![]() |
Metamath
Proof Explorer Theorem List (p. 346 of 437) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-28351) |
![]() (28352-29876) |
![]() (29877-43667) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | pridlc3 34501 | Property of a prime ideal in a commutative ring. (Contributed by Jeff Madsen, 17-Jun-2011.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝐻 = (2nd ‘𝑅) & ⊢ 𝑋 = ran 𝐺 ⇒ ⊢ (((𝑅 ∈ CRingOps ∧ 𝑃 ∈ (PrIdl‘𝑅)) ∧ (𝐴 ∈ (𝑋 ∖ 𝑃) ∧ 𝐵 ∈ (𝑋 ∖ 𝑃))) → (𝐴𝐻𝐵) ∈ (𝑋 ∖ 𝑃)) | ||
Theorem | isdmn3 34502* | The predicate "is a domain", alternate expression. (Contributed by Jeff Madsen, 19-Jun-2010.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝐻 = (2nd ‘𝑅) & ⊢ 𝑋 = ran 𝐺 & ⊢ 𝑍 = (GId‘𝐺) & ⊢ 𝑈 = (GId‘𝐻) ⇒ ⊢ (𝑅 ∈ Dmn ↔ (𝑅 ∈ CRingOps ∧ 𝑈 ≠ 𝑍 ∧ ∀𝑎 ∈ 𝑋 ∀𝑏 ∈ 𝑋 ((𝑎𝐻𝑏) = 𝑍 → (𝑎 = 𝑍 ∨ 𝑏 = 𝑍)))) | ||
Theorem | dmnnzd 34503 | A domain has no zero-divisors (besides zero). (Contributed by Jeff Madsen, 19-Jun-2010.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝐻 = (2nd ‘𝑅) & ⊢ 𝑋 = ran 𝐺 & ⊢ 𝑍 = (GId‘𝐺) ⇒ ⊢ ((𝑅 ∈ Dmn ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ (𝐴𝐻𝐵) = 𝑍)) → (𝐴 = 𝑍 ∨ 𝐵 = 𝑍)) | ||
Theorem | dmncan1 34504 | Cancellation law for domains. (Contributed by Jeff Madsen, 6-Jan-2011.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝐻 = (2nd ‘𝑅) & ⊢ 𝑋 = ran 𝐺 & ⊢ 𝑍 = (GId‘𝐺) ⇒ ⊢ (((𝑅 ∈ Dmn ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) ∧ 𝐴 ≠ 𝑍) → ((𝐴𝐻𝐵) = (𝐴𝐻𝐶) → 𝐵 = 𝐶)) | ||
Theorem | dmncan2 34505 | Cancellation law for domains. (Contributed by Jeff Madsen, 6-Jan-2011.) |
⊢ 𝐺 = (1st ‘𝑅) & ⊢ 𝐻 = (2nd ‘𝑅) & ⊢ 𝑋 = ran 𝐺 & ⊢ 𝑍 = (GId‘𝐺) ⇒ ⊢ (((𝑅 ∈ Dmn ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) ∧ 𝐶 ≠ 𝑍) → ((𝐴𝐻𝐶) = (𝐵𝐻𝐶) → 𝐴 = 𝐵)) | ||
The results in this section are mostly meant for being used by automatic proof building programs. As a result, they might appear less useful or meaningful than others to human beings. | ||
Theorem | efald2 34506 | A proof by contradiction. (Contributed by Giovanni Mascellani, 15-Sep-2017.) |
⊢ (¬ 𝜑 → ⊥) ⇒ ⊢ 𝜑 | ||
Theorem | notbinot1 34507 | Simplification rule of negation across a biimplication. (Contributed by Giovanni Mascellani, 15-Sep-2017.) |
⊢ (¬ (¬ 𝜑 ↔ 𝜓) ↔ (𝜑 ↔ 𝜓)) | ||
Theorem | bicontr 34508 | Biimplication of its own negation is a contradiction. (Contributed by Giovanni Mascellani, 15-Sep-2017.) |
⊢ ((¬ 𝜑 ↔ 𝜑) ↔ ⊥) | ||
Theorem | impor 34509 | An equivalent formula for implying a disjunction. (Contributed by Giovanni Mascellani, 15-Sep-2017.) |
⊢ ((𝜑 → (𝜓 ∨ 𝜒)) ↔ ((¬ 𝜑 ∨ 𝜓) ∨ 𝜒)) | ||
Theorem | orfa 34510 | The falsum ⊥ can be removed from a disjunction. (Contributed by Giovanni Mascellani, 15-Sep-2017.) |
