Home | Metamath
Proof Explorer Theorem List (p. 346 of 460) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-28853) |
Hilbert Space Explorer
(28854-30376) |
Users' Mathboxes
(30377-45962) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | bj-hbalt 34501 | Closed form of hbal 2175. When in main part, prove hbal 2175 and hbald 2176 from it. (Contributed by BJ, 2-May-2019.) |
⊢ (∀𝑦(𝜑 → ∀𝑥𝜑) → (∀𝑦𝜑 → ∀𝑥∀𝑦𝜑)) | ||
Theorem | axc11n11 34502 | Proof of axc11n 2426 from { ax-1 6-- ax-7 2020, axc11 2430 } . Almost identical to axc11nfromc11 36563. (Contributed by NM, 6-Jul-2021.) (Proof modification is discouraged.) |
⊢ (∀𝑥 𝑥 = 𝑦 → ∀𝑦 𝑦 = 𝑥) | ||
Theorem | axc11n11r 34503 |
Proof of axc11n 2426 from { ax-1 6--
ax-7 2020, axc9 2382, axc11r 2368 } (note
that axc16 2262 is provable from { ax-1 6--
ax-7 2020, axc11r 2368 }).
Note that axc11n 2426 proves (over minimal calculus) that axc11 2430 and axc11r 2368 are equivalent. Therefore, axc11n11 34502 and axc11n11r 34503 prove that one can use one or the other as an axiom, provided one assumes the axioms listed above (axc11 2430 appears slightly stronger since axc11n11r 34503 requires axc9 2382 while axc11n11 34502 does not). (Contributed by BJ, 6-Jul-2021.) (Proof modification is discouraged.) |
⊢ (∀𝑥 𝑥 = 𝑦 → ∀𝑦 𝑦 = 𝑥) | ||
Theorem | bj-axc16g16 34504* | Proof of axc16g 2261 from { ax-1 6-- ax-7 2020, axc16 2262 }. (Contributed by BJ, 6-Jul-2021.) (Proof modification is discouraged.) |
⊢ (∀𝑥 𝑥 = 𝑦 → (𝜑 → ∀𝑧𝜑)) | ||
Theorem | bj-ax12v3 34505* | A weak version of ax-12 2179 which is stronger than ax12v 2180. Note that if one assumes reflexivity of equality ⊢ 𝑥 = 𝑥 (equid 2024), then bj-ax12v3 34505 implies ax-5 1917 over modal logic K (substitute 𝑥 for 𝑦). See also bj-ax12v3ALT 34506. (Contributed by BJ, 6-Jul-2021.) (Proof modification is discouraged.) |
⊢ (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑))) | ||
Theorem | bj-ax12v3ALT 34506* | Alternate proof of bj-ax12v3 34505. Uses axc11r 2368 and axc15 2422 instead of ax-12 2179. (Contributed by BJ, 6-Jul-2021.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑))) | ||
Theorem | bj-sb 34507* | A weak variant of sbid2 2512 not requiring ax-13 2372 nor ax-10 2145. On top of Tarski's FOL, one implication requires only ax12v 2180, and the other requires only sp 2184. (Contributed by BJ, 25-May-2021.) |
⊢ (𝜑 ↔ ∀𝑦(𝑦 = 𝑥 → ∀𝑥(𝑥 = 𝑦 → 𝜑))) | ||
Theorem | bj-modalbe 34508 | The predicate-calculus version of the axiom (B) of modal logic. See also modal-b 2321. (Contributed by BJ, 20-Oct-2019.) |
⊢ (𝜑 → ∀𝑥∃𝑥𝜑) | ||
Theorem | bj-spst 34509 | Closed form of sps 2186. Once in main part, prove sps 2186 and spsd 2188 from it. (Contributed by BJ, 20-Oct-2019.) |
⊢ ((𝜑 → 𝜓) → (∀𝑥𝜑 → 𝜓)) | ||
Theorem | bj-19.21bit 34510 | Closed form of 19.21bi 2190. (Contributed by BJ, 20-Oct-2019.) |
⊢ ((𝜑 → ∀𝑥𝜓) → (𝜑 → 𝜓)) | ||
Theorem | bj-19.23bit 34511 | Closed form of 19.23bi 2192. (Contributed by BJ, 20-Oct-2019.) |
⊢ ((∃𝑥𝜑 → 𝜓) → (𝜑 → 𝜓)) | ||
Theorem | bj-nexrt 34512 | Closed form of nexr 2193. Contrapositive of 19.8a 2182. (Contributed by BJ, 20-Oct-2019.) |
⊢ (¬ ∃𝑥𝜑 → ¬ 𝜑) | ||
Theorem | bj-alrim 34513 | Closed form of alrimi 2215. (Contributed by BJ, 2-May-2019.) |
⊢ (Ⅎ𝑥𝜑 → (∀𝑥(𝜑 → 𝜓) → (𝜑 → ∀𝑥𝜓))) | ||
Theorem | bj-alrim2 34514 | Uncurried (imported) form of bj-alrim 34513. (Contributed by BJ, 2-May-2019.) |
⊢ ((Ⅎ𝑥𝜑 ∧ ∀𝑥(𝜑 → 𝜓)) → (𝜑 → ∀𝑥𝜓)) | ||
