| Metamath
Proof Explorer Theorem List (p. 330 of 497) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30845) |
(30846-32368) |
(32369-49617) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | tosglb 32901 | Same theorem as toslub 32899, for infinimum. (Contributed by Thierry Arnoux, 17-Feb-2018.) (Revised by AV, 28-Sep-2020.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ < = (lt‘𝐾) & ⊢ (𝜑 → 𝐾 ∈ Toset) & ⊢ (𝜑 → 𝐴 ⊆ 𝐵) ⇒ ⊢ (𝜑 → ((glb‘𝐾)‘𝐴) = inf(𝐴, 𝐵, < )) | ||
| Theorem | clatp0cl 32902 | The poset zero of a complete lattice belongs to its base. (Contributed by Thierry Arnoux, 17-Feb-2018.) |
| ⊢ 𝐵 = (Base‘𝑊) & ⊢ 0 = (0.‘𝑊) ⇒ ⊢ (𝑊 ∈ CLat → 0 ∈ 𝐵) | ||
| Theorem | clatp1cl 32903 | The poset one of a complete lattice belongs to its base. (Contributed by Thierry Arnoux, 17-Feb-2018.) |
| ⊢ 𝐵 = (Base‘𝑊) & ⊢ 1 = (1.‘𝑊) ⇒ ⊢ (𝑊 ∈ CLat → 1 ∈ 𝐵) | ||
| Syntax | cmnt 32904 | Extend class notation with monotone functions. |
| class Monot | ||
| Syntax | cmgc 32905 | Extend class notation with the monotone Galois connection. |
| class MGalConn | ||
| Definition | df-mnt 32906* | Define a monotone function between two ordered sets. (Contributed by Thierry Arnoux, 20-Apr-2024.) |
| ⊢ Monot = (𝑣 ∈ V, 𝑤 ∈ V ↦ ⦋(Base‘𝑣) / 𝑎⦌{𝑓 ∈ ((Base‘𝑤) ↑m 𝑎) ∣ ∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑎 (𝑥(le‘𝑣)𝑦 → (𝑓‘𝑥)(le‘𝑤)(𝑓‘𝑦))}) | ||
| Definition | df-mgc 32907* | Define monotone Galois connections. See mgcval 32913 for an expanded version. (Contributed by Thierry Arnoux, 20-Apr-2024.) |
| ⊢ MGalConn = (𝑣 ∈ V, 𝑤 ∈ V ↦ ⦋(Base‘𝑣) / 𝑎⦌⦋(Base‘𝑤) / 𝑏⦌{〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ (𝑏 ↑m 𝑎) ∧ 𝑔 ∈ (𝑎 ↑m 𝑏)) ∧ ∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑏 ((𝑓‘𝑥)(le‘𝑤)𝑦 ↔ 𝑥(le‘𝑣)(𝑔‘𝑦)))}) | ||
| Theorem | mntoval 32908* | Operation value of the monotone function. (Contributed by Thierry Arnoux, 23-Apr-2024.) |
| ⊢ 𝐴 = (Base‘𝑉) & ⊢ 𝐵 = (Base‘𝑊) & ⊢ ≤ = (le‘𝑉) & ⊢ ≲ = (le‘𝑊) ⇒ ⊢ ((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) → (𝑉Monot𝑊) = {𝑓 ∈ (𝐵 ↑m 𝐴) ∣ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝑓‘𝑥) ≲ (𝑓‘𝑦))}) | ||
| Theorem | ismnt 32909* | Express the statement "𝐹 is monotone". (Contributed by Thierry Arnoux, 23-Apr-2024.) |
| ⊢ 𝐴 = (Base‘𝑉) & ⊢ 𝐵 = (Base‘𝑊) & ⊢ ≤ = (le‘𝑉) & ⊢ ≲ = (le‘𝑊) ⇒ ⊢ ((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) → (𝐹 ∈ (𝑉Monot𝑊) ↔ (𝐹:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≲ (𝐹‘𝑦))))) | ||
| Theorem | ismntd 32910 | Property of being a monotone increasing function, deduction version. (Contributed by Thierry Arnoux, 24-Apr-2024.) |
| ⊢ 𝐴 = (Base‘𝑉) & ⊢ 𝐵 = (Base‘𝑊) & ⊢ ≤ = (le‘𝑉) & ⊢ ≲ = (le‘𝑊) & ⊢ (𝜑 → 𝑉 ∈ 𝐶) & ⊢ (𝜑 → 𝑊 ∈ 𝐷) & ⊢ (𝜑 → 𝐹 ∈ (𝑉Monot𝑊)) & ⊢ (𝜑 → 𝑋 ∈ 𝐴) & ⊢ (𝜑 → 𝑌 ∈ 𝐴) & ⊢ (𝜑 → 𝑋 ≤ 𝑌) ⇒ ⊢ (𝜑 → (𝐹‘𝑋) ≲ (𝐹‘𝑌)) | ||
| Theorem | mntf 32911 | A monotone function is a function. (Contributed by Thierry Arnoux, 24-Apr-2024.) |
| ⊢ 𝐴 = (Base‘𝑉) & ⊢ 𝐵 = (Base‘𝑊) ⇒ ⊢ ((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌 ∧ 𝐹 ∈ (𝑉Monot𝑊)) → 𝐹:𝐴⟶𝐵) | ||
| Theorem | mgcoval 32912* | Operation value of the monotone Galois connection. (Contributed by Thierry Arnoux, 23-Apr-2024.) |
| ⊢ 𝐴 = (Base‘𝑉) & ⊢ 𝐵 = (Base‘𝑊) & ⊢ ≤ = (le‘𝑉) & ⊢ ≲ = (le‘𝑊) ⇒ ⊢ ((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) → (𝑉MGalConn𝑊) = {〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ (𝐵 ↑m 𝐴) ∧ 𝑔 ∈ (𝐴 ↑m 𝐵)) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ((𝑓‘𝑥) ≲ 𝑦 ↔ 𝑥 ≤ (𝑔‘𝑦)))}) | ||
| Theorem | mgcval 32913* |
Monotone Galois connection between two functions 𝐹 and 𝐺. If
this relation is satisfied, 𝐹 is called the lower adjoint of 𝐺,
and 𝐺 is called the upper adjoint of 𝐹.
