Detailed syntax breakdown of Definition df-gzreg
| Step | Hyp | Ref
| Expression |
| 1 | | cgzg 35455 |
. 2
class
AxReg |
| 2 | | c1o 8499 |
. . . . 5
class
1o |
| 3 | | c0 4333 |
. . . . 5
class
∅ |
| 4 | | cgoe 35338 |
. . . . 5
class
∈𝑔 |
| 5 | 2, 3, 4 | co 7431 |
. . . 4
class
(1o∈𝑔∅) |
| 6 | 5, 2 | cgox 35443 |
. . 3
class
∃𝑔1o(1o∈𝑔∅) |
| 7 | | c2o 8500 |
. . . . . . . 8
class
2o |
| 8 | 7, 2, 4 | co 7431 |
. . . . . . 7
class
(2o∈𝑔1o) |
| 9 | 7, 3, 4 | co 7431 |
. . . . . . . 8
class
(2o∈𝑔∅) |
| 10 | 9 | cgon 35437 |
. . . . . . 7
class
¬𝑔(2o∈𝑔∅) |
| 11 | | cgoi 35439 |
. . . . . . 7
class
→𝑔 |
| 12 | 8, 10, 11 | co 7431 |
. . . . . 6
class
((2o∈𝑔1o)
→𝑔
¬𝑔(2o∈𝑔∅)) |
| 13 | 12, 7 | cgol 35340 |
. . . . 5
class
∀𝑔2o((2o∈𝑔1o)
→𝑔
¬𝑔(2o∈𝑔∅)) |
| 14 | | cgoa 35438 |
. . . . 5
class
∧𝑔 |
| 15 | 5, 13, 14 | co 7431 |
. . . 4
class
((1o∈𝑔∅)∧𝑔∀𝑔2o((2o∈𝑔1o)
→𝑔 ¬𝑔(2o∈𝑔∅))) |
| 16 | 15, 2 | cgox 35443 |
. . 3
class
∃𝑔1o((1o∈𝑔∅)∧𝑔∀𝑔2o((2o∈𝑔1o)
→𝑔 ¬𝑔(2o∈𝑔∅))) |
| 17 | 6, 16, 11 | co 7431 |
. 2
class
(∃𝑔1o(1o∈𝑔∅)
→𝑔
∃𝑔1o((1o∈𝑔∅)∧𝑔∀𝑔2o((2o∈𝑔1o)
→𝑔 ¬𝑔(2o∈𝑔∅)))) |
| 18 | 1, 17 | wceq 1540 |
1
wff AxReg =
(∃𝑔1o(1o∈𝑔∅)
→𝑔
∃𝑔1o((1o∈𝑔∅)∧𝑔∀𝑔2o((2o∈𝑔1o)
→𝑔 ¬𝑔(2o∈𝑔∅)))) |