed using finite support. (Contributed by Thierry Arnoux, 5-Oct-2025.)
𝑥𝐻    &   𝐵 = (Base‘𝐺)    &    0 = (0g𝐺)    &   (𝑥 = 𝐸𝐶 = 𝐻)    &   (𝜑𝐺 ∈ CMnd)    &   (𝜑𝐴𝑉)    &   (𝜑 → (𝑥𝐴𝐶) finSupp 0 )    &   (𝜑𝐹𝐵)    &   ((𝜑𝑥𝐴) → 𝐶𝐹)    &   ((𝜑𝑦𝐷) → 𝐸𝐴)    &   ((𝜑𝑥𝐴) → ∃!𝑦𝐷 𝑥 = 𝐸)       (𝜑 → (𝐺 Σg (𝑥𝐴𝐶)) = (𝐺 Σg (𝑦𝐷𝐻)))
 
Theoremgsumfs2d 32995* Express a finite sum over a two-dimensional range as a double sum. Version of gsum2d 19951 using finite support. (Contributed by Thierry Arnoux, 5-Oct-2025.)
𝑥𝜑    &   𝐵 = (Base‘𝑊)    &    0 = (0g𝑊)    &   (𝜑 → Rel 𝐴)    &   (𝜑𝐹 finSupp 0 )    &   (𝜑𝑊 ∈ CMnd)    &   (𝜑𝐹:𝐴𝐵)    &   (𝜑𝐴𝑋)       (𝜑 → (𝑊 Σg 𝐹) = (𝑊 Σg (𝑥 ∈ dom 𝐴 ↦ (𝑊 Σg (𝑦 ∈ (𝐴 “ {𝑥}) ↦ (𝐹‘⟨𝑥, 𝑦⟩))))))
 
Theoremgsumzresunsn 32996 Append an element to a finite group sum expressed as a function restriction. (Contributed by Thierry Arnoux, 20-Nov-2023.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)    &   𝑍 = (Cntz‘𝐺)    &   𝑌 = (𝐹𝑋)    &   (𝜑𝐹:𝐶𝐵)    &   (𝜑𝐴𝐶)    &   (𝜑𝐺 ∈ Mnd)    &   (𝜑𝐴 ∈ Fin)    &   (𝜑 → ¬ 𝑋𝐴)    &   (𝜑𝑋𝐶)    &   (𝜑𝑌𝐵)    &   (𝜑 → (𝐹 “ (𝐴 ∪ {𝑋})) ⊆ (𝑍‘(𝐹 “ (𝐴 ∪ {𝑋}))))       (𝜑 → (𝐺 Σg (𝐹 ↾ (𝐴 ∪ {𝑋}))) = ((𝐺 Σg (𝐹𝐴)) + 𝑌))
 
Theoremgsumpart 32997* Express a group sum as a double sum, grouping along a (possibly infinite) partition. (Contributed by Thierry Arnoux, 22-Jun-2024.)
𝐵 = (Base‘𝐺)    &    0 = (0g𝐺)    &   (𝜑𝐺 ∈ CMnd)    &   (𝜑𝐴𝑉)    &   (𝜑𝑋𝑊)    &   (𝜑𝐹:𝐴𝐵)    &   (𝜑𝐹 finSupp 0 )    &   (𝜑Disj 𝑥𝑋 𝐶)    &   (𝜑 𝑥𝑋 𝐶 = 𝐴)       (𝜑 → (𝐺 Σg 𝐹) = (𝐺 Σg (𝑥𝑋 ↦ (𝐺 Σg (𝐹𝐶)))))
 
Theoremgsumtp 32998* Group sum of an unordered triple. (Contributed by Thierry Arnoux, 22-Jun-2025.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)    &   (𝑘 = 𝑀𝐴 = 𝐶)    &   (𝑘 = 𝑁𝐴 = 𝐷)    &   (𝑘 = 𝑂𝐴 = 𝐸)    &   (𝜑𝐺 ∈ CMnd)    &   (𝜑𝑀𝑉)    &   (𝜑𝑁𝑊)    &   (𝜑𝑂𝑋)    &   (𝜑𝑀𝑁)    &   (𝜑𝑁𝑂)    &   (𝜑𝑀𝑂)    &   (𝜑𝐶𝐵)    &   (𝜑𝐷𝐵)    &   (𝜑𝐸𝐵)       (𝜑 → (𝐺 Σg (𝑘 ∈ {𝑀, 𝑁, 𝑂} ↦ 𝐴)) = ((𝐶 + 𝐷) + 𝐸))
 
Theoremgsumzrsum 32999* Relate a group sum on ring to a finite sum on the complex numbers. See also gsumfsum 21400. (Contributed by Thierry Arnoux, 5-Oct-2025.)
(𝜑𝐴 ∈ Fin)    &   ((𝜑𝑘𝐴) → 𝐵 ∈ ℤ)       (𝜑 → (ℤring Σg (𝑘𝐴𝐵)) = Σ𝑘𝐴 𝐵)
 
Theoremgsummulgc2 33000* A finite group sum multiplied by a constant. (Contributed by Thierry Arnoux, 5-Oct-2025.)
𝐵 = (Base‘𝑀)    &    · = (.g𝑀)    &   (𝜑𝑀 ∈ Grp)    &   (𝜑𝐴 ∈ Fin)    &   (𝜑𝑌𝐵)    &   ((𝜑𝑘𝐴) → 𝑋 ∈ ℤ)       (𝜑 → (𝑀 Σg (𝑘𝐴 ↦ (𝑋 · 𝑌))) = (Σ𝑘𝐴 𝑋 · 𝑌))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-45000 451 45001-45100 452 45101-45200 453 45201-45300 454 45301-45400 455 45401-45500 456 45501-45600 457 45601-45700 458 45701-45800 459 45801-45900 460 45901-46000 461 46001-46100 462 46101-46200 463 46201-46300 464 46301-46400 465 46401-46500 466 46501-46600 467 46601-46700 468 46701-46800 469 46801-46900 470 46901-47000 471 47001-47100 472 47101-47200 473 47201-47300 474 47301-47400 475 47401-47500 476 47501-47600 477 47601-47700 478 47701-47800 479 47801-47900 480 47901-48000 481 48001-48100 482 48101-48200 483 48201-48300 484 48301-48400 485 48401-48500 486 48501-48600 487 48601-48700 488 48701-48800 489 48801-48900 490 48901-49000 491 49001-49100 492 49101-49200 493 49201-49300 494 49301-49400 495 49401-49500 496 49501-49600 497 49601-49617
  Copyright terms: Public domain < Previous  Next >