Technically, this is implemented as an operation taking a pair of structures 𝑉 and 𝑊, expected to be posets, which gives a relation between pairs of functions 𝐹 and 𝐺. If such a relation exists, it can be proven to be unique. Galois connections generalize the fundamental theorem of Galois theory about the correspondence between subgroups and subfields. (Contributed by Thierry Arnoux, 23-Apr-2024.) |
| ⊢ 𝐴 = (Base‘𝑉) & ⊢ 𝐵 = (Base‘𝑊) & ⊢ ≤ = (le‘𝑉) & ⊢ ≲ = (le‘𝑊) & ⊢ 𝐻 = (𝑉MGalConn𝑊) & ⊢ (𝜑 → 𝑉 ∈ Proset ) & ⊢ (𝜑 → 𝑊 ∈ Proset ) ⇒ ⊢ (𝜑 → (𝐹𝐻𝐺 ↔ ((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐵⟶𝐴) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ((𝐹‘𝑥) ≲ 𝑦 ↔ 𝑥 ≤ (𝐺‘𝑦))))) | ||
| Theorem | mgcf1 32914 | The lower adjoint 𝐹 of a Galois connection is a function. (Contributed by Thierry Arnoux, 24-Apr-2024.) |
| ⊢ 𝐴 = (Base‘𝑉) & ⊢ 𝐵 = (Base‘𝑊) & ⊢ ≤ = (le‘𝑉) & ⊢ ≲ = (le‘𝑊) & ⊢ 𝐻 = (𝑉MGalConn𝑊) & ⊢ (𝜑 → 𝑉 ∈ Proset ) & ⊢ (𝜑 → 𝑊 ∈ Proset ) & ⊢ (𝜑 → 𝐹𝐻𝐺) ⇒ ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | ||
| Theorem | mgcf2 32915 | The upper adjoint 𝐺 of a Galois connection is a function. (Contributed by Thierry Arnoux, 24-Apr-2024.) |
| ⊢ 𝐴 = (Base‘𝑉) & ⊢ 𝐵 = (Base‘𝑊) & ⊢ ≤ = (le‘𝑉) & ⊢ ≲ = (le‘𝑊) & ⊢ 𝐻 = (𝑉MGalConn𝑊) & ⊢ (𝜑 → 𝑉 ∈ Proset ) & ⊢ (𝜑 → 𝑊 ∈ Proset ) & ⊢ (𝜑 → 𝐹𝐻𝐺) ⇒ ⊢ (𝜑 → 𝐺:𝐵⟶𝐴) | ||
| Theorem | mgccole1 32916 | An inequality for the kernel operator 𝐺 ∘ 𝐹. (Contributed by Thierry Arnoux, 26-Apr-2024.) |
| ⊢ 𝐴 = (Base‘𝑉) & ⊢ 𝐵 = (Base‘𝑊) & ⊢ ≤ = (le‘𝑉) & ⊢ ≲ = (le‘𝑊) & ⊢ 𝐻 = (𝑉MGalConn𝑊) & ⊢ (𝜑 → 𝑉 ∈ Proset ) & ⊢ (𝜑 → 𝑊 ∈ Proset ) & ⊢ (𝜑 → 𝐹𝐻𝐺) & ⊢ (𝜑 → 𝑋 ∈ 𝐴) ⇒ ⊢ (𝜑 → 𝑋 ≤ (𝐺‘(𝐹‘𝑋))) | ||
| Theorem | mgccole2 32917 | Inequality for the closure operator (𝐹 ∘ 𝐺) of the Galois connection 𝐻. (Contributed by Thierry Arnoux, 26-Apr-2024.) |
| ⊢ 𝐴 = (Base‘𝑉) & ⊢ 𝐵 = (Base‘𝑊) & ⊢ ≤ = (le‘𝑉) & ⊢ ≲ = (le‘𝑊) & ⊢ 𝐻 = (𝑉MGalConn𝑊) & ⊢ (𝜑 → 𝑉 ∈ Proset ) & ⊢ (𝜑 → 𝑊 ∈ Proset ) & ⊢ (𝜑 → 𝐹𝐻𝐺) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐹‘(𝐺‘𝑌)) ≲ 𝑌) | ||
| Theorem | mgcmnt1 32918 | The lower adjoint 𝐹 of a Galois connection is monotonically increasing. (Contributed by Thierry Arnoux, 26-Apr-2024.) |
| ⊢ 𝐴 = (Base‘𝑉) & ⊢ 𝐵 = (Base‘𝑊) & ⊢ ≤ = (le‘𝑉) & ⊢ ≲ = (le‘𝑊) & ⊢ 𝐻 = (𝑉MGalConn𝑊) & ⊢ (𝜑 → 𝑉 ∈ Proset ) & ⊢ (𝜑 → 𝑊 ∈ Proset ) & ⊢ (𝜑 → 𝐹𝐻𝐺) & ⊢ (𝜑 → 𝑋 ∈ 𝐴) & ⊢ (𝜑 → 𝑌 ∈ 𝐴) & ⊢ (𝜑 → 𝑋 ≤ 𝑌) ⇒ ⊢ (𝜑 → (𝐹‘𝑋) ≲ (𝐹‘𝑌)) | ||
| Theorem | mgcmnt2 32919 | The upper adjoint 𝐺 of a Galois connection is monotonically increasing. (Contributed by Thierry Arnoux, 26-Apr-2024.) |
| ⊢ 𝐴 = (Base‘𝑉) & ⊢ 𝐵 = (Base‘𝑊) & ⊢ ≤ = (le‘𝑉) & ⊢ ≲ = (le‘𝑊) & ⊢ 𝐻 = (𝑉MGalConn𝑊) & ⊢ (𝜑 → 𝑉 ∈ Proset ) & ⊢ (𝜑 → 𝑊 ∈ Proset ) & ⊢ (𝜑 → 𝐹𝐻𝐺) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑋 ≲ 𝑌) ⇒ ⊢ (𝜑 → (𝐺‘𝑋) ≤ (𝐺‘𝑌)) | ||
| Theorem | mgcmntco 32920* | A Galois connection like statement, for two functions with same range. (Contributed by Thierry Arnoux, 26-Apr-2024.) |
| ⊢ 𝐴 = (Base‘𝑉) & ⊢ 𝐵 = (Base‘𝑊) & ⊢ ≤ = (le‘𝑉) & ⊢ ≲ = (le‘𝑊) & ⊢ 𝐻 = (𝑉MGalConn𝑊) & ⊢ (𝜑 → 𝑉 ∈ Proset ) & ⊢ (𝜑 → 𝑊 ∈ Proset ) & ⊢ (𝜑 → 𝐹𝐻𝐺) & ⊢ 𝐶 = (Base‘𝑋) & ⊢ < = (le‘𝑋) & ⊢ (𝜑 → 𝑋 ∈ Proset ) & ⊢ (𝜑 → 𝐾 ∈ (𝑉Monot𝑋)) & ⊢ (𝜑 → 𝐿 ∈ (𝑊Monot𝑋)) ⇒ ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 (𝐾‘𝑥) < (𝐿‘(𝐹‘𝑥)) ↔ ∀𝑦 ∈ 𝐵 (𝐾‘(𝐺‘𝑦)) < (𝐿‘𝑦))) | ||
| Theorem | dfmgc2lem 32921* | Lemma for dfmgc2, backwards direction. (Contributed by Thierry Arnoux, 26-Apr-2024.) |
| ⊢ 𝐴 = (Base‘𝑉) & ⊢ 𝐵 = (Base‘𝑊) & ⊢ ≤ = (le‘𝑉) & ⊢ ≲ = (le‘𝑊) & ⊢ 𝐻 = (𝑉MGalConn𝑊) & ⊢ (𝜑 → 𝑉 ∈ Proset ) & ⊢ (𝜑 → 𝑊 ∈ Proset ) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ (𝜑 → 𝐺:𝐵⟶𝐴) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≲ (𝐹‘𝑦))) & ⊢ (𝜑 → ∀𝑢 ∈ 𝐵 ∀𝑣 ∈ 𝐵 (𝑢 ≲ 𝑣 → (𝐺‘𝑢) ≤ (𝐺‘𝑣))) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ≤ (𝐺‘(𝐹‘𝑥))) & ⊢ ((𝜑 ∧ 𝑢 ∈ 𝐵) → (𝐹‘(𝐺‘𝑢)) ≲ 𝑢) ⇒ ⊢ (𝜑 → 𝐹𝐻𝐺) | ||
| Theorem | dfmgc2 32922* | Alternate definition of the monotone Galois connection. (Contributed by Thierry Arnoux, 26-Apr-2024.) |