⊢ ((𝜑 ∨ ⊥) ↔ 𝜑) | ||
Theorem | notbinot2 34511 | Commutation rule between negation and biimplication. (Contributed by Giovanni Mascellani, 15-Sep-2017.) |
⊢ (¬ (𝜑 ↔ 𝜓) ↔ (¬ 𝜑 ↔ 𝜓)) | ||
Theorem | biimpor 34512 | A rewriting rule for biimplication. (Contributed by Giovanni Mascellani, 15-Sep-2017.) |
⊢ (((𝜑 ↔ 𝜓) → 𝜒) ↔ ((¬ 𝜑 ↔ 𝜓) ∨ 𝜒)) | ||
Theorem | unitresl 34513 | A lemma for Conjunctive Normal Form unit propagation, in deduction form. (Contributed by Giovanni Mascellani, 15-Sep-2017.) |
⊢ (𝜑 → (𝜓 ∨ 𝜒)) & ⊢ (𝜑 → ¬ 𝜒) ⇒ ⊢ (𝜑 → 𝜓) | ||
Theorem | unitresr 34514 | A lemma for Conjunctive Normal Form unit propagation, in deduction form. (Contributed by Giovanni Mascellani, 15-Sep-2017.) |
⊢ (𝜑 → (𝜓 ∨ 𝜒)) & ⊢ (𝜑 → ¬ 𝜓) ⇒ ⊢ (𝜑 → 𝜒) | ||
Theorem | orfa1 34515 | Add a contradicting disjunct to an antecedent. (Contributed by Giovanni Mascellani, 15-Sep-2017.) |
⊢ (𝜑 → 𝜓) ⇒ ⊢ ((𝜑 ∨ ⊥) → 𝜓) | ||
Theorem | orfa2 34516 | Remove a contradicting disjunct from an antecedent. (Contributed by Giovanni Mascellani, 15-Sep-2017.) |
⊢ (𝜑 → ⊥) ⇒ ⊢ ((𝜑 ∨ 𝜓) → 𝜓) | ||
Theorem | bifald 34517 | Infer the equivalence to a contradiction from a negation, in deduction form. (Contributed by Giovanni Mascellani, 15-Sep-2017.) |
⊢ (𝜑 → ¬ 𝜓) ⇒ ⊢ (𝜑 → (𝜓 ↔ ⊥)) | ||
Theorem | orsild 34518 | A lemma for not-or-not elimination, in deduction form. (Contributed by Giovanni Mascellani, 15-Sep-2017.) |
⊢ (𝜑 → ¬ (𝜓 ∨ 𝜒)) ⇒ ⊢ (𝜑 → ¬ 𝜓) | ||
Theorem | orsird 34519 | A lemma for not-or-not elimination, in deduction form. (Contributed by Giovanni Mascellani, 15-Sep-2017.) |
⊢ (𝜑 → ¬ (𝜓 ∨ 𝜒)) ⇒ ⊢ (𝜑 → ¬ 𝜒) | ||
Theorem | cnf1dd 34520 | A lemma for Conjunctive Normal Form unit propagation, in double deduction form. (Contributed by Giovanni Mascellani, 19-Mar-2018.) |
⊢ (𝜑 → (𝜓 → ¬ 𝜒)) & ⊢ (𝜑 → (𝜓 → (𝜒 ∨ 𝜃))) ⇒ ⊢ (𝜑 → (𝜓 → 𝜃)) | ||
Theorem | cnf2dd 34521 | A lemma for Conjunctive Normal Form unit propagation, in double deduction form. (Contributed by Giovanni Mascellani, 19-Mar-2018.) |
⊢ (𝜑 → (𝜓 → ¬ 𝜃)) & ⊢ (𝜑 → (𝜓 → (𝜒 ∨ 𝜃))) ⇒ ⊢ (𝜑 → (𝜓 → 𝜒)) | ||
Theorem | cnfn1dd 34522 | A lemma for Conjunctive Normal Form unit propagation, in double deduction form. (Contributed by Giovanni Mascellani, 19-Mar-2018.) |
⊢ (𝜑 → (𝜓 → 𝜒)) & ⊢ (𝜑 → (𝜓 → (¬ 𝜒 ∨ 𝜃))) ⇒ ⊢ (𝜑 → (𝜓 → 𝜃)) | ||
Theorem | cnfn2dd 34523 | A lemma for Conjunctive Normal Form unit propagation, in double deduction form. (Contributed by Giovanni Mascellani, 19-Mar-2018.) |
⊢ (𝜑 → (𝜓 → 𝜃)) & ⊢ (𝜑 → (𝜓 → (𝜒 ∨ ¬ 𝜃))) ⇒ ⊢ (𝜑 → (𝜓 → 𝜒)) | ||
Theorem | or32dd 34524 | A rearrangement of disjuncts, in double deduction form. (Contributed by Giovanni Mascellani, 19-Mar-2018.) |
