Mathbox for David A. Wheeler |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > df-logbALT | Structured version Visualization version GIF version |
Description: Define the log_ operator. This is the logarithm generalized to an arbitrary base. It can be used as ((log_‘𝐵)‘𝑋) for "log base B of X". This formulation suggested by Mario Carneiro. (Contributed by David A. Wheeler, 14-Jul-2017.) (New usage is discouraged.) |
Ref | Expression |
---|---|
df-logbALT | ⊢ log_ = (𝑏 ∈ (ℂ ∖ {0, 1}) ↦ (𝑥 ∈ (ℂ ∖ {0}) ↦ ((log‘𝑥) / (log‘𝑏)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clog- 45675 | . 2 class log_ | |
2 | vb | . . 3 setvar 𝑏 | |
3 | cc 10566 | . . . 4 class ℂ | |
4 | cc0 10568 | . . . . 5 class 0 | |
5 | c1 10569 | . . . . 5 class 1 | |
6 | 4, 5 | cpr 4525 | . . . 4 class {0, 1} |
7 | 3, 6 | cdif 3856 | . . 3 class (ℂ ∖ {0, 1}) |
8 | vx | . . . 4 setvar 𝑥 | |
9 | 4 | csn 4523 | . . . . 5 class {0} |
10 | 3, 9 | cdif 3856 | . . . 4 class (ℂ ∖ {0}) |
11 | 8 | cv 1538 | . . . . . 6 class 𝑥 |
12 | clog 25238 | . . . . . 6 class log | |
13 | 11, 12 | cfv 6336 | . . . . 5 class (log‘𝑥) |
14 | 2 | cv 1538 | . . . . . 6 class 𝑏 |
15 | 14, 12 | cfv 6336 | . . . . 5 class (log‘𝑏) |
16 | cdiv 11328 | . . . . 5 class / | |
17 | 13, 15, 16 | co 7151 | . . . 4 class ((log‘𝑥) / (log‘𝑏)) |
18 | 8, 10, 17 | cmpt 5113 | . . 3 class (𝑥 ∈ (ℂ ∖ {0}) ↦ ((log‘𝑥) / (log‘𝑏))) |
19 | 2, 7, 18 | cmpt 5113 | . 2 class (𝑏 ∈ (ℂ ∖ {0, 1}) ↦ (𝑥 ∈ (ℂ ∖ {0}) ↦ ((log‘𝑥) / (log‘𝑏)))) |
20 | 1, 19 | wceq 1539 | 1 wff log_ = (𝑏 ∈ (ℂ ∖ {0, 1}) ↦ (𝑥 ∈ (ℂ ∖ {0}) ↦ ((log‘𝑥) / (log‘𝑏)))) |
Colors of variables: wff setvar class |
This definition is referenced by: (None) |
Copyright terms: Public domain | W3C validator |