Theorem | bj-nfdt0 34515 | A theorem close to a closed form of nf5d 2288 and nf5dh 2151. (Contributed by BJ, 2-May-2019.) |
⊢ (∀𝑥(𝜑 → (𝜓 → ∀𝑥𝜓)) → (∀𝑥𝜑 → Ⅎ𝑥𝜓)) | ||
Theorem | bj-nfdt 34516 | Closed form of nf5d 2288 and nf5dh 2151. (Contributed by BJ, 2-May-2019.) |
⊢ (∀𝑥(𝜑 → (𝜓 → ∀𝑥𝜓)) → ((𝜑 → ∀𝑥𝜑) → (𝜑 → Ⅎ𝑥𝜓))) | ||
Theorem | bj-nexdt 34517 | Closed form of nexd 2223. (Contributed by BJ, 20-Oct-2019.) |
⊢ (Ⅎ𝑥𝜑 → (∀𝑥(𝜑 → ¬ 𝜓) → (𝜑 → ¬ ∃𝑥𝜓))) | ||
Theorem | bj-nexdvt 34518* | Closed form of nexdv 1943. (Contributed by BJ, 20-Oct-2019.) |
⊢ (∀𝑥(𝜑 → ¬ 𝜓) → (𝜑 → ¬ ∃𝑥𝜓)) | ||
Theorem | bj-alexbiex 34519 | Adding a second quantifier is a tranparent operation, (∀∃ case). (Contributed by BJ, 20-Oct-2019.) |
⊢ (∀𝑥∃𝑥𝜑 ↔ ∃𝑥𝜑) | ||
Theorem | bj-exexbiex 34520 | Adding a second quantifier is a tranparent operation, (∃∃ case). (Contributed by BJ, 20-Oct-2019.) |
⊢ (∃𝑥∃𝑥𝜑 ↔ ∃𝑥𝜑) | ||
Theorem | bj-alalbial 34521 | Adding a second quantifier is a tranparent operation, (∀∀ case). (Contributed by BJ, 20-Oct-2019.) |
⊢ (∀𝑥∀𝑥𝜑 ↔ ∀𝑥𝜑) | ||
Theorem | bj-exalbial 34522 | Adding a second quantifier is a tranparent operation, (∃∀ case). (Contributed by BJ, 20-Oct-2019.) |
⊢ (∃𝑥∀𝑥𝜑 ↔ ∀𝑥𝜑) | ||
Theorem | bj-19.9htbi 34523 | Strengthening 19.9ht 2322 by replacing its succedent with a biconditional (19.9t 2206 does have a biconditional succedent). This propagates. (Contributed by BJ, 20-Oct-2019.) |
⊢ (∀𝑥(𝜑 → ∀𝑥𝜑) → (∃𝑥𝜑 ↔ 𝜑)) | ||
Theorem | bj-hbntbi 34524 | Strengthening hbnt 2298 by replacing its succedent with a biconditional. See also hbntg 33353 and hbntal 41711. (Contributed by BJ, 20-Oct-2019.) Proved from bj-19.9htbi 34523. (Proof modification is discouraged.) |
⊢ (∀𝑥(𝜑 → ∀𝑥𝜑) → (¬ 𝜑 ↔ ∀𝑥 ¬ 𝜑)) | ||
Theorem | bj-biexal1 34525 | A general FOL biconditional that generalizes 19.9ht 2322 among others. For this and the following theorems, see also 19.35 1884, 19.21 2209, 19.23 2213. When 𝜑 is substituted for 𝜓, both sides express a form of nonfreeness. (Contributed by BJ, 20-Oct-2019.) |
⊢ (∀𝑥(𝜑 → ∀𝑥𝜓) ↔ (∃𝑥𝜑 → ∀𝑥𝜓)) | ||
Theorem | bj-biexal2 34526 | When 𝜑 is substituted for 𝜓, both sides express a form of nonfreeness. (Contributed by BJ, 20-Oct-2019.) |
⊢ (∀𝑥(∃𝑥𝜑 → 𝜓) ↔ (∃𝑥𝜑 → ∀𝑥𝜓)) | ||
Theorem | bj-biexal3 34527 | When 𝜑 is substituted for 𝜓, both sides express a form of nonfreeness. (Contributed by BJ, 20-Oct-2019.) |
⊢ (∀𝑥(𝜑 → ∀𝑥𝜓) ↔ ∀𝑥(∃𝑥𝜑 → 𝜓)) | ||
Theorem | bj-bialal 34528 | When 𝜑 is substituted for 𝜓, both sides express a form of nonfreeness. (Contributed by BJ, 20-Oct-2019.) |
⊢ (∀𝑥(∀𝑥𝜑 → 𝜓) ↔ (∀𝑥𝜑 → ∀𝑥𝜓)) | ||
Theorem | bj-biexex 34529 | When 𝜑 is substituted for 𝜓, both sides express a form of nonfreeness. (Contributed by BJ, 20-Oct-2019.) |
⊢ (∀𝑥(𝜑 → ∃𝑥𝜓) ↔ (∃𝑥𝜑 → ∃𝑥𝜓)) | ||
Theorem | bj-hbext 34530 | Closed form of hbex 2327. (Contributed by BJ, 10-Oct-2019.) |
⊢ (∀𝑦∀𝑥(𝜑 → ∀𝑥𝜑) → (∃𝑦𝜑 → ∀𝑥∃𝑦𝜑)) | ||
Theorem | bj-nfalt 34531 | Closed form of nfal 2325. (Contributed by BJ, 2-May-2019.) |
⊢ (∀𝑥Ⅎ𝑦𝜑 → Ⅎ𝑦∀𝑥𝜑) | ||
Theorem | bj-nfext 34532 | Closed form of nfex 2326. (Contributed by BJ, 10-Oct-2019.) |
⊢ (∀𝑥Ⅎ𝑦𝜑 → Ⅎ𝑦∃𝑥𝜑) | ||
Theorem | bj-eeanvw 34533* | Version of exdistrv 1963 with a disjoint variable condition on 𝑥, 𝑦 not requiring ax-11 2162. (The same can be done with eeeanv 2353 and ee4anv 2354.) (Contributed by BJ, 29-Sep-2019.) (Proof modification is discouraged.) |
⊢ (∃𝑥∃𝑦(𝜑 ∧ 𝜓) ↔ (∃𝑥𝜑 ∧ ∃𝑦𝜓)) | ||
Theorem | bj-modal4 34534 | First-order logic form of the modal axiom (4). See hba1 2297. This is the standard proof of the implication in modal logic (B5 ⇒ 4). Its dual statement is bj-modal4e 34535. (Contributed by BJ, 12-Aug-2023.) (Proof modification is discouraged.) |
⊢ (∀𝑥𝜑 → ∀𝑥∀𝑥𝜑) | ||
Theorem | bj-modal4e 34535 | First-order logic form of the modal axiom (4) using existential quantifiers. Dual statement of bj-modal4 34534 (hba1 2297). (Contributed by BJ, 21-Dec-2020.) (Proof modification is discouraged.) |
⊢ (∃𝑥∃𝑥𝜑 → ∃𝑥𝜑) | ||
Theorem | bj-modalb 34536 | A short form of the axiom B of modal logic using only primitive symbols (→ , ¬ , ∀). (Contributed by BJ, 4-Apr-2021.) (Proof modification is discouraged.) |
⊢ (¬ 𝜑 → ∀𝑥 ¬ ∀𝑥𝜑) | ||
Theorem | bj-wnf1 34537 | When 𝜑 is substituted for 𝜓, this is the first half of nonfreness (. → ∀) of the weak form of nonfreeness (∃ → ∀). (Contributed by BJ, 9-Dec-2023.) |
⊢ ((∃𝑥𝜑 → ∀𝑥𝜓) → ∀𝑥(∃𝑥𝜑 → ∀𝑥𝜓)) | ||
Theorem | bj-wnf2 34538 | When 𝜑 is substituted for 𝜓, this is the first half of nonfreness (. → ∀) of the weak form of nonfreeness (∃ → ∀). (Contributed by BJ, 9-Dec-2023.) |
⊢ (∃𝑥(∃𝑥𝜑 → ∀𝑥𝜓) → (∃𝑥𝜑 → ∀𝑥𝜓)) | ||
Theorem | bj-wnfanf 34539 | When 𝜑 is substituted for 𝜓, this statement expresses that weak nonfreeness implies the universal form of nonfreeness. (Contributed by BJ, 9-Dec-2023.) |
⊢ ((∃𝑥𝜑 → ∀𝑥𝜓) → ∀𝑥(𝜑 → ∀𝑥𝜓)) | ||
Theorem | bj-wnfenf 34540 | When 𝜑 is substituted for 𝜓, this statement expresses that weak nonfreeness implies the existential form of nonfreeness. (Contributed by BJ, 9-Dec-2023.) |
⊢ ((∃𝑥𝜑 → ∀𝑥𝜓) → ∀𝑥(∃𝑥𝜑 → 𝜓)) | ||
Theorem | bj-substax12 34541 |
Equivalent form of the axiom of substitution bj-ax12 34476. Although both
sides need a DV condition on 𝑥, 𝑡 (or as in bj-ax12v3 34505 on
𝑡,
𝜑) to hold, their
equivalence holds without DV conditions. The
forward implication is proved in modal (K4) while the reverse implication
is proved in modal (T5). The LHS has the advantage of not involving
nested quantifiers on the same variable. Its metaweakening is proved from
the core axiom schemes in bj-substw 34542. Note that in the LHS, the reverse
implication holds by equs4 2416 (or equs4v 2011 if a DV condition is added on
𝑥,
𝑡 as in bj-ax12 34476).
The LHS can be read as saying that if there exists a setvar equal to a given term witnessing 𝜑, then all setvars equal to that term also witness 𝜑. An equivalent suggestive form for the LHS is ¬ (∃𝑥(𝑥 = 𝑡 ∧ 𝜑) ∧ ∃𝑥(𝑥 = 𝑡 ∧ ¬ 𝜑)), which expresses that there can be no two variables both equal to a given term, one witnessing 𝜑 and the other witnessing ¬ 𝜑. (Contributed by BJ, 21-May-2024.) (Proof modification is discouraged.) |
⊢ ((∃𝑥(𝑥 = 𝑡 ∧ 𝜑) → ∀𝑥(𝑥 = 𝑡 → 𝜑)) ↔ ∀𝑥(𝑥 = 𝑡 → (𝜑 → ∀𝑥(𝑥 = 𝑡 → 𝜑)))) | ||
Theorem | bj-substw 34542* | Weak form of the LHS of bj-substax12 34541 proved from the core axiom schemes. Compare ax12w 2137. (Contributed by BJ, 26-May-2024.) (Proof modification is discouraged.) |
⊢ (𝑥 = 𝑡 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃𝑥(𝑥 = 𝑡 ∧ 𝜑) → ∀𝑥(𝑥 = 𝑡 → 𝜑)) | ||
Syntax | wnnf 34543 | Syntax for the nonfreeness quantifier. |
wff Ⅎ'𝑥𝜑 | ||
Definition | df-bj-nnf 34544 |
Definition of the nonfreeness quantifier. The formula Ⅎ'𝑥𝜑 has
the intended meaning that the variable 𝑥 is semantically nonfree in
the formula 𝜑. The motivation for this quantifier
is to have a
condition expressible in the logic which is as close as possible to the
non-occurrence condition DV (𝑥, 𝜑) (in Metamath files, "$d x ph
$."), which belongs to the metalogic.