| ⊢ 𝐴 = (Base‘𝑉) & ⊢ 𝐵 = (Base‘𝑊) & ⊢ ≤ = (le‘𝑉) & ⊢ ≲ = (le‘𝑊) & ⊢ 𝐻 = (𝑉MGalConn𝑊) & ⊢ (𝜑 → 𝑉 ∈ Proset ) & ⊢ (𝜑 → 𝑊 ∈ Proset ) ⇒ ⊢ (𝜑 → (𝐹𝐻𝐺 ↔ ((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐵⟶𝐴) ∧ ((∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≲ (𝐹‘𝑦)) ∧ ∀𝑢 ∈ 𝐵 ∀𝑣 ∈ 𝐵 (𝑢 ≲ 𝑣 → (𝐺‘𝑢) ≤ (𝐺‘𝑣))) ∧ (∀𝑢 ∈ 𝐵 (𝐹‘(𝐺‘𝑢)) ≲ 𝑢 ∧ ∀𝑥 ∈ 𝐴 𝑥 ≤ (𝐺‘(𝐹‘𝑥))))))) | ||
| Theorem | mgcmnt1d 32923 | Galois connection implies monotonicity of the left adjoint. (Contributed by Thierry Arnoux, 21-Jul-2024.) |
| ⊢ 𝐻 = (𝑉MGalConn𝑊) & ⊢ (𝜑 → 𝑉 ∈ Proset ) & ⊢ (𝜑 → 𝑊 ∈ Proset ) & ⊢ (𝜑 → 𝐹𝐻𝐺) ⇒ ⊢ (𝜑 → 𝐹 ∈ (𝑉Monot𝑊)) | ||
| Theorem | mgcmnt2d 32924 | Galois connection implies monotonicity of the right adjoint. (Contributed by Thierry Arnoux, 21-Jul-2024.) |
| ⊢ 𝐻 = (𝑉MGalConn𝑊) & ⊢ (𝜑 → 𝑉 ∈ Proset ) & ⊢ (𝜑 → 𝑊 ∈ Proset ) & ⊢ (𝜑 → 𝐹𝐻𝐺) ⇒ ⊢ (𝜑 → 𝐺 ∈ (𝑊Monot𝑉)) | ||
| Theorem | mgccnv 32925 | The inverse Galois connection is the Galois connection of the dual orders. (Contributed by Thierry Arnoux, 26-Apr-2024.) |
| ⊢ 𝐻 = (𝑉MGalConn𝑊) & ⊢ 𝑀 = ((ODual‘𝑊)MGalConn(ODual‘𝑉)) ⇒ ⊢ ((𝑉 ∈ Proset ∧ 𝑊 ∈ Proset ) → (𝐹𝐻𝐺 ↔ 𝐺𝑀𝐹)) | ||
| Theorem | pwrssmgc 32926* | Given a function 𝐹, exhibit a Galois connection between subsets of its domain and subsets of its range. (Contributed by Thierry Arnoux, 26-Apr-2024.) |
| ⊢ 𝐺 = (𝑛 ∈ 𝒫 𝑌 ↦ (◡𝐹 “ 𝑛)) & ⊢ 𝐻 = (𝑚 ∈ 𝒫 𝑋 ↦ {𝑦 ∈ 𝑌 ∣ (◡𝐹 “ {𝑦}) ⊆ 𝑚}) & ⊢ 𝑉 = (toInc‘𝒫 𝑌) & ⊢ 𝑊 = (toInc‘𝒫 𝑋) & ⊢ (𝜑 → 𝑋 ∈ 𝐴) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝐹:𝑋⟶𝑌) ⇒ ⊢ (𝜑 → 𝐺(𝑉MGalConn𝑊)𝐻) | ||
| Theorem | mgcf1olem1 32927 | Property of a Galois connection, lemma for mgcf1o 32929. (Contributed by Thierry Arnoux, 26-Jul-2024.) |
| ⊢ 𝐻 = (𝑉MGalConn𝑊) & ⊢ 𝐴 = (Base‘𝑉) & ⊢ 𝐵 = (Base‘𝑊) & ⊢ ≤ = (le‘𝑉) & ⊢ ≲ = (le‘𝑊) & ⊢ (𝜑 → 𝑉 ∈ Poset) & ⊢ (𝜑 → 𝑊 ∈ Poset) & ⊢ (𝜑 → 𝐹𝐻𝐺) & ⊢ (𝜑 → 𝑋 ∈ 𝐴) ⇒ ⊢ (𝜑 → (𝐹‘(𝐺‘(𝐹‘𝑋))) = (𝐹‘𝑋)) | ||
| Theorem | mgcf1olem2 32928 | Property of a Galois connection, lemma for mgcf1o 32929. (Contributed by Thierry Arnoux, 26-Jul-2024.) |
| ⊢ 𝐻 = (𝑉MGalConn𝑊) & ⊢ 𝐴 = (Base‘𝑉) & ⊢ 𝐵 = (Base‘𝑊) & ⊢ ≤ = (le‘𝑉) & ⊢ ≲ = (le‘𝑊) & ⊢ (𝜑 → 𝑉 ∈ Poset) & ⊢ (𝜑 → 𝑊 ∈ Poset) & ⊢ (𝜑 → 𝐹𝐻𝐺) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐺‘(𝐹‘(𝐺‘𝑌))) = (𝐺‘𝑌)) | ||
| Theorem | mgcf1o 32929 | Given a Galois connection, exhibit an order isomorphism. (Contributed by Thierry Arnoux, 26-Jul-2024.) |
| ⊢ 𝐻 = (𝑉MGalConn𝑊) & ⊢ 𝐴 = (Base‘𝑉) & ⊢ 𝐵 = (Base‘𝑊) & ⊢ ≤ = (le‘𝑉) & ⊢ ≲ = (le‘𝑊) & ⊢ (𝜑 → 𝑉 ∈ Poset) & ⊢ (𝜑 → 𝑊 ∈ Poset) & ⊢ (𝜑 → 𝐹𝐻𝐺) ⇒ ⊢ (𝜑 → (𝐹 ↾ ran 𝐺) Isom ≤ , ≲ (ran 𝐺, ran 𝐹)) | ||
| Syntax | cchn 32930 | Extend class notation with the class of (finite) chains. |
| class ( < Chain𝐴) | ||
| Definition | df-chn 32931* | Define the class of (finite) chains. A chain is defined to be a sequence of objects, where each object is less than the next one in the sequence. The term "chain" is usually used in order theory. In the context of algebra, chains are often called "towers", for example for fields, or "series", for example for subgroup or subnormal series. (Contributed by Thierry Arnoux, 19-Jun-2025.) |
| ⊢ ( < Chain𝐴) = {𝑐 ∈ Word 𝐴 ∣ ∀𝑛 ∈ (dom 𝑐 ∖ {0})(𝑐‘(𝑛 − 1)) < (𝑐‘𝑛)} | ||
| Theorem | ischn 32932* | Property of being a chain. (Contributed by Thierry Arnoux, 19-Jun-2025.) |
| ⊢ (𝐶 ∈ ( < Chain𝐴) ↔ (𝐶 ∈ Word 𝐴 ∧ ∀𝑛 ∈ (dom 𝐶 ∖ {0})(𝐶‘(𝑛 − 1)) < (𝐶‘𝑛))) | ||
| Theorem | chnwrd 32933 | A chain is an ordered sequence, i.e. a word. (Contributed by Thierry Arnoux, 19-Jun-2025.) |
| ⊢ (𝜑 → 𝐶 ∈ ( < Chain𝐴)) ⇒ ⊢ (𝜑 → 𝐶 ∈ Word 𝐴) | ||
| Theorem | chnltm1 32934 | Basic property of a chain. (Contributed by Thierry Arnoux, 19-Jun-2025.) |
| ⊢ (𝜑 → 𝐶 ∈ ( < Chain𝐴)) & ⊢ (𝜑 → 𝑁 ∈ (dom 𝐶 ∖ {0})) ⇒ ⊢ (𝜑 → (𝐶‘(𝑁 − 1)) < (𝐶‘𝑁)) | ||
| Theorem | pfxchn 32935 | A prefix of a chain is still a chain. (Contributed by Thierry Arnoux, 19-Jun-2025.) |
| ⊢ (𝜑 → 𝐶 ∈ ( < Chain𝐴)) & ⊢ (𝜑 → 𝐿 ∈ (0...(♯‘𝐶))) ⇒ ⊢ (𝜑 → (𝐶 prefix 𝐿) ∈ ( < Chain𝐴)) | ||
| Theorem | s1chn 32936 | A singleton word is always a chain. (Contributed by Thierry Arnoux, 19-Oct-2025.) |
| ⊢ (𝜑 → 𝑋 ∈ 𝐴) ⇒ ⊢ (𝜑 → 〈“𝑋”〉 ∈ ( < Chain𝐴)) | ||
| Theorem | chnind 32937* | Induction over a chain. See nnind 12256 for an explanation about the hypotheses. (Contributed by Thierry Arnoux, 19-Jun-2025.) |
| ⊢ (𝑐 = ∅ → (𝜓 ↔ 𝜒)) & ⊢ (𝑐 = 𝑑 → (𝜓 ↔ 𝜃)) & ⊢ (𝑐 = (𝑑 ++ 〈“𝑥”〉) → (𝜓 ↔ 𝜏)) & ⊢ (𝑐 = 𝐶 → (𝜓 ↔ 𝜂)) & ⊢ (𝜑 → 𝐶 ∈ ( < Chain𝐴)) & ⊢ (𝜑 → 𝜒) & ⊢ (((((𝜑 ∧ 𝑑 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑑 = ∅ ∨ (lastS‘𝑑) < 𝑥)) ∧ 𝜃) → 𝜏) ⇒ ⊢ (𝜑 → 𝜂) | ||
| Theorem | chnub 32938 | In a chain, the last element is an upper bound. (Contributed by Thierry Arnoux, 19-Jun-2025.) |
| ⊢ (𝜑 → < Po 𝐴) & ⊢ (𝜑 → 𝐶 ∈ ( < Chain𝐴)) & ⊢ (𝜑 → 𝐼 ∈ (0..^((♯‘𝐶) − 1))) ⇒ ⊢ (𝜑 → (𝐶‘𝐼) < (lastS‘𝐶)) | ||
| Theorem | chnlt 32939 | Compare any two elements in a chain. (Contributed by Thierry Arnoux, 19-Jun-2025.) |
| ⊢ (𝜑 → < Po 𝐴) & ⊢ (𝜑 → 𝐶 ∈ ( < Chain𝐴)) & ⊢ (𝜑 → 𝐽 ∈ (0..^(♯‘𝐶))) & ⊢ (𝜑 → 𝐼 ∈ (0..^𝐽)) ⇒ ⊢ (𝜑 → (𝐶‘𝐼) < (𝐶‘𝐽)) | ||
| Theorem | chnso 32940 | A chain induces a total order. (Contributed by Thierry Arnoux, 19-Jun-2025.) |
| ⊢ (( < Po 𝐴 ∧ 𝐶 ∈ ( < Chain𝐴)) → < Or ran 𝐶) | ||
| Theorem | chnccats1 32941 | Extend a chain with a single element. (Contributed by Thierry Arnoux, 19-Oct-2025.) |
| ⊢ (𝜑 → 𝑋 ∈ 𝐴) & ⊢ (𝜑 → 𝑇 ∈ ( < Chain𝐴)) & ⊢ (𝜑 → (𝑇 = ∅ ∨ (lastS‘𝑇) < 𝑋)) ⇒ ⊢ (𝜑 → (𝑇 ++ 〈“𝑋”〉) ∈ ( < Chain𝐴)) | ||
| Axiom | ax-xrssca 32942 | Assume the scalar component of the extended real structure is the field of the real numbers (this has to be defined in the main body of set.mm). (Contributed by Thierry Arnoux, 22-Oct-2017.) |
| ⊢ ℝfld = (Scalar‘ℝ*𝑠) | ||
| Axiom | ax-xrsvsca 32943 | Assume the scalar product of the extended real structure is the extended real number multiplication operation (this has to be defined in the main body of set.mm). (Contributed by Thierry Arnoux, 22-Oct-2017.) |
| ⊢ ·e = ( ·𝑠 ‘ℝ*𝑠) | ||
| Theorem | xrs0 32944 | The zero of the extended real numbers. The extended real is not a group, as its addition is not associative. (cf. xaddass 13263 and df-xrs 17514), however it has a zero. (Contributed by Thierry Arnoux, 13-Jun-2017.) |
| ⊢ 0 = (0g‘ℝ*𝑠) | ||
| Theorem | xrslt 32945 | The "strictly less than" relation for the extended real structure. (Contributed by Thierry Arnoux, 30-Jan-2018.) |
| ⊢ < = (lt‘ℝ*𝑠) | ||
| Theorem | xrsinvgval 32946 | The inversion operation in the extended real numbers. The extended real is not a group, as its addition is not associative. (cf. xaddass 13263 and df-xrs 17514), however it has an inversion operation. (Contributed by Thierry Arnoux, 13-Jun-2017.) |
| ⊢ (𝐵 ∈ ℝ* → ((invg‘ℝ*𝑠)‘𝐵) = -𝑒𝐵) | ||
| Theorem | xrsmulgzz 32947 | The "multiple" function in the extended real numbers structure. (Contributed by Thierry Arnoux, 14-Jun-2017.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℝ*) → (𝐴(.g‘ℝ*𝑠)𝐵) = (𝐴 ·e 𝐵)) | ||
| Theorem | xrstos 32948 | The extended real numbers form a toset. (Contributed by Thierry Arnoux, 15-Feb-2018.) |
| ⊢ ℝ*𝑠 ∈ Toset | ||
| Theorem | xrsclat 32949 | The extended real numbers form a complete lattice. (Contributed by Thierry Arnoux, 15-Feb-2018.) |
| ⊢ ℝ*𝑠 ∈ CLat | ||
| Theorem | xrsp0 32950 | The poset 0 of the extended real numbers is minus infinity. (Contributed by Thierry Arnoux, 18-Feb-2018.) (Proof shortened by AV, 28-Sep-2020.) |
| ⊢ -∞ = (0.‘ℝ*𝑠) | ||
| Theorem | xrsp1 32951 | The poset 1 of the extended real numbers is plus infinity. (Contributed by Thierry Arnoux, 18-Feb-2018.) |
| ⊢ +∞ = (1.‘ℝ*𝑠) | ||
| Theorem | xrge0base 32952 | The base of the extended nonnegative real numbers. (Contributed by Thierry Arnoux, 30-Jan-2017.) |
| ⊢ (0[,]+∞) = (Base‘(ℝ*𝑠 ↾s (0[,]+∞))) | ||
| Theorem | xrge00 32953 | The zero of the extended nonnegative real numbers monoid. (Contributed by Thierry Arnoux, 30-Jan-2017.) |
| ⊢ 0 = (0g‘(ℝ*𝑠 ↾s (0[,]+∞))) | ||
| Theorem | xrge0plusg 32954 | The additive law of the extended nonnegative real numbers monoid is the addition in the extended real numbers. (Contributed by Thierry Arnoux, 20-Mar-2017.) |