⊢ (𝜑 → (𝜓 → ((𝜒 ∨ 𝜃) ∨ 𝜏))) ⇒ ⊢ (𝜑 → (𝜓 → ((𝜒 ∨ 𝜏) ∨ 𝜃))) | ||
Theorem | notornotel1 34525 | A lemma for not-or-not elimination, in deduction form. (Contributed by Giovanni Mascellani, 19-Mar-2018.) |
⊢ (𝜑 → ¬ (¬ 𝜓 ∨ 𝜒)) ⇒ ⊢ (𝜑 → 𝜓) | ||
Theorem | notornotel2 34526 | A lemma for not-or-not elimination, in deduction form. (Contributed by Giovanni Mascellani, 19-Mar-2018.) |
⊢ (𝜑 → ¬ (𝜓 ∨ ¬ 𝜒)) ⇒ ⊢ (𝜑 → 𝜒) | ||
Theorem | contrd 34527 | A proof by contradiction, in deduction form. (Contributed by Giovanni Mascellani, 19-Mar-2018.) |
⊢ (𝜑 → (¬ 𝜓 → 𝜒)) & ⊢ (𝜑 → (¬ 𝜓 → ¬ 𝜒)) ⇒ ⊢ (𝜑 → 𝜓) | ||
Theorem | an12i 34528 | An inference from commuting operands in a chain of conjunctions. (Contributed by Giovanni Mascellani, 22-May-2019.) |
⊢ (𝜑 ∧ (𝜓 ∧ 𝜒)) ⇒ ⊢ (𝜓 ∧ (𝜑 ∧ 𝜒)) | ||
Theorem | exmid2 34529 | An excluded middle law. (Contributed by Giovanni Mascellani, 23-May-2019.) |
⊢ ((𝜓 ∧ 𝜑) → 𝜒) & ⊢ ((¬ 𝜓 ∧ 𝜂) → 𝜒) ⇒ ⊢ ((𝜑 ∧ 𝜂) → 𝜒) | ||
Theorem | selconj 34530 | An inference for selecting one of a list of conjuncts. (Contributed by Giovanni Mascellani, 23-May-2019.) |
⊢ (𝜑 ↔ (𝜓 ∧ 𝜒)) ⇒ ⊢ ((𝜂 ∧ 𝜑) ↔ (𝜓 ∧ (𝜂 ∧ 𝜒))) | ||
Theorem | truconj 34531 | Add true as a conjunct. (Contributed by Giovanni Mascellani, 23-May-2019.) |
⊢ (𝜑 ↔ (⊤ ∧ 𝜑)) | ||
Theorem | orel 34532 | An inference for disjunction elimination. (Contributed by Giovanni Mascellani, 24-May-2019.) |
⊢ ((𝜓 ∧ 𝜂) → 𝜃) & ⊢ ((𝜒 ∧ 𝜌) → 𝜃) & ⊢ (𝜑 → (𝜓 ∨ 𝜒)) ⇒ ⊢ ((𝜑 ∧ (𝜂 ∧ 𝜌)) → 𝜃) | ||
Theorem | negel 34533 | An inference for negation elimination. (Contributed by Giovanni Mascellani, 24-May-2019.) |
⊢ (𝜓 → 𝜒) & ⊢ (𝜑 → ¬ 𝜒) ⇒ ⊢ ((𝜑 ∧ 𝜓) → ⊥) | ||
Theorem | botel 34534 | An inference for bottom elimination. (Contributed by Giovanni Mascellani, 24-May-2019.) |
⊢ (𝜑 → ⊥) ⇒ ⊢ (𝜑 → 𝜓) | ||
Theorem | tradd 34535 | Add top ad a conjunct. (Contributed by Giovanni Mascellani, 24-May-2019.) |
⊢ (𝜑 ↔ 𝜓) ⇒ ⊢ (𝜑 ↔ (⊤ ∧ 𝜓)) | ||
Theorem | sbtru 34536 | Substitution does not change truth. (Contributed by Giovanni Mascellani, 24-May-2019.) |
⊢ 𝐴 ∈ V ⇒ ⊢ ([𝐴 / 𝑥]⊤ ↔ ⊤) | ||
Theorem | sbfal 34537 | Substitution does not change falsity. (Contributed by Giovanni Mascellani, 24-May-2019.) |
⊢ 𝐴 ∈ V ⇒ ⊢ ([𝐴 / 𝑥]⊥ ↔ ⊥) | ||
Theorem | sbcani 34538 | Distribution of class substitution over conjunction, in inference form. (Contributed by Giovanni Mascellani, 27-May-2019.) |
⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝜒) & ⊢ ([𝐴 / 𝑥]𝜓 ↔ 𝜂) ⇒ ⊢ ([𝐴 / 𝑥](𝜑 ∧ 𝜓) ↔ (𝜒 ∧ 𝜂)) | ||
Theorem | sbcori 34539 | Distribution of class substitution over disjunction, in inference form. (Contributed by Giovanni Mascellani, 27-May-2019.) |
⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝜒) & ⊢ ([𝐴 / 𝑥]𝜓 ↔ 𝜂) ⇒ ⊢ ([𝐴 / 𝑥](𝜑 ∨ 𝜓) ↔ (𝜒 ∨ 𝜂)) | ||
Theorem | sbcimi 34540 | Distribution of class substitution over implication, in inference form. (Contributed by Giovanni Mascellani, 27-May-2019.) |
⊢ 𝐴 ∈ V & ⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝜒) & ⊢ ([𝐴 / 𝑥]𝜓 ↔ 𝜂) ⇒ ⊢ ([𝐴 / 𝑥](𝜑 → 𝜓) ↔ (𝜒 → 𝜂)) | ||
Theorem | sbceqi 34541 | Distribution of class substitution over equality, in inference form. (Contributed by Giovanni Mascellani, 27-May-2019.) |
⊢ 𝐴 ∈ V & ⊢ ⦋𝐴 / 𝑥⦌𝐵 = 𝐷 & ⊢ ⦋𝐴 / 𝑥⦌𝐶 = 𝐸 ⇒ ⊢ ([𝐴 / 𝑥]𝐵 = 𝐶 ↔ 𝐷 = 𝐸) | ||
Theorem | sbcni 34542 | Move class substitution inside a negation, in inference form. (Contributed by Giovanni Mascellani, 27-May-2019.) |
⊢ 𝐴 ∈ V & ⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝜓) ⇒ ⊢ ([𝐴 / 𝑥] ¬ 𝜑 ↔ ¬ 𝜓) | ||
Theorem | sbali 34543 | Discard class substitution in a universal quantification when substituting the quantified variable, in inference form. (Contributed by Giovanni Mascellani, 27-May-2019.) |
⊢ 𝐴 ∈ V ⇒ ⊢ ([𝐴 / 𝑥]∀𝑥𝜑 ↔ ∀𝑥𝜑) | ||
Theorem | sbexi 34544 | Discard class substitution in an existential quantification when substituting the quantified variable, in inference form. (Contributed by Giovanni Mascellani, 27-May-2019.) |
⊢ 𝐴 ∈ V ⇒ ⊢ ([𝐴 / 𝑥]∃𝑥𝜑 ↔ ∃𝑥𝜑) | ||
Theorem | sbcalf 34545* | Move universal quantifier in and out of class substitution, with an explicit non-free variable condition. (Contributed by Giovanni Mascellani, 29-May-2019.) |
⊢ Ⅎ𝑦𝐴 ⇒ ⊢ ([𝐴 / 𝑥]∀𝑦𝜑 ↔ ∀𝑦[𝐴 / 𝑥]𝜑) | ||
Theorem | sbcexf 34546* | Move existential quantifier in and out of class substitution, with an explicit non-free variable condition. (Contributed by Giovanni Mascellani, 29-May-2019.) |
⊢ Ⅎ𝑦𝐴 ⇒ ⊢ ([𝐴 / 𝑥]∃𝑦𝜑 ↔ ∃𝑦[𝐴 / 𝑥]𝜑) | ||
Theorem | sbcalfi 34547* | Move universal quantifier in and out of class substitution, with an explicit non-free variable condition and in inference form. (Contributed by Giovanni Mascellani, 30-May-2019.) |
⊢ Ⅎ𝑦𝐴 & ⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝜓) ⇒ ⊢ ([𝐴 / 𝑥]∀𝑦𝜑 ↔ ∀𝑦𝜓) | ||
Theorem | sbcexfi 34548* | Move existential quantifier in and out of class substitution, with an explicit non-free variable condition and in inference form. (Contributed by Giovanni Mascellani, 30-May-2019.) |
⊢ Ⅎ𝑦𝐴 & ⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝜓) ⇒ ⊢ ([𝐴 / 𝑥]∃𝑦𝜑 ↔ ∃𝑦𝜓) | ||
Theorem | csbconstgi 34549* | The proper substitution of a class for a variable in another variable does not modify it, in inference form. (Contributed by Giovanni Mascellani, 30-May-2019.) |
⊢ 𝐴 ∈ V ⇒ ⊢ ⦋𝐴 / 𝑥⦌𝑦 = 𝑦 | ||
Theorem | spsbcdi 34550 | A lemma for eliminating a universal quantifier, in inference form. (Contributed by Giovanni Mascellani, 30-May-2019.) |
⊢ 𝐴 ∈ V & ⊢ (𝜑 → ∀𝑥𝜒) & ⊢ ([𝐴 / 𝑥]𝜒 ↔ 𝜓) ⇒ ⊢ (𝜑 → 𝜓) | ||
Theorem | alrimii 34551* | A lemma for introducing a universal quantifier, in inference form. (Contributed by Giovanni Mascellani, 30-May-2019.) |
⊢ Ⅎ𝑦𝜑 & ⊢ (𝜑 → 𝜓) & ⊢ ([𝑦 / 𝑥]𝜒 ↔ 𝜓) & ⊢ Ⅎ𝑦𝜒 ⇒ ⊢ (𝜑 → ∀𝑥𝜒) | ||
Theorem | spesbcdi 34552 | A lemma for introducing an existential quantifier, in inference form. (Contributed by Giovanni Mascellani, 30-May-2019.) |
⊢ (𝜑 → 𝜓) & ⊢ ([𝐴 / 𝑥]𝜒 ↔ 𝜓) ⇒ ⊢ (𝜑 → ∃𝑥𝜒) | ||
Theorem | exlimddvf 34553 | A lemma for eliminating an existential quantifier. (Contributed by Giovanni Mascellani, 30-May-2019.) |
⊢ (𝜑 → ∃𝑥𝜃) & ⊢ Ⅎ𝑥𝜓 & ⊢ ((𝜃 ∧ 𝜓) → 𝜒) & ⊢ Ⅎ𝑥𝜒 ⇒ ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | ||
Theorem | exlimddvfi 34554 | A lemma for eliminating an existential quantifier, in inference form. (Contributed by Giovanni Mascellani, 31-May-2019.) |
⊢ (𝜑 → ∃𝑥𝜃) & ⊢ Ⅎ𝑦𝜃 & ⊢ Ⅎ𝑦𝜓 & ⊢ ([𝑦 / 𝑥]𝜃 ↔ 𝜂) & ⊢ ((𝜂 ∧ 𝜓) → 𝜒) & ⊢ Ⅎ𝑦𝜒 ⇒ ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | ||
Theorem | sbceq1ddi 34555 | A lemma for eliminating inequality, in inference form. (Contributed by Giovanni Mascellani, 31-May-2019.) |
⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜓 → 𝜃) & ⊢ ([𝐴 / 𝑥]𝜒 ↔ 𝜃) & ⊢ ([𝐵 / 𝑥]𝜒 ↔ 𝜂) ⇒ ⊢ ((𝜑 ∧ 𝜓) → 𝜂) | ||
Theorem | sbccom2lem 34556* | Lemma for sbccom2 34557. (Contributed by Giovanni Mascellani, 31-May-2019.) |
⊢ 𝐴 ∈ V ⇒ ⊢ ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑 ↔ [⦋𝐴 / 𝑥⦌𝐵 / 𝑦][𝐴 / 𝑥]𝜑) | ||
Theorem | sbccom2 34557* | Commutative law for double class substitution. (Contributed by Giovanni Mascellani, 31-May-2019.) |
⊢ 𝐴 ∈ V ⇒ ⊢ ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑 ↔ [⦋𝐴 / 𝑥⦌𝐵 / 𝑦][𝐴 / 𝑥]𝜑) | ||
Theorem | sbccom2f 34558* | Commutative law for double class substitution, with nonfree variable condition. (Contributed by Giovanni Mascellani, 31-May-2019.) |
⊢ 𝐴 ∈ V & ⊢ Ⅎ𝑦𝐴 ⇒ ⊢ ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑 ↔ [⦋𝐴 / 𝑥⦌𝐵 / 𝑦][𝐴 / 𝑥]𝜑) | ||
Theorem | sbccom2fi 34559* | Commutative law for double class substitution, with nonfree variable condition and in inference form. (Contributed by Giovanni Mascellani, 1-Jun-2019.) |
⊢ 𝐴 ∈ V & ⊢ Ⅎ𝑦𝐴 & ⊢ ⦋𝐴 / 𝑥⦌𝐵 = 𝐶 & ⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝜓) ⇒ ⊢ ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑 ↔ [𝐶 / 𝑦]𝜓) | ||
Theorem | sbcgfi 34560 | Substitution for a variable not free in a wff does not affect it, in inference form. (Contributed by Giovanni Mascellani, 1-Jun-2019.) |
⊢ 𝐴 ∈ V & ⊢ Ⅎ𝑥𝜑 ⇒ ⊢ ([𝐴 / 𝑥]𝜑 ↔ 𝜑) | ||
Theorem | csbcom2fi 34561* | Commutative law for double class substitution in a class, with nonfree variable condition and in inference form. (Contributed by Giovanni Mascellani, 4-Jun-2019.) |
⊢ 𝐴 ∈ V & ⊢ Ⅎ𝑦𝐴 & ⊢ ⦋𝐴 / 𝑥⦌𝐵 = 𝐶 & ⊢ ⦋𝐴 / 𝑥⦌𝐷 = 𝐸 ⇒ ⊢ ⦋𝐴 / 𝑥⦌⦋𝐵 / 𝑦⦌𝐷 = ⦋𝐶 / 𝑦⦌𝐸 | ||
Theorem | csbgfi 34562 | Substitution for a variable not free in a class does not affect it, in inference form. (Contributed by Giovanni Mascellani, 4-Jun-2019.) |
⊢ 𝐴 ∈ V & ⊢ Ⅎ𝑥𝐵 ⇒ ⊢ ⦋𝐴 / 𝑥⦌𝐵 = 𝐵 | ||
A collection of Tseitin axioms used to convert a wff to Conjunctive Normal Form. | ||
Theorem | fald 34563 | Refutation of falsity, in deduction form. (Contributed by Giovanni Mascellani, 24-Mar-2018.) |
⊢ (𝜃 → ¬ ⊥) | ||
Theorem | tsim1 34564 | A Tseitin axiom for logical implication, in deduction form. (Contributed by Giovanni Mascellani, 24-Mar-2018.) |
⊢ (𝜃 → ((¬ 𝜑 ∨ 𝜓) ∨ ¬ (𝜑 → 𝜓))) | ||
Theorem | tsim2 34565 | A Tseitin axiom for logical implication, in deduction form. (Contributed by Giovanni Mascellani, 24-Mar-2018.) |
⊢ (𝜃 → (𝜑 ∨ (𝜑 → 𝜓))) | ||
Theorem | tsim3 34566 | A Tseitin axiom for logical implication, in deduction form. (Contributed by Giovanni Mascellani, 24-Mar-2018.) |
⊢ (𝜃 → (¬ 𝜓 ∨ (𝜑 → 𝜓))) | ||
Theorem | tsbi1 34567 | A Tseitin axiom for logical biimplication, in deduction form. (Contributed by Giovanni Mascellani, 24-Mar-2018.) |
⊢ (𝜃 → ((¬ 𝜑 ∨ ¬ 𝜓) ∨ (𝜑 ↔ 𝜓))) | ||
Theorem | tsbi2 34568 | A Tseitin axiom for logical biimplication, in deduction form. (Contributed by Giovanni Mascellani, 24-Mar-2018.) |
⊢ (𝜃 → ((𝜑 ∨ 𝜓) ∨ (𝜑 ↔ 𝜓))) | ||
Theorem | tsbi3 34569 | A Tseitin axiom for logical biimplication, in deduction form. (Contributed by Giovanni Mascellani, 24-Mar-2018.) |
⊢ (𝜃 → ((𝜑 ∨ ¬ 𝜓) ∨ ¬ (𝜑 ↔ 𝜓))) | ||
Theorem | tsbi4 34570 | A Tseitin axiom for logical biimplication, in deduction form. (Contributed by Giovanni Mascellani, 24-Mar-2018.) |
⊢ (𝜃 → ((¬ 𝜑 ∨ 𝜓) ∨ ¬ (𝜑 ↔ 𝜓))) | ||
Theorem | tsxo1 34571 | A Tseitin axiom for logical exclusive disjunction, in deduction form. (Contributed by Giovanni Mascellani, 24-Mar-2018.) |
⊢ (𝜃 → ((¬ 𝜑 ∨ ¬ 𝜓) ∨ ¬ (𝜑 ⊻ 𝜓))) | ||
Theorem | tsxo2 34572 | A Tseitin axiom for logical exclusive disjunction, in deduction form. (Contributed by Giovanni Mascellani, 24-Mar-2018.) |
⊢ (𝜃 → ((𝜑 ∨ 𝜓) ∨ ¬ (𝜑 ⊻ 𝜓))) | ||
Theorem | tsxo3 34573 | A Tseitin axiom for logical exclusive disjunction, in deduction form. (Contributed by Giovanni Mascellani, 24-Mar-2018.) |
⊢ (𝜃 → ((𝜑 ∨ ¬ 𝜓) ∨ (𝜑 ⊻ 𝜓))) | ||
Theorem | tsxo4 34574 | A Tseitin axiom for logical exclusive disjunction, in deduction form. (Contributed by Giovanni Mascellani, 24-Mar-2018.) |
⊢ (𝜃 → ((¬ 𝜑 ∨ 𝜓) ∨ (𝜑 ⊻ 𝜓))) | ||
Theorem | tsan1 34575 | A Tseitin axiom for logical conjunction, in deduction form. (Contributed by Giovanni Mascellani, 24-Mar-2018.) |
⊢ (𝜃 → ((¬ 𝜑 ∨ ¬ 𝜓) ∨ (𝜑 ∧ 𝜓))) | ||
Theorem | tsan2 34576 | A Tseitin axiom for logical conjunction, in deduction form. (Contributed by Giovanni Mascellani, 24-Mar-2018.) |
⊢ (𝜃 → (𝜑 ∨ ¬ (𝜑 ∧ 𝜓))) | ||
Theorem | tsan3 34577 | A Tseitin axiom for logical conjunction, in deduction form. (Contributed by Giovanni Mascellani, 24-Mar-2018.) |
⊢ (𝜃 → (𝜓 ∨ ¬ (𝜑 ∧ 𝜓))) | ||
Theorem | tsna1 34578 | A Tseitin axiom for logical incompatibility, in deduction form. (Contributed by Giovanni Mascellani, 24-Mar-2018.) |
⊢ (𝜃 → ((¬ 𝜑 ∨ ¬ 𝜓) ∨ ¬ (𝜑 ⊼ 𝜓))) | ||
Theorem | tsna2 34579 | A Tseitin axiom for logical incompatibility, in deduction form. (Contributed by Giovanni Mascellani, 24-Mar-2018.) |
⊢ (𝜃 → (𝜑 ∨ (𝜑 ⊼ 𝜓))) | ||
Theorem | tsna3 34580 | A Tseitin axiom for logical incompatibility, in deduction form. (Contributed by Giovanni Mascellani, 24-Mar-2018.) |
⊢ (𝜃 → (𝜓 ∨ (𝜑 ⊼ 𝜓))) | ||
Theorem | tsor1 34581 | A Tseitin axiom for logical disjunction, in deduction form. (Contributed by Giovanni Mascellani, 25-Mar-2018.) |
⊢ (𝜃 → ((𝜑 ∨ 𝜓) ∨ ¬ (𝜑 ∨ 𝜓))) | ||
Theorem | tsor2 34582 | A Tseitin axiom for logical disjunction, in deduction form. (Contributed by Giovanni Mascellani, 25-Mar-2018.) |
⊢ (𝜃 → (¬ 𝜑 ∨ (𝜑 ∨ 𝜓))) | ||
Theorem | tsor3 34583 | A Tseitin axiom for logical disjunction, in deduction form. (Contributed by Giovanni Mascellani, 25-Mar-2018.) |
⊢ (𝜃 → (¬ 𝜓 ∨ (𝜑 ∨ 𝜓))) | ||
Theorem | ts3an1 34584 | A Tseitin axiom for triple logical conjunction, in deduction form. (Contributed by Giovanni Mascellani, 25-Mar-2018.) |
⊢ (𝜃 → ((¬ (𝜑 ∧ 𝜓) ∨ ¬ 𝜒) ∨ (𝜑 ∧ 𝜓 ∧ 𝜒))) | ||
Theorem | ts3an2 34585 | A Tseitin axiom for triple logical conjunction, in deduction form. (Contributed by Giovanni Mascellani, 25-Mar-2018.) |
⊢ (𝜃 → ((𝜑 ∧ 𝜓) ∨ ¬ (𝜑 ∧ 𝜓 ∧ 𝜒))) | ||
Theorem | ts3an3 34586 | A Tseitin axiom for triple logical conjunction, in deduction form. (Contributed by Giovanni Mascellani, 25-Mar-2018.) |
⊢ (𝜃 → (𝜒 ∨ ¬ (𝜑 ∧ 𝜓 ∧ 𝜒))) | ||
Theorem | ts3or1 34587 | A Tseitin axiom for triple logical disjunction, in deduction form. (Contributed by Giovanni Mascellani, 25-Mar-2018.) |
⊢ (𝜃 → (((𝜑 ∨ 𝜓) ∨ 𝜒) ∨ ¬ (𝜑 ∨ 𝜓 ∨ 𝜒))) | ||
Theorem | ts3or2 34588 | A Tseitin axiom for triple logical disjunction, in deduction form. (Contributed by Giovanni Mascellani, 25-Mar-2018.) |
⊢ (𝜃 → (¬ (𝜑 ∨ 𝜓) ∨ (𝜑 ∨ 𝜓 ∨ 𝜒))) | ||
Theorem | ts3or3 34589 | A Tseitin axiom for triple logical disjunction, in deduction form. (Contributed by Giovanni Mascellani, 25-Mar-2018.) |
⊢ (𝜃 → (¬ 𝜒 ∨ (𝜑 ∨ 𝜓 ∨ 𝜒))) | ||
A collection of theorems for commuting equalities (or biimplications) with other constructs. | ||
Theorem | iuneq2f 34590 | Equality deduction for indexed union. (Contributed by Giovanni Mascellani, 9-Apr-2018.) |
⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 ⇒ ⊢ (𝐴 = 𝐵 → ∪ 𝑥 ∈ 𝐴 𝐶 = ∪ 𝑥 ∈ 𝐵 𝐶) | ||
Theorem | abeq12 34591 | Equality deduction for class abstraction. (Contributed by Giovanni Mascellani, 10-Apr-2018.) |
⊢ (∀𝑥(𝜑 ↔ 𝜓) → {𝑥 ∣ 𝜑} = {𝑥 ∣ 𝜓}) | ||
Theorem | rabeq12f 34592 | Equality deduction for restricted class abstraction. (Contributed by Giovanni Mascellani, 10-Apr-2018.) |
⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 ⇒ ⊢ ((𝐴 = 𝐵 ∧ ∀𝑥 ∈ 𝐴 (𝜑 ↔ 𝜓)) → {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∈ 𝐵 ∣ 𝜓}) | ||
Theorem | csbeq12 34593 | Equality deduction for substitution in class. (Contributed by Giovanni Mascellani, 10-Apr-2018.) |
⊢ ((𝐴 = 𝐵 ∧ ∀𝑥 𝐶 = 𝐷) → ⦋𝐴 / 𝑥⦌𝐶 = ⦋𝐵 / 𝑥⦌𝐷) | ||
Theorem | nfbii2OLD 34594 | Obsolete proof of nfbiit 1895 as of 2-Sep-2022. (Contributed by Giovanni Mascellani, 10-Apr-2018.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (∀𝑥(𝜑 ↔ 𝜓) → (Ⅎ𝑥𝜑 ↔ Ⅎ𝑥𝜓)) | ||
Theorem | sbeqi 34595 | Equality deduction for substitution. (Contributed by Giovanni Mascellani, 10-Apr-2018.) |
⊢ ((𝑥 = 𝑦 ∧ ∀𝑧(𝜑 ↔ 𝜓)) → ([𝑥 / 𝑧]𝜑 ↔ [𝑦 / 𝑧]𝜓)) | ||
Theorem | ralbi12f 34596 | Equality deduction for restricted universal quantification. (Contributed by Giovanni Mascellani, 10-Apr-2018.) |
⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 ⇒ ⊢ ((𝐴 = 𝐵 ∧ ∀𝑥 ∈ 𝐴 (𝜑 ↔ 𝜓)) → (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐵 𝜓)) | ||
Theorem | oprabbi 34597 | Equality deduction for class abstraction of nested ordered pairs. (Contributed by Giovanni Mascellani, 10-Apr-2018.) |
⊢ (∀𝑥∀𝑦∀𝑧(𝜑 ↔ 𝜓) → {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜓}) | ||
Theorem | mpt2bi123f 34598* | Equality deduction for maps-to notations with two arguments. (Contributed by Giovanni Mascellani, 10-Apr-2018.) |
⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 & ⊢ Ⅎ𝑦𝐴 & ⊢ Ⅎ𝑦𝐵 & ⊢ Ⅎ𝑦𝐶 & ⊢ Ⅎ𝑦𝐷 & ⊢ Ⅎ𝑥𝐶 & ⊢ Ⅎ𝑥𝐷 ⇒ ⊢ (((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐶 𝐸 = 𝐹) → (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐶 ↦ 𝐸) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐷 ↦ 𝐹)) | ||
Theorem | iuneq12f 34599 | Equality deduction for indexed unions. (Contributed by Giovanni Mascellani, 10-Apr-2018.) |
⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 ⇒ ⊢ ((𝐴 = 𝐵 ∧ ∀𝑥 ∈ 𝐴 𝐶 = 𝐷) → ∪ 𝑥 ∈ 𝐴 𝐶 = ∪ 𝑥 ∈ 𝐵 𝐷) | ||
Theorem | iineq12f 34600 | Equality deduction for indexed intersections. (Contributed by Giovanni Mascellani, 10-Apr-2018.) |
⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 ⇒ ⊢ ((𝐴 = 𝐵 ∧ ∀𝑥 ∈ 𝐴 𝐶 = 𝐷) → ∩ 𝑥 ∈ 𝐴 𝐶 = ∩ 𝑥 ∈ 𝐵 𝐷) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |