| Metamath
Proof Explorer Theorem List (p. 330 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30854) |
(30855-32377) |
(32378-49798) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | odutos 32901 | Being a toset is a self-dual property. (Contributed by Thierry Arnoux, 13-Sep-2018.) |
| ⊢ 𝐷 = (ODual‘𝐾) ⇒ ⊢ (𝐾 ∈ Toset → 𝐷 ∈ Toset) | ||
| Theorem | tlt2 32902 | In a Toset, two elements must compare. (Contributed by Thierry Arnoux, 13-Apr-2018.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ < = (lt‘𝐾) ⇒ ⊢ ((𝐾 ∈ Toset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ 𝑌 ∨ 𝑌 < 𝑋)) | ||
| Theorem | tlt3 32903 | In a Toset, two elements must compare strictly, or be equal. (Contributed by Thierry Arnoux, 13-Apr-2018.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ < = (lt‘𝐾) ⇒ ⊢ ((𝐾 ∈ Toset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 = 𝑌 ∨ 𝑋 < 𝑌 ∨ 𝑌 < 𝑋)) | ||
| Theorem | trleile 32904 | In a Toset, two elements must compare. (Contributed by Thierry Arnoux, 12-Sep-2018.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = ((le‘𝐾) ∩ (𝐵 × 𝐵)) ⇒ ⊢ ((𝐾 ∈ Toset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ 𝑌 ∨ 𝑌 ≤ 𝑋)) | ||
| Theorem | toslublem 32905* | Lemma for toslub 32906 and xrsclat 32956. (Contributed by Thierry Arnoux, 17-Feb-2018.) (Revised by NM, 15-Sep-2018.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ < = (lt‘𝐾) & ⊢ (𝜑 → 𝐾 ∈ Toset) & ⊢ (𝜑 → 𝐴 ⊆ 𝐵) & ⊢ ≤ = (le‘𝐾) ⇒ ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → ((∀𝑏 ∈ 𝐴 𝑏 ≤ 𝑎 ∧ ∀𝑐 ∈ 𝐵 (∀𝑏 ∈ 𝐴 𝑏 ≤ 𝑐 → 𝑎 ≤ 𝑐)) ↔ (∀𝑏 ∈ 𝐴 ¬ 𝑎 < 𝑏 ∧ ∀𝑏 ∈ 𝐵 (𝑏 < 𝑎 → ∃𝑑 ∈ 𝐴 𝑏 < 𝑑)))) | ||
| Theorem | toslub 32906 | In a toset, the lowest upper bound lub, defined for partial orders is the supremum, sup(𝐴, 𝐵, < ), defined for total orders. (these are the set.mm definitions: lowest upper bound and supremum are normally synonymous). Note that those two values are also equal if such a supremum does not exist: in that case, both are equal to the empty set. (Contributed by Thierry Arnoux, 15-Feb-2018.) (Revised by Thierry Arnoux, 24-Sep-2018.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ < = (lt‘𝐾) & ⊢ (𝜑 → 𝐾 ∈ Toset) & ⊢ (𝜑 → 𝐴 ⊆ 𝐵) ⇒ ⊢ (𝜑 → ((lub‘𝐾)‘𝐴) = sup(𝐴, 𝐵, < )) | ||
| Theorem | tosglblem 32907* | Lemma for tosglb 32908 and xrsclat 32956. (Contributed by Thierry Arnoux, 17-Feb-2018.) (Revised by NM, 15-Sep-2018.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ < = (lt‘𝐾) & ⊢ (𝜑 → 𝐾 ∈ Toset) & ⊢ (𝜑 → 𝐴 ⊆ 𝐵) & ⊢ ≤ = (le‘𝐾) ⇒ ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐵) → ((∀𝑏 ∈ 𝐴 𝑎 ≤ 𝑏 ∧ ∀𝑐 ∈ 𝐵 (∀𝑏 ∈ 𝐴 𝑐 ≤ 𝑏 → 𝑐 ≤ 𝑎)) ↔ (∀𝑏 ∈ 𝐴 ¬ 𝑎◡ < 𝑏 ∧ ∀𝑏 ∈ 𝐵 (𝑏◡ < 𝑎 → ∃𝑑 ∈ 𝐴 𝑏◡ < 𝑑)))) | ||
| Theorem | tosglb 32908 | Same theorem as toslub 32906, for infinimum. (Contributed by Thierry Arnoux, 17-Feb-2018.) (Revised by AV, 28-Sep-2020.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ < = (lt‘𝐾) & ⊢ (𝜑 → 𝐾 ∈ Toset) & ⊢ (𝜑 → 𝐴 ⊆ 𝐵) ⇒ ⊢ (𝜑 → ((glb‘𝐾)‘𝐴) = inf(𝐴, 𝐵, < )) | ||
| Theorem | clatp0cl 32909 | The poset zero of a complete lattice belongs to its base. (Contributed by Thierry Arnoux, 17-Feb-2018.) |
| ⊢ 𝐵 = (Base‘𝑊) & ⊢ 0 = (0.‘𝑊) ⇒ ⊢ (𝑊 ∈ CLat → 0 ∈ 𝐵) | ||
| Theorem | clatp1cl 32910 | The poset one of a complete lattice belongs to its base. (Contributed by Thierry Arnoux, 17-Feb-2018.) |
| ⊢ 𝐵 = (Base‘𝑊) & ⊢ 1 = (1.‘𝑊) ⇒ ⊢ (𝑊 ∈ CLat → 1 ∈ 𝐵) | ||
| Syntax | cmnt 32911 | Extend class notation with monotone functions. |
| class Monot | ||
| Syntax | cmgc 32912 | Extend class notation with the monotone Galois connection. |
| class MGalConn | ||
| Definition | df-mnt 32913* | Define a monotone function between two ordered sets. (Contributed by Thierry Arnoux, 20-Apr-2024.) |
| ⊢ Monot = (𝑣 ∈ V, 𝑤 ∈ V ↦ ⦋(Base‘𝑣) / 𝑎⦌{𝑓 ∈ ((Base‘𝑤) ↑m 𝑎) ∣ ∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑎 (𝑥(le‘𝑣)𝑦 → (𝑓‘𝑥)(le‘𝑤)(𝑓‘𝑦))}) | ||