| ⊢ +𝑒 = (+g‘(ℝ*𝑠 ↾s (0[,]+∞))) | ||
| Theorem | xrge0le 32955 | The "less than or equal to" relation in the extended real numbers. (Contributed by Thierry Arnoux, 14-Mar-2018.) |
| ⊢ ≤ = (le‘(ℝ*𝑠 ↾s (0[,]+∞))) | ||
| Theorem | xrge0mulgnn0 32956 | The group multiple function in the extended nonnegative real numbers. (Contributed by Thierry Arnoux, 14-Jun-2017.) |
| ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ (0[,]+∞)) → (𝐴(.g‘(ℝ*𝑠 ↾s (0[,]+∞)))𝐵) = (𝐴 ·e 𝐵)) | ||
| Theorem | xrge0addass 32957 | Associativity of extended nonnegative real addition. (Contributed by Thierry Arnoux, 8-Jun-2017.) |
| ⊢ ((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) → ((𝐴 +𝑒 𝐵) +𝑒 𝐶) = (𝐴 +𝑒 (𝐵 +𝑒 𝐶))) | ||
| Theorem | xrge0addgt0 32958 | The sum of nonnegative and positive numbers is positive. See addgtge0 11723. (Contributed by Thierry Arnoux, 6-Jul-2017.) |
| ⊢ (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞)) ∧ 0 < 𝐴) → 0 < (𝐴 +𝑒 𝐵)) | ||
| Theorem | xrge0adddir 32959 | Right-distributivity of extended nonnegative real multiplication over addition. (Contributed by Thierry Arnoux, 30-Jun-2017.) |
| ⊢ ((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) → ((𝐴 +𝑒 𝐵) ·e 𝐶) = ((𝐴 ·e 𝐶) +𝑒 (𝐵 ·e 𝐶))) | ||
| Theorem | xrge0adddi 32960 | Left-distributivity of extended nonnegative real multiplication over addition. (Contributed by Thierry Arnoux, 6-Sep-2018.) |
| ⊢ ((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) → (𝐶 ·e (𝐴 +𝑒 𝐵)) = ((𝐶 ·e 𝐴) +𝑒 (𝐶 ·e 𝐵))) | ||
| Theorem | xrge0npcan 32961 | Extended nonnegative real version of npcan 11489. (Contributed by Thierry Arnoux, 9-Jun-2017.) |
| ⊢ ((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐵 ≤ 𝐴) → ((𝐴 +𝑒 -𝑒𝐵) +𝑒 𝐵) = 𝐴) | ||
| Theorem | fsumrp0cl 32962* | Closure of a finite sum of nonnegative reals. (Contributed by Thierry Arnoux, 25-Jun-2017.) |
| ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,)+∞)) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 ∈ (0[,)+∞)) | ||
| Theorem | mndcld 32963 | Closure of the operation of a monoid. (Contributed by Thierry Arnoux, 3-Aug-2025.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Mnd) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑋 + 𝑌) ∈ 𝐵) | ||
| Theorem | mndassd 32964 | A monoid operation is associative. (Contributed by Thierry Arnoux, 3-Aug-2025.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Mnd) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) ⇒ ⊢ (𝜑 → ((𝑋 + 𝑌) + 𝑍) = (𝑋 + (𝑌 + 𝑍))) | ||
| Theorem | mndlrinv 32965 | In a monoid, if an element 𝑋 has both a left inverse 𝑀 and a right inverse 𝑁, they are equal. (Contributed by Thierry Arnoux, 3-Aug-2025.) |
| ⊢ 𝐵 = (Base‘𝐸) & ⊢ 0 = (0g‘𝐸) & ⊢ + = (+g‘𝐸) & ⊢ (𝜑 → 𝐸 ∈ Mnd) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑀 ∈ 𝐵) & ⊢ (𝜑 → 𝑁 ∈ 𝐵) & ⊢ (𝜑 → (𝑀 + 𝑋) = 0 ) & ⊢ (𝜑 → (𝑋 + 𝑁) = 0 ) ⇒ ⊢ (𝜑 → 𝑀 = 𝑁) | ||
| Theorem | mndlrinvb 32966* | In a monoid, if an element has both a left-inverse and a right-inverse, they are equal. (Contributed by Thierry Arnoux, 3-Aug-2025.) |
| ⊢ 𝐵 = (Base‘𝐸) & ⊢ 0 = (0g‘𝐸) & ⊢ + = (+g‘𝐸) & ⊢ (𝜑 → 𝐸 ∈ Mnd) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → ((∃𝑢 ∈ 𝐵 (𝑋 + 𝑢) = 0 ∧ ∃𝑣 ∈ 𝐵 (𝑣 + 𝑋) = 0 ) ↔ ∃𝑦 ∈ 𝐵 ((𝑋 + 𝑦) = 0 ∧ (𝑦 + 𝑋) = 0 ))) | ||
| Theorem | mndlactf1 32967* | If an element 𝑋 of a monoid 𝐸 is right-invertible, with inverse 𝑌, then its left-translation 𝐹 is injective. See also grplactf1o 19025. Remark in chapter I. of [BourbakiAlg1] p. 17 . (Contributed by Thierry Arnoux, 3-Aug-2025.) |
| ⊢ 𝐵 = (Base‘𝐸) & ⊢ 0 = (0g‘𝐸) & ⊢ + = (+g‘𝐸) & ⊢ 𝐹 = (𝑎 ∈ 𝐵 ↦ (𝑋 + 𝑎)) & ⊢ (𝜑 → 𝐸 ∈ Mnd) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → (𝑌 + 𝑋) = 0 ) ⇒ ⊢ (𝜑 → 𝐹:𝐵–1-1→𝐵) | ||
| Theorem | mndlactfo 32968* | An element 𝑋 of a monoid 𝐸 is left-invertible iff its left-translation 𝐹 is surjective. See also grplactf1o 19025. (Contributed by Thierry Arnoux, 3-Aug-2025.) |
| ⊢ 𝐵 = (Base‘𝐸) & ⊢ 0 = (0g‘𝐸) & ⊢ + = (+g‘𝐸) & ⊢ 𝐹 = (𝑎 ∈ 𝐵 ↦ (𝑋 + 𝑎)) & ⊢ (𝜑 → 𝐸 ∈ Mnd) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐹:𝐵–onto→𝐵 ↔ ∃𝑦 ∈ 𝐵 (𝑋 + 𝑦) = 0 )) | ||
| Theorem | mndractf1 32969* | If an element 𝑋 of a monoid 𝐸 is right-invertible, with inverse 𝑌, then its left-translation 𝐺 is injective. See also grplactf1o 19025. Remark in chapter I. of [BourbakiAlg1] p. 17 . (Contributed by Thierry Arnoux, 3-Aug-2025.) |
| ⊢ 𝐵 = (Base‘𝐸) & ⊢ 0 = (0g‘𝐸) & ⊢ + = (+g‘𝐸) & ⊢ 𝐺 = (𝑎 ∈ 𝐵 ↦ (𝑎 + 𝑋)) & ⊢ (𝜑 → 𝐸 ∈ Mnd) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → (𝑋 + 𝑌) = 0 ) ⇒ ⊢ (𝜑 → 𝐺:𝐵–1-1→𝐵) | ||
| Theorem | mndractfo 32970* | An element 𝑋 of a monoid 𝐸 is right-invertible iff its right-translation 𝐺 is surjective. (Contributed by Thierry Arnoux, 3-Aug-2025.) |
| ⊢ 𝐵 = (Base‘𝐸) & ⊢ 0 = (0g‘𝐸) & ⊢ + = (+g‘𝐸) & ⊢ 𝐺 = (𝑎 ∈ 𝐵 ↦ (𝑎 + 𝑋)) & ⊢ (𝜑 → 𝐸 ∈ Mnd) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐺:𝐵–onto→𝐵 ↔ ∃𝑦 ∈ 𝐵 (𝑦 + 𝑋) = 0 )) | ||
| Theorem | mndlactf1o 32971* | An element 𝑋 of a monoid 𝐸 is invertible iff its left-translation 𝐹 is bijective. See also grplactf1o 19025. Remark in chapter I. of [BourbakiAlg1] p. 17. (Contributed by Thierry Arnoux, 3-Aug-2025.) |
| ⊢ 𝐵 = (Base‘𝐸) & ⊢ 0 = (0g‘𝐸) & ⊢ + = (+g‘𝐸) & ⊢ 𝐹 = (𝑎 ∈ 𝐵 ↦ (𝑋 + 𝑎)) & ⊢ (𝜑 → 𝐸 ∈ Mnd) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐹:𝐵–1-1-onto→𝐵 ↔ ∃𝑦 ∈ 𝐵 ((𝑋 + 𝑦) = 0 ∧ (𝑦 + 𝑋) = 0 ))) | ||
| Theorem | mndractf1o 32972* | An element 𝑋 of a monoid 𝐸 is invertible iff its right-translation 𝐺 is bijective. See also mndlactf1o 32971. Remark in chapter I. of [BourbakiAlg1] p. 17 . (Contributed by Thierry Arnoux, 3-Aug-2025.) |
| ⊢ 𝐵 = (Base‘𝐸) & ⊢ 0 = (0g‘𝐸) & ⊢ + = (+g‘𝐸) & ⊢ 𝐺 = (𝑎 ∈ 𝐵 ↦ (𝑎 + 𝑋)) & ⊢ (𝜑 → 𝐸 ∈ Mnd) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐺:𝐵–1-1-onto→𝐵 ↔ ∃𝑦 ∈ 𝐵 ((𝑋 + 𝑦) = 0 ∧ (𝑦 + 𝑋) = 0 ))) | ||
| Theorem | cmn4d 32973 | Commutative/associative law for commutative monoids. (Contributed by Thierry Arnoux, 4-May-2025.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) & ⊢ (𝜑 → 𝑊 ∈ 𝐵) ⇒ ⊢ (𝜑 → ((𝑋 + 𝑌) + (𝑍 + 𝑊)) = ((𝑋 + 𝑍) + (𝑌 + 𝑊))) | ||
| Theorem | cmn246135 32974 | Rearrange terms in a commutative monoid sum. Lemma for rlocaddval 33209. (Contributed by Thierry Arnoux, 4-May-2025.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) & ⊢ (𝜑 → 𝑈 ∈ 𝐵) & ⊢ (𝜑 → 𝑉 ∈ 𝐵) & ⊢ (𝜑 → 𝑊 ∈ 𝐵) ⇒ ⊢ (𝜑 → ((𝑋 + 𝑌) + ((𝑍 + 𝑈) + (𝑉 + 𝑊))) = ((𝑌 + (𝑈 + 𝑊)) + (𝑋 + (𝑍 + 𝑉)))) | ||
| Theorem | cmn145236 32975 | Rearrange terms in a commutative monoid sum. Lemma for rlocaddval 33209. (Contributed by Thierry Arnoux, 4-May-2025.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) & ⊢ (𝜑 → 𝑈 ∈ 𝐵) & ⊢ (𝜑 → 𝑉 ∈ 𝐵) & ⊢ (𝜑 → 𝑊 ∈ 𝐵) ⇒ ⊢ (𝜑 → ((𝑋 + 𝑌) + ((𝑍 + 𝑈) + (𝑉 + 𝑊))) = ((𝑋 + (𝑈 + 𝑉)) + (𝑌 + (𝑍 + 𝑊)))) | ||
| Theorem | submcld 32976 | Submonoids are closed under the monoid operation. (Contributed by Thierry Arnoux, 4-May-2025.) |
| ⊢ + = (+g‘𝑀) & ⊢ (𝜑 → 𝑆 ∈ (SubMnd‘𝑀)) & ⊢ (𝜑 → 𝑋 ∈ 𝑆) & ⊢ (𝜑 → 𝑌 ∈ 𝑆) ⇒ ⊢ (𝜑 → (𝑋 + 𝑌) ∈ 𝑆) | ||
| Theorem | abliso 32977 | The image of an Abelian group by a group isomorphism is also Abelian. (Contributed by Thierry Arnoux, 8-Mar-2018.) |
| ⊢ ((𝑀 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpIso 𝑁)) → 𝑁 ∈ Abel) | ||
| Theorem | lmhmghmd 32978 | A module homomorphism is a group homomorphism. (Contributed by Thierry Arnoux, 2-Apr-2025.) |
| ⊢ (𝜑 → 𝐹 ∈ (𝑆 LMHom 𝑇)) ⇒ ⊢ (𝜑 → 𝐹 ∈ (𝑆 GrpHom 𝑇)) | ||
| Theorem | mhmimasplusg 32979 | Value of the operation of the surjective image. (Contributed by Thierry Arnoux, 2-Apr-2025.) |
| ⊢ 𝑊 = (𝐹 “s 𝑉) & ⊢ 𝐵 = (Base‘𝑉) & ⊢ 𝐶 = (Base‘𝑊) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝐹:𝐵–onto→𝐶) & ⊢ (𝜑 → 𝐹 ∈ (𝑉 MndHom 𝑊)) & ⊢ + = (+g‘𝑉) & ⊢ ⨣ = (+g‘𝑊) ⇒ ⊢ (𝜑 → ((𝐹‘𝑋) ⨣ (𝐹‘𝑌)) = (𝐹‘(𝑋 + 𝑌))) | ||
| Theorem | lmhmimasvsca 32980 | Value of the scalar product of the surjective image of a module. (Contributed by Thierry Arnoux, 2-Apr-2025.) |
| ⊢ 𝑊 = (𝐹 “s 𝑉) & ⊢ 𝐵 = (Base‘𝑉) & ⊢ 𝐶 = (Base‘𝑊) & ⊢ (𝜑 → 𝑋 ∈ 𝐾) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝐹:𝐵–onto→𝐶) & ⊢ (𝜑 → 𝐹 ∈ (𝑉 LMHom 𝑊)) & ⊢ · = ( ·𝑠 ‘𝑉) & ⊢ × = ( ·𝑠 ‘𝑊) & ⊢ 𝐾 = (Base‘(Scalar‘𝑉)) ⇒ ⊢ (𝜑 → (𝑋 × (𝐹‘𝑌)) = (𝐹‘(𝑋 · 𝑌))) | ||
| Theorem | grpsubcld 32981 | Closure of group subtraction. (Contributed by Thierry Arnoux, 3-Aug-2025.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ − = (-g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Grp) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑋 − 𝑌) ∈ 𝐵) | ||
| Theorem | subgcld 32982 | A subgroup is closed under group operation. (Contributed by Thierry Arnoux, 3-Jun-2025.) |
| ⊢ + = (+g‘𝐺) & ⊢ (𝜑 → 𝑆 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝑋 ∈ 𝑆) & ⊢ (𝜑 → 𝑌 ∈ 𝑆) ⇒ ⊢ (𝜑 → (𝑋 + 𝑌) ∈ 𝑆) | ||
| Theorem | subgsubcld 32983 | A subgroup is closed under group subtraction. (Contributed by Thierry Arnoux, 6-Jul-2025.) |
| ⊢ − = (-g‘𝐺) & ⊢ (𝜑 → 𝑆 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝑋 ∈ 𝑆) & ⊢ (𝜑 → 𝑌 ∈ 𝑆) ⇒ ⊢ (𝜑 → (𝑋 − 𝑌) ∈ 𝑆) | ||
| Theorem | subgmulgcld 32984 | Closure of the group multiple within a subgroup. (Contributed by Thierry Arnoux, 5-Oct-2025.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.g‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Grp) & ⊢ (𝜑 → 𝐴 ∈ 𝑆) & ⊢ (𝜑 → 𝑆 ∈ (SubGrp‘𝑅)) & ⊢ (𝜑 → 𝑍 ∈ ℤ) ⇒ ⊢ (𝜑 → (𝑍 · 𝐴) ∈ 𝑆) | ||
| Theorem | ressmulgnn0d 32985 | Values for the group multiple function in a restricted structure. (Contributed by Thierry Arnoux, 14-Jun-2017.) |
| ⊢ (𝜑 → (𝐺 ↾s 𝐴) = 𝐻) & ⊢ (𝜑 → (0g‘𝐺) = (0g‘𝐻)) & ⊢ (𝜑 → 𝐴 ⊆ (Base‘𝐺)) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝑋 ∈ 𝐴) ⇒ ⊢ (𝜑 → (𝑁(.g‘𝐻)𝑋) = (𝑁(.g‘𝐺)𝑋)) | ||
| Theorem | gsumsubg 32986 | The group sum in a subgroup is the same as the group sum. (Contributed by Thierry Arnoux, 28-May-2023.) |
| ⊢ 𝐻 = (𝐺 ↾s 𝐵) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ (𝜑 → 𝐵 ∈ (SubGrp‘𝐺)) ⇒ ⊢ (𝜑 → (𝐺 Σg 𝐹) = (𝐻 Σg 𝐹)) | ||
| Theorem | gsumsra 32987 | The group sum in a subring algebra is the same as the ring's group sum. (Contributed by Thierry Arnoux, 28-May-2023.) |
| ⊢ 𝐴 = ((subringAlg ‘𝑅)‘𝐵) & ⊢ (𝜑 → 𝐹 ∈ 𝑈) & ⊢ (𝜑 → 𝑅 ∈ 𝑉) & ⊢ (𝜑 → 𝐴 ∈ 𝑊) & ⊢ (𝜑 → 𝐵 ⊆ (Base‘𝑅)) ⇒ ⊢ (𝜑 → (𝑅 Σg 𝐹) = (𝐴 Σg 𝐹)) | ||
| Theorem | gsummpt2co 32988* | Split a finite sum into a sum of a collection of sums over disjoint subsets. (Contributed by Thierry Arnoux, 27-Mar-2018.) |
| ⊢ 𝐵 = (Base‘𝑊) & ⊢ 0 = (0g‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ CMnd) & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐸 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ 𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐷 ∈ 𝐸) & ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐷) ⇒ ⊢ (𝜑 → (𝑊 Σg (𝑥 ∈ 𝐴 ↦ 𝐶)) = (𝑊 Σg (𝑦 ∈ 𝐸 ↦ (𝑊 Σg (𝑥 ∈ (◡𝐹 “ {𝑦}) ↦ 𝐶))))) | ||
| Theorem | gsummpt2d 32989* | Express a finite sum over a two-dimensional range as a double sum. See also gsum2d 19951. (Contributed by Thierry Arnoux, 27-Apr-2020.) |
| ⊢ Ⅎ𝑧𝐶 & ⊢ Ⅎ𝑦𝜑 & ⊢ 𝐵 = (Base‘𝑊) & ⊢ (𝑥 = 〈𝑦, 𝑧〉 → 𝐶 = 𝐷) & ⊢ (𝜑 → Rel 𝐴) & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝑊 ∈ CMnd) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑊 Σg (𝑥 ∈ 𝐴 ↦ 𝐶)) = (𝑊 Σg (𝑦 ∈ dom 𝐴 ↦ (𝑊 Σg (𝑧 ∈ (𝐴 “ {𝑦}) ↦ 𝐷))))) | ||
| Theorem | lmodvslmhm 32990* | Scalar multiplication in a left module by a fixed element is a group homomorphism. (Contributed by Thierry Arnoux, 12-Jun-2023.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑌 ∈ 𝑉) → (𝑥 ∈ 𝐾 ↦ (𝑥 · 𝑌)) ∈ (𝐹 GrpHom 𝑊)) | ||
| Theorem | gsumvsmul1 32991* | Pull a scalar multiplication out of a sum of vectors. This theorem properly generalizes gsummulc1 20274, since every ring is a left module over itself. (Contributed by Thierry Arnoux, 12-Jun-2023.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑆 = (Scalar‘𝑅) & ⊢ 𝐾 = (Base‘𝑆) & ⊢ 0 = (0g‘𝑆) & ⊢ · = ( ·𝑠 ‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ LMod) & ⊢ (𝜑 → 𝑆 ∈ CMnd) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑋 ∈ 𝐾) & ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝑋) finSupp 0 ) ⇒ ⊢ (𝜑 → (𝑅 Σg (𝑘 ∈ 𝐴 ↦ (𝑋 · 𝑌))) = ((𝑆 Σg (𝑘 ∈ 𝐴 ↦ 𝑋)) · 𝑌)) | ||
| Theorem | gsummptres 32992* | Extend a finite group sum by padding outside with zeroes. Proof generated using OpenAI's proof assistant. (Contributed by Thierry Arnoux, 11-Jul-2020.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ 𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ 𝐷)) → 𝐶 = 0 ) ⇒ ⊢ (𝜑 → (𝐺 Σg (𝑥 ∈ 𝐴 ↦ 𝐶)) = (𝐺 Σg (𝑥 ∈ (𝐴 ∩ 𝐷) ↦ 𝐶))) | ||
| Theorem | gsummptres2 32993* | Extend a finite group sum by padding outside with zeroes. (Contributed by Thierry Arnoux, 22-Jun-2024.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ 𝑆)) → 𝑌 = 0 ) & ⊢ (𝜑 → 𝑆 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑆 ⊆ 𝐴) ⇒ ⊢ (𝜑 → (𝐺 Σg (𝑥 ∈ 𝐴 ↦ 𝑌)) = (𝐺 Σg (𝑥 ∈ 𝑆 ↦ 𝑌))) | ||
| Theorem | gsummptfsf1o 32994* | Re-index a finite group sum using a bijection. A version of gsummptf1o 19942 expressed using finite support. (Contributed by Thierry Arnoux, 5-Oct-2025.) |
| ⊢ Ⅎ𝑥𝐻 & ⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ (𝑥 = 𝐸 → 𝐶 = 𝐻) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) finSupp 0 ) & ⊢ (𝜑 → 𝐹 ⊆ 𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ 𝐹) & ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐷) → 𝐸 ∈ 𝐴) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∃!𝑦 ∈ 𝐷 𝑥 = 𝐸) ⇒ ⊢ (𝜑 → (𝐺 Σg (𝑥 ∈ 𝐴 ↦ 𝐶)) = (𝐺 Σg (𝑦 ∈ 𝐷 ↦ 𝐻))) | ||
| Theorem | gsumfs2d 32995* | Express a finite sum over a two-dimensional range as a double sum. Version of gsum2d 19951 using finite support. (Contributed by Thierry Arnoux, 5-Oct-2025.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ 𝐵 = (Base‘𝑊) & ⊢ 0 = (0g‘𝑊) & ⊢ (𝜑 → Rel 𝐴) & ⊢ (𝜑 → 𝐹 finSupp 0 ) & ⊢ (𝜑 → 𝑊 ∈ CMnd) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ (𝜑 → 𝐴 ∈ 𝑋) ⇒ ⊢ (𝜑 → (𝑊 Σg 𝐹) = (𝑊 Σg (𝑥 ∈ dom 𝐴 ↦ (𝑊 Σg (𝑦 ∈ (𝐴 “ {𝑥}) ↦ (𝐹‘〈𝑥, 𝑦〉)))))) | ||
| Theorem | gsumzresunsn 32996 | Append an element to a finite group sum expressed as a function restriction. (Contributed by Thierry Arnoux, 20-Nov-2023.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ 𝑍 = (Cntz‘𝐺) & ⊢ 𝑌 = (𝐹‘𝑋) & ⊢ (𝜑 → 𝐹:𝐶⟶𝐵) & ⊢ (𝜑 → 𝐴 ⊆ 𝐶) & ⊢ (𝜑 → 𝐺 ∈ Mnd) & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → ¬ 𝑋 ∈ 𝐴) & ⊢ (𝜑 → 𝑋 ∈ 𝐶) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → (𝐹 “ (𝐴 ∪ {𝑋})) ⊆ (𝑍‘(𝐹 “ (𝐴 ∪ {𝑋})))) ⇒ ⊢ (𝜑 → (𝐺 Σg (𝐹 ↾ (𝐴 ∪ {𝑋}))) = ((𝐺 Σg (𝐹 ↾ 𝐴)) + 𝑌)) | ||
| Theorem | gsumpart 32997* | Express a group sum as a double sum, grouping along a (possibly infinite) partition. (Contributed by Thierry Arnoux, 22-Jun-2024.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ∈ 𝑊) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ (𝜑 → 𝐹 finSupp 0 ) & ⊢ (𝜑 → Disj 𝑥 ∈ 𝑋 𝐶) & ⊢ (𝜑 → ∪ 𝑥 ∈ 𝑋 𝐶 = 𝐴) ⇒ ⊢ (𝜑 → (𝐺 Σg 𝐹) = (𝐺 Σg (𝑥 ∈ 𝑋 ↦ (𝐺 Σg (𝐹 ↾ 𝐶))))) | ||
| Theorem | gsumtp 32998* | Group sum of an unordered triple. (Contributed by Thierry Arnoux, 22-Jun-2025.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ (𝑘 = 𝑀 → 𝐴 = 𝐶) & ⊢ (𝑘 = 𝑁 → 𝐴 = 𝐷) & ⊢ (𝑘 = 𝑂 → 𝐴 = 𝐸) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝑀 ∈ 𝑉) & ⊢ (𝜑 → 𝑁 ∈ 𝑊) & ⊢ (𝜑 → 𝑂 ∈ 𝑋) & ⊢ (𝜑 → 𝑀 ≠ 𝑁) & ⊢ (𝜑 → 𝑁 ≠ 𝑂) & ⊢ (𝜑 → 𝑀 ≠ 𝑂) & ⊢ (𝜑 → 𝐶 ∈ 𝐵) & ⊢ (𝜑 → 𝐷 ∈ 𝐵) & ⊢ (𝜑 → 𝐸 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ {𝑀, 𝑁, 𝑂} ↦ 𝐴)) = ((𝐶 + 𝐷) + 𝐸)) | ||
| Theorem | gsumzrsum 32999* | Relate a group sum on ℤring to a finite sum on the complex numbers. See also gsumfsum 21400. (Contributed by Thierry Arnoux, 5-Oct-2025.) |
| ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℤ) ⇒ ⊢ (𝜑 → (ℤring Σg (𝑘 ∈ 𝐴 ↦ 𝐵)) = Σ𝑘 ∈ 𝐴 𝐵) | ||
| Theorem | gsummulgc2 33000* | A finite group sum multiplied by a constant. (Contributed by Thierry Arnoux, 5-Oct-2025.) |
| ⊢ 𝐵 = (Base‘𝑀) & ⊢ · = (.g‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ Grp) & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑋 ∈ ℤ) ⇒ ⊢ (𝜑 → (𝑀 Σg (𝑘 ∈ 𝐴 ↦ (𝑋 · 𝑌))) = (Σ𝑘 ∈ 𝐴 𝑋 · 𝑌)) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |