HomeHome Metamath Proof Explorer
Theorem List (p. 330 of 466)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-29289)
  Hilbert Space Explorer  Hilbert Space Explorer
(29290-30812)
  Users' Mathboxes  Users' Mathboxes
(30813-46532)
 

Theorem List for Metamath Proof Explorer - 32901-33000   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theorembnj594 32901* Technical lemma for bnj852 32910. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
(𝜑 ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅))    &   (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))    &   (𝜒 ↔ (𝑓 Fn 𝑛𝜑𝜓))    &   𝐷 = (ω ∖ {∅})    &   (𝜑′ ↔ (𝑔‘∅) = pred(𝑥, 𝐴, 𝑅))    &   (𝜓′ ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑔‘suc 𝑖) = 𝑦 ∈ (𝑔𝑖) pred(𝑦, 𝐴, 𝑅)))    &   (𝜒′ ↔ (𝑔 Fn 𝑛𝜑′𝜓′))    &   (𝜃 ↔ ((𝑛𝐷𝜒𝜒′) → (𝑓𝑗) = (𝑔𝑗)))    &   ([𝑘 / 𝑗]𝜃 ↔ ((𝑛𝐷𝜒𝜒′) → (𝑓𝑘) = (𝑔𝑘)))    &   (𝜏 ↔ ∀𝑘𝑛 (𝑘 E 𝑗[𝑘 / 𝑗]𝜃))       ((𝑗𝑛𝜏) → 𝜃)
 
Theorembnj580 32902* Technical lemma for bnj579 32903. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
(𝜑 ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅))    &   (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))    &   (𝜒 ↔ (𝑓 Fn 𝑛𝜑𝜓))    &   (𝜑′[𝑔 / 𝑓]𝜑)    &   (𝜓′[𝑔 / 𝑓]𝜓)    &   (𝜒′[𝑔 / 𝑓]𝜒)    &   𝐷 = (ω ∖ {∅})    &   (𝜃 ↔ ((𝑛𝐷𝜒𝜒′) → (𝑓𝑗) = (𝑔𝑗)))    &   (𝜏 ↔ ∀𝑘𝑛 (𝑘 E 𝑗[𝑘 / 𝑗]𝜃))       (𝑛𝐷 → ∃*𝑓𝜒)
 
Theorembnj579 32903* Technical lemma for bnj852 32910. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
(𝜑 ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅))    &   (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))    &   𝐷 = (ω ∖ {∅})       (𝑛𝐷 → ∃*𝑓(𝑓 Fn 𝑛𝜑𝜓))
 
Theorembnj602 32904 Equality theorem for the pred function constant. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
(𝑋 = 𝑌 → pred(𝑋, 𝐴, 𝑅) = pred(𝑌, 𝐴, 𝑅))
 
Theorembnj607 32905* Technical lemma for bnj852 32910. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
(𝜃 ↔ ∀𝑚𝐷 (𝑚 E 𝑛[𝑚 / 𝑛]𝜒))    &   (𝜑″[𝐺 / 𝑓]𝜑)    &   (𝜓″[𝐺 / 𝑓]𝜓)    &   (𝜏 ↔ (𝑓 Fn 𝑚𝜑′𝜓′))    &   (𝜂 ↔ (𝑚𝐷𝑛 = suc 𝑚𝑝 ∈ ω ∧ 𝑚 = suc 𝑝))    &   𝐺 ∈ V    &   (𝜒′ ↔ ((𝑅 FrSe 𝐴𝑥𝐴) → ∃!𝑓(𝑓 Fn 𝑚𝜑′𝜓′)))    &   (𝜑″ ↔ (𝐺‘∅) = pred(𝑥, 𝐴, 𝑅))    &   (𝜓″ ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝐺‘suc 𝑖) = 𝑦 ∈ (𝐺𝑖) pred(𝑦, 𝐴, 𝑅)))    &   ((𝑛 ≠ 1o𝑛𝐷) → ∃𝑚𝑝𝜂)    &   ((𝜃𝑚𝐷𝑚 E 𝑛) → 𝜒′)    &   ((𝑅 FrSe 𝐴𝜏𝜂) → 𝐺 Fn 𝑛)    &   ((𝑅 FrSe 𝐴𝜏𝜂) → 𝜑″)    &   ((𝑅 FrSe 𝐴𝜏𝜂) → 𝜓″)    &   (𝜑 ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅))    &   (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))    &   (𝜑0[ / 𝑓]𝜑)    &   (𝜓0[ / 𝑓]𝜓)    &   (𝜑1[𝐺 / ]𝜑0)    &   (𝜓1[𝐺 / ]𝜓0)       ((𝑛 ≠ 1o𝑛𝐷𝜃) → ((𝑅 FrSe 𝐴𝑥𝐴) → ∃𝑓(𝑓 Fn 𝑛𝜑𝜓)))
 
Theorembnj609 32906* Technical lemma for bnj852 32910. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
(𝜑 ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅))    &   (𝜑″[𝐺 / 𝑓]𝜑)    &   𝐺 ∈ V       (𝜑″ ↔ (𝐺‘∅) = pred(𝑋, 𝐴, 𝑅))
 
Theorembnj611 32907* Technical lemma for bnj852 32910. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
(𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑁 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))    &   (𝜓″[𝐺 / 𝑓]𝜓)    &   𝐺 ∈ V       (𝜓″ ↔ ∀𝑖 ∈ ω (suc 𝑖𝑁 → (𝐺‘suc 𝑖) = 𝑦 ∈ (𝐺𝑖) pred(𝑦, 𝐴, 𝑅)))
 
Theorembnj600 32908* Technical lemma for bnj852 32910. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
(𝜑 ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅))    &   (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))    &   𝐷 = (ω ∖ {∅})    &   (𝜒 ↔ ((𝑅 FrSe 𝐴𝑥𝐴) → ∃!𝑓(𝑓 Fn 𝑛𝜑𝜓)))    &   (𝜃 ↔ ∀𝑚𝐷 (𝑚 E 𝑛[𝑚 / 𝑛]𝜒))    &   (𝜑′[𝑚 / 𝑛]𝜑)    &   (𝜓′[𝑚 / 𝑛]𝜓)    &   (𝜒′[𝑚 / 𝑛]𝜒)    &   (𝜑″[𝐺 / 𝑓]𝜑)    &   (𝜓″[𝐺 / 𝑓]𝜓)    &   (𝜒″[𝐺 / 𝑓]𝜒)    &   𝐺 = (𝑓 ∪ {⟨𝑚, 𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅)⟩})    &   (𝜏 ↔ (𝑓 Fn 𝑚𝜑′𝜓′))    &   (𝜎 ↔ (𝑚𝐷𝑛 = suc 𝑚𝑝𝑚))    &   (𝜂 ↔ (𝑚𝐷𝑛 = suc 𝑚𝑝 ∈ ω ∧ 𝑚 = suc 𝑝))    &   (𝜁 ↔ (𝑖 ∈ ω ∧ suc 𝑖𝑛𝑚 = suc 𝑖))    &   (𝜌 ↔ (𝑖 ∈ ω ∧ suc 𝑖𝑛𝑚 ≠ suc 𝑖))    &   𝐵 = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)    &   𝐶 = 𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅)    &   𝐾 = 𝑦 ∈ (𝐺𝑖) pred(𝑦, 𝐴, 𝑅)    &   𝐿 = 𝑦 ∈ (𝐺𝑝) pred(𝑦, 𝐴, 𝑅)    &   𝐺 = (𝑓 ∪ {⟨𝑚, 𝐶⟩})       (𝑛 ≠ 1o → ((𝑛𝐷𝜃) → 𝜒))
 
Theorembnj601 32909* Technical lemma for bnj852 32910. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
(𝜑 ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅))    &   (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))    &   𝐷 = (ω ∖ {∅})    &   (𝜒 ↔ ((𝑅 FrSe 𝐴𝑥𝐴) → ∃!𝑓(𝑓 Fn 𝑛𝜑𝜓)))    &   (𝜃 ↔ ∀𝑚𝐷 (𝑚 E 𝑛[𝑚 / 𝑛]𝜒))       (𝑛 ≠ 1o → ((𝑛𝐷𝜃) → 𝜒))
 
Theorembnj852 32910* Technical lemma for bnj69 32999. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
(𝜑 ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅))    &   (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))    &   𝐷 = (ω ∖ {∅})       ((𝑅 FrSe 𝐴𝑋𝐴) → ∀𝑛𝐷 ∃!𝑓(𝑓 Fn 𝑛𝜑𝜓))
 
Theorembnj864 32911* Technical lemma for bnj69 32999. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
(𝜑 ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅))    &   (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))    &   𝐷 = (ω ∖ {∅})    &   (𝜒 ↔ (𝑅 FrSe 𝐴𝑋𝐴𝑛𝐷))    &   (𝜃 ↔ (𝑓 Fn 𝑛𝜑𝜓))       (𝜒 → ∃!𝑓𝜃)
 
Theorembnj865 32912* Technical lemma for bnj69 32999. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
(𝜑 ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅))    &   (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))    &   𝐷 = (ω ∖ {∅})    &   (𝜒 ↔ (𝑅 FrSe 𝐴𝑋𝐴𝑛𝐷))    &   (𝜃 ↔ (𝑓 Fn 𝑛𝜑𝜓))       𝑤𝑛(𝜒 → ∃𝑓𝑤 𝜃)
 
Theorembnj873 32913* Technical lemma for bnj69 32999. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
𝐵 = {𝑓 ∣ ∃𝑛𝐷 (𝑓 Fn 𝑛𝜑𝜓)}    &   (𝜑′[𝑔 / 𝑓]𝜑)    &   (𝜓′[𝑔 / 𝑓]𝜓)       𝐵 = {𝑔 ∣ ∃𝑛𝐷 (𝑔 Fn 𝑛𝜑′𝜓′)}
 
Theorembnj849 32914* Technical lemma for bnj69 32999. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (Proof shortened by Mario Carneiro, 22-Dec-2016.) (New usage is discouraged.)
(𝜑 ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅))    &   (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))    &   𝐷 = (ω ∖ {∅})    &   𝐵 = {𝑓 ∣ ∃𝑛𝐷 (𝑓 Fn 𝑛𝜑𝜓)}    &   (𝜒 ↔ (𝑅 FrSe 𝐴𝑋𝐴𝑛𝐷))    &   (𝜃 ↔ (𝑓 Fn 𝑛𝜑𝜓))    &   (𝜑′[𝑔 / 𝑓]𝜑)    &   (𝜓′[𝑔 / 𝑓]𝜓)    &   (𝜃′[𝑔 / 𝑓]𝜃)    &   (𝜏 ↔ (𝑅 FrSe 𝐴𝑋𝐴))       ((𝑅 FrSe 𝐴𝑋𝐴) → 𝐵 ∈ V)
 
Theorembnj882 32915* Definition (using hypotheses for readability) of the function giving the transitive closure of 𝑋 in 𝐴 by 𝑅. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
(𝜑 ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅))    &   (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))    &   𝐷 = (ω ∖ {∅})    &   𝐵 = {𝑓 ∣ ∃𝑛𝐷 (𝑓 Fn 𝑛𝜑𝜓)}        trCl(𝑋, 𝐴, 𝑅) = 𝑓𝐵 𝑖 ∈ dom 𝑓(𝑓𝑖)
 
Theorembnj18eq1 32916 Equality theorem for transitive closure. (Contributed by Mario Carneiro, 22-Dec-2016.) (New usage is discouraged.)
(𝑋 = 𝑌 → trCl(𝑋, 𝐴, 𝑅) = trCl(𝑌, 𝐴, 𝑅))
 
Theorembnj893 32917 Property of trCl. Under certain conditions, the transitive closure of 𝑋 in 𝐴 by 𝑅 is a set. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
((𝑅 FrSe 𝐴𝑋𝐴) → trCl(𝑋, 𝐴, 𝑅) ∈ V)
 
Theorembnj900 32918* Technical lemma for bnj69 32999. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
𝐷 = (ω ∖ {∅})    &   𝐵 = {𝑓 ∣ ∃𝑛𝐷 (𝑓 Fn 𝑛𝜑𝜓)}       (𝑓𝐵 → ∅ ∈ dom 𝑓)
 
Theorembnj906 32919 Property of trCl. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
((𝑅 FrSe 𝐴𝑋𝐴) → pred(𝑋, 𝐴, 𝑅) ⊆ trCl(𝑋, 𝐴, 𝑅))
 
Theorembnj908 32920* Technical lemma for bnj69 32999. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
(𝜑 ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅))    &   (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))    &   𝐷 = (ω ∖ {∅})    &   (𝜒 ↔ ((𝑅 FrSe 𝐴𝑥𝐴) → ∃!𝑓(𝑓 Fn 𝑛𝜑𝜓)))    &   (𝜃 ↔ ∀𝑚𝐷 (𝑚 E 𝑛[𝑚 / 𝑛]𝜒))    &   (𝜑′[𝑚 / 𝑛]𝜑)    &   (𝜓′[𝑚 / 𝑛]𝜓)    &   (𝜒′[𝑚 / 𝑛]𝜒)    &   (𝜑″[𝐺 / 𝑓]𝜑)    &   (𝜓″[𝐺 / 𝑓]𝜓)    &   (𝜒″[𝐺 / 𝑓]𝜒)    &   𝐺 = (𝑓 ∪ {⟨𝑚, 𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅)⟩})    &   (𝜏 ↔ (𝑓 Fn 𝑚𝜑′𝜓′))    &   (𝜎 ↔ (𝑚𝐷𝑛 = suc 𝑚𝑝𝑚))    &   (𝜂 ↔ (𝑚𝐷𝑛 = suc 𝑚𝑝 ∈ ω ∧ 𝑚 = suc 𝑝))    &   (𝜁 ↔ (𝑖 ∈ ω ∧ suc 𝑖𝑛𝑚 = suc 𝑖))    &   (𝜌 ↔ (𝑖 ∈ ω ∧ suc 𝑖𝑛𝑚 ≠ suc 𝑖))    &   𝐵 = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)    &   𝐶 = 𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅)    &   𝐾 = 𝑦 ∈ (𝐺𝑖) pred(𝑦, 𝐴, 𝑅)    &   𝐿 = 𝑦 ∈ (𝐺𝑝) pred(𝑦, 𝐴, 𝑅)    &   𝐺 = (𝑓 ∪ {⟨𝑚, 𝐶⟩})       ((𝑅 FrSe 𝐴𝑥𝐴𝜒′𝜂) → ∃𝑓(𝐺 Fn 𝑛𝜑″𝜓″))
 
Theorembnj911 32921* Technical lemma for bnj69 32999. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
(𝜑 ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅))    &   (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))       ((𝑓 Fn 𝑛𝜑𝜓) → ∀𝑖(𝑓 Fn 𝑛𝜑𝜓))
 
Theorembnj916 32922* Technical lemma for bnj69 32999. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
(𝜑 ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅))    &   (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))    &   𝐷 = (ω ∖ {∅})    &   𝐵 = {𝑓 ∣ ∃𝑛𝐷 (𝑓 Fn 𝑛𝜑𝜓)}    &   (𝜒 ↔ (𝑓 Fn 𝑛𝜑𝜓))       (𝑦 ∈ trCl(𝑋, 𝐴, 𝑅) → ∃𝑓𝑛𝑖(𝑛𝐷𝜒𝑖𝑛𝑦 ∈ (𝑓𝑖)))
 
Theorembnj917 32923* Technical lemma for bnj69 32999. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
(𝜑 ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅))    &   (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))    &   𝐷 = (ω ∖ {∅})    &   𝐵 = {𝑓 ∣ ∃𝑛𝐷 (𝑓 Fn 𝑛𝜑𝜓)}    &   (𝜒 ↔ (𝑛𝐷𝑓 Fn 𝑛𝜑𝜓))       (𝑦 ∈ trCl(𝑋, 𝐴, 𝑅) → ∃𝑓𝑛𝑖(𝜒𝑖𝑛𝑦 ∈ (𝑓𝑖)))
 
Theorembnj934 32924* Technical lemma for bnj69 32999. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
(𝜑 ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅))    &   (𝜑′[𝑝 / 𝑛]𝜑)    &   (𝜑″[𝐺 / 𝑓]𝜑′)    &   𝐺 ∈ V       ((𝜑 ∧ (𝐺‘∅) = (𝑓‘∅)) → 𝜑″)
 
Theorembnj929 32925* Technical lemma for bnj69 32999. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
(𝜑 ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅))    &   (𝜑′[𝑝 / 𝑛]𝜑)    &   (𝜑″[𝐺 / 𝑓]𝜑′)    &   𝐷 = (ω ∖ {∅})    &   𝐺 = (𝑓 ∪ {⟨𝑛, 𝐶⟩})    &   𝐶 ∈ V       ((𝑛𝐷𝑝 = suc 𝑛𝑓 Fn 𝑛𝜑) → 𝜑″)
 
Theorembnj938 32926* Technical lemma for bnj69 32999. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
𝐷 = (ω ∖ {∅})    &   (𝜏 ↔ (𝑓 Fn 𝑚𝜑′𝜓′))    &   (𝜎 ↔ (𝑚𝐷𝑛 = suc 𝑚𝑝𝑚))    &   (𝜑′ ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅))    &   (𝜓′ ↔ ∀𝑖 ∈ ω (suc 𝑖𝑚 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))       ((𝑅 FrSe 𝐴𝑋𝐴𝜏𝜎) → 𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅) ∈ V)
 
Theorembnj944 32927* Technical lemma for bnj69 32999. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
(𝜑 ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅))    &   (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))    &   (𝜒 ↔ (𝑛𝐷𝑓 Fn 𝑛𝜑𝜓))    &   (𝜑′[𝑝 / 𝑛]𝜑)    &   (𝜑″[𝐺 / 𝑓]𝜑′)    &   𝐷 = (ω ∖ {∅})    &   𝐶 = 𝑦 ∈ (𝑓𝑚) pred(𝑦, 𝐴, 𝑅)    &   𝐺 = (𝑓 ∪ {⟨𝑛, 𝐶⟩})    &   (𝜏 ↔ (𝑓 Fn 𝑛𝜑𝜓))    &   (𝜎 ↔ (𝑛𝐷𝑝 = suc 𝑛𝑚𝑛))       (((𝑅 FrSe 𝐴𝑋𝐴) ∧ (𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛)) → 𝜑″)
 
Theorembnj953 32928 Technical lemma for bnj69 32999. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
(𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))    &   ((𝐺𝑖) = (𝑓𝑖) → ∀𝑦(𝐺𝑖) = (𝑓𝑖))       (((𝐺𝑖) = (𝑓𝑖) ∧ (𝐺‘suc 𝑖) = (𝑓‘suc 𝑖) ∧ (𝑖 ∈ ω ∧ suc 𝑖𝑛) ∧ 𝜓) → (𝐺‘suc 𝑖) = 𝑦 ∈ (𝐺𝑖) pred(𝑦, 𝐴, 𝑅))
 
Theorembnj958 32929* Technical lemma for bnj69 32999. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
𝐶 = 𝑦 ∈ (𝑓𝑚) pred(𝑦, 𝐴, 𝑅)    &   𝐺 = (𝑓 ∪ {⟨𝑛, 𝐶⟩})       ((𝐺𝑖) = (𝑓𝑖) → ∀𝑦(𝐺𝑖) = (𝑓𝑖))
 
Theorembnj1000 32930* Technical lemma for bnj852 32910. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
(𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑁 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))    &   (𝜓″[𝐺 / 𝑓]𝜓)    &   𝐺 ∈ V    &   𝐶 = 𝑦 ∈ (𝑓𝑚) pred(𝑦, 𝐴, 𝑅)    &   𝐺 = (𝑓 ∪ {⟨𝑛, 𝐶⟩})       (𝜓″ ↔ ∀𝑖 ∈ ω (suc 𝑖𝑁 → (𝐺‘suc 𝑖) = 𝑦 ∈ (𝐺𝑖) pred(𝑦, 𝐴, 𝑅)))
 
Theorembnj965 32931* Technical lemma for bnj852 32910. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
(𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑁 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))    &   (𝜓″[𝐺 / 𝑓]𝜓)    &   𝐶 = 𝑦 ∈ (𝑓𝑚) pred(𝑦, 𝐴, 𝑅)    &   𝐺 = (𝑓 ∪ {⟨𝑛, 𝐶⟩})       (𝜓″ ↔ ∀𝑖 ∈ ω (suc 𝑖𝑁 → (𝐺‘suc 𝑖) = 𝑦 ∈ (𝐺𝑖) pred(𝑦, 𝐴, 𝑅)))
 
Theorembnj964 32932* Technical lemma for bnj69 32999. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
(𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))    &   (𝜒 ↔ (𝑛𝐷𝑓 Fn 𝑛𝜑𝜓))    &   (𝜓′[𝑝 / 𝑛]𝜓)    &   (𝜓″[𝐺 / 𝑓]𝜓′)    &   𝐶 = 𝑦 ∈ (𝑓𝑚) pred(𝑦, 𝐴, 𝑅)    &   𝐺 = (𝑓 ∪ {⟨𝑛, 𝐶⟩})    &   (((𝑅 FrSe 𝐴𝑋𝐴) ∧ (𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛) ∧ (𝑖 ∈ ω ∧ suc 𝑖𝑝 ∧ suc 𝑖𝑛)) → (𝐺‘suc 𝑖) = 𝑦 ∈ (𝐺𝑖) pred(𝑦, 𝐴, 𝑅))    &   (((𝑅 FrSe 𝐴𝑋𝐴) ∧ (𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛) ∧ (𝑖 ∈ ω ∧ suc 𝑖𝑝𝑛 = suc 𝑖)) → (𝐺‘suc 𝑖) = 𝑦 ∈ (𝐺𝑖) pred(𝑦, 𝐴, 𝑅))       (((𝑅 FrSe 𝐴𝑋𝐴) ∧ (𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛)) → 𝜓″)
 
Theorembnj966 32933* Technical lemma for bnj69 32999. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
(𝜒 ↔ (𝑛𝐷𝑓 Fn 𝑛𝜑𝜓))    &   𝐷 = (ω ∖ {∅})    &   𝐶 = 𝑦 ∈ (𝑓𝑚) pred(𝑦, 𝐴, 𝑅)    &   𝐺 = (𝑓 ∪ {⟨𝑛, 𝐶⟩})    &   (((𝑅 FrSe 𝐴𝑋𝐴) ∧ (𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛)) → 𝐶 ∈ V)    &   (((𝑅 FrSe 𝐴𝑋𝐴) ∧ (𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛)) → 𝐺 Fn 𝑝)       (((𝑅 FrSe 𝐴𝑋𝐴) ∧ (𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛) ∧ (𝑖 ∈ ω ∧ suc 𝑖𝑝𝑛 = suc 𝑖)) → (𝐺‘suc 𝑖) = 𝑦 ∈ (𝐺𝑖) pred(𝑦, 𝐴, 𝑅))
 
Theorembnj967 32934* Technical lemma for bnj69 32999. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
(𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))    &   (𝜒 ↔ (𝑛𝐷𝑓 Fn 𝑛𝜑𝜓))    &   𝐷 = (ω ∖ {∅})    &   𝐶 = 𝑦 ∈ (𝑓𝑚) pred(𝑦, 𝐴, 𝑅)    &   𝐺 = (𝑓 ∪ {⟨𝑛, 𝐶⟩})    &   (((𝑅 FrSe 𝐴𝑋𝐴) ∧ (𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛)) → 𝐶 ∈ V)       (((𝑅 FrSe 𝐴𝑋𝐴) ∧ (𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛) ∧ (𝑖 ∈ ω ∧ suc 𝑖𝑝 ∧ suc 𝑖𝑛)) → (𝐺‘suc 𝑖) = 𝑦 ∈ (𝐺𝑖) pred(𝑦, 𝐴, 𝑅))
 
Theorembnj969 32935* Technical lemma for bnj69 32999. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
(𝜑 ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅))    &   (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))    &   (𝜒 ↔ (𝑛𝐷𝑓 Fn 𝑛𝜑𝜓))    &   𝐷 = (ω ∖ {∅})    &   𝐶 = 𝑦 ∈ (𝑓𝑚) pred(𝑦, 𝐴, 𝑅)    &   (𝜏 ↔ (𝑓 Fn 𝑛𝜑𝜓))    &   (𝜎 ↔ (𝑛𝐷𝑝 = suc 𝑛𝑚𝑛))       (((𝑅 FrSe 𝐴𝑋𝐴) ∧ (𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛)) → 𝐶 ∈ V)
 
Theorembnj970 32936 Technical lemma for bnj69 32999. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
(𝜒 ↔ (𝑛𝐷𝑓 Fn 𝑛𝜑𝜓))    &   𝐷 = (ω ∖ {∅})       (((𝑅 FrSe 𝐴𝑋𝐴) ∧ (𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛)) → 𝑝𝐷)
 
Theorembnj910 32937* Technical lemma for bnj69 32999. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
(𝜑 ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅))    &   (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))    &   (𝜒 ↔ (𝑛𝐷𝑓 Fn 𝑛𝜑𝜓))    &   (𝜑′[𝑝 / 𝑛]𝜑)    &   (𝜓′[𝑝 / 𝑛]𝜓)    &   (𝜒′[𝑝 / 𝑛]𝜒)    &   (𝜑″[𝐺 / 𝑓]𝜑′)    &   (𝜓″[𝐺 / 𝑓]𝜓′)    &   (𝜒″[𝐺 / 𝑓]𝜒′)    &   𝐷 = (ω ∖ {∅})    &   𝐵 = {𝑓 ∣ ∃𝑛𝐷 (𝑓 Fn 𝑛𝜑𝜓)}    &   𝐶 = 𝑦 ∈ (𝑓𝑚) pred(𝑦, 𝐴, 𝑅)    &   𝐺 = (𝑓 ∪ {⟨𝑛, 𝐶⟩})    &   (𝜏 ↔ (𝑓 Fn 𝑛𝜑𝜓))    &   (𝜎 ↔ (𝑛𝐷𝑝 = suc 𝑛𝑚𝑛))       (((𝑅 FrSe 𝐴𝑋𝐴) ∧ (𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛)) → 𝜒″)
 
Theorembnj978 32938* Technical lemma for bnj69 32999. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
(𝜃 ↔ (𝑅 FrSe 𝐴𝑋𝐴𝑦 ∈ trCl(𝑋, 𝐴, 𝑅) ∧ 𝑧 ∈ pred(𝑦, 𝐴, 𝑅)))    &   (𝜃𝑧 ∈ trCl(𝑋, 𝐴, 𝑅))       ((𝑅 FrSe 𝐴𝑋𝐴) → TrFo( trCl(𝑋, 𝐴, 𝑅), 𝐴, 𝑅))
 
Theorembnj981 32939* Technical lemma for bnj69 32999. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
(𝜑 ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅))    &   (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))    &   𝐷 = (ω ∖ {∅})    &   𝐵 = {𝑓 ∣ ∃𝑛𝐷 (𝑓 Fn 𝑛𝜑𝜓)}    &   (𝜒 ↔ (𝑛𝐷𝑓 Fn 𝑛𝜑𝜓))       (𝑍 ∈ trCl(𝑋, 𝐴, 𝑅) → ∃𝑓𝑛𝑖(𝜒𝑖𝑛𝑍 ∈ (𝑓𝑖)))
 
Theorembnj983 32940* Technical lemma for bnj69 32999. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
(𝜑 ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅))    &   (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))    &   𝐷 = (ω ∖ {∅})    &   𝐵 = {𝑓 ∣ ∃𝑛𝐷 (𝑓 Fn 𝑛𝜑𝜓)}    &   (𝜒 ↔ (𝑛𝐷𝑓 Fn 𝑛𝜑𝜓))       (𝑍 ∈ trCl(𝑋, 𝐴, 𝑅) ↔ ∃𝑓𝑛𝑖(𝜒𝑖𝑛𝑍 ∈ (𝑓𝑖)))
 
Theorembnj984 32941 Technical lemma for bnj69 32999. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
(𝜒 ↔ (𝑛𝐷𝑓 Fn 𝑛𝜑𝜓))    &   𝐵 = {𝑓 ∣ ∃𝑛𝐷 (𝑓 Fn 𝑛𝜑𝜓)}       (𝐺𝐴 → (𝐺𝐵[𝐺 / 𝑓]𝑛𝜒))
 
Theorembnj985v 32942* Version of bnj985 32943 with an additional disjoint variable condition, not requiring ax-13 2373. (Contributed by Gino Giotto, 27-Mar-2024.) (New usage is discouraged.)
(𝜒 ↔ (𝑛𝐷𝑓 Fn 𝑛𝜑𝜓))    &   (𝜒′[𝑝 / 𝑛]𝜒)    &   (𝜒″[𝐺 / 𝑓]𝜒′)    &   𝐵 = {𝑓 ∣ ∃𝑛𝐷 (𝑓 Fn 𝑛𝜑𝜓)}    &   𝐺 = (𝑓 ∪ {⟨𝑛, 𝐶⟩})       (𝐺𝐵 ↔ ∃𝑝𝜒″)
 
Theorembnj985 32943* Technical lemma for bnj69 32999. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). See bnj985v 32942 for a version with more disjoint variable conditions, not requiring ax-13 2373. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
(𝜒 ↔ (𝑛𝐷𝑓 Fn 𝑛𝜑𝜓))    &   (𝜒′[𝑝 / 𝑛]𝜒)    &   (𝜒″[𝐺 / 𝑓]𝜒′)    &   𝐵 = {𝑓 ∣ ∃𝑛𝐷 (𝑓 Fn 𝑛𝜑𝜓)}    &   𝐺 = (𝑓 ∪ {⟨𝑛, 𝐶⟩})       (𝐺𝐵 ↔ ∃𝑝𝜒″)
 
Theorembnj986 32944* Technical lemma for bnj69 32999. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
(𝜒 ↔ (𝑛𝐷𝑓 Fn 𝑛𝜑𝜓))    &   𝐷 = (ω ∖ {∅})    &   (𝜏 ↔ (𝑚 ∈ ω ∧ 𝑛 = suc 𝑚𝑝 = suc 𝑛))       (𝜒 → ∃𝑚𝑝𝜏)
 
Theorembnj996 32945* Technical lemma for bnj69 32999. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
(𝜑 ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅))    &   (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))    &   (𝜒 ↔ (𝑛𝐷𝑓 Fn 𝑛𝜑𝜓))    &   (𝜃 ↔ (𝑅 FrSe 𝐴𝑋𝐴𝑦 ∈ trCl(𝑋, 𝐴, 𝑅) ∧ 𝑧 ∈ pred(𝑦, 𝐴, 𝑅)))    &   (𝜏 ↔ (𝑚 ∈ ω ∧ 𝑛 = suc 𝑚𝑝 = suc 𝑛))    &   (𝜂 ↔ (𝑖𝑛𝑦 ∈ (𝑓𝑖)))    &   𝐷 = (ω ∖ {∅})    &   𝐵 = {𝑓 ∣ ∃𝑛𝐷 (𝑓 Fn 𝑛𝜑𝜓)}       𝑓𝑛𝑖𝑚𝑝(𝜃 → (𝜒𝜏𝜂))
 
Theorembnj998 32946* Technical lemma for bnj69 32999. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
(𝜑 ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅))    &   (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))    &   (𝜒 ↔ (𝑛𝐷𝑓 Fn 𝑛𝜑𝜓))    &   (𝜃 ↔ (𝑅 FrSe 𝐴𝑋𝐴𝑦 ∈ trCl(𝑋, 𝐴, 𝑅) ∧ 𝑧 ∈ pred(𝑦, 𝐴, 𝑅)))    &   (𝜏 ↔ (𝑚 ∈ ω ∧ 𝑛 = suc 𝑚𝑝 = suc 𝑛))    &   (𝜑′[𝑝 / 𝑛]𝜑)    &   (𝜓′[𝑝 / 𝑛]𝜓)    &   (𝜒′[𝑝 / 𝑛]𝜒)    &   (𝜑″[𝐺 / 𝑓]𝜑′)    &   (𝜓″[𝐺 / 𝑓]𝜓′)    &   (𝜒″[𝐺 / 𝑓]𝜒′)    &   𝐷 = (ω ∖ {∅})    &   𝐵 = {𝑓 ∣ ∃𝑛𝐷 (𝑓 Fn 𝑛𝜑𝜓)}    &   𝐶 = 𝑦 ∈ (𝑓𝑚) pred(𝑦, 𝐴, 𝑅)    &   𝐺 = (𝑓 ∪ {⟨𝑛, 𝐶⟩})       ((𝜃𝜒𝜏𝜂) → 𝜒″)
 
Theorembnj999 32947* Technical lemma for bnj69 32999. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
(𝜑 ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅))    &   (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))    &   (𝜒 ↔ (𝑛𝐷𝑓 Fn 𝑛𝜑𝜓))    &   (𝜑′[𝑝 / 𝑛]𝜑)    &   (𝜓′[𝑝 / 𝑛]𝜓)    &   (𝜒′[𝑝 / 𝑛]𝜒)    &   (𝜑″[𝐺 / 𝑓]𝜑′)    &   (𝜓″[𝐺 / 𝑓]𝜓′)    &   (𝜒″[𝐺 / 𝑓]𝜒′)    &   𝐶 = 𝑦 ∈ (𝑓𝑚) pred(𝑦, 𝐴, 𝑅)    &   𝐺 = (𝑓 ∪ {⟨𝑛, 𝐶⟩})       ((𝜒″𝑖 ∈ ω ∧ suc 𝑖𝑝𝑦 ∈ (𝐺𝑖)) → pred(𝑦, 𝐴, 𝑅) ⊆ (𝐺‘suc 𝑖))
 
Theorembnj1001 32948 Technical lemma for bnj69 32999. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
(𝜒 ↔ (𝑛𝐷𝑓 Fn 𝑛𝜑𝜓))    &   (𝜏 ↔ (𝑚 ∈ ω ∧ 𝑛 = suc 𝑚𝑝 = suc 𝑛))    &   (𝜂 ↔ (𝑖𝑛𝑦 ∈ (𝑓𝑖)))    &   𝐷 = (ω ∖ {∅})    &   ((𝜃𝜒𝜏𝜂) → 𝜒″)       ((𝜃𝜒𝜏𝜂) → (𝜒″𝑖 ∈ ω ∧ suc 𝑖𝑝))
 
Theorembnj1006 32949* Technical lemma for bnj69 32999. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
(𝜑 ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅))    &   (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))    &   (𝜒 ↔ (𝑛𝐷𝑓 Fn 𝑛𝜑𝜓))    &   (𝜃 ↔ (𝑅 FrSe 𝐴𝑋𝐴𝑦 ∈ trCl(𝑋, 𝐴, 𝑅) ∧ 𝑧 ∈ pred(𝑦, 𝐴, 𝑅)))    &   (𝜏 ↔ (𝑚 ∈ ω ∧ 𝑛 = suc 𝑚𝑝 = suc 𝑛))    &   (𝜂 ↔ (𝑖𝑛𝑦 ∈ (𝑓𝑖)))    &   (𝜑′[𝑝 / 𝑛]𝜑)    &   (𝜓′[𝑝 / 𝑛]𝜓)    &   (𝜒′[𝑝 / 𝑛]𝜒)    &   (𝜑″[𝐺 / 𝑓]𝜑′)    &   (𝜓″[𝐺 / 𝑓]𝜓′)    &   (𝜒″[𝐺 / 𝑓]𝜒′)    &   𝐷 = (ω ∖ {∅})    &   𝐶 = 𝑦 ∈ (𝑓𝑚) pred(𝑦, 𝐴, 𝑅)    &   𝐺 = (𝑓 ∪ {⟨𝑛, 𝐶⟩})    &   ((𝜃𝜒𝜏𝜂) → (𝜒″𝑖 ∈ ω ∧ suc 𝑖𝑝))       ((𝜃𝜒𝜏𝜂) → pred(𝑦, 𝐴, 𝑅) ⊆ (𝐺‘suc 𝑖))
 
Theorembnj1014 32950* Technical lemma for bnj69 32999. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
(𝜑 ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅))    &   (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))    &   𝐷 = (ω ∖ {∅})    &   𝐵 = {𝑓 ∣ ∃𝑛𝐷 (𝑓 Fn 𝑛𝜑𝜓)}       ((𝑔𝐵𝑗 ∈ dom 𝑔) → (𝑔𝑗) ⊆ trCl(𝑋, 𝐴, 𝑅))
 
Theorembnj1015 32951* Technical lemma for bnj69 32999. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
(𝜑 ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅))    &   (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))    &   𝐷 = (ω ∖ {∅})    &   𝐵 = {𝑓 ∣ ∃𝑛𝐷 (𝑓 Fn 𝑛𝜑𝜓)}    &   𝐺𝑉    &   𝐽𝑉       ((𝐺𝐵𝐽 ∈ dom 𝐺) → (𝐺𝐽) ⊆ trCl(𝑋, 𝐴, 𝑅))
 
Theorembnj1018g 32952* Version of bnj1018 32953 with less disjoint variable conditions, but requiring ax-13 2373. (Contributed by Gino Giotto, 27-Mar-2024.) (New usage is discouraged.)
(𝜑 ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅))    &   (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))    &   (𝜒 ↔ (𝑛𝐷𝑓 Fn 𝑛𝜑𝜓))    &   (𝜃 ↔ (𝑅 FrSe 𝐴𝑋𝐴𝑦 ∈ trCl(𝑋, 𝐴, 𝑅) ∧ 𝑧 ∈ pred(𝑦, 𝐴, 𝑅)))    &   (𝜏 ↔ (𝑚 ∈ ω ∧ 𝑛 = suc 𝑚𝑝 = suc 𝑛))    &   (𝜑′[𝑝 / 𝑛]𝜑)    &   (𝜓′[𝑝 / 𝑛]𝜓)    &   (𝜒′[𝑝 / 𝑛]𝜒)    &   (𝜑″[𝐺 / 𝑓]𝜑′)    &   (𝜓″[𝐺 / 𝑓]𝜓′)    &   (𝜒″[𝐺 / 𝑓]𝜒′)    &   𝐷 = (ω ∖ {∅})    &   𝐵 = {𝑓 ∣ ∃𝑛𝐷 (𝑓 Fn 𝑛𝜑𝜓)}    &   𝐶 = 𝑦 ∈ (𝑓𝑚) pred(𝑦, 𝐴, 𝑅)    &   𝐺 = (𝑓 ∪ {⟨𝑛, 𝐶⟩})    &   (𝜒″ ↔ (𝑝𝐷𝐺 Fn 𝑝𝜑″𝜓″))    &   ((𝜃𝜒𝜏𝜂) → 𝜒″)    &   ((𝜃𝜒𝜏𝜂) → (𝜒″𝑖 ∈ ω ∧ suc 𝑖𝑝))       ((𝜃𝜒𝜂 ∧ ∃𝑝𝜏) → (𝐺‘suc 𝑖) ⊆ trCl(𝑋, 𝐴, 𝑅))
 
Theorembnj1018 32953* Technical lemma for bnj69 32999. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). See bnj1018g 32952 for a less restrictive version requiring ax-13 2373. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
(𝜑 ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅))    &   (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))    &   (𝜒 ↔ (𝑛𝐷𝑓 Fn 𝑛𝜑𝜓))    &   (𝜃 ↔ (𝑅 FrSe 𝐴𝑋𝐴𝑦 ∈ trCl(𝑋, 𝐴, 𝑅) ∧ 𝑧 ∈ pred(𝑦, 𝐴, 𝑅)))    &   (𝜏 ↔ (𝑚 ∈ ω ∧ 𝑛 = suc 𝑚𝑝 = suc 𝑛))    &   (𝜑′[𝑝 / 𝑛]𝜑)    &   (𝜓′[𝑝 / 𝑛]𝜓)    &   (𝜒′[𝑝 / 𝑛]𝜒)    &   (𝜑″[𝐺 / 𝑓]𝜑′)    &   (𝜓″[𝐺 / 𝑓]𝜓′)    &   (𝜒″[𝐺 / 𝑓]𝜒′)    &   𝐷 = (ω ∖ {∅})    &   𝐵 = {𝑓 ∣ ∃𝑛𝐷 (𝑓 Fn 𝑛𝜑𝜓)}    &   𝐶 = 𝑦 ∈ (𝑓𝑚) pred(𝑦, 𝐴, 𝑅)    &   𝐺 = (𝑓 ∪ {⟨𝑛, 𝐶⟩})    &   (𝜒″ ↔ (𝑝𝐷𝐺 Fn 𝑝𝜑″𝜓″))    &   ((𝜃𝜒𝜏𝜂) → 𝜒″)    &   ((𝜃𝜒𝜏𝜂) → (𝜒″𝑖 ∈ ω ∧ suc 𝑖𝑝))       ((𝜃𝜒𝜂 ∧ ∃𝑝𝜏) → (𝐺‘suc 𝑖) ⊆ trCl(𝑋, 𝐴, 𝑅))
 
Theorembnj1020 32954* Technical lemma for bnj69 32999. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
(𝜑 ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅))    &   (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))    &   (𝜒 ↔ (𝑛𝐷𝑓 Fn 𝑛𝜑𝜓))    &   (𝜃 ↔ (𝑅 FrSe 𝐴𝑋𝐴𝑦 ∈ trCl(𝑋, 𝐴, 𝑅) ∧ 𝑧 ∈ pred(𝑦, 𝐴, 𝑅)))    &   (𝜏 ↔ (𝑚 ∈ ω ∧ 𝑛 = suc 𝑚𝑝 = suc 𝑛))    &   (𝜂 ↔ (𝑖𝑛𝑦 ∈ (𝑓𝑖)))    &   (𝜑′[𝑝 / 𝑛]𝜑)    &   (𝜓′[𝑝 / 𝑛]𝜓)    &   (𝜒′[𝑝 / 𝑛]𝜒)    &   (𝜑″[𝐺 / 𝑓]𝜑′)    &   (𝜓″[𝐺 / 𝑓]𝜓′)    &   (𝜒″[𝐺 / 𝑓]𝜒′)    &   𝐷 = (ω ∖ {∅})    &   𝐵 = {𝑓 ∣ ∃𝑛𝐷 (𝑓 Fn 𝑛𝜑𝜓)}    &   𝐶 = 𝑦 ∈ (𝑓𝑚) pred(𝑦, 𝐴, 𝑅)    &   𝐺 = (𝑓 ∪ {⟨𝑛, 𝐶⟩})    &   (𝜒″ ↔ (𝑝𝐷𝐺 Fn 𝑝𝜑″𝜓″))       ((𝜃𝜒𝜂 ∧ ∃𝑝𝜏) → pred(𝑦, 𝐴, 𝑅) ⊆ trCl(𝑋, 𝐴, 𝑅))
 
Theorembnj1021 32955* Technical lemma for bnj69 32999. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
(𝜑 ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅))    &   (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))    &   (𝜒 ↔ (𝑛𝐷𝑓 Fn 𝑛𝜑𝜓))    &   (𝜃 ↔ (𝑅 FrSe 𝐴𝑋𝐴𝑦 ∈ trCl(𝑋, 𝐴, 𝑅) ∧ 𝑧 ∈ pred(𝑦, 𝐴, 𝑅)))    &   (𝜏 ↔ (𝑚 ∈ ω ∧ 𝑛 = suc 𝑚𝑝 = suc 𝑛))    &   (𝜂 ↔ (𝑖𝑛𝑦 ∈ (𝑓𝑖)))    &   𝐷 = (ω ∖ {∅})    &   𝐵 = {𝑓 ∣ ∃𝑛𝐷 (𝑓 Fn 𝑛𝜑𝜓)}       𝑓𝑛𝑖𝑚(𝜃 → (𝜃𝜒𝜂 ∧ ∃𝑝𝜏))
 
Theorembnj907 32956* Technical lemma for bnj69 32999. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
(𝜑 ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅))    &   (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))    &   (𝜒 ↔ (𝑛𝐷𝑓 Fn 𝑛𝜑𝜓))    &   (𝜃 ↔ (𝑅 FrSe 𝐴𝑋𝐴𝑦 ∈ trCl(𝑋, 𝐴, 𝑅) ∧ 𝑧 ∈ pred(𝑦, 𝐴, 𝑅)))    &   (𝜏 ↔ (𝑚 ∈ ω ∧ 𝑛 = suc 𝑚𝑝 = suc 𝑛))    &   (𝜂 ↔ (𝑖𝑛𝑦 ∈ (𝑓𝑖)))    &   (𝜑′[𝑝 / 𝑛]𝜑)    &   (𝜓′[𝑝 / 𝑛]𝜓)    &   (𝜒′[𝑝 / 𝑛]𝜒)    &   (𝜑″[𝐺 / 𝑓]𝜑′)    &   (𝜓″[𝐺 / 𝑓]𝜓′)    &   (𝜒″[𝐺 / 𝑓]𝜒′)    &   𝐷 = (ω ∖ {∅})    &   𝐵 = {𝑓 ∣ ∃𝑛𝐷 (𝑓 Fn 𝑛𝜑𝜓)}    &   𝐶 = 𝑦 ∈ (𝑓𝑚) pred(𝑦, 𝐴, 𝑅)    &   𝐺 = (𝑓 ∪ {⟨𝑛, 𝐶⟩})       ((𝑅 FrSe 𝐴𝑋𝐴) → TrFo( trCl(𝑋, 𝐴, 𝑅), 𝐴, 𝑅))
 
Theorembnj1029 32957 Property of trCl. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
((𝑅 FrSe 𝐴𝑋𝐴) → TrFo( trCl(𝑋, 𝐴, 𝑅), 𝐴, 𝑅))
 
Theorembnj1033 32958* Technical lemma for bnj69 32999. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
(𝜑 ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅))    &   (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))    &   (𝜒 ↔ (𝑛𝐷𝑓 Fn 𝑛𝜑𝜓))    &   (𝜃 ↔ (𝑅 FrSe 𝐴𝑋𝐴))    &   (𝜏 ↔ (𝐵 ∈ V ∧ TrFo(𝐵, 𝐴, 𝑅) ∧ pred(𝑋, 𝐴, 𝑅) ⊆ 𝐵))    &   (𝜂𝑧 ∈ trCl(𝑋, 𝐴, 𝑅))    &   (𝜁 ↔ (𝑖𝑛𝑧 ∈ (𝑓𝑖)))    &   𝐷 = (ω ∖ {∅})    &   𝐾 = {𝑓 ∣ ∃𝑛𝐷 (𝑓 Fn 𝑛𝜑𝜓)}    &   (∃𝑓𝑛𝑖(𝜃𝜏𝜒𝜁) → 𝑧𝐵)       ((𝜃𝜏) → trCl(𝑋, 𝐴, 𝑅) ⊆ 𝐵)
 
Theorembnj1034 32959* Technical lemma for bnj69 32999. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
(𝜑 ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅))    &   (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))    &   (𝜒 ↔ (𝑛𝐷𝑓 Fn 𝑛𝜑𝜓))    &   (𝜃 ↔ (𝑅 FrSe 𝐴𝑋𝐴))    &   (𝜏 ↔ (𝐵 ∈ V ∧ TrFo(𝐵, 𝐴, 𝑅) ∧ pred(𝑋, 𝐴, 𝑅) ⊆ 𝐵))    &   (𝜁 ↔ (𝑖𝑛𝑧 ∈ (𝑓𝑖)))    &   𝐷 = (ω ∖ {∅})    &   𝐾 = {𝑓 ∣ ∃𝑛𝐷 (𝑓 Fn 𝑛𝜑𝜓)}    &   (∃𝑓𝑛𝑖(𝜃𝜏𝜒𝜁) → 𝑧𝐵)       ((𝜃𝜏) → trCl(𝑋, 𝐴, 𝑅) ⊆ 𝐵)
 
Theorembnj1039 32960 Technical lemma for bnj69 32999. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
(𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))    &   (𝜓′[𝑗 / 𝑖]𝜓)       (𝜓′ ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
 
Theorembnj1040 32961* Technical lemma for bnj69 32999. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
(𝜑′[𝑗 / 𝑖]𝜑)    &   (𝜓′[𝑗 / 𝑖]𝜓)    &   (𝜒 ↔ (𝑛𝐷𝑓 Fn 𝑛𝜑𝜓))    &   (𝜒′[𝑗 / 𝑖]𝜒)       (𝜒′ ↔ (𝑛𝐷𝑓 Fn 𝑛𝜑′𝜓′))
 
Theorembnj1047 32962 Technical lemma for bnj69 32999. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
(𝜌 ↔ ∀𝑗𝑛 (𝑗 E 𝑖[𝑗 / 𝑖]𝜂))    &   (𝜂′[𝑗 / 𝑖]𝜂)       (𝜌 ↔ ∀𝑗𝑛 (𝑗 E 𝑖𝜂′))
 
Theorembnj1049 32963 Technical lemma for bnj69 32999. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
(𝜁 ↔ (𝑖𝑛𝑧 ∈ (𝑓𝑖)))    &   (𝜂 ↔ ((𝜃𝜏𝜒𝜁) → 𝑧𝐵))       (∀𝑖𝑛 𝜂 ↔ ∀𝑖𝜂)
 
Theorembnj1052 32964* Technical lemma for bnj69 32999. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
(𝜑 ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅))    &   (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))    &   (𝜒 ↔ (𝑛𝐷𝑓 Fn 𝑛𝜑𝜓))    &   (𝜃 ↔ (𝑅 FrSe 𝐴𝑋𝐴))    &   (𝜏 ↔ (𝐵 ∈ V ∧ TrFo(𝐵, 𝐴, 𝑅) ∧ pred(𝑋, 𝐴, 𝑅) ⊆ 𝐵))    &   (𝜁 ↔ (𝑖𝑛𝑧 ∈ (𝑓𝑖)))    &   𝐷 = (ω ∖ {∅})    &   𝐾 = {𝑓 ∣ ∃𝑛𝐷 (𝑓 Fn 𝑛𝜑𝜓)}    &   (𝜂 ↔ ((𝜃𝜏𝜒𝜁) → 𝑧𝐵))    &   (𝜌 ↔ ∀𝑗𝑛 (𝑗 E 𝑖[𝑗 / 𝑖]𝜂))    &   ((𝜃𝜏𝜒𝜁) → ( E Fr 𝑛 ∧ ∀𝑖𝑛 (𝜌𝜂)))       ((𝜃𝜏) → trCl(𝑋, 𝐴, 𝑅) ⊆ 𝐵)
 
Theorembnj1053 32965* Technical lemma for bnj69 32999. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
(𝜑 ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅))    &   (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))    &   (𝜒 ↔ (𝑛𝐷𝑓 Fn 𝑛𝜑𝜓))    &   (𝜃 ↔ (𝑅 FrSe 𝐴𝑋𝐴))    &   (𝜏 ↔ (𝐵 ∈ V ∧ TrFo(𝐵, 𝐴, 𝑅) ∧ pred(𝑋, 𝐴, 𝑅) ⊆ 𝐵))    &   (𝜁 ↔ (𝑖𝑛𝑧 ∈ (𝑓𝑖)))    &   𝐷 = (ω ∖ {∅})    &   𝐾 = {𝑓 ∣ ∃𝑛𝐷 (𝑓 Fn 𝑛𝜑𝜓)}    &   (𝜂 ↔ ((𝜃𝜏𝜒𝜁) → 𝑧𝐵))    &   (𝜌 ↔ ∀𝑗𝑛 (𝑗 E 𝑖[𝑗 / 𝑖]𝜂))    &   ((𝜃𝜏𝜒𝜁) → ∀𝑖𝑛 (𝜌𝜂))       ((𝜃𝜏) → trCl(𝑋, 𝐴, 𝑅) ⊆ 𝐵)
 
Theorembnj1071 32966 Technical lemma for bnj69 32999. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
𝐷 = (ω ∖ {∅})       (𝑛𝐷 → E Fr 𝑛)
 
Theorembnj1083 32967 Technical lemma for bnj69 32999. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
(𝜒 ↔ (𝑛𝐷𝑓 Fn 𝑛𝜑𝜓))    &   𝐾 = {𝑓 ∣ ∃𝑛𝐷 (𝑓 Fn 𝑛𝜑𝜓)}       (𝑓𝐾 ↔ ∃𝑛𝜒)
 
Theorembnj1090 32968* Technical lemma for bnj69 32999. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
(𝜂 ↔ ((𝑓𝐾𝑖 ∈ dom 𝑓) → (𝑓𝑖) ⊆ 𝐵))    &   (𝜌 ↔ ∀𝑗𝑛 (𝑗 E 𝑖[𝑗 / 𝑖]𝜂))    &   (𝜂′[𝑗 / 𝑖]𝜂)    &   (𝜎 ↔ ((𝑗𝑛𝑗 E 𝑖) → 𝜂′))    &   (𝜑0 ↔ (𝑖𝑛𝜎𝑓𝐾𝑖 ∈ dom 𝑓))    &   ((𝜃𝜏𝜒𝜁) → ∀𝑖𝑗(𝜑0 → (𝑓𝑖) ⊆ 𝐵))       ((𝜃𝜏𝜒𝜁) → ∀𝑖𝑛 (𝜌𝜂))
 
Theorembnj1093 32969* Technical lemma for bnj69 32999. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
𝑗(((𝜃𝜏𝜒) ∧ 𝜑0) → (𝑓𝑖) ⊆ 𝐵)    &   (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))    &   (𝜒 ↔ (𝑛𝐷𝑓 Fn 𝑛𝜑𝜓))       ((𝜃𝜏𝜒𝜁) → ∀𝑖𝑗(𝜑0 → (𝑓𝑖) ⊆ 𝐵))
 
Theorembnj1097 32970 Technical lemma for bnj69 32999. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
(𝜑 ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅))    &   (𝜒 ↔ (𝑛𝐷𝑓 Fn 𝑛𝜑𝜓))    &   (𝜏 ↔ (𝐵 ∈ V ∧ TrFo(𝐵, 𝐴, 𝑅) ∧ pred(𝑋, 𝐴, 𝑅) ⊆ 𝐵))       ((𝑖 = ∅ ∧ ((𝜃𝜏𝜒) ∧ 𝜑0)) → (𝑓𝑖) ⊆ 𝐵)
 
Theorembnj1110 32971* Technical lemma for bnj69 32999. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
(𝜒 ↔ (𝑛𝐷𝑓 Fn 𝑛𝜑𝜓))    &   𝐷 = (ω ∖ {∅})    &   (𝜎 ↔ ((𝑗𝑛𝑗 E 𝑖) → 𝜂′))    &   (𝜑0 ↔ (𝑖𝑛𝜎𝑓𝐾𝑖 ∈ dom 𝑓))    &   (𝜂′ ↔ ((𝑓𝐾𝑗 ∈ dom 𝑓) → (𝑓𝑗) ⊆ 𝐵))       𝑗((𝑖 ≠ ∅ ∧ ((𝜃𝜏𝜒) ∧ 𝜑0)) → (𝑗𝑛𝑖 = suc 𝑗 ∧ (𝑓𝑗) ⊆ 𝐵))
 
Theorembnj1112 32972* Technical lemma for bnj69 32999. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
(𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))       (𝜓 ↔ ∀𝑗((𝑗 ∈ ω ∧ suc 𝑗𝑛) → (𝑓‘suc 𝑗) = 𝑦 ∈ (𝑓𝑗) pred(𝑦, 𝐴, 𝑅)))
 
Theorembnj1118 32973* Technical lemma for bnj69 32999. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
(𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))    &   (𝜒 ↔ (𝑛𝐷𝑓 Fn 𝑛𝜑𝜓))    &   (𝜏 ↔ (𝐵 ∈ V ∧ TrFo(𝐵, 𝐴, 𝑅) ∧ pred(𝑋, 𝐴, 𝑅) ⊆ 𝐵))    &   𝐷 = (ω ∖ {∅})    &   (𝜎 ↔ ((𝑗𝑛𝑗 E 𝑖) → 𝜂′))    &   (𝜑0 ↔ (𝑖𝑛𝜎𝑓𝐾𝑖 ∈ dom 𝑓))    &   (𝜂′ ↔ ((𝑓𝐾𝑗 ∈ dom 𝑓) → (𝑓𝑗) ⊆ 𝐵))       𝑗((𝑖 ≠ ∅ ∧ ((𝜃𝜏𝜒) ∧ 𝜑0)) → (𝑓𝑖) ⊆ 𝐵)
 
Theorembnj1121 32974 Technical lemma for bnj69 32999. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
(𝜃 ↔ (𝑅 FrSe 𝐴𝑋𝐴))    &   (𝜏 ↔ (𝐵 ∈ V ∧ TrFo(𝐵, 𝐴, 𝑅) ∧ pred(𝑋, 𝐴, 𝑅) ⊆ 𝐵))    &   (𝜒 ↔ (𝑛𝐷𝑓 Fn 𝑛𝜑𝜓))    &   (𝜁 ↔ (𝑖𝑛𝑧 ∈ (𝑓𝑖)))    &   (𝜂 ↔ ((𝑓𝐾𝑖 ∈ dom 𝑓) → (𝑓𝑖) ⊆ 𝐵))    &   ((𝜃𝜏𝜒𝜁) → ∀𝑖𝑛 𝜂)    &   𝐾 = {𝑓 ∣ ∃𝑛𝐷 (𝑓 Fn 𝑛𝜑𝜓)}       ((𝜃𝜏𝜒𝜁) → 𝑧𝐵)
 
Theorembnj1123 32975* Technical lemma for bnj69 32999. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
(𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))    &   𝐾 = {𝑓 ∣ ∃𝑛𝐷 (𝑓 Fn 𝑛𝜑𝜓)}    &   (𝜂 ↔ ((𝑓𝐾𝑖 ∈ dom 𝑓) → (𝑓𝑖) ⊆ 𝐵))    &   (𝜂′[𝑗 / 𝑖]𝜂)       (𝜂′ ↔ ((𝑓𝐾𝑗 ∈ dom 𝑓) → (𝑓𝑗) ⊆ 𝐵))
 
Theorembnj1030 32976* Technical lemma for bnj69 32999. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
(𝜑 ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅))    &   (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))    &   (𝜒 ↔ (𝑛𝐷𝑓 Fn 𝑛𝜑𝜓))    &   (𝜃 ↔ (𝑅 FrSe 𝐴𝑋𝐴))    &   (𝜏 ↔ (𝐵 ∈ V ∧ TrFo(𝐵, 𝐴, 𝑅) ∧ pred(𝑋, 𝐴, 𝑅) ⊆ 𝐵))    &   (𝜁 ↔ (𝑖𝑛𝑧 ∈ (𝑓𝑖)))    &   𝐷 = (ω ∖ {∅})    &   𝐾 = {𝑓 ∣ ∃𝑛𝐷 (𝑓 Fn 𝑛𝜑𝜓)}    &   (𝜂 ↔ ((𝑓𝐾𝑖 ∈ dom 𝑓) → (𝑓𝑖) ⊆ 𝐵))    &   (𝜌 ↔ ∀𝑗𝑛 (𝑗 E 𝑖[𝑗 / 𝑖]𝜂))    &   (𝜑′[𝑗 / 𝑖]𝜑)    &   (𝜓′[𝑗 / 𝑖]𝜓)    &   (𝜒′[𝑗 / 𝑖]𝜒)    &   (𝜃′[𝑗 / 𝑖]𝜃)    &   (𝜏′[𝑗 / 𝑖]𝜏)    &   (𝜁′[𝑗 / 𝑖]𝜁)    &   (𝜂′[𝑗 / 𝑖]𝜂)    &   (𝜎 ↔ ((𝑗𝑛𝑗 E 𝑖) → 𝜂′))    &   (𝜑0 ↔ (𝑖𝑛𝜎𝑓𝐾𝑖 ∈ dom 𝑓))       ((𝜃𝜏) → trCl(𝑋, 𝐴, 𝑅) ⊆ 𝐵)
 
Theorembnj1124 32977 Property of trCl. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
(𝜃 ↔ (𝑅 FrSe 𝐴𝑋𝐴))    &   (𝜏 ↔ (𝐵 ∈ V ∧ TrFo(𝐵, 𝐴, 𝑅) ∧ pred(𝑋, 𝐴, 𝑅) ⊆ 𝐵))       ((𝜃𝜏) → trCl(𝑋, 𝐴, 𝑅) ⊆ 𝐵)
 
Theorembnj1133 32978* Technical lemma for bnj69 32999. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
𝐷 = (ω ∖ {∅})    &   (𝜒 ↔ (𝑛𝐷𝑓 Fn 𝑛𝜑𝜓))    &   (𝜏 ↔ ∀𝑗𝑛 (𝑗 E 𝑖[𝑗 / 𝑖]𝜃))    &   ((𝑖𝑛𝜏) → 𝜃)       (𝜒 → ∀𝑖𝑛 𝜃)
 
Theorembnj1128 32979* Technical lemma for bnj69 32999. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
(𝜑 ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅))    &   (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))    &   𝐷 = (ω ∖ {∅})    &   𝐵 = {𝑓 ∣ ∃𝑛𝐷 (𝑓 Fn 𝑛𝜑𝜓)}    &   (𝜒 ↔ (𝑛𝐷𝑓 Fn 𝑛𝜑𝜓))    &   (𝜃 ↔ (𝜒 → (𝑓𝑖) ⊆ 𝐴))    &   (𝜏 ↔ ∀𝑗𝑛 (𝑗 E 𝑖[𝑗 / 𝑖]𝜃))    &   (𝜑′[𝑗 / 𝑖]𝜑)    &   (𝜓′[𝑗 / 𝑖]𝜓)    &   (𝜒′[𝑗 / 𝑖]𝜒)    &   (𝜃′[𝑗 / 𝑖]𝜃)       (𝑌 ∈ trCl(𝑋, 𝐴, 𝑅) → 𝑌𝐴)
 
Theorembnj1127 32980 Property of trCl. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
(𝑌 ∈ trCl(𝑋, 𝐴, 𝑅) → 𝑌𝐴)
 
Theorembnj1125 32981 Property of trCl. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
((𝑅 FrSe 𝐴𝑋𝐴𝑌 ∈ trCl(𝑋, 𝐴, 𝑅)) → trCl(𝑌, 𝐴, 𝑅) ⊆ trCl(𝑋, 𝐴, 𝑅))
 
Theorembnj1145 32982* Technical lemma for bnj69 32999. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
(𝜑 ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅))    &   (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))    &   𝐷 = (ω ∖ {∅})    &   𝐵 = {𝑓 ∣ ∃𝑛𝐷 (𝑓 Fn 𝑛𝜑𝜓)}    &   (𝜒 ↔ (𝑛𝐷𝑓 Fn 𝑛𝜑𝜓))    &   (𝜃 ↔ ((𝑖 ≠ ∅ ∧ 𝑖𝑛𝜒) ∧ (𝑗𝑛𝑖 = suc 𝑗)))        trCl(𝑋, 𝐴, 𝑅) ⊆ 𝐴
 
Theorembnj1147 32983 Property of trCl. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
trCl(𝑋, 𝐴, 𝑅) ⊆ 𝐴
 
Theorembnj1137 32984* Property of trCl. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (Proof shortened by Mario Carneiro, 22-Dec-2016.) (New usage is discouraged.)
𝐵 = ( pred(𝑋, 𝐴, 𝑅) ∪ 𝑦 ∈ trCl (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅))       ((𝑅 FrSe 𝐴𝑋𝐴) → TrFo(𝐵, 𝐴, 𝑅))
 
Theorembnj1148 32985 Property of pred. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
((𝑅 FrSe 𝐴𝑋𝐴) → pred(𝑋, 𝐴, 𝑅) ∈ V)
 
Theorembnj1136 32986* Technical lemma for bnj69 32999. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
𝐵 = ( pred(𝑋, 𝐴, 𝑅) ∪ 𝑦 ∈ trCl (𝑋, 𝐴, 𝑅) trCl(𝑦, 𝐴, 𝑅))    &   (𝜃 ↔ (𝑅 FrSe 𝐴𝑋𝐴))    &   (𝜏 ↔ (𝐵 ∈ V ∧ TrFo(𝐵, 𝐴, 𝑅) ∧ pred(𝑋, 𝐴, 𝑅) ⊆ 𝐵))       ((𝑅 FrSe 𝐴𝑋𝐴) → trCl(𝑋, 𝐴, 𝑅) = 𝐵)
 
Theorembnj1152 32987 Technical lemma for bnj69 32999. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
(𝑌 ∈ pred(𝑋, 𝐴, 𝑅) ↔ (𝑌𝐴𝑌𝑅𝑋))
 
Theorembnj1154 32988* Property of Fr. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
((𝑅 Fr 𝐴𝐵𝐴𝐵 ≠ ∅ ∧ 𝐵 ∈ V) → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥)
 
Theorembnj1171 32989 Technical lemma for bnj69 32999. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
((𝜑𝜓) → 𝐵𝐴)    &   𝑧𝑤((𝜑𝜓) → (𝑧𝐵 ∧ (𝑤𝐴 → (𝑤𝑅𝑧 → ¬ 𝑤𝐵))))       𝑧𝑤((𝜑𝜓) → (𝑧𝐵 ∧ (𝑤𝐵 → ¬ 𝑤𝑅𝑧)))
 
Theorembnj1172 32990 Technical lemma for bnj69 32999. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
𝐶 = ( trCl(𝑋, 𝐴, 𝑅) ∩ 𝐵)    &   𝑧𝑤((𝜑𝜓) → ((𝜑𝜓𝑧𝐶) ∧ (𝜃 → (𝑤𝑅𝑧 → ¬ 𝑤𝐵))))    &   ((𝜑𝜓𝑧𝐶) → (𝜃𝑤𝐴))       𝑧𝑤((𝜑𝜓) → (𝑧𝐵 ∧ (𝑤𝐴 → (𝑤𝑅𝑧 → ¬ 𝑤𝐵))))
 
Theorembnj1173 32991 Technical lemma for bnj69 32999. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
𝐶 = ( trCl(𝑋, 𝐴, 𝑅) ∩ 𝐵)    &   (𝜃 ↔ ((𝑅 FrSe 𝐴𝑋𝐴𝑧 ∈ trCl(𝑋, 𝐴, 𝑅)) ∧ (𝑅 FrSe 𝐴𝑧𝐴) ∧ 𝑤𝐴))    &   ((𝜑𝜓) → 𝑅 FrSe 𝐴)    &   ((𝜑𝜓) → 𝑋𝐴)       ((𝜑𝜓𝑧𝐶) → (𝜃𝑤𝐴))
 
Theorembnj1174 32992 Technical lemma for bnj69 32999. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
𝐶 = ( trCl(𝑋, 𝐴, 𝑅) ∩ 𝐵)    &   𝑧𝑤((𝜑𝜓) → (𝑧𝐶 ∧ (𝜃 → (𝑤𝑅𝑧 → ¬ 𝑤𝐶))))    &   (𝜃 → (𝑤𝑅𝑧𝑤 ∈ trCl(𝑋, 𝐴, 𝑅)))       𝑧𝑤((𝜑𝜓) → ((𝜑𝜓𝑧𝐶) ∧ (𝜃 → (𝑤𝑅𝑧 → ¬ 𝑤𝐵))))
 
Theorembnj1175 32993 Technical lemma for bnj69 32999. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
𝐶 = ( trCl(𝑋, 𝐴, 𝑅) ∩ 𝐵)    &   (𝜒 ↔ ((𝑅 FrSe 𝐴𝑋𝐴𝑧 ∈ trCl(𝑋, 𝐴, 𝑅)) ∧ (𝑅 FrSe 𝐴𝑧𝐴) ∧ (𝑤𝐴𝑤𝑅𝑧)))    &   (𝜃 ↔ ((𝑅 FrSe 𝐴𝑋𝐴𝑧 ∈ trCl(𝑋, 𝐴, 𝑅)) ∧ (𝑅 FrSe 𝐴𝑧𝐴) ∧ 𝑤𝐴))       (𝜃 → (𝑤𝑅𝑧𝑤 ∈ trCl(𝑋, 𝐴, 𝑅)))
 
Theorembnj1176 32994* Technical lemma for bnj69 32999. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
((𝜑𝜓) → (𝑅 Fr 𝐴𝐶𝐴𝐶 ≠ ∅ ∧ 𝐶 ∈ V))    &   ((𝑅 Fr 𝐴𝐶𝐴𝐶 ≠ ∅ ∧ 𝐶 ∈ V) → ∃𝑧𝐶𝑤𝐶 ¬ 𝑤𝑅𝑧)       𝑧𝑤((𝜑𝜓) → (𝑧𝐶 ∧ (𝜃 → (𝑤𝑅𝑧 → ¬ 𝑤𝐶))))
 
Theorembnj1177 32995 Technical lemma for bnj69 32999. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
(𝜓 ↔ (𝑋𝐵𝑦𝐵𝑦𝑅𝑋))    &   𝐶 = ( trCl(𝑋, 𝐴, 𝑅) ∩ 𝐵)    &   ((𝜑𝜓) → 𝑅 FrSe 𝐴)    &   ((𝜑𝜓) → 𝐵𝐴)    &   ((𝜑𝜓) → 𝑋𝐴)       ((𝜑𝜓) → (𝑅 Fr 𝐴𝐶𝐴𝐶 ≠ ∅ ∧ 𝐶 ∈ V))
 
Theorembnj1186 32996* Technical lemma for bnj69 32999. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
𝑧𝑤((𝜑𝜓) → (𝑧𝐵 ∧ (𝑤𝐵 → ¬ 𝑤𝑅𝑧)))       ((𝜑𝜓) → ∃𝑧𝐵𝑤𝐵 ¬ 𝑤𝑅𝑧)
 
Theorembnj1190 32997* Technical lemma for bnj69 32999. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
(𝜑 ↔ (𝑅 FrSe 𝐴𝐵𝐴𝐵 ≠ ∅))    &   (𝜓 ↔ (𝑥𝐵𝑦𝐵𝑦𝑅𝑥))       ((𝜑𝜓) → ∃𝑤𝐵𝑧𝐵 ¬ 𝑧𝑅𝑤)
 
Theorembnj1189 32998* Technical lemma for bnj69 32999. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
(𝜑 ↔ (𝑅 FrSe 𝐴𝐵𝐴𝐵 ≠ ∅))    &   (𝜓 ↔ (𝑥𝐵𝑦𝐵𝑦𝑅𝑥))    &   (𝜒 ↔ ∀𝑦𝐵 ¬ 𝑦𝑅𝑥)       (𝜑 → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥)
 
20.4.3  The existence of a minimal element in certain classes
 
Theorembnj69 32999* Existence of a minimal element in certain classes: if 𝑅 is well-founded and set-like on 𝐴, then every nonempty subclass of 𝐴 has a minimal element. The proof has been taken from Chapter 4 of Don Monk's notes on Set Theory. See http://euclid.colorado.edu/~monkd/setth.pdf. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
((𝑅 FrSe 𝐴𝐵𝐴𝐵 ≠ ∅) → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥)
 
Theorembnj1228 33000* Existence of a minimal element in certain classes: if 𝑅 is well-founded and set-like on 𝐴, then every nonempty subclass of 𝐴 has a minimal element. The proof has been taken from Chapter 4 of Don Monk's notes on Set Theory. See http://euclid.colorado.edu/~monkd/setth.pdf. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
(𝑤𝐵 → ∀𝑥 𝑤𝐵)       ((𝑅 FrSe 𝐴𝐵𝐴𝐵 ≠ ∅) → ∃𝑥𝐵𝑦𝐵 ¬ 𝑦𝑅𝑥)
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-45000 451 45001-45100 452 45101-45200 453 45201-45300 454 45301-45400 455 45401-45500 456 45501-45600 457 45601-45700 458 45701-45800 459 45801-45900 460 45901-46000 461 46001-46100 462 46101-46200 463 46201-46300 464 46301-46400 465 46401-46500 466 46501-46532
  Copyright terms: Public domain < Previous  Next >