| Definition | df-mgc 32914* | Define monotone Galois connections. See mgcval 32920 for an expanded version. (Contributed by Thierry Arnoux, 20-Apr-2024.) |
| ⊢ MGalConn = (𝑣 ∈ V, 𝑤 ∈ V ↦ ⦋(Base‘𝑣) / 𝑎⦌⦋(Base‘𝑤) / 𝑏⦌{〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ (𝑏 ↑m 𝑎) ∧ 𝑔 ∈ (𝑎 ↑m 𝑏)) ∧ ∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑏 ((𝑓‘𝑥)(le‘𝑤)𝑦 ↔ 𝑥(le‘𝑣)(𝑔‘𝑦)))}) | ||
| Theorem | mntoval 32915* | Operation value of the monotone function. (Contributed by Thierry Arnoux, 23-Apr-2024.) |
| ⊢ 𝐴 = (Base‘𝑉) & ⊢ 𝐵 = (Base‘𝑊) & ⊢ ≤ = (le‘𝑉) & ⊢ ≲ = (le‘𝑊) ⇒ ⊢ ((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) → (𝑉Monot𝑊) = {𝑓 ∈ (𝐵 ↑m 𝐴) ∣ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝑓‘𝑥) ≲ (𝑓‘𝑦))}) | ||
| Theorem | ismnt 32916* | Express the statement "𝐹 is monotone". (Contributed by Thierry Arnoux, 23-Apr-2024.) |
| ⊢ 𝐴 = (Base‘𝑉) & ⊢ 𝐵 = (Base‘𝑊) & ⊢ ≤ = (le‘𝑉) & ⊢ ≲ = (le‘𝑊) ⇒ ⊢ ((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) → (𝐹 ∈ (𝑉Monot𝑊) ↔ (𝐹:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≲ (𝐹‘𝑦))))) | ||
| Theorem | ismntd 32917 | Property of being a monotone increasing function, deduction version. (Contributed by Thierry Arnoux, 24-Apr-2024.) |
| ⊢ 𝐴 = (Base‘𝑉) & ⊢ 𝐵 = (Base‘𝑊) & ⊢ ≤ = (le‘𝑉) & ⊢ ≲ = (le‘𝑊) & ⊢ (𝜑 → 𝑉 ∈ 𝐶) & ⊢ (𝜑 → 𝑊 ∈ 𝐷) & ⊢ (𝜑 → 𝐹 ∈ (𝑉Monot𝑊)) & ⊢ (𝜑 → 𝑋 ∈ 𝐴) & ⊢ (𝜑 → 𝑌 ∈ 𝐴) & ⊢ (𝜑 → 𝑋 ≤ 𝑌) ⇒ ⊢ (𝜑 → (𝐹‘𝑋) ≲ (𝐹‘𝑌)) | ||
| Theorem | mntf 32918 | A monotone function is a function. (Contributed by Thierry Arnoux, 24-Apr-2024.) |
| ⊢ 𝐴 = (Base‘𝑉) & ⊢ 𝐵 = (Base‘𝑊) ⇒ ⊢ ((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌 ∧ 𝐹 ∈ (𝑉Monot𝑊)) → 𝐹:𝐴⟶𝐵) | ||
| Theorem | mgcoval 32919* | Operation value of the monotone Galois connection. (Contributed by Thierry Arnoux, 23-Apr-2024.) |
| ⊢ 𝐴 = (Base‘𝑉) & ⊢ 𝐵 = (Base‘𝑊) & ⊢ ≤ = (le‘𝑉) & ⊢ ≲ = (le‘𝑊) ⇒ ⊢ ((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) → (𝑉MGalConn𝑊) = {〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ (𝐵 ↑m 𝐴) ∧ 𝑔 ∈ (𝐴 ↑m 𝐵)) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ((𝑓‘𝑥) ≲ 𝑦 ↔ 𝑥 ≤ (𝑔‘𝑦)))}) | ||
| Theorem | mgcval 32920* |
Monotone Galois connection between two functions 𝐹 and 𝐺. If
this relation is satisfied, 𝐹 is called the lower adjoint of 𝐺,
and 𝐺 is called the upper adjoint of 𝐹.
Technically, this is implemented as an operation taking a pair of structures 𝑉 and 𝑊, expected to be posets, which gives a relation between pairs of functions 𝐹 and 𝐺. If such a relation exists, it can be proven to be unique. Galois connections generalize the fundamental theorem of Galois theory about the correspondence between subgroups and subfields. (Contributed by Thierry Arnoux, 23-Apr-2024.) |
| ⊢ 𝐴 = (Base‘𝑉) & ⊢ 𝐵 = (Base‘𝑊) & ⊢ ≤ = (le‘𝑉) & ⊢ ≲ = (le‘𝑊) & ⊢ 𝐻 = (𝑉MGalConn𝑊) & ⊢ (𝜑 → 𝑉 ∈ Proset ) & ⊢ (𝜑 → 𝑊 ∈ Proset ) ⇒ ⊢ (𝜑 → (𝐹𝐻𝐺 ↔ ((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐵⟶𝐴) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ((𝐹‘𝑥) ≲ 𝑦 ↔ 𝑥 ≤ (𝐺‘𝑦))))) | ||
| Theorem | mgcf1 32921 | The lower adjoint 𝐹 of a Galois connection is a function. (Contributed by Thierry Arnoux, 24-Apr-2024.) |
| ⊢ 𝐴 = (Base‘𝑉) & ⊢ 𝐵 = (Base‘𝑊) & ⊢ ≤ = (le‘𝑉) & ⊢ ≲ = (le‘𝑊) & ⊢ 𝐻 = (𝑉MGalConn𝑊) & ⊢ (𝜑 → 𝑉 ∈ Proset ) & ⊢ (𝜑 → 𝑊 ∈ Proset ) & ⊢ (𝜑 → 𝐹𝐻𝐺) ⇒ ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | ||
| Theorem | mgcf2 32922 | The upper adjoint 𝐺 of a Galois connection is a function. (Contributed by Thierry Arnoux, 24-Apr-2024.) |
| ⊢ 𝐴 = (Base‘𝑉) & ⊢ 𝐵 = (Base‘𝑊) & ⊢ ≤ = (le‘𝑉) & ⊢ ≲ = (le‘𝑊) & ⊢ 𝐻 = (𝑉MGalConn𝑊) & ⊢ (𝜑 → 𝑉 ∈ Proset ) & ⊢ (𝜑 → 𝑊 ∈ Proset ) & ⊢ (𝜑 → 𝐹𝐻𝐺) ⇒ ⊢ (𝜑 → 𝐺:𝐵⟶𝐴) | ||
| Theorem | mgccole1 32923 | An inequality for the kernel operator 𝐺 ∘ 𝐹. (Contributed by Thierry Arnoux, 26-Apr-2024.) |
| ⊢ 𝐴 = (Base‘𝑉) & ⊢ 𝐵 = (Base‘𝑊) & ⊢ ≤ = (le‘𝑉) & ⊢ ≲ = (le‘𝑊) & ⊢ 𝐻 = (𝑉MGalConn𝑊) & ⊢ (𝜑 → 𝑉 ∈ Proset ) & ⊢ (𝜑 → 𝑊 ∈ Proset ) & ⊢ (𝜑 → 𝐹𝐻𝐺) & ⊢ (𝜑 → 𝑋 ∈ 𝐴) ⇒ ⊢ (𝜑 → 𝑋 ≤ (𝐺‘(𝐹‘𝑋))) | ||
| Theorem | mgccole2 32924 | Inequality for the closure operator (𝐹 ∘ 𝐺) of the Galois connection 𝐻. (Contributed by Thierry Arnoux, 26-Apr-2024.) |
| ⊢ 𝐴 = (Base‘𝑉) & ⊢ 𝐵 = (Base‘𝑊) & ⊢ ≤ = (le‘𝑉) & ⊢ ≲ = (le‘𝑊) & ⊢ 𝐻 = (𝑉MGalConn𝑊) & ⊢ (𝜑 → 𝑉 ∈ Proset ) & ⊢ (𝜑 → 𝑊 ∈ Proset ) & ⊢ (𝜑 → 𝐹𝐻𝐺) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐹‘(𝐺‘𝑌)) ≲ 𝑌) | ||
| Theorem | mgcmnt1 32925 | The lower adjoint 𝐹 of a Galois connection is monotonically increasing. (Contributed by Thierry Arnoux, 26-Apr-2024.) |
| ⊢ 𝐴 = (Base‘𝑉) & ⊢ 𝐵 = (Base‘𝑊) & ⊢ ≤ = (le‘𝑉) & ⊢ ≲ = (le‘𝑊) & ⊢ 𝐻 = (𝑉MGalConn𝑊) & ⊢ (𝜑 → 𝑉 ∈ Proset ) & ⊢ (𝜑 → 𝑊 ∈ Proset ) & ⊢ (𝜑 → 𝐹𝐻𝐺) & ⊢ (𝜑 → 𝑋 ∈ 𝐴) & ⊢ (𝜑 → 𝑌 ∈ 𝐴) & ⊢ (𝜑 → 𝑋 ≤ 𝑌) ⇒ ⊢ (𝜑 → (𝐹‘𝑋) ≲ (𝐹‘𝑌)) | ||
| Theorem | mgcmnt2 32926 | The upper adjoint 𝐺 of a Galois connection is monotonically increasing. (Contributed by Thierry Arnoux, 26-Apr-2024.) |
| ⊢ 𝐴 = (Base‘𝑉) & ⊢ 𝐵 = (Base‘𝑊) & ⊢ ≤ = (le‘𝑉) & ⊢ ≲ = (le‘𝑊) & ⊢ 𝐻 = (𝑉MGalConn𝑊) & ⊢ (𝜑 → 𝑉 ∈ Proset ) & ⊢ (𝜑 → 𝑊 ∈ Proset ) & ⊢ (𝜑 → 𝐹𝐻𝐺) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑋 ≲ 𝑌) ⇒ ⊢ (𝜑 → (𝐺‘𝑋) ≤ (𝐺‘𝑌)) | ||
| Theorem | mgcmntco 32927* | A Galois connection like statement, for two functions with same range. (Contributed by Thierry Arnoux, 26-Apr-2024.) |
| ⊢ 𝐴 = (Base‘𝑉) & ⊢ 𝐵 = (Base‘𝑊) & ⊢ ≤ = (le‘𝑉) & ⊢ ≲ = (le‘𝑊) & ⊢ 𝐻 = (𝑉MGalConn𝑊) & ⊢ (𝜑 → 𝑉 ∈ Proset ) & ⊢ (𝜑 → 𝑊 ∈ Proset ) & ⊢ (𝜑 → 𝐹𝐻𝐺) & ⊢ 𝐶 = (Base‘𝑋) & ⊢ < = (le‘𝑋) & ⊢ (𝜑 → 𝑋 ∈ Proset ) & ⊢ (𝜑 → 𝐾 ∈ (𝑉Monot𝑋)) & ⊢ (𝜑 → 𝐿 ∈ (𝑊Monot𝑋)) ⇒ ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 (𝐾‘𝑥) < (𝐿‘(𝐹‘𝑥)) ↔ ∀𝑦 ∈ 𝐵 (𝐾‘(𝐺‘𝑦)) < (𝐿‘𝑦))) | ||
| Theorem | dfmgc2lem 32928* | Lemma for dfmgc2, backwards direction. (Contributed by Thierry Arnoux, 26-Apr-2024.) |
| ⊢ 𝐴 = (Base‘𝑉) & ⊢ 𝐵 = (Base‘𝑊) & ⊢ ≤ = (le‘𝑉) & ⊢ ≲ = (le‘𝑊) & ⊢ 𝐻 = (𝑉MGalConn𝑊) & ⊢ (𝜑 → 𝑉 ∈ Proset ) & ⊢ (𝜑 → 𝑊 ∈ Proset ) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ (𝜑 → 𝐺:𝐵⟶𝐴) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≲ (𝐹‘𝑦))) & ⊢ (𝜑 → ∀𝑢 ∈ 𝐵 ∀𝑣 ∈ 𝐵 (𝑢 ≲ 𝑣 → (𝐺‘𝑢) ≤ (𝐺‘𝑣))) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ≤ (𝐺‘(𝐹‘𝑥))) & ⊢ ((𝜑 ∧ 𝑢 ∈ 𝐵) → (𝐹‘(𝐺‘𝑢)) ≲ 𝑢) ⇒ ⊢ (𝜑 → 𝐹𝐻𝐺) | ||
| Theorem | dfmgc2 32929* | Alternate definition of the monotone Galois connection. (Contributed by Thierry Arnoux, 26-Apr-2024.) |
| ⊢ 𝐴 = (Base‘𝑉) & ⊢ 𝐵 = (Base‘𝑊) & ⊢ ≤ = (le‘𝑉) & ⊢ ≲ = (le‘𝑊) & ⊢ 𝐻 = (𝑉MGalConn𝑊) & ⊢ (𝜑 → 𝑉 ∈ Proset ) & ⊢ (𝜑 → 𝑊 ∈ Proset ) ⇒ ⊢ (𝜑 → (𝐹𝐻𝐺 ↔ ((𝐹:𝐴⟶𝐵 ∧ 𝐺:𝐵⟶𝐴) ∧ ((∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≲ (𝐹‘𝑦)) ∧ ∀𝑢 ∈ 𝐵 ∀𝑣 ∈ 𝐵 (𝑢 ≲ 𝑣 → (𝐺‘𝑢) ≤ (𝐺‘𝑣))) ∧ (∀𝑢 ∈ 𝐵 (𝐹‘(𝐺‘𝑢)) ≲ 𝑢 ∧ ∀𝑥 ∈ 𝐴 𝑥 ≤ (𝐺‘(𝐹‘𝑥))))))) | ||
| Theorem | mgcmnt1d 32930 | Galois connection implies monotonicity of the left adjoint. (Contributed by Thierry Arnoux, 21-Jul-2024.) |
| ⊢ 𝐻 = (𝑉MGalConn𝑊) & ⊢ (𝜑 → 𝑉 ∈ Proset ) & ⊢ (𝜑 → 𝑊 ∈ Proset ) & ⊢ (𝜑 → 𝐹𝐻𝐺) ⇒ ⊢ (𝜑 → 𝐹 ∈ (𝑉Monot𝑊)) | ||
| Theorem | mgcmnt2d 32931 | Galois connection implies monotonicity of the right adjoint. (Contributed by Thierry Arnoux, 21-Jul-2024.) |
| ⊢ 𝐻 = (𝑉MGalConn𝑊) & ⊢ (𝜑 → 𝑉 ∈ Proset ) & ⊢ (𝜑 → 𝑊 ∈ Proset ) & ⊢ (𝜑 → 𝐹𝐻𝐺) ⇒ ⊢ (𝜑 → 𝐺 ∈ (𝑊Monot𝑉)) | ||
| Theorem | mgccnv 32932 | The inverse Galois connection is the Galois connection of the dual orders. (Contributed by Thierry Arnoux, 26-Apr-2024.) |
| ⊢ 𝐻 = (𝑉MGalConn𝑊) & ⊢ 𝑀 = ((ODual‘𝑊)MGalConn(ODual‘𝑉)) ⇒ ⊢ ((𝑉 ∈ Proset ∧ 𝑊 ∈ Proset ) → (𝐹𝐻𝐺 ↔ 𝐺𝑀𝐹)) | ||
| Theorem | pwrssmgc 32933* | Given a function 𝐹, exhibit a Galois connection between subsets of its domain and subsets of its range. (Contributed by Thierry Arnoux, 26-Apr-2024.) |
| ⊢ 𝐺 = (𝑛 ∈ 𝒫 𝑌 ↦ (◡𝐹 “ 𝑛)) & ⊢ 𝐻 = (𝑚 ∈ 𝒫 𝑋 ↦ {𝑦 ∈ 𝑌 ∣ (◡𝐹 “ {𝑦}) ⊆ 𝑚}) & ⊢ 𝑉 = (toInc‘𝒫 𝑌) & ⊢ 𝑊 = (toInc‘𝒫 𝑋) & ⊢ (𝜑 → 𝑋 ∈ 𝐴) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝐹:𝑋⟶𝑌) ⇒ ⊢ (𝜑 → 𝐺(𝑉MGalConn𝑊)𝐻) | ||
| Theorem | mgcf1olem1 32934 | Property of a Galois connection, lemma for mgcf1o 32936. (Contributed by Thierry Arnoux, 26-Jul-2024.) |
| ⊢ 𝐻 = (𝑉MGalConn𝑊) & ⊢ 𝐴 = (Base‘𝑉) & ⊢ 𝐵 = (Base‘𝑊) & ⊢ ≤ = (le‘𝑉) & ⊢ ≲ = (le‘𝑊) & ⊢ (𝜑 → 𝑉 ∈ Poset) & ⊢ (𝜑 → 𝑊 ∈ Poset) & ⊢ (𝜑 → 𝐹𝐻𝐺) & ⊢ (𝜑 → 𝑋 ∈ 𝐴) ⇒ ⊢ (𝜑 → (𝐹‘(𝐺‘(𝐹‘𝑋))) = (𝐹‘𝑋)) | ||
| Theorem | mgcf1olem2 32935 | Property of a Galois connection, lemma for mgcf1o 32936. (Contributed by Thierry Arnoux, 26-Jul-2024.) |
| ⊢ 𝐻 = (𝑉MGalConn𝑊) & ⊢ 𝐴 = (Base‘𝑉) & ⊢ 𝐵 = (Base‘𝑊) & ⊢ ≤ = (le‘𝑉) & ⊢ ≲ = (le‘𝑊) & ⊢ (𝜑 → 𝑉 ∈ Poset) & ⊢ (𝜑 → 𝑊 ∈ Poset) & ⊢ (𝜑 → 𝐹𝐻𝐺) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐺‘(𝐹‘(𝐺‘𝑌))) = (𝐺‘𝑌)) | ||
| Theorem | mgcf1o 32936 | Given a Galois connection, exhibit an order isomorphism. (Contributed by Thierry Arnoux, 26-Jul-2024.) |
| ⊢ 𝐻 = (𝑉MGalConn𝑊) & ⊢ 𝐴 = (Base‘𝑉) & ⊢ 𝐵 = (Base‘𝑊) & ⊢ ≤ = (le‘𝑉) & ⊢ ≲ = (le‘𝑊) & ⊢ (𝜑 → 𝑉 ∈ Poset) & ⊢ (𝜑 → 𝑊 ∈ Poset) & ⊢ (𝜑 → 𝐹𝐻𝐺) ⇒ ⊢ (𝜑 → (𝐹 ↾ ran 𝐺) Isom ≤ , ≲ (ran 𝐺, ran 𝐹)) | ||
| Syntax | cchn 32937 | Extend class notation with the class of (finite) chains. |
| class ( < Chain𝐴) | ||
| Definition | df-chn 32938* | Define the class of (finite) chains. A chain is defined to be a sequence of objects, where each object is less than the next one in the sequence. The term "chain" is usually used in order theory. In the context of algebra, chains are often called "towers", for example for fields, or "series", for example for subgroup or subnormal series. (Contributed by Thierry Arnoux, 19-Jun-2025.) |
| ⊢ ( < Chain𝐴) = {𝑐 ∈ Word 𝐴 ∣ ∀𝑛 ∈ (dom 𝑐 ∖ {0})(𝑐‘(𝑛 − 1)) < (𝑐‘𝑛)} | ||
| Theorem | ischn 32939* | Property of being a chain. (Contributed by Thierry Arnoux, 19-Jun-2025.) |
| ⊢ (𝐶 ∈ ( < Chain𝐴) ↔ (𝐶 ∈ Word 𝐴 ∧ ∀𝑛 ∈ (dom 𝐶 ∖ {0})(𝐶‘(𝑛 − 1)) < (𝐶‘𝑛))) | ||
| Theorem | chnwrd 32940 | A chain is an ordered sequence, i.e. a word. (Contributed by Thierry Arnoux, 19-Jun-2025.) |
| ⊢ (𝜑 → 𝐶 ∈ ( < Chain𝐴)) ⇒ ⊢ (𝜑 → 𝐶 ∈ Word 𝐴) | ||
| Theorem | chnltm1 32941 | Basic property of a chain. (Contributed by Thierry Arnoux, 19-Jun-2025.) |
| ⊢ (𝜑 → 𝐶 ∈ ( < Chain𝐴)) & ⊢ (𝜑 → 𝑁 ∈ (dom 𝐶 ∖ {0})) ⇒ ⊢ (𝜑 → (𝐶‘(𝑁 − 1)) < (𝐶‘𝑁)) | ||
| Theorem | pfxchn 32942 | A prefix of a chain is still a chain. (Contributed by Thierry Arnoux, 19-Jun-2025.) |
| ⊢ (𝜑 → 𝐶 ∈ ( < Chain𝐴)) & ⊢ (𝜑 → 𝐿 ∈ (0...(♯‘𝐶))) ⇒ ⊢ (𝜑 → (𝐶 prefix 𝐿) ∈ ( < Chain𝐴)) | ||
| Theorem | s1chn 32943 | A singleton word is always a chain. (Contributed by Thierry Arnoux, 19-Oct-2025.) |
| ⊢ (𝜑 → 𝑋 ∈ 𝐴) ⇒ ⊢ (𝜑 → 〈“𝑋”〉 ∈ ( < Chain𝐴)) | ||
| Theorem | chnind 32944* | Induction over a chain. See nnind 12211 for an explanation about the hypotheses. (Contributed by Thierry Arnoux, 19-Jun-2025.) |
| ⊢ (𝑐 = ∅ → (𝜓 ↔ 𝜒)) & ⊢ (𝑐 = 𝑑 → (𝜓 ↔ 𝜃)) & ⊢ (𝑐 = (𝑑 ++ 〈“𝑥”〉) → (𝜓 ↔ 𝜏)) & ⊢ (𝑐 = 𝐶 → (𝜓 ↔ 𝜂)) & ⊢ (𝜑 → 𝐶 ∈ ( < Chain𝐴)) & ⊢ (𝜑 → 𝜒) & ⊢ (((((𝜑 ∧ 𝑑 ∈ ( < Chain𝐴)) ∧ 𝑥 ∈ 𝐴) ∧ (𝑑 = ∅ ∨ (lastS‘𝑑) < 𝑥)) ∧ 𝜃) → 𝜏) ⇒ ⊢ (𝜑 → 𝜂) | ||
| Theorem | chnub 32945 | In a chain, the last element is an upper bound. (Contributed by Thierry Arnoux, 19-Jun-2025.) |
| ⊢ (𝜑 → < Po 𝐴) & ⊢ (𝜑 → 𝐶 ∈ ( < Chain𝐴)) & ⊢ (𝜑 → 𝐼 ∈ (0..^((♯‘𝐶) − 1))) ⇒ ⊢ (𝜑 → (𝐶‘𝐼) < (lastS‘𝐶)) | ||
| Theorem | chnlt 32946 | Compare any two elements in a chain. (Contributed by Thierry Arnoux, 19-Jun-2025.) |
| ⊢ (𝜑 → < Po 𝐴) & ⊢ (𝜑 → 𝐶 ∈ ( < Chain𝐴)) & ⊢ (𝜑 → 𝐽 ∈ (0..^(♯‘𝐶))) & ⊢ (𝜑 → 𝐼 ∈ (0..^𝐽)) ⇒ ⊢ (𝜑 → (𝐶‘𝐼) < (𝐶‘𝐽)) | ||
| Theorem | chnso 32947 | A chain induces a total order. (Contributed by Thierry Arnoux, 19-Jun-2025.) |
| ⊢ (( < Po 𝐴 ∧ 𝐶 ∈ ( < Chain𝐴)) → < Or ran 𝐶) | ||
| Theorem | chnccats1 32948 | Extend a chain with a single element. (Contributed by Thierry Arnoux, 19-Oct-2025.) |
| ⊢ (𝜑 → 𝑋 ∈ 𝐴) & ⊢ (𝜑 → 𝑇 ∈ ( < Chain𝐴)) & ⊢ (𝜑 → (𝑇 = ∅ ∨ (lastS‘𝑇) < 𝑋)) ⇒ ⊢ (𝜑 → (𝑇 ++ 〈“𝑋”〉) ∈ ( < Chain𝐴)) | ||
| Axiom | ax-xrssca 32949 | Assume the scalar component of the extended real structure is the field of the real numbers (this has to be defined in the main body of set.mm). (Contributed by Thierry Arnoux, 22-Oct-2017.) |
| ⊢ ℝfld = (Scalar‘ℝ*𝑠) | ||
| Axiom | ax-xrsvsca 32950 | Assume the scalar product of the extended real structure is the extended real number multiplication operation (this has to be defined in the main body of set.mm). (Contributed by Thierry Arnoux, 22-Oct-2017.) |
| ⊢ ·e = ( ·𝑠 ‘ℝ*𝑠) | ||
| Theorem | xrs0 32951 | The zero of the extended real numbers. The extended real is not a group, as its addition is not associative. (cf. xaddass 13216 and df-xrs 17472), however it has a zero. (Contributed by Thierry Arnoux, 13-Jun-2017.) |
| ⊢ 0 = (0g‘ℝ*𝑠) | ||
| Theorem | xrslt 32952 | The "strictly less than" relation for the extended real structure. (Contributed by Thierry Arnoux, 30-Jan-2018.) |
| ⊢ < = (lt‘ℝ*𝑠) | ||
| Theorem | xrsinvgval 32953 | The inversion operation in the extended real numbers. The extended real is not a group, as its addition is not associative. (cf. xaddass 13216 and df-xrs 17472), however it has an inversion operation. (Contributed by Thierry Arnoux, 13-Jun-2017.) |
| ⊢ (𝐵 ∈ ℝ* → ((invg‘ℝ*𝑠)‘𝐵) = -𝑒𝐵) | ||
| Theorem | xrsmulgzz 32954 | The "multiple" function in the extended real numbers structure. (Contributed by Thierry Arnoux, 14-Jun-2017.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℝ*) → (𝐴(.g‘ℝ*𝑠)𝐵) = (𝐴 ·e 𝐵)) | ||
| Theorem | xrstos 32955 | The extended real numbers form a toset. (Contributed by Thierry Arnoux, 15-Feb-2018.) |
| ⊢ ℝ*𝑠 ∈ Toset | ||
| Theorem | xrsclat 32956 | The extended real numbers form a complete lattice. (Contributed by Thierry Arnoux, 15-Feb-2018.) |
| ⊢ ℝ*𝑠 ∈ CLat | ||
| Theorem | xrsp0 32957 | The poset 0 of the extended real numbers is minus infinity. (Contributed by Thierry Arnoux, 18-Feb-2018.) (Proof shortened by AV, 28-Sep-2020.) |
| ⊢ -∞ = (0.‘ℝ*𝑠) | ||
| Theorem | xrsp1 32958 | The poset 1 of the extended real numbers is plus infinity. (Contributed by Thierry Arnoux, 18-Feb-2018.) |
| ⊢ +∞ = (1.‘ℝ*𝑠) | ||
| Theorem | xrge0base 32959 | The base of the extended nonnegative real numbers. (Contributed by Thierry Arnoux, 30-Jan-2017.) |
| ⊢ (0[,]+∞) = (Base‘(ℝ*𝑠 ↾s (0[,]+∞))) | ||
| Theorem | xrge00 32960 | The zero of the extended nonnegative real numbers monoid. (Contributed by Thierry Arnoux, 30-Jan-2017.) |
| ⊢ 0 = (0g‘(ℝ*𝑠 ↾s (0[,]+∞))) | ||
| Theorem | xrge0plusg 32961 | The additive law of the extended nonnegative real numbers monoid is the addition in the extended real numbers. (Contributed by Thierry Arnoux, 20-Mar-2017.) |
| ⊢ +𝑒 = (+g‘(ℝ*𝑠 ↾s (0[,]+∞))) | ||
| Theorem | xrge0le 32962 | The "less than or equal to" relation in the extended real numbers. (Contributed by Thierry Arnoux, 14-Mar-2018.) |
| ⊢ ≤ = (le‘(ℝ*𝑠 ↾s (0[,]+∞))) | ||
| Theorem | xrge0mulgnn0 32963 | The group multiple function in the extended nonnegative real numbers. (Contributed by Thierry Arnoux, 14-Jun-2017.) |
| ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ (0[,]+∞)) → (𝐴(.g‘(ℝ*𝑠 ↾s (0[,]+∞)))𝐵) = (𝐴 ·e 𝐵)) | ||
| Theorem | xrge0addass 32964 | Associativity of extended nonnegative real addition. (Contributed by Thierry Arnoux, 8-Jun-2017.) |
| ⊢ ((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) → ((𝐴 +𝑒 𝐵) +𝑒 𝐶) = (𝐴 +𝑒 (𝐵 +𝑒 𝐶))) | ||
| Theorem | xrge0addgt0 32965 | The sum of nonnegative and positive numbers is positive. See addgtge0 11673. (Contributed by Thierry Arnoux, 6-Jul-2017.) |
| ⊢ (((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞)) ∧ 0 < 𝐴) → 0 < (𝐴 +𝑒 𝐵)) | ||
| Theorem | xrge0adddir 32966 | Right-distributivity of extended nonnegative real multiplication over addition. (Contributed by Thierry Arnoux, 30-Jun-2017.) |
| ⊢ ((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) → ((𝐴 +𝑒 𝐵) ·e 𝐶) = ((𝐴 ·e 𝐶) +𝑒 (𝐵 ·e 𝐶))) | ||
| Theorem | xrge0adddi 32967 | Left-distributivity of extended nonnegative real multiplication over addition. (Contributed by Thierry Arnoux, 6-Sep-2018.) |
| ⊢ ((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐶 ∈ (0[,]+∞)) → (𝐶 ·e (𝐴 +𝑒 𝐵)) = ((𝐶 ·e 𝐴) +𝑒 (𝐶 ·e 𝐵))) | ||
| Theorem | xrge0npcan 32968 | Extended nonnegative real version of npcan 11437. (Contributed by Thierry Arnoux, 9-Jun-2017.) |
| ⊢ ((𝐴 ∈ (0[,]+∞) ∧ 𝐵 ∈ (0[,]+∞) ∧ 𝐵 ≤ 𝐴) → ((𝐴 +𝑒 -𝑒𝐵) +𝑒 𝐵) = 𝐴) | ||
| Theorem | fsumrp0cl 32969* | Closure of a finite sum of nonnegative reals. (Contributed by Thierry Arnoux, 25-Jun-2017.) |
| ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,)+∞)) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 ∈ (0[,)+∞)) | ||
| Theorem | mndcld 32970 | Closure of the operation of a monoid. (Contributed by Thierry Arnoux, 3-Aug-2025.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Mnd) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑋 + 𝑌) ∈ 𝐵) | ||
| Theorem | mndassd 32971 | A monoid operation is associative. (Contributed by Thierry Arnoux, 3-Aug-2025.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Mnd) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) ⇒ ⊢ (𝜑 → ((𝑋 + 𝑌) + 𝑍) = (𝑋 + (𝑌 + 𝑍))) | ||
| Theorem | mndlrinv 32972 | In a monoid, if an element 𝑋 has both a left inverse 𝑀 and a right inverse 𝑁, they are equal. (Contributed by Thierry Arnoux, 3-Aug-2025.) |
| ⊢ 𝐵 = (Base‘𝐸) & ⊢ 0 = (0g‘𝐸) & ⊢ + = (+g‘𝐸) & ⊢ (𝜑 → 𝐸 ∈ Mnd) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑀 ∈ 𝐵) & ⊢ (𝜑 → 𝑁 ∈ 𝐵) & ⊢ (𝜑 → (𝑀 + 𝑋) = 0 ) & ⊢ (𝜑 → (𝑋 + 𝑁) = 0 ) ⇒ ⊢ (𝜑 → 𝑀 = 𝑁) | ||
| Theorem | mndlrinvb 32973* | In a monoid, if an element has both a left-inverse and a right-inverse, they are equal. (Contributed by Thierry Arnoux, 3-Aug-2025.) |
| ⊢ 𝐵 = (Base‘𝐸) & ⊢ 0 = (0g‘𝐸) & ⊢ + = (+g‘𝐸) & ⊢ (𝜑 → 𝐸 ∈ Mnd) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → ((∃𝑢 ∈ 𝐵 (𝑋 + 𝑢) = 0 ∧ ∃𝑣 ∈ 𝐵 (𝑣 + 𝑋) = 0 ) ↔ ∃𝑦 ∈ 𝐵 ((𝑋 + 𝑦) = 0 ∧ (𝑦 + 𝑋) = 0 ))) | ||
| Theorem | mndlactf1 32974* | If an element 𝑋 of a monoid 𝐸 is right-invertible, with inverse 𝑌, then its left-translation 𝐹 is injective. See also grplactf1o 18983. Remark in chapter I. of [BourbakiAlg1] p. 17 . (Contributed by Thierry Arnoux, 3-Aug-2025.) |
| ⊢ 𝐵 = (Base‘𝐸) & ⊢ 0 = (0g‘𝐸) & ⊢ + = (+g‘𝐸) & ⊢ 𝐹 = (𝑎 ∈ 𝐵 ↦ (𝑋 + 𝑎)) & ⊢ (𝜑 → 𝐸 ∈ Mnd) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → (𝑌 + 𝑋) = 0 ) ⇒ ⊢ (𝜑 → 𝐹:𝐵–1-1→𝐵) | ||
| Theorem | mndlactfo 32975* | An element 𝑋 of a monoid 𝐸 is left-invertible iff its left-translation 𝐹 is surjective. See also grplactf1o 18983. (Contributed by Thierry Arnoux, 3-Aug-2025.) |
| ⊢ 𝐵 = (Base‘𝐸) & ⊢ 0 = (0g‘𝐸) & ⊢ + = (+g‘𝐸) & ⊢ 𝐹 = (𝑎 ∈ 𝐵 ↦ (𝑋 + 𝑎)) & ⊢ (𝜑 → 𝐸 ∈ Mnd) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐹:𝐵–onto→𝐵 ↔ ∃𝑦 ∈ 𝐵 (𝑋 + 𝑦) = 0 )) | ||
| Theorem | mndractf1 32976* | If an element 𝑋 of a monoid 𝐸 is right-invertible, with inverse 𝑌, then its left-translation 𝐺 is injective. See also grplactf1o 18983. Remark in chapter I. of [BourbakiAlg1] p. 17 . (Contributed by Thierry Arnoux, 3-Aug-2025.) |
| ⊢ 𝐵 = (Base‘𝐸) & ⊢ 0 = (0g‘𝐸) & ⊢ + = (+g‘𝐸) & ⊢ 𝐺 = (𝑎 ∈ 𝐵 ↦ (𝑎 + 𝑋)) & ⊢ (𝜑 → 𝐸 ∈ Mnd) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → (𝑋 + 𝑌) = 0 ) ⇒ ⊢ (𝜑 → 𝐺:𝐵–1-1→𝐵) | ||
| Theorem | mndractfo 32977* | An element 𝑋 of a monoid 𝐸 is right-invertible iff its right-translation 𝐺 is surjective. (Contributed by Thierry Arnoux, 3-Aug-2025.) |
| ⊢ 𝐵 = (Base‘𝐸) & ⊢ 0 = (0g‘𝐸) & ⊢ + = (+g‘𝐸) & ⊢ 𝐺 = (𝑎 ∈ 𝐵 ↦ (𝑎 + 𝑋)) & ⊢ (𝜑 → 𝐸 ∈ Mnd) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐺:𝐵–onto→𝐵 ↔ ∃𝑦 ∈ 𝐵 (𝑦 + 𝑋) = 0 )) | ||
| Theorem | mndlactf1o 32978* | An element 𝑋 of a monoid 𝐸 is invertible iff its left-translation 𝐹 is bijective. See also grplactf1o 18983. Remark in chapter I. of [BourbakiAlg1] p. 17. (Contributed by Thierry Arnoux, 3-Aug-2025.) |
| ⊢ 𝐵 = (Base‘𝐸) & ⊢ 0 = (0g‘𝐸) & ⊢ + = (+g‘𝐸) & ⊢ 𝐹 = (𝑎 ∈ 𝐵 ↦ (𝑋 + 𝑎)) & ⊢ (𝜑 → 𝐸 ∈ Mnd) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐹:𝐵–1-1-onto→𝐵 ↔ ∃𝑦 ∈ 𝐵 ((𝑋 + 𝑦) = 0 ∧ (𝑦 + 𝑋) = 0 ))) | ||
| Theorem | mndractf1o 32979* | An element 𝑋 of a monoid 𝐸 is invertible iff its right-translation 𝐺 is bijective. See also mndlactf1o 32978. Remark in chapter I. of [BourbakiAlg1] p. 17 . (Contributed by Thierry Arnoux, 3-Aug-2025.) |
| ⊢ 𝐵 = (Base‘𝐸) & ⊢ 0 = (0g‘𝐸) & ⊢ + = (+g‘𝐸) & ⊢ 𝐺 = (𝑎 ∈ 𝐵 ↦ (𝑎 + 𝑋)) & ⊢ (𝜑 → 𝐸 ∈ Mnd) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐺:𝐵–1-1-onto→𝐵 ↔ ∃𝑦 ∈ 𝐵 ((𝑋 + 𝑦) = 0 ∧ (𝑦 + 𝑋) = 0 ))) | ||
| Theorem | cmn4d 32980 | Commutative/associative law for commutative monoids. (Contributed by Thierry Arnoux, 4-May-2025.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) & ⊢ (𝜑 → 𝑊 ∈ 𝐵) ⇒ ⊢ (𝜑 → ((𝑋 + 𝑌) + (𝑍 + 𝑊)) = ((𝑋 + 𝑍) + (𝑌 + 𝑊))) | ||
| Theorem | cmn246135 32981 | Rearrange terms in a commutative monoid sum. Lemma for rlocaddval 33226. (Contributed by Thierry Arnoux, 4-May-2025.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) & ⊢ (𝜑 → 𝑈 ∈ 𝐵) & ⊢ (𝜑 → 𝑉 ∈ 𝐵) & ⊢ (𝜑 → 𝑊 ∈ 𝐵) ⇒ ⊢ (𝜑 → ((𝑋 + 𝑌) + ((𝑍 + 𝑈) + (𝑉 + 𝑊))) = ((𝑌 + (𝑈 + 𝑊)) + (𝑋 + (𝑍 + 𝑉)))) | ||
| Theorem | cmn145236 32982 | Rearrange terms in a commutative monoid sum. Lemma for rlocaddval 33226. (Contributed by Thierry Arnoux, 4-May-2025.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) & ⊢ (𝜑 → 𝑈 ∈ 𝐵) & ⊢ (𝜑 → 𝑉 ∈ 𝐵) & ⊢ (𝜑 → 𝑊 ∈ 𝐵) ⇒ ⊢ (𝜑 → ((𝑋 + 𝑌) + ((𝑍 + 𝑈) + (𝑉 + 𝑊))) = ((𝑋 + (𝑈 + 𝑉)) + (𝑌 + (𝑍 + 𝑊)))) | ||
| Theorem | submcld 32983 | Submonoids are closed under the monoid operation. (Contributed by Thierry Arnoux, 4-May-2025.) |
| ⊢ + = (+g‘𝑀) & ⊢ (𝜑 → 𝑆 ∈ (SubMnd‘𝑀)) & ⊢ (𝜑 → 𝑋 ∈ 𝑆) & ⊢ (𝜑 → 𝑌 ∈ 𝑆) ⇒ ⊢ (𝜑 → (𝑋 + 𝑌) ∈ 𝑆) | ||
| Theorem | abliso 32984 | The image of an Abelian group by a group isomorphism is also Abelian. (Contributed by Thierry Arnoux, 8-Mar-2018.) |
| ⊢ ((𝑀 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpIso 𝑁)) → 𝑁 ∈ Abel) | ||
| Theorem | lmhmghmd 32985 | A module homomorphism is a group homomorphism. (Contributed by Thierry Arnoux, 2-Apr-2025.) |
| ⊢ (𝜑 → 𝐹 ∈ (𝑆 LMHom 𝑇)) ⇒ ⊢ (𝜑 → 𝐹 ∈ (𝑆 GrpHom 𝑇)) | ||
| Theorem | mhmimasplusg 32986 | Value of the operation of the surjective image. (Contributed by Thierry Arnoux, 2-Apr-2025.) |
| ⊢ 𝑊 = (𝐹 “s 𝑉) & ⊢ 𝐵 = (Base‘𝑉) & ⊢ 𝐶 = (Base‘𝑊) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝐹:𝐵–onto→𝐶) & ⊢ (𝜑 → 𝐹 ∈ (𝑉 MndHom 𝑊)) & ⊢ + = (+g‘𝑉) & ⊢ ⨣ = (+g‘𝑊) ⇒ ⊢ (𝜑 → ((𝐹‘𝑋) ⨣ (𝐹‘𝑌)) = (𝐹‘(𝑋 + 𝑌))) | ||
| Theorem | lmhmimasvsca 32987 | Value of the scalar product of the surjective image of a module. (Contributed by Thierry Arnoux, 2-Apr-2025.) |
| ⊢ 𝑊 = (𝐹 “s 𝑉) & ⊢ 𝐵 = (Base‘𝑉) & ⊢ 𝐶 = (Base‘𝑊) & ⊢ (𝜑 → 𝑋 ∈ 𝐾) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝐹:𝐵–onto→𝐶) & ⊢ (𝜑 → 𝐹 ∈ (𝑉 LMHom 𝑊)) & ⊢ · = ( ·𝑠 ‘𝑉) & ⊢ × = ( ·𝑠 ‘𝑊) & ⊢ 𝐾 = (Base‘(Scalar‘𝑉)) ⇒ ⊢ (𝜑 → (𝑋 × (𝐹‘𝑌)) = (𝐹‘(𝑋 · 𝑌))) | ||
| Theorem | grpsubcld 32988 | Closure of group subtraction. (Contributed by Thierry Arnoux, 3-Aug-2025.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ − = (-g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ Grp) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑋 − 𝑌) ∈ 𝐵) | ||
| Theorem | subgcld 32989 | A subgroup is closed under group operation. (Contributed by Thierry Arnoux, 3-Jun-2025.) |
| ⊢ + = (+g‘𝐺) & ⊢ (𝜑 → 𝑆 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝑋 ∈ 𝑆) & ⊢ (𝜑 → 𝑌 ∈ 𝑆) ⇒ ⊢ (𝜑 → (𝑋 + 𝑌) ∈ 𝑆) | ||
| Theorem | subgsubcld 32990 | A subgroup is closed under group subtraction. (Contributed by Thierry Arnoux, 6-Jul-2025.) |
| ⊢ − = (-g‘𝐺) & ⊢ (𝜑 → 𝑆 ∈ (SubGrp‘𝐺)) & ⊢ (𝜑 → 𝑋 ∈ 𝑆) & ⊢ (𝜑 → 𝑌 ∈ 𝑆) ⇒ ⊢ (𝜑 → (𝑋 − 𝑌) ∈ 𝑆) | ||
| Theorem | subgmulgcld 32991 | Closure of the group multiple within a subgroup. (Contributed by Thierry Arnoux, 5-Oct-2025.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.g‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Grp) & ⊢ (𝜑 → 𝐴 ∈ 𝑆) & ⊢ (𝜑 → 𝑆 ∈ (SubGrp‘𝑅)) & ⊢ (𝜑 → 𝑍 ∈ ℤ) ⇒ ⊢ (𝜑 → (𝑍 · 𝐴) ∈ 𝑆) | ||
| Theorem | ressmulgnn0d 32992 | Values for the group multiple function in a restricted structure. (Contributed by Thierry Arnoux, 14-Jun-2017.) |
| ⊢ (𝜑 → (𝐺 ↾s 𝐴) = 𝐻) & ⊢ (𝜑 → (0g‘𝐺) = (0g‘𝐻)) & ⊢ (𝜑 → 𝐴 ⊆ (Base‘𝐺)) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) & ⊢ (𝜑 → 𝑋 ∈ 𝐴) ⇒ ⊢ (𝜑 → (𝑁(.g‘𝐻)𝑋) = (𝑁(.g‘𝐺)𝑋)) | ||
| Theorem | gsumsubg 32993 | The group sum in a subgroup is the same as the group sum. (Contributed by Thierry Arnoux, 28-May-2023.) |
| ⊢ 𝐻 = (𝐺 ↾s 𝐵) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ (𝜑 → 𝐵 ∈ (SubGrp‘𝐺)) ⇒ ⊢ (𝜑 → (𝐺 Σg 𝐹) = (𝐻 Σg 𝐹)) | ||
| Theorem | gsumsra 32994 | The group sum in a subring algebra is the same as the ring's group sum. (Contributed by Thierry Arnoux, 28-May-2023.) |
| ⊢ 𝐴 = ((subringAlg ‘𝑅)‘𝐵) & ⊢ (𝜑 → 𝐹 ∈ 𝑈) & ⊢ (𝜑 → 𝑅 ∈ 𝑉) & ⊢ (𝜑 → 𝐴 ∈ 𝑊) & ⊢ (𝜑 → 𝐵 ⊆ (Base‘𝑅)) ⇒ ⊢ (𝜑 → (𝑅 Σg 𝐹) = (𝐴 Σg 𝐹)) | ||
| Theorem | gsummpt2co 32995* | Split a finite sum into a sum of a collection of sums over disjoint subsets. (Contributed by Thierry Arnoux, 27-Mar-2018.) |
| ⊢ 𝐵 = (Base‘𝑊) & ⊢ 0 = (0g‘𝑊) & ⊢ (𝜑 → 𝑊 ∈ CMnd) & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐸 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ 𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐷 ∈ 𝐸) & ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐷) ⇒ ⊢ (𝜑 → (𝑊 Σg (𝑥 ∈ 𝐴 ↦ 𝐶)) = (𝑊 Σg (𝑦 ∈ 𝐸 ↦ (𝑊 Σg (𝑥 ∈ (◡𝐹 “ {𝑦}) ↦ 𝐶))))) | ||
| Theorem | gsummpt2d 32996* | Express a finite sum over a two-dimensional range as a double sum. See also gsum2d 19909. (Contributed by Thierry Arnoux, 27-Apr-2020.) |
| ⊢ Ⅎ𝑧𝐶 & ⊢ Ⅎ𝑦𝜑 & ⊢ 𝐵 = (Base‘𝑊) & ⊢ (𝑥 = 〈𝑦, 𝑧〉 → 𝐶 = 𝐷) & ⊢ (𝜑 → Rel 𝐴) & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝑊 ∈ CMnd) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑊 Σg (𝑥 ∈ 𝐴 ↦ 𝐶)) = (𝑊 Σg (𝑦 ∈ dom 𝐴 ↦ (𝑊 Σg (𝑧 ∈ (𝐴 “ {𝑦}) ↦ 𝐷))))) | ||
| Theorem | lmodvslmhm 32997* | Scalar multiplication in a left module by a fixed element is a group homomorphism. (Contributed by Thierry Arnoux, 12-Jun-2023.) |
| ⊢ 𝑉 = (Base‘𝑊) & ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ · = ( ·𝑠 ‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝑌 ∈ 𝑉) → (𝑥 ∈ 𝐾 ↦ (𝑥 · 𝑌)) ∈ (𝐹 GrpHom 𝑊)) | ||
| Theorem | gsumvsmul1 32998* | Pull a scalar multiplication out of a sum of vectors. This theorem properly generalizes gsummulc1 20232, since every ring is a left module over itself. (Contributed by Thierry Arnoux, 12-Jun-2023.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑆 = (Scalar‘𝑅) & ⊢ 𝐾 = (Base‘𝑆) & ⊢ 0 = (0g‘𝑆) & ⊢ · = ( ·𝑠 ‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ LMod) & ⊢ (𝜑 → 𝑆 ∈ CMnd) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑋 ∈ 𝐾) & ⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝑋) finSupp 0 ) ⇒ ⊢ (𝜑 → (𝑅 Σg (𝑘 ∈ 𝐴 ↦ (𝑋 · 𝑌))) = ((𝑆 Σg (𝑘 ∈ 𝐴 ↦ 𝑋)) · 𝑌)) | ||
| Theorem | gsummptres 32999* | Extend a finite group sum by padding outside with zeroes. Proof generated using OpenAI's proof assistant. (Contributed by Thierry Arnoux, 11-Jul-2020.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ 𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ 𝐷)) → 𝐶 = 0 ) ⇒ ⊢ (𝜑 → (𝐺 Σg (𝑥 ∈ 𝐴 ↦ 𝐶)) = (𝐺 Σg (𝑥 ∈ (𝐴 ∩ 𝐷) ↦ 𝐶))) | ||
| Theorem | gsummptres2 33000* | Extend a finite group sum by padding outside with zeroes. (Contributed by Thierry Arnoux, 22-Jun-2024.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ 0 = (0g‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ CMnd) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∖ 𝑆)) → 𝑌 = 0 ) & ⊢ (𝜑 → 𝑆 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑆 ⊆ 𝐴) ⇒ ⊢ (𝜑 → (𝐺 Σg (𝑥 ∈ 𝐴 ↦ 𝑌)) = (𝐺 Σg (𝑥 ∈ 𝑆 ↦ 𝑌))) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |