| Metamath
Proof Explorer Theorem List (p. 479 of 500) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30900) |
(30901-32423) |
(32424-49930) |
| Type | Label | Description | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Statement | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | oexpnegALTV 47801 | The exponential of the negative of a number, when the exponent is odd. (Contributed by Mario Carneiro, 25-Apr-2015.) (Revised by AV, 19-Jun-2020.) (Proof shortened by AV, 10-Jul-2022.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∈ Odd ) → (-𝐴↑𝑁) = -(𝐴↑𝑁)) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | oexpnegnz 47802 | The exponential of the negative of a number not being 0, when the exponent is odd. (Contributed by AV, 19-Jun-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ Odd ) → (-𝐴↑𝑁) = -(𝐴↑𝑁)) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | bits0ALTV 47803 | Value of the zeroth bit. (Contributed by Mario Carneiro, 5-Sep-2016.) (Revised by AV, 19-Jun-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ (𝑁 ∈ ℤ → (0 ∈ (bits‘𝑁) ↔ 𝑁 ∈ Odd )) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | bits0eALTV 47804 | The zeroth bit of an even number is zero. (Contributed by Mario Carneiro, 5-Sep-2016.) (Revised by AV, 19-Jun-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ (𝑁 ∈ Even → ¬ 0 ∈ (bits‘𝑁)) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | bits0oALTV 47805 | The zeroth bit of an odd number is zero. (Contributed by Mario Carneiro, 5-Sep-2016.) (Revised by AV, 19-Jun-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ (𝑁 ∈ Odd → 0 ∈ (bits‘𝑁)) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | divgcdoddALTV 47806 | Either 𝐴 / (𝐴 gcd 𝐵) is odd or 𝐵 / (𝐴 gcd 𝐵) is odd. (Contributed by Scott Fenton, 19-Apr-2014.) (Revised by AV, 21-Jun-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴 / (𝐴 gcd 𝐵)) ∈ Odd ∨ (𝐵 / (𝐴 gcd 𝐵)) ∈ Odd )) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | opoeALTV 47807 | The sum of two odds is even. (Contributed by Scott Fenton, 7-Apr-2014.) (Revised by AV, 20-Jun-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ ((𝐴 ∈ Odd ∧ 𝐵 ∈ Odd ) → (𝐴 + 𝐵) ∈ Even ) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | opeoALTV 47808 | The sum of an odd and an even is odd. (Contributed by Scott Fenton, 7-Apr-2014.) (Revised by AV, 20-Jun-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ ((𝐴 ∈ Odd ∧ 𝐵 ∈ Even ) → (𝐴 + 𝐵) ∈ Odd ) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | omoeALTV 47809 | The difference of two odds is even. (Contributed by Scott Fenton, 7-Apr-2014.) (Revised by AV, 20-Jun-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ ((𝐴 ∈ Odd ∧ 𝐵 ∈ Odd ) → (𝐴 − 𝐵) ∈ Even ) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | omeoALTV 47810 | The difference of an odd and an even is odd. (Contributed by Scott Fenton, 7-Apr-2014.) (Revised by AV, 20-Jun-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ ((𝐴 ∈ Odd ∧ 𝐵 ∈ Even ) → (𝐴 − 𝐵) ∈ Odd ) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | oddprmALTV 47811 | A prime not equal to 2 is odd. (Contributed by Mario Carneiro, 4-Feb-2015.) (Revised by AV, 21-Jun-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ (𝑁 ∈ (ℙ ∖ {2}) → 𝑁 ∈ Odd ) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | 0evenALTV 47812 | 0 is an even number. (Contributed by AV, 11-Feb-2020.) (Revised by AV, 17-Jun-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 0 ∈ Even | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | 0noddALTV 47813 | 0 is not an odd number. (Contributed by AV, 3-Feb-2020.) (Revised by AV, 17-Jun-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 0 ∉ Odd | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | 1oddALTV 47814 | 1 is an odd number. (Contributed by AV, 3-Feb-2020.) (Revised by AV, 18-Jun-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 1 ∈ Odd | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | 1nevenALTV 47815 | 1 is not an even number. (Contributed by AV, 12-Feb-2020.) (Revised by AV, 18-Jun-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 1 ∉ Even | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | 2evenALTV 47816 | 2 is an even number. (Contributed by AV, 