The standard syntactic nonfreeness condition, also expressed in the metalogic, is intermediate between these two notions: semantic nonfreeness implies syntactic nonfreeness, which implies non-occurrence. Both implications are strict; for the first, note that ⊢ Ⅎ'𝑥𝑥 = 𝑥, that is, 𝑥 is semantically (but not syntactically) nonfree in the formula 𝑥 = 𝑥; for the second, note that 𝑥 is syntactically nonfree in the formula ∀𝑥𝑥 = 𝑥 although it occurs in it. We now prove two metatheorems which make precise the above fact that, as far as proving power is concerned, the nonfreeness condition Ⅎ'𝑥𝜑 is very close to the non-occurrence condition DV (𝑥, 𝜑). Let S be a Metamath system with the FOL-syntax of (i)set.mm, containing intuitionistic positive propositional calculus and ax-5 1917 and ax5e 1919. Theorem 1. If the scheme (Ⅎ'𝑥𝜑 & PHI1 & ... & PHIn ⇒ PHI0, DV) is provable in S, then so is the scheme (PHI1 & ... & PHIn ⇒ PHI0, DV ∪ {{𝑥, 𝜑}}). Proof: By bj-nnfv 34574, we can prove (Ⅎ'𝑥𝜑, {{𝑥, 𝜑}}), from which the theorem follows. QED Theorem 2. Suppose that S also contains (the FOL version of) modal logic KB and commutation of quantifiers alcom 2164 and excom 2170 (possibly weakened by a DV condition on the quantifying variables), and that S can be axiomatized such that the only axioms with a DV condition involving a formula variable are among ax-5 1917, ax5e 1919, ax5ea 1920. If the scheme (PHI1 & ... & PHIn ⇒ PHI0, DV) is provable in S, then so is the scheme (Ⅎ'𝑥𝜑 & PHI1 & ... & PHIn ⇒ PHI0, DV ∖ {{𝑥, 𝜑}}). More precisely, if S contains modal 45 and if the variables quantified over in PHI0, ..., PHIn are among 𝑥1, ..., 𝑥m, then the scheme (PHI1 & ... & PHIn ⇒ (antecedent → PHI0), DV ∖ {{𝑥, 𝜑}}) is provable in S, where the antecedent is a finite conjunction of formulas of the form ∀𝑥i1 ...∀𝑥ip Ⅎ'𝑥𝜑 where the 𝑥ij's are among the 𝑥i's. Lemma: If 𝑥 ∉ OC(PHI), then S proves the scheme (Ⅎ'𝑥𝜑 ⇒ Ⅎ'𝑥 PHI, {{𝑥, 𝑎} ∣ 𝑎 ∈ OC(PHI) ∖ {𝜑}}). More precisely, if the variables quantified over in PHI are among 𝑥1, ..., 𝑥m, then ((antecedent → Ⅎ'𝑥 PHI), {{𝑥, 𝑎} ∣ 𝑎 ∈ OC(PHI) ∖ {𝜑}}) is provable in S, with the same form of antecedent as above. Proof: By induction on the height of PHI. We first note that by bj-nnfbi 34545 we can assume that PHI contains only primitive (as opposed to defined) symbols. For the base case, atomic formulas are either 𝜑, in which case the scheme to prove is an instance of id 22, or have variables all in OC(PHI) ∖ {𝜑}, so (Ⅎ'𝑥 PHI, {{𝑥, 𝑎} ∣ 𝑎 ∈ OC(PHI) ∖ {𝜑}}) by bj-nnfv 34574, hence ((Ⅎ'𝑥𝜑 → Ⅎ'𝑥 PHI), {{𝑥, 𝑎} ∣ 𝑎 ∈ OC(PHI) ∖ {𝜑}}) by a1i 11. For the induction step, PHI is either an implication, a negation, a conjunction, a disjunction, a biconditional, a universal or an existential quantification of formulas where 𝑥 does not occur. We use respectively bj-nnfim 34566, bj-nnfnt 34560, bj-nnfan 34568, bj-nnfor 34570, bj-nnfbit 34572, bj-nnfalt 34586, bj-nnfext 34587. For instance, in the implication case, if we have by induction hypothesis ((∀𝑥1 ...∀𝑥m Ⅎ'𝑥𝜑 → Ⅎ'𝑥 PHI), {{𝑥, 𝑎} ∣ 𝑎 ∈ OC(PHI) ∖ {𝜑}}) and ((∀𝑦1 ...∀𝑦n Ⅎ'𝑥𝜑 → Ⅎ'𝑥 PSI), {{𝑥, 𝑎} ∣ 𝑎 ∈ OC(PSI) ∖ {𝜑}}), then bj-nnfim 34566 yields (((∀𝑥1 ...∀𝑥m Ⅎ'𝑥𝜑 ∧ ∀𝑦1 ...∀𝑦n Ⅎ'𝑥𝜑) → Ⅎ'𝑥 (PHI → PSI)), {{𝑥, 𝑎} ∣ 𝑎 ∈ OC(PHI → PSI) ∖ {𝜑}}) and similarly for antecedents which are conjunctions as in the statement of the lemma. In the universal quantification case, say quantification over 𝑦, if we have by induction hypothesis ((∀𝑥1 ...∀𝑥m Ⅎ'𝑥𝜑 → Ⅎ'𝑥 PHI), {{𝑥, 𝑎} ∣ 𝑎 ∈ OC(PHI) ∖ {𝜑}}), then bj-nnfalt 34586 yields ((∀𝑦∀𝑥1 ...∀𝑥m Ⅎ'𝑥𝜑 → Ⅎ'𝑥∀𝑦 PHI), {{𝑥, 𝑎} ∣ 𝑎 ∈ OC(∀𝑦 PHI) ∖ {𝜑}}) and similarly for antecedents which are conjunctions as in the statement of the lemma. Note bj-nnfalt 34586 and bj-nnfext 34587 are proved from positive propositional calculus with alcom 2164 and excom 2170 (possibly weakened by a DV condition on the quantifying variables), and modalB (via bj-19.12 34581). QED Proof of the theorem: Consider a proof of that scheme directly from the axioms. Consider a step where a DV condition involving 𝜑 is used. By hypothesis, that step is an instance of ax-5 1917 or ax5e 1919 or ax5ea 1920. It has the form (PSI → ∀𝑥 PSI) where PSI has the form of the lemma and the DV conditions of the proof contain {{𝑥, 𝑎} ∣ 𝑎 ∈ OC(PSI) }. Therefore, one has ((∀𝑥1 ...∀𝑥m Ⅎ'𝑥𝜑 → Ⅎ'𝑥 PSI), {{𝑥, 𝑎} ∣ 𝑎 ∈ OC(PSI) ∖ {𝜑}}) for appropriate 𝑥i's, and by bj-nnfa 34548 we obtain ((∀𝑥1 ...∀𝑥m Ⅎ'𝑥𝜑 → (PSI → ∀𝑥 PSI)), {{𝑥, 𝑎} ∣ 𝑎 ∈ OC(PSI) ∖ {𝜑}}) and similarly for antecedents which are conjunctions as in the statement of the theorem. Similarly if the step is using ax5e 1919 or ax5ea 1920, we would use bj-nnfe 34551 or bj-nnfea 34554 respectively. Therefore, taking as antecedent of the theorem to prove the conjunction of all the antecedents at each of these steps, we obtain a proof by "carrying the context over", which is possible, as in the deduction theorem when the step uses ax-mp 5, and when the step uses ax-gen 1802, by bj-nnf-alrim 34575 and bj-nnfa1 34579 (which requires modal 45). The condition DV (𝑥, 𝜑) is not required by the resulting proof. Finally, there may be in the global antecedent thus constructed some dummy variables, which can be removed by spvw 1990. QED Compared with df-nf 1791, the present definition is stricter on positive propositional calculus (bj-nnfnfTEMP 34558) and equivalent on core FOL plus sp 2184 (bj-nfnnfTEMP 34578). While being stricter, it still holds for non-occurring variables (bj-nnfv 34574), which is the basic requirement for this quantifier. In particular, it translates more closely the associated variable disjointness condition. Since the nonfreeness quantifier is a means to translate a variable disjointness condition from the metalogic to the logic, it seems preferable. Also, since nonfreeness is mainly used as a hypothesis, this definition would allow more theorems, notably the 19.xx theorems, to be proved from the core axioms, without needing a 19.xxv variant. One can devise infinitely many definitions increasingly close to the non-occurring condition, like ((∃𝑥𝜑 → 𝜑) ∧ (𝜑 → ∀𝑥𝜑)) ∧ ∀𝑥((∃𝑥𝜑 → 𝜑) ∧ (𝜑 → ∀𝑥𝜑)) ∧ ∀𝑥∀𝑥... and each stronger definition would permit more theorems to be proved from the core axioms. A reasonable rule seems to be to stop before nested quantifiers appear (since they typically require ax-10 2145 to work with), and also not to have redundant conjuncts when full metacomplete FOL= is developed. (Contributed by BJ, 28-Jul-2023.) |
⊢ (Ⅎ'𝑥𝜑 ↔ ((∃𝑥𝜑 → 𝜑) ∧ (𝜑 → ∀𝑥𝜑))) | ||
Theorem | bj-nnfbi 34545 | If two formulas are equivalent for all 𝑥, then nonfreeness of 𝑥 in one of them is equivalent to nonfreeness in the other. Compare nfbiit 1857. From this and bj-nnfim 34566 and bj-nnfnt 34560, one can prove analogous nonfreeness conservation results for other propositional operators. The antecedent is in the "strong necessity" modality of modal logic (see also bj-nnftht 34561) in order not to require sp 2184 (modal T). (Contributed by BJ, 27-Aug-2023.) |
⊢ (((𝜑 ↔ 𝜓) ∧ ∀𝑥(𝜑 ↔ 𝜓)) → (Ⅎ'𝑥𝜑 ↔ Ⅎ'𝑥𝜓)) | ||
Theorem | bj-nnfbd 34546* | If two formulas are equivalent for all 𝑥, then nonfreeness of 𝑥 in one of them is equivalent to nonfreeness in the other, deduction form. See bj-nnfbi 34545. (Contributed by BJ, 27-Aug-2023.) |
⊢ (𝜑 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (Ⅎ'𝑥𝜓 ↔ Ⅎ'𝑥𝜒)) | ||
Theorem | bj-nnfbii 34547 | If two formulas are equivalent for all 𝑥, then nonfreeness of 𝑥 in one of them is equivalent to nonfreeness in the other, inference form. See bj-nnfbi 34545. (Contributed by BJ, 18-Nov-2023.) |
⊢ (𝜑 ↔ 𝜓) ⇒ ⊢ (Ⅎ'𝑥𝜑 ↔ Ⅎ'𝑥𝜓) | ||
Theorem | bj-nnfa 34548 | Nonfreeness implies the equivalent of ax-5 1917. See nf5r 2195. (Contributed by BJ, 28-Jul-2023.) |
⊢ (Ⅎ'𝑥𝜑 → (𝜑 → ∀𝑥𝜑)) | ||
Theorem | bj-nnfad 34549 | Nonfreeness implies the equivalent of ax-5 1917, deduction form. See nf5rd 2198. (Contributed by BJ, 2-Dec-2023.) |
⊢ (𝜑 → Ⅎ'𝑥𝜓) ⇒ ⊢ (𝜑 → (𝜓 → ∀𝑥𝜓)) | ||
Theorem | bj-nnfai 34550 | Nonfreeness implies the equivalent of ax-5 1917, inference form. See nf5ri 2197. (Contributed by BJ, 22-Sep-2024.) |
⊢ Ⅎ'𝑥𝜑 ⇒ ⊢ (𝜑 → ∀𝑥𝜑) | ||
Theorem | bj-nnfe 34551 | Nonfreeness implies the equivalent of ax5e 1919. (Contributed by BJ, 28-Jul-2023.) |
⊢ (Ⅎ'𝑥𝜑 → (∃𝑥𝜑 → 𝜑)) | ||
Theorem | bj-nnfed 34552 | Nonfreeness implies the equivalent of ax5e 1919, deduction form. (Contributed by BJ, 2-Dec-2023.) |
⊢ (𝜑 → Ⅎ'𝑥𝜓) ⇒ ⊢ (𝜑 → (∃𝑥𝜓 → 𝜓)) | ||
Theorem | bj-nnfei 34553 | Nonfreeness implies the equivalent of ax5e 1919, inference form. (Contributed by BJ, 22-Sep-2024.) |
⊢ Ⅎ'𝑥𝜑 ⇒ ⊢ (∃𝑥𝜑 → 𝜑) | ||
Theorem | bj-nnfea 34554 | Nonfreeness implies the equivalent of ax5ea 1920. (Contributed by BJ, 28-Jul-2023.) |
⊢ (Ⅎ'𝑥𝜑 → (∃𝑥𝜑 → ∀𝑥𝜑)) | ||
Theorem | bj-nnfead 34555 | Nonfreeness implies the equivalent of ax5ea 1920, deduction form. (Contributed by BJ, 2-Dec-2023.) |
⊢ (𝜑 → Ⅎ'𝑥𝜓) ⇒ ⊢ (𝜑 → (∃𝑥𝜓 → ∀𝑥𝜓)) | ||
Theorem | bj-nnfeai 34556 | Nonfreeness implies the equivalent of ax5ea 1920, inference form. (Contributed by BJ, 22-Sep-2024.) |
⊢ Ⅎ'𝑥𝜑 ⇒ ⊢ (∃𝑥𝜑 → ∀𝑥𝜑) | ||
Theorem | bj-dfnnf2 34557 | Alternate definition of df-bj-nnf 34544 using only primitive symbols (→, ¬, ∀) in each conjunct. (Contributed by BJ, 20-Aug-2023.) |
⊢ (Ⅎ'𝑥𝜑 ↔ ((𝜑 → ∀𝑥𝜑) ∧ (¬ 𝜑 → ∀𝑥 ¬ 𝜑))) | ||
Theorem | bj-nnfnfTEMP 34558 | New nonfreeness implies old nonfreeness on minimal implicational calculus (the proof indicates it uses ax-3 8 because of set.mm's definition of the biconditional, but the proof actually holds in minimal implicational calculus). (Contributed by BJ, 28-Jul-2023.) The proof should not rely on df-nf 1791 except via df-nf 1791 directly. (Proof modification is discouraged.) |
⊢ (Ⅎ'𝑥𝜑 → Ⅎ𝑥𝜑) | ||
Theorem | bj-wnfnf 34559 | When 𝜑 is substituted for 𝜓, this statement expresses nonfreeness in the weak form of nonfreeness (∃ → ∀). Note that this could also be proved from bj-nnfim 34566, bj-nnfe1 34580 and bj-nnfa1 34579. (Contributed by BJ, 9-Dec-2023.) |
⊢ Ⅎ'𝑥(∃𝑥𝜑 → ∀𝑥𝜓) | ||
Theorem | bj-nnfnt 34560 | A variable is nonfree in a formula if and only if it is nonfree in its negation. The foward implication is intuitionistically valid (and that direction is sufficient for the purpose of recursively proving that some formulas have a given variable not free in them, like bj-nnfim 34566). Intuitionistically, ⊢ (Ⅎ'𝑥¬ 𝜑 ↔ Ⅎ'𝑥¬ ¬ 𝜑). See nfnt 1863. (Contributed by BJ, 28-Jul-2023.) |
⊢ (Ⅎ'𝑥𝜑 ↔ Ⅎ'𝑥 ¬ 𝜑) | ||
Theorem | bj-nnftht 34561 | A variable is nonfree in a theorem. The antecedent is in the "strong necessity" modality of modal logic in order not to require sp 2184 (modal T), as in bj-nnfbi 34545. (Contributed by BJ, 28-Jul-2023.) |
⊢ ((𝜑 ∧ ∀𝑥𝜑) → Ⅎ'𝑥𝜑) | ||
Theorem | bj-nnfth 34562 | A variable is nonfree in a theorem, inference form. (Contributed by BJ, 28-Jul-2023.) |
⊢ 𝜑 ⇒ ⊢ Ⅎ'𝑥𝜑 | ||
Theorem | bj-nnfnth 34563 | A variable is nonfree in the negation of a theorem, inference form. (Contributed by BJ, 27-Aug-2023.) |
⊢ ¬ 𝜑 ⇒ ⊢ Ⅎ'𝑥𝜑 | ||
Theorem | bj-nnfim1 34564 | A consequence of nonfreeness in the antecedent and the consequent of an implication. (Contributed by BJ, 27-Aug-2023.) |
⊢ ((Ⅎ'𝑥𝜑 ∧ Ⅎ'𝑥𝜓) → ((𝜑 → 𝜓) → (∃𝑥𝜑 → ∀𝑥𝜓))) | ||
Theorem | bj-nnfim2 34565 | A consequence of nonfreeness in the antecedent and the consequent of an implication. (Contributed by BJ, 27-Aug-2023.) |
⊢ ((Ⅎ'𝑥𝜑 ∧ Ⅎ'𝑥𝜓) → ((∀𝑥𝜑 → ∃𝑥𝜓) → (𝜑 → 𝜓))) | ||
Theorem | bj-nnfim 34566 | Nonfreeness in the antecedent and the consequent of an implication implies nonfreeness in the implication. (Contributed by BJ, 27-Aug-2023.) |
⊢ ((Ⅎ'𝑥𝜑 ∧ Ⅎ'𝑥𝜓) → Ⅎ'𝑥(𝜑 → 𝜓)) | ||
Theorem | bj-nnfimd 34567 | Nonfreeness in the antecedent and the consequent of an implication implies nonfreeness in the implication, deduction form. (Contributed by BJ, 2-Dec-2023.) |
⊢ (𝜑 → Ⅎ'𝑥𝜓) & ⊢ (𝜑 → Ⅎ'𝑥𝜒) ⇒ ⊢ (𝜑 → Ⅎ'𝑥(𝜓 → 𝜒)) | ||
Theorem | bj-nnfan 34568 | Nonfreeness in both conjuncts implies nonfreeness in the conjunction. (Contributed by BJ, 19-Nov-2023.) In classical logic, there is a proof using the definition of conjunction in terms of implication and negation, so using bj-nnfim 34566, bj-nnfnt 34560 and bj-nnfbi 34545, but we want a proof valid in intuitionistic logic. (Proof modification is discouraged.) |
⊢ ((Ⅎ'𝑥𝜑 ∧ Ⅎ'𝑥𝜓) → Ⅎ'𝑥(𝜑 ∧ 𝜓)) | ||
Theorem | bj-nnfand 34569 | Nonfreeness in both conjuncts implies nonfreeness in the conjunction, deduction form. Note: compared with the proof of bj-nnfan 34568, it has two more essential steps but fewer total steps (since there are fewer intermediate formulas to build) and is easier to follow and understand. This statement is of intermediate complexity: for simpler statements, closed-style proofs like that of bj-nnfan 34568 will generally be shorter than deduction-style proofs while still easy to follow, while for more complex statements, the opposite will be true (and deduction-style proofs like that of bj-nnfand 34569 will generally be easier to understand). (Contributed by BJ, 19-Nov-2023.) (Proof modification is discouraged.) |
⊢ (𝜑 → Ⅎ'𝑥𝜓) & ⊢ (𝜑 → Ⅎ'𝑥𝜒) ⇒ ⊢ (𝜑 → Ⅎ'𝑥(𝜓 ∧ 𝜒)) | ||
Theorem | bj-nnfor 34570 | Nonfreeness in both disjuncts implies nonfreeness in the disjunction. (Contributed by BJ, 19-Nov-2023.) In classical logic, there is a proof using the definition of disjunction in terms of implication and negation, so using bj-nnfim 34566, bj-nnfnt 34560 and bj-nnfbi 34545, but we want a proof valid in intuitionistic logic. (Proof modification is discouraged.) |
⊢ ((Ⅎ'𝑥𝜑 ∧ Ⅎ'𝑥𝜓) → Ⅎ'𝑥(𝜑 ∨ 𝜓)) | ||
Theorem | bj-nnford 34571 | Nonfreeness in both disjuncts implies nonfreeness in the disjunction, deduction form. See comments for bj-nnfor 34570 and bj-nnfand 34569. (Contributed by BJ, 2-Dec-2023.) (Proof modification is discouraged.) |
⊢ (𝜑 → Ⅎ'𝑥𝜓) & ⊢ (𝜑 → Ⅎ'𝑥𝜒) ⇒ ⊢ (𝜑 → Ⅎ'𝑥(𝜓 ∨ 𝜒)) | ||
Theorem | bj-nnfbit 34572 | Nonfreeness in both sides implies nonfreeness in the biconditional. (Contributed by BJ, 2-Dec-2023.) (Proof modification is discouraged.) |
⊢ ((Ⅎ'𝑥𝜑 ∧ Ⅎ'𝑥𝜓) → Ⅎ'𝑥(𝜑 ↔ 𝜓)) | ||
Theorem | bj-nnfbid 34573 | Nonfreeness in both sides implies nonfreeness in the biconditional, deduction form. (Contributed by BJ, 2-Dec-2023.) (Proof modification is discouraged.) |
⊢ (𝜑 → Ⅎ'𝑥𝜓) & ⊢ (𝜑 → Ⅎ'𝑥𝜒) ⇒ ⊢ (𝜑 → Ⅎ'𝑥(𝜓 ↔ 𝜒)) | ||
Theorem | bj-nnfv 34574* | A non-occurring variable is nonfree in a formula. (Contributed by BJ, 28-Jul-2023.) |
⊢ Ⅎ'𝑥𝜑 | ||
Theorem | bj-nnf-alrim 34575 | Proof of the closed form of alrimi 2215 from modalK (compare alrimiv 1934). See also bj-alrim 34513. Actually, most proofs between 19.3t 2203 and 2sbbid 2248 could be proved without ax-12 2179. (Contributed by BJ, 20-Aug-2023.) |
⊢ (Ⅎ'𝑥𝜑 → (∀𝑥(𝜑 → 𝜓) → (𝜑 → ∀𝑥𝜓))) | ||
Theorem | bj-nnf-exlim 34576 | Proof of the closed form of exlimi 2219 from modalK (compare exlimiv 1937). See also bj-sylget2 34441. (Contributed by BJ, 2-Dec-2023.) |
⊢ (Ⅎ'𝑥𝜓 → (∀𝑥(𝜑 → 𝜓) → (∃𝑥𝜑 → 𝜓))) | ||
Theorem | bj-dfnnf3 34577 | Alternate definition of nonfreeness when sp 2184 is available. (Contributed by BJ, 28-Jul-2023.) The proof should not rely on df-nf 1791. (Proof modification is discouraged.) |
⊢ (Ⅎ'𝑥𝜑 ↔ (∃𝑥𝜑 → ∀𝑥𝜑)) | ||
Theorem | bj-nfnnfTEMP 34578 | New nonfreeness is equivalent to old nonfreeness on core FOL axioms plus sp 2184. (Contributed by BJ, 28-Jul-2023.) The proof should not rely on df-nf 1791 except via df-nf 1791 directly. (Proof modification is discouraged.) |
⊢ (Ⅎ'𝑥𝜑 ↔ Ⅎ𝑥𝜑) | ||
Theorem | bj-nnfa1 34579 | See nfa1 2156. (Contributed by BJ, 12-Aug-2023.) (Proof modification is discouraged.) |
⊢ Ⅎ'𝑥∀𝑥𝜑 | ||
Theorem | bj-nnfe1 34580 | See nfe1 2155. (Contributed by BJ, 12-Aug-2023.) (Proof modification is discouraged.) |
⊢ Ⅎ'𝑥∃𝑥𝜑 | ||
Theorem | bj-19.12 34581 | See 19.12 2329. Could be labeled "exalimalex" for "'there exists for all' implies 'for all there exists'". This proof is from excom 2170 and modal (B) on top of modalK logic. (Contributed by BJ, 12-Aug-2023.) The proof should not rely on df-nf 1791 or df-bj-nnf 34544, directly or indirectly. (Proof modification is discouraged.) |
⊢ (∃𝑥∀𝑦𝜑 → ∀𝑦∃𝑥𝜑) | ||
Theorem | bj-nnflemaa 34582 | One of four lemmas for nonfreeness: antecedent and consequent both expressed using universal quantifier. Note: this is bj-hbalt 34501. (Contributed by BJ, 12-Aug-2023.) (Proof modification is discouraged.) |
⊢ (∀𝑥(𝜑 → ∀𝑦𝜑) → (∀𝑥𝜑 → ∀𝑦∀𝑥𝜑)) | ||
Theorem | bj-nnflemee 34583 | One of four lemmas for nonfreeness: antecedent and consequent both expressed using existential quantifier. (Contributed by BJ, 12-Aug-2023.) (Proof modification is discouraged.) |
⊢ (∀𝑥(∃𝑦𝜑 → 𝜑) → (∃𝑦∃𝑥𝜑 → ∃𝑥𝜑)) | ||
Theorem | bj-nnflemae 34584 | One of four lemmas for nonfreeness: antecedent expressed with universal quantifier and consequent expressed with existential quantifier. (Contributed by BJ, 12-Aug-2023.) (Proof modification is discouraged.) |
⊢ (∀𝑥(𝜑 → ∀𝑦𝜑) → (∃𝑥𝜑 → ∀𝑦∃𝑥𝜑)) | ||
Theorem | bj-nnflemea 34585 | One of four lemmas for nonfreeness: antecedent expressed with existential quantifier and consequent expressed with universal quantifier. (Contributed by BJ, 12-Aug-2023.) (Proof modification is discouraged.) |
⊢ (∀𝑥(∃𝑦𝜑 → 𝜑) → (∃𝑦∀𝑥𝜑 → ∀𝑥𝜑)) | ||
Theorem | bj-nnfalt 34586 | See nfal 2325 and bj-nfalt 34531. (Contributed by BJ, 12-Aug-2023.) (Proof modification is discouraged.) |
⊢ (∀𝑥Ⅎ'𝑦𝜑 → Ⅎ'𝑦∀𝑥𝜑) | ||
Theorem | bj-nnfext 34587 | See nfex 2326 and bj-nfext 34532. (Contributed by BJ, 12-Aug-2023.) (Proof modification is discouraged.) |
⊢ (∀𝑥Ⅎ'𝑦𝜑 → Ⅎ'𝑦∃𝑥𝜑) | ||
Theorem | bj-stdpc5t 34588 | Alias of bj-nnf-alrim 34575 for labeling consistency (a standard predicate calculus axiom). Closed form of stdpc5 2210 proved from modalK (obsoleting stdpc5v 1945). (Contributed by BJ, 2-Dec-2023.) Use bj-nnf-alrim 34575 instead. (New usaged is discouraged.) |
⊢ (Ⅎ'𝑥𝜑 → (∀𝑥(𝜑 → 𝜓) → (𝜑 → ∀𝑥𝜓))) | ||
Theorem | bj-19.21t 34589 | Statement 19.21t 2208 proved from modalK (obsoleting 19.21v 1946). (Contributed by BJ, 2-Dec-2023.) |
⊢ (Ⅎ'𝑥𝜑 → (∀𝑥(𝜑 → 𝜓) ↔ (𝜑 → ∀𝑥𝜓))) | ||
Theorem | bj-19.23t 34590 | Statement 19.23t 2212 proved from modalK (obsoleting 19.23v 1949). (Contributed by BJ, 2-Dec-2023.) |
⊢ (Ⅎ'𝑥𝜓 → (∀𝑥(𝜑 → 𝜓) ↔ (∃𝑥𝜑 → 𝜓))) | ||
Theorem | bj-19.36im 34591 | One direction of 19.36 2232 from the same axioms as 19.36imv 1952. (Contributed by BJ, 2-Dec-2023.) |
⊢ (Ⅎ'𝑥𝜓 → (∃𝑥(𝜑 → 𝜓) → (∀𝑥𝜑 → 𝜓))) | ||
Theorem | bj-19.37im 34592 | One direction of 19.37 2234 from the same axioms as 19.37imv 1955. (Contributed by BJ, 2-Dec-2023.) |
⊢ (Ⅎ'𝑥𝜑 → (∃𝑥(𝜑 → 𝜓) → (𝜑 → ∃𝑥𝜓))) | ||
Theorem | bj-19.42t 34593 | Closed form of 19.42 2238 from the same axioms as 19.42v 1961. (Contributed by BJ, 2-Dec-2023.) |
⊢ (Ⅎ'𝑥𝜑 → (∃𝑥(𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∃𝑥𝜓))) | ||
Theorem | bj-19.41t 34594 | Closed form of 19.41 2237 from the same axioms as 19.41v 1957. The same is doable with 19.27 2229, 19.28 2230, 19.31 2236, 19.32 2235, 19.44 2239, 19.45 2240. (Contributed by BJ, 2-Dec-2023.) |
⊢ (Ⅎ'𝑥𝜓 → (∃𝑥(𝜑 ∧ 𝜓) ↔ (∃𝑥𝜑 ∧ 𝜓))) | ||
Theorem | bj-sbft 34595 | Version of sbft 2270 using Ⅎ', proved from core axioms. (Contributed by BJ, 19-Nov-2023.) |
⊢ (Ⅎ'𝑥𝜑 → ([𝑡 / 𝑥]𝜑 ↔ 𝜑)) | ||
Theorem | bj-axc10 34596 | Alternate proof of axc10 2385. Shorter. One can prove a version with DV (𝑥, 𝑦) without ax-13 2372, by using ax6ev 1977 instead of ax6e 2383. (Contributed by BJ, 31-Mar-2021.) (Proof modification is discouraged.) |
⊢ (∀𝑥(𝑥 = 𝑦 → ∀𝑥𝜑) → 𝜑) | ||
Theorem | bj-alequex 34597 | A fol lemma. See alequexv 2012 for a version with a disjoint variable condition requiring fewer axioms. Can be used to reduce the proof of spimt 2386 from 133 to 112 bytes. (Contributed by BJ, 6-Oct-2018.) |
⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) → ∃𝑥𝜑) | ||
Theorem | bj-spimt2 34598 | A step in the proof of spimt 2386. (Contributed by BJ, 2-May-2019.) |
⊢ (∀𝑥(𝑥 = 𝑦 → (𝜑 → 𝜓)) → ((∃𝑥𝜓 → 𝜓) → (∀𝑥𝜑 → 𝜓))) | ||
Theorem | bj-cbv3ta 34599 | Closed form of cbv3 2397. (Contributed by BJ, 2-May-2019.) |
⊢ (∀𝑥∀𝑦(𝑥 = 𝑦 → (𝜑 → 𝜓)) → ((∀𝑦(∃𝑥𝜓 → 𝜓) ∧ ∀𝑥(𝜑 → ∀𝑦𝜑)) → (∀𝑥𝜑 → ∀𝑦𝜓))) | ||
Theorem | bj-cbv3tb 34600 | Closed form of cbv3 2397. (Contributed by BJ, 2-May-2019.) |
⊢ (∀𝑥∀𝑦(𝑥 = 𝑦 → (𝜑 → 𝜓)) → ((∀𝑦Ⅎ𝑥𝜓 ∧ ∀𝑥Ⅎ𝑦𝜑) → (∀𝑥𝜑 → ∀𝑦𝜓))) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |