Detailed syntax breakdown of Definition df-gzreg
Step | Hyp | Ref
| Expression |
1 | | cgzg 33312 |
. 2
class
AxReg |
2 | | c1o 8260 |
. . . . 5
class
1o |
3 | | c0 4253 |
. . . . 5
class
∅ |
4 | | cgoe 33195 |
. . . . 5
class
∈𝑔 |
5 | 2, 3, 4 | co 7255 |
. . . 4
class
(1o∈𝑔∅) |
6 | 5, 2 | cgox 33300 |
. . 3
class
∃𝑔1o(1o∈𝑔∅) |
7 | | c2o 8261 |
. . . . . . . 8
class
2o |
8 | 7, 2, 4 | co 7255 |
. . . . . . 7
class
(2o∈𝑔1o) |
9 | 7, 3, 4 | co 7255 |
. . . . . . . 8
class
(2o∈𝑔∅) |
10 | 9 | cgon 33294 |
. . . . . . 7
class
¬𝑔(2o∈𝑔∅) |
11 | | cgoi 33296 |
. . . . . . 7
class
→𝑔 |
12 | 8, 10, 11 | co 7255 |
. . . . . 6
class
((2o∈𝑔1o)
→𝑔
¬𝑔(2o∈𝑔∅)) |
13 | 12, 7 | cgol 33197 |
. . . . 5
class
∀𝑔2o((2o∈𝑔1o)
→𝑔
¬𝑔(2o∈𝑔∅)) |
14 | | cgoa 33295 |
. . . . 5
class
∧𝑔 |
15 | 5, 13, 14 | co 7255 |
. . . 4
class
((1o∈𝑔∅)∧𝑔∀𝑔2o((2o∈𝑔1o)
→𝑔 ¬𝑔(2o∈𝑔∅))) |
16 | 15, 2 | cgox 33300 |
. . 3
class
∃𝑔1o((1o∈𝑔∅)∧𝑔∀𝑔2o((2o∈𝑔1o)
→𝑔 ¬𝑔(2o∈𝑔∅))) |
17 | 6, 16, 11 | co 7255 |
. 2
class
(∃𝑔1o(1o∈𝑔∅)
→𝑔
∃𝑔1o((1o∈𝑔∅)∧𝑔∀𝑔2o((2o∈𝑔1o)
→𝑔 ¬𝑔(2o∈𝑔∅)))) |
18 | 1, 17 | wceq 1539 |
1
wff AxReg =
(∃𝑔1o(1o∈𝑔∅)
→𝑔
∃𝑔1o((1o∈𝑔∅)∧𝑔∀𝑔2o((2o∈𝑔1o)
→𝑔 ¬𝑔(2o∈𝑔∅)))) |