12-Feb-2020.) (Revised by AV, 18-Jun-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 2 ∈ Even | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | 2noddALTV 47817 | 2 is not an odd number. (Contributed by AV, 3-Feb-2020.) (Revised by AV, 18-Jun-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 2 ∉ Odd | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | nn0o1gt2ALTV 47818 | An odd nonnegative integer is either 1 or greater than 2. (Contributed by AV, 2-Jun-2020.) (Revised by AV, 21-Jun-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑁 ∈ Odd ) → (𝑁 = 1 ∨ 2 < 𝑁)) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | nnoALTV 47819 | An alternate characterization of an odd number greater than 1. (Contributed by AV, 2-Jun-2020.) (Revised by AV, 21-Jun-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ Odd ) → ((𝑁 − 1) / 2) ∈ ℕ) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | nn0oALTV 47820 | An alternate characterization of an odd nonnegative integer. (Contributed by AV, 28-May-2020.) (Revised by AV, 21-Jun-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑁 ∈ Odd ) → ((𝑁 − 1) / 2) ∈ ℕ0) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | nn0e 47821 | An alternate characterization of an even nonnegative integer. (Contributed by AV, 22-Jun-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑁 ∈ Even ) → (𝑁 / 2) ∈ ℕ0) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | nneven 47822 | An alternate characterization of an even positive integer. (Contributed by AV, 5-Jun-2023.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ ((𝑁 ∈ ℕ ∧ 𝑁 ∈ Even ) → (𝑁 / 2) ∈ ℕ) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | nn0onn0exALTV 47823* | For each odd nonnegative integer there is a nonnegative integer which, multiplied by 2 and increased by 1, results in the odd nonnegative integer. (Contributed by AV, 30-May-2020.) (Revised by AV, 22-Jun-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑁 ∈ Odd ) → ∃𝑚 ∈ ℕ0 𝑁 = ((2 · 𝑚) + 1)) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | nn0enn0exALTV 47824* | For each even nonnegative integer there is a nonnegative integer which, multiplied by 2, results in the even nonnegative integer. (Contributed by AV, 30-May-2020.) (Revised by AV, 22-Jun-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑁 ∈ Even ) → ∃𝑚 ∈ ℕ0 𝑁 = (2 · 𝑚)) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | nnennexALTV 47825* | For each even positive integer there is a positive integer which, multiplied by 2, results in the even positive integer. (Contributed by AV, 5-Jun-2023.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ ((𝑁 ∈ ℕ ∧ 𝑁 ∈ Even ) → ∃𝑚 ∈ ℕ 𝑁 = (2 · 𝑚)) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | nnpw2evenALTV 47826 | 2 to the power of a positive integer is even. (Contributed by AV, 2-Jun-2020.) (Revised by AV, 20-Jun-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ (𝑁 ∈ ℕ → (2↑𝑁) ∈ Even ) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | epoo 47827 | The sum of an even and an odd is odd. (Contributed by AV, 24-Jul-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ ((𝐴 ∈ Even ∧ 𝐵 ∈ Odd ) → (𝐴 + 𝐵) ∈ Odd ) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | emoo 47828 | The difference of an even and an odd is odd. (Contributed by AV, 24-Jul-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ ((𝐴 ∈ Even ∧ 𝐵 ∈ Odd ) → (𝐴 − 𝐵) ∈ Odd ) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | epee 47829 | The sum of two even numbers is even. (Contributed by AV, 21-Jul-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ ((𝐴 ∈ Even ∧ 𝐵 ∈ Even ) → (𝐴 + 𝐵) ∈ Even ) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | emee 47830 | The difference of two even numbers is even. (Contributed by AV, 21-Jul-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ ((𝐴 ∈ Even ∧ 𝐵 ∈ Even ) → (𝐴 − 𝐵) ∈ Even ) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | evensumeven 47831 | If a summand is even, the other summand is even iff the sum is even. (Contributed by AV, 21-Jul-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ Even ) → (𝐴 ∈ Even ↔ (𝐴 + 𝐵) ∈ Even )) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | 3odd 47832 | 3 is an odd number. (Contributed by AV, 20-Jul-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 3 ∈ Odd | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | 4even 47833 | 4 is an even number. (Contributed by AV, 23-Jul-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 4 ∈ Even | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | 5odd 47834 | 5 is an odd number. (Contributed by AV, 23-Jul-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 5 ∈ Odd | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | 6even 47835 | 6 is an even number. (Contributed by AV, 20-Jul-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 6 ∈ Even | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | 7odd 47836 | 7 is an odd number. (Contributed by AV, 20-Jul-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 7 ∈ Odd | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | 8even 47837 | 8 is an even number. (Contributed by AV, 23-Jul-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 8 ∈ Even | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | evenprm2 47838 | A prime number is even iff it is 2. (Contributed by AV, 21-Jul-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ (𝑃 ∈ ℙ → (𝑃 ∈ Even ↔ 𝑃 = 2)) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | oddprmne2 47839 | Every prime number not being 2 is an odd prime number. (Contributed by AV, 21-Aug-2021.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ ((𝑃 ∈ ℙ ∧ 𝑃 ∈ Odd ) ↔ 𝑃 ∈ (ℙ ∖ {2})) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | oddprmuzge3 47840 | A prime number which is odd is an integer greater than or equal to 3. (Contributed by AV, 20-Jul-2020.) (Proof shortened by AV, 21-Aug-2021.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ ((𝑃 ∈ ℙ ∧ 𝑃 ∈ Odd ) → 𝑃 ∈ (ℤ≥‘3)) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | evenltle 47841 | If an even number is greater than another even number, then it is greater than or equal to the other even number plus 2. (Contributed by AV, 25-Dec-2021.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ ((𝑁 ∈ Even ∧ 𝑀 ∈ Even ∧ 𝑀 < 𝑁) → (𝑀 + 2) ≤ 𝑁) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | odd2prm2 47842 | If an odd number is the sum of two prime numbers, one of the prime numbers must be 2. (Contributed by AV, 26-Dec-2021.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ ((𝑁 ∈ Odd ∧ (𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) ∧ 𝑁 = (𝑃 + 𝑄)) → (𝑃 = 2 ∨ 𝑄 = 2)) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | even3prm2 47843 | If an even number is the sum of three prime numbers, one of the prime numbers must be 2. (Contributed by AV, 25-Dec-2021.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ ((𝑁 ∈ Even ∧ (𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 = ((𝑃 + 𝑄) + 𝑅)) → (𝑃 = 2 ∨ 𝑄 = 2 ∨ 𝑅 = 2)) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | mogoldbblem 47844* | Lemma for mogoldbb 47909. (Contributed by AV, 26-Dec-2021.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ (((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑅 ∈ ℙ) ∧ 𝑁 ∈ Even ∧ (𝑁 + 2) = ((𝑃 + 𝑄) + 𝑅)) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑁 = (𝑝 + 𝑞)) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | perfectALTVlem1 47845 | Lemma for perfectALTV 47847. (Contributed by Mario Carneiro, 7-Jun-2016.) (Revised by AV, 1-Jul-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ (𝜑 → 𝐴 ∈ ℕ) & ⊢ (𝜑 → 𝐵 ∈ ℕ) & ⊢ (𝜑 → 𝐵 ∈ Odd ) & ⊢ (𝜑 → (1 σ ((2↑𝐴) · 𝐵)) = (2 · ((2↑𝐴) · 𝐵))) ⇒ ⊢ (𝜑 → ((2↑(𝐴 + 1)) ∈ ℕ ∧ ((2↑(𝐴 + 1)) − 1) ∈ ℕ ∧ (𝐵 / ((2↑(𝐴 + 1)) − 1)) ∈ ℕ)) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | perfectALTVlem2 47846 | Lemma for perfectALTV 47847. (Contributed by Mario Carneiro, 17-May-2016.) (Revised by AV, 1-Jul-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ (𝜑 → 𝐴 ∈ ℕ) & ⊢ (𝜑 → 𝐵 ∈ ℕ) & ⊢ (𝜑 → 𝐵 ∈ Odd ) & ⊢ (𝜑 → (1 σ ((2↑𝐴) · 𝐵)) = (2 · ((2↑𝐴) · 𝐵))) ⇒ ⊢ (𝜑 → (𝐵 ∈ ℙ ∧ 𝐵 = ((2↑(𝐴 + 1)) − 1))) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | perfectALTV 47847* | The Euclid-Euler theorem, or Perfect Number theorem. A positive even integer 𝑁 is a perfect number (that is, its divisor sum is 2𝑁) if and only if it is of the form 2↑(𝑝 − 1) · (2↑𝑝 − 1), where 2↑𝑝 − 1 is prime (a Mersenne prime). (It follows from this that 𝑝 is also prime.) This is Metamath 100 proof #70. (Contributed by Mario Carneiro, 17-May-2016.) (Revised by AV, 1-Jul-2020.) (Proof modification is discouraged.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ ((𝑁 ∈ ℕ ∧ 𝑁 ∈ Even ) → ((1 σ 𝑁) = (2 · 𝑁) ↔ ∃𝑝 ∈ ℤ (((2↑𝑝) − 1) ∈ ℙ ∧ 𝑁 = ((2↑(𝑝 − 1)) · ((2↑𝑝) − 1))))) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
"In number theory, the Fermat pseudoprimes make up the most important class of pseudoprimes that come from Fermat's little theorem ... [which] states that if p is prime and a is coprime to p, then a^(p-1)-1 is divisible by p [see fermltl 16697]. For an integer a > 1, if a composite integer x divides a^(x-1)-1, then x is called a Fermat pseudoprime to base a. In other words, a composite integer is a Fermat pseudoprime to base a if it successfully passes the Fermat primality test for the base a. The false statement [see nfermltl2rev 47867] that all numbers that pass the Fermat primality test for base 2, are prime, is called the Chinese hypothesis.", see Wikipedia "Fermat pseudoprime", https://en.wikipedia.org/wiki/Fermat_pseudoprime 47867, 29-May-2023. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Syntax | cfppr 47848 | Extend class notation with the Fermat pseudoprimes. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| class FPPr | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Definition | df-fppr 47849* | Define the function that maps a positive integer to the set of Fermat pseudoprimes to the base of this positive integer. Since Fermat pseudoprimes shall be composite (positive) integers, they must be nonprime integers greater than or equal to 4 (we cannot use 𝑥 ∈ ℕ ∧ 𝑥 ∉ ℙ because 𝑥 = 1 would fulfil this requirement, but should not be regarded as "composite" integer). (Contributed by AV, 29-May-2023.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ FPPr = (𝑛 ∈ ℕ ↦ {𝑥 ∈ (ℤ≥‘4) ∣ (𝑥 ∉ ℙ ∧ 𝑥 ∥ ((𝑛↑(𝑥 − 1)) − 1))}) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | fppr 47850* | The set of Fermat pseudoprimes to the base 𝑁. (Contributed by AV, 29-May-2023.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ (𝑁 ∈ ℕ → ( FPPr ‘𝑁) = {𝑥 ∈ (ℤ≥‘4) ∣ (𝑥 ∉ ℙ ∧ 𝑥 ∥ ((𝑁↑(𝑥 − 1)) − 1))}) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | fpprmod 47851* | The set of Fermat pseudoprimes to the base 𝑁, expressed by a modulo operation instead of the divisibility relation. (Contributed by AV, 30-May-2023.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ (𝑁 ∈ ℕ → ( FPPr ‘𝑁) = {𝑥 ∈ (ℤ≥‘4) ∣ (𝑥 ∉ ℙ ∧ ((𝑁↑(𝑥 − 1)) mod 𝑥) = 1)}) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | fpprel 47852 | A Fermat pseudoprime to the base 𝑁. (Contributed by AV, 30-May-2023.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ (𝑁 ∈ ℕ → (𝑋 ∈ ( FPPr ‘𝑁) ↔ (𝑋 ∈ (ℤ≥‘4) ∧ 𝑋 ∉ ℙ ∧ ((𝑁↑(𝑋 − 1)) mod 𝑋) = 1))) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | fpprbasnn 47853 | The base of a Fermat pseudoprime is a positive integer. (Contributed by AV, 30-May-2023.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ (𝑋 ∈ ( FPPr ‘𝑁) → 𝑁 ∈ ℕ) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | fpprnn 47854 | A Fermat pseudoprime to the base 𝑁 is a positive integer. (Contributed by AV, 30-May-2023.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ (𝑋 ∈ ( FPPr ‘𝑁) → 𝑋 ∈ ℕ) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | fppr2odd 47855 | A Fermat pseudoprime to the base 2 is odd. (Contributed by AV, 5-Jun-2023.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ (𝑋 ∈ ( FPPr ‘2) → 𝑋 ∈ Odd ) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | 11t31e341 47856 | 341 is the product of 11 and 31. (Contributed by AV, 3-Jun-2023.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ (;11 · ;31) = ;;341 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | 2exp340mod341 47857 | Eight to the eighth power modulo nine is one. (Contributed by AV, 3-Jun-2023.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ ((2↑;;340) mod ;;341) = 1 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | 341fppr2 47858 | 341 is the (smallest) Poulet number (Fermat pseudoprime to the base 2). (Contributed by AV, 3-Jun-2023.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ ;;341 ∈ ( FPPr ‘2) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | 4fppr1 47859 | 4 is the (smallest) Fermat pseudoprime to the base 1. (Contributed by AV, 3-Jun-2023.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 4 ∈ ( FPPr ‘1) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | 8exp8mod9 47860 | Eight to the eighth power modulo nine is one. (Contributed by AV, 2-Jun-2023.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ ((8↑8) mod 9) = 1 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | 9fppr8 47861 | 9 is the (smallest) Fermat pseudoprime to the base 8. (Contributed by AV, 2-Jun-2023.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 9 ∈ ( FPPr ‘8) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | dfwppr 47862 | Alternate definition of a weak pseudoprime 𝑋, which fulfils (𝑁↑𝑋)≡𝑁 (modulo 𝑋), see Wikipedia "Fermat pseudoprime", https://en.wikipedia.org/wiki/Fermat_pseudoprime, 29-May-2023. (Contributed by AV, 31-May-2023.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ ((𝑁 ∈ ℕ ∧ 𝑋 ∈ ℕ) → (((𝑁↑𝑋) mod 𝑋) = (𝑁 mod 𝑋) ↔ 𝑋 ∥ ((𝑁↑𝑋) − 𝑁))) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | fpprwppr 47863 | A Fermat pseudoprime to the base 𝑁 is a weak pseudoprime (see Wikipedia "Fermat pseudoprime", 29-May-2023, https://en.wikipedia.org/wiki/Fermat_pseudoprime. (Contributed by AV, 31-May-2023.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ (𝑋 ∈ ( FPPr ‘𝑁) → ((𝑁↑𝑋) mod 𝑋) = (𝑁 mod 𝑋)) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | fpprwpprb 47864 | An integer 𝑋 which is coprime with an integer 𝑁 is a Fermat pseudoprime to the base 𝑁 iff it is a weak pseudoprime to the base 𝑁. (Contributed by AV, 2-Jun-2023.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ ((𝑋 gcd 𝑁) = 1 → (𝑋 ∈ ( FPPr ‘𝑁) ↔ ((𝑋 ∈ (ℤ≥‘4) ∧ 𝑋 ∉ ℙ) ∧ (𝑁 ∈ ℕ ∧ ((𝑁↑𝑋) mod 𝑋) = (𝑁 mod 𝑋))))) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | fpprel2 47865 | An alternate definition for a Fermat pseudoprime to the base 2. (Contributed by AV, 5-Jun-2023.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ (𝑋 ∈ ( FPPr ‘2) ↔ ((𝑋 ∈ (ℤ≥‘2) ∧ 𝑋 ∈ Odd ∧ 𝑋 ∉ ℙ) ∧ ((2↑𝑋) mod 𝑋) = 2)) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | nfermltl8rev 47866 | Fermat's little theorem with base 8 reversed is not generally true: There is an integer 𝑝 (for example 9, see 9fppr8 47861) so that "𝑝 is prime" does not follow from 8↑𝑝≡8 (mod 𝑝). (Contributed by AV, 3-Jun-2023.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ ∃𝑝 ∈ (ℤ≥‘3) ¬ (((8↑𝑝) mod 𝑝) = (8 mod 𝑝) → 𝑝 ∈ ℙ) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | nfermltl2rev 47867 | Fermat's little theorem with base 2 reversed is not generally true: There is an integer 𝑝 (for example 341, see 341fppr2 47858) so that "𝑝 is prime" does not follow from 2↑𝑝≡2 (mod 𝑝). (Contributed by AV, 3-Jun-2023.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ ∃𝑝 ∈ (ℤ≥‘3) ¬ (((2↑𝑝) mod 𝑝) = (2 mod 𝑝) → 𝑝 ∈ ℙ) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | nfermltlrev 47868* | Fermat's little theorem reversed is not generally true: There are integers 𝑎 and 𝑝 so that "𝑝 is prime" does not follow from 𝑎↑𝑝≡𝑎 (mod 𝑝). (Contributed by AV, 3-Jun-2023.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ ∃𝑎 ∈ ℤ ∃𝑝 ∈ (ℤ≥‘3) ¬ (((𝑎↑𝑝) mod 𝑝) = (𝑎 mod 𝑝) → 𝑝 ∈ ℙ) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
According to Wikipedia ("Goldbach's conjecture", 20-Jul-2020,
https://en.wikipedia.org/wiki/Goldbach's_conjecture) "Goldbach's
conjecture ... states: Every even integer greater than 2 can be expressed as
the sum of two primes." "It is also known as strong, even or binary Goldbach
conjecture, to distinguish it from a weaker conjecture, known ... as the
_Goldbach's weak conjecture_, the _odd Goldbach conjecture_, or the _ternary
Goldbach conjecture_. This weak conjecture asserts that all odd numbers
greater than 7 are the sum of three odd primes.". In the following, the
terms "binary Goldbach conjecture" resp. "ternary Goldbach conjecture" will
be used (following the terminology used in [Helfgott] p. 2), because there
are a strong and a weak version of the ternary Goldbach conjecture. The term
_Goldbach partition_ is used for a sum of two resp. three (odd) primes
resulting in an even resp. odd number without further specialization.
Summary/glossary:
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Syntax | cgbe 47869 | Extend the definition of a class to include the set of even numbers which have a Goldbach partition. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| class GoldbachEven | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Syntax | cgbow 47870 | Extend the definition of a class to include the set of odd numbers which can be written as a sum of three primes. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| class GoldbachOddW | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Syntax | cgbo 47871 | Extend the definition of a class to include the set of odd numbers which can be written as a sum of three odd primes. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| class GoldbachOdd | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Definition | df-gbe 47872* | Define the set of (even) Goldbach numbers, which are positive even integers that can be expressed as the sum of two odd primes. By this definition, the binary Goldbach conjecture can be expressed as ∀𝑛 ∈ Even (4 < 𝑛 → 𝑛 ∈ GoldbachEven ). (Contributed by AV, 14-Jun-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ GoldbachEven = {𝑧 ∈ Even ∣ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑧 = (𝑝 + 𝑞))} | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Definition | df-gbow 47873* | Define the set of weak odd Goldbach numbers, which are positive odd integers that can be expressed as the sum of three primes. By this definition, the weak ternary Goldbach conjecture can be expressed as ∀𝑚 ∈ Odd (5 < 𝑚 → 𝑚 ∈ GoldbachOddW ). (Contributed by AV, 14-Jun-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ GoldbachOddW = {𝑧 ∈ Odd ∣ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑧 = ((𝑝 + 𝑞) + 𝑟)} | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Definition | df-gbo 47874* | Define the set of (strong) odd Goldbach numbers, which are positive odd integers that can be expressed as the sum of three odd primes. By this definition, the strong ternary Goldbach conjecture can be expressed as ∀𝑚 ∈ Odd (7 < 𝑚 → 𝑚 ∈ GoldbachOdd ). (Contributed by AV, 26-Jul-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ GoldbachOdd = {𝑧 ∈ Odd ∣ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑧 = ((𝑝 + 𝑞) + 𝑟))} | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | isgbe 47875* | The predicate "is an even Goldbach number". An even Goldbach number is an even integer having a Goldbach partition, i.e. which can be written as a sum of two odd primes. (Contributed by AV, 20-Jul-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ (𝑍 ∈ GoldbachEven ↔ (𝑍 ∈ Even ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ (𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑍 = (𝑝 + 𝑞)))) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | isgbow 47876* | The predicate "is a weak odd Goldbach number". A weak odd Goldbach number is an odd integer having a Goldbach partition, i.e. which can be written as a sum of three primes. (Contributed by AV, 20-Jul-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ (𝑍 ∈ GoldbachOddW ↔ (𝑍 ∈ Odd ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑍 = ((𝑝 + 𝑞) + 𝑟))) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | isgbo 47877* | The predicate "is an odd Goldbach number". An odd Goldbach number is an odd integer having a Goldbach partition, i.e. which can be written as sum of three odd primes. (Contributed by AV, 26-Jul-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ (𝑍 ∈ GoldbachOdd ↔ (𝑍 ∈ Odd ∧ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑍 = ((𝑝 + 𝑞) + 𝑟)))) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | gbeeven 47878 | An even Goldbach number is even. (Contributed by AV, 25-Jul-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ (𝑍 ∈ GoldbachEven → 𝑍 ∈ Even ) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | gbowodd 47879 | A weak odd Goldbach number is odd. (Contributed by AV, 25-Jul-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ (𝑍 ∈ GoldbachOddW → 𝑍 ∈ Odd ) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | gbogbow 47880 | A (strong) odd Goldbach number is a weak Goldbach number. (Contributed by AV, 26-Jul-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ (𝑍 ∈ GoldbachOdd → 𝑍 ∈ GoldbachOddW ) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | gboodd 47881 | An odd Goldbach number is odd. (Contributed by AV, 26-Jul-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ (𝑍 ∈ GoldbachOdd → 𝑍 ∈ Odd ) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | gbepos 47882 | Any even Goldbach number is positive. (Contributed by AV, 20-Jul-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ (𝑍 ∈ GoldbachEven → 𝑍 ∈ ℕ) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | gbowpos 47883 | Any weak odd Goldbach number is positive. (Contributed by AV, 20-Jul-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ (𝑍 ∈ GoldbachOddW → 𝑍 ∈ ℕ) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | gbopos 47884 | Any odd Goldbach number is positive. (Contributed by AV, 26-Jul-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ (𝑍 ∈ GoldbachOdd → 𝑍 ∈ ℕ) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | gbegt5 47885 | Any even Goldbach number is greater than 5. (Contributed by AV, 20-Jul-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ (𝑍 ∈ GoldbachEven → 5 < 𝑍) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | gbowgt5 47886 | Any weak odd Goldbach number is greater than 5. (Contributed by AV, 20-Jul-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ (𝑍 ∈ GoldbachOddW → 5 < 𝑍) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | gbowge7 47887 | Any weak odd Goldbach number is greater than or equal to 7. Because of 7gbow 47896, this bound is strict. (Contributed by AV, 20-Jul-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ (𝑍 ∈ GoldbachOddW → 7 ≤ 𝑍) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | gboge9 47888 | Any odd Goldbach number is greater than or equal to 9. Because of 9gbo 47898, this bound is strict. (Contributed by AV, 26-Jul-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ (𝑍 ∈ GoldbachOdd → 9 ≤ 𝑍) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | gbege6 47889 | Any even Goldbach number is greater than or equal to 6. Because of 6gbe 47895, this bound is strict. (Contributed by AV, 20-Jul-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ (𝑍 ∈ GoldbachEven → 6 ≤ 𝑍) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | gbpart6 47890 | The Goldbach partition of 6. (Contributed by AV, 20-Jul-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 6 = (3 + 3) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | gbpart7 47891 | The (weak) Goldbach partition of 7. (Contributed by AV, 20-Jul-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 7 = ((2 + 2) + 3) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | gbpart8 47892 | The Goldbach partition of 8. (Contributed by AV, 20-Jul-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 8 = (3 + 5) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | gbpart9 47893 | The (strong) Goldbach partition of 9. (Contributed by AV, 26-Jul-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 9 = ((3 + 3) + 3) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | gbpart11 47894 | The (strong) Goldbach partition of 11. (Contributed by AV, 29-Jul-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ ;11 = ((3 + 3) + 5) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | 6gbe 47895 | 6 is an even Goldbach number. (Contributed by AV, 20-Jul-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 6 ∈ GoldbachEven | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | 7gbow 47896 | 7 is a weak odd Goldbach number. (Contributed by AV, 20-Jul-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 7 ∈ GoldbachOddW | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | 8gbe 47897 | 8 is an even Goldbach number. (Contributed by AV, 20-Jul-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 8 ∈ GoldbachEven | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | 9gbo 47898 | 9 is an odd Goldbach number. (Contributed by AV, 26-Jul-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ 9 ∈ GoldbachOdd | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | 11gbo 47899 | 11 is an odd Goldbach number. (Contributed by AV, 29-Jul-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ ;11 ∈ GoldbachOdd | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| Theorem | stgoldbwt 47900 | If the strong ternary Goldbach conjecture is valid, then the weak ternary Goldbach conjecture holds, too. (Contributed by AV, 27-Jul-2020.) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| ⊢ (∀𝑛 ∈ Odd (7 < 𝑛 → 𝑛 ∈ GoldbachOdd ) → ∀𝑛 ∈ Odd (5 < 𝑛 → 𝑛 ∈ GoldbachOddW )) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |