| Metamath
Proof Explorer Theorem List (p. 479 of 499) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30893) |
(30894-32416) |
(32417-49836) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | 6gbe 47801 | 6 is an even Goldbach number. (Contributed by AV, 20-Jul-2020.) |
| ⊢ 6 ∈ GoldbachEven | ||
| Theorem | 7gbow 47802 | 7 is a weak odd Goldbach number. (Contributed by AV, 20-Jul-2020.) |
| ⊢ 7 ∈ GoldbachOddW | ||
| Theorem | 8gbe 47803 | 8 is an even Goldbach number. (Contributed by AV, 20-Jul-2020.) |
| ⊢ 8 ∈ GoldbachEven | ||
| Theorem | 9gbo 47804 | 9 is an odd Goldbach number. (Contributed by AV, 26-Jul-2020.) |
| ⊢ 9 ∈ GoldbachOdd | ||
| Theorem | 11gbo 47805 | 11 is an odd Goldbach number. (Contributed by AV, 29-Jul-2020.) |
| ⊢ ;11 ∈ GoldbachOdd | ||
| Theorem | stgoldbwt 47806 | If the strong ternary Goldbach conjecture is valid, then the weak ternary Goldbach conjecture holds, too. (Contributed by AV, 27-Jul-2020.) |
| ⊢ (∀𝑛 ∈ Odd (7 < 𝑛 → 𝑛 ∈ GoldbachOdd ) → ∀𝑛 ∈ Odd (5 < 𝑛 → 𝑛 ∈ GoldbachOddW )) | ||
| Theorem | sbgoldbwt 47807* | If the strong binary Goldbach conjecture is valid, then the (weak) ternary Goldbach conjecture holds, too. (Contributed by AV, 20-Jul-2020.) |
| ⊢ (∀𝑛 ∈ Even (4 < 𝑛 → 𝑛 ∈ GoldbachEven ) → ∀𝑚 ∈ Odd (5 < 𝑚 → 𝑚 ∈ GoldbachOddW )) | ||
| Theorem | sbgoldbst 47808* | If the strong binary Goldbach conjecture is valid, then the (strong) ternary Goldbach conjecture holds, too. (Contributed by AV, 26-Jul-2020.) |
| ⊢ (∀𝑛 ∈ Even (4 < 𝑛 → 𝑛 ∈ GoldbachEven ) → ∀𝑚 ∈ Odd (7 < 𝑚 → 𝑚 ∈ GoldbachOdd )) | ||
| Theorem | sbgoldbaltlem1 47809 | Lemma 1 for sbgoldbalt 47811: If an even number greater than 4 is the sum of two primes, one of the prime summands must be odd, i.e. not 2. (Contributed by AV, 22-Jul-2020.) |
| ⊢ ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) → ((𝑁 ∈ Even ∧ 4 < 𝑁 ∧ 𝑁 = (𝑃 + 𝑄)) → 𝑄 ∈ Odd )) | ||
| Theorem | sbgoldbaltlem2 47810 | Lemma 2 for sbgoldbalt 47811: If an even number greater than 4 is the sum of two primes, the primes must be odd, i.e. not 2. (Contributed by AV, 22-Jul-2020.) |
| ⊢ ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) → ((𝑁 ∈ Even ∧ 4 < 𝑁 ∧ 𝑁 = (𝑃 + 𝑄)) → (𝑃 ∈ Odd ∧ 𝑄 ∈ Odd ))) | ||
| Theorem | sbgoldbalt 47811* | An alternate (related to the original) formulation of the binary Goldbach conjecture: Every even integer greater than 2 can be expressed as the sum of two primes. (Contributed by AV, 22-Jul-2020.) |
| ⊢ (∀𝑛 ∈ Even (4 < 𝑛 → 𝑛 ∈ GoldbachEven ) ↔ ∀𝑛 ∈ Even (2 < 𝑛 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞))) | ||
| Theorem | sbgoldbb 47812* | If the strong binary Goldbach conjecture is valid, the binary Goldbach conjecture is valid. (Contributed by AV, 23-Dec-2021.) |
| ⊢ (∀𝑛 ∈ Even (4 < 𝑛 → 𝑛 ∈ GoldbachEven ) → ∀𝑛 ∈ Even (2 < 𝑛 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞))) | ||
| Theorem | sgoldbeven3prm 47813* | If the binary Goldbach conjecture is valid, then an even integer greater than 5 can be expressed as the sum of three primes: Since (𝑁 − 2) is even iff 𝑁 is even, there would be primes 𝑝 and 𝑞 with (𝑁 − 2) = (𝑝 + 𝑞), and therefore 𝑁 = ((𝑝 + 𝑞) + 2). (Contributed by AV, 24-Dec-2021.) |
| ⊢ (∀𝑛 ∈ Even (4 < 𝑛 → 𝑛 ∈ GoldbachEven ) → ((𝑁 ∈ Even ∧ 6 ≤ 𝑁) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑁 = ((𝑝 + 𝑞) + 𝑟))) | ||
| Theorem | sbgoldbm 47814* | If the strong binary Goldbach conjecture is valid, the modern version of the original formulation of the Goldbach conjecture also holds: Every integer greater than 5 can be expressed as the sum of three primes. (Contributed by AV, 24-Dec-2021.) |
| ⊢ (∀𝑛 ∈ Even (4 < 𝑛 → 𝑛 ∈ GoldbachEven ) → ∀𝑛 ∈ (ℤ≥‘6)∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟)) | ||
| Theorem | mogoldbb 47815* | If the modern version of the original formulation of the Goldbach conjecture is valid, the (weak) binary Goldbach conjecture also holds. (Contributed by AV, 26-Dec-2021.) |
| ⊢ (∀𝑛 ∈ (ℤ≥‘6)∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟) → ∀𝑛 ∈ Even (2 < 𝑛 → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ 𝑛 = (𝑝 + 𝑞))) | ||
| Theorem | sbgoldbmb 47816* | The strong binary Goldbach conjecture and the modern version of the original formulation of the Goldbach conjecture are equivalent. (Contributed by AV, 26-Dec-2021.) |
| ⊢ (∀𝑛 ∈ Even (4 < 𝑛 → 𝑛 ∈ GoldbachEven ) ↔ ∀𝑛 ∈ (ℤ≥‘6)∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ 𝑛 = ((𝑝 + 𝑞) + 𝑟)) | ||
| Theorem | sbgoldbo 47817* | If the strong binary Goldbach conjecture is valid, the original formulation of the Goldbach conjecture also holds: Every integer greater than 2 can be expressed as the sum of three "primes" with regarding 1 to be a prime (as Goldbach did). Original text: "Es scheint wenigstens, dass eine jede Zahl, die groesser ist als 2, ein aggregatum trium numerorum primorum sey." (Goldbach, 1742). (Contributed by AV, 25-Dec-2021.) |
| ⊢ 𝑃 = ({1} ∪ ℙ) ⇒ ⊢ (∀𝑛 ∈ Even (4 < 𝑛 → 𝑛 ∈ GoldbachEven ) → ∀𝑛 ∈ (ℤ≥‘3)∃𝑝 ∈ 𝑃 ∃𝑞 ∈ 𝑃 ∃𝑟 ∈ 𝑃 𝑛 = ((𝑝 + 𝑞) + 𝑟)) | ||
| Theorem | nnsum3primes4 47818* | 4 is the sum of at most 3 (actually 2) primes. (Contributed by AV, 2-Aug-2020.) |
| ⊢ ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 4 = Σ𝑘 ∈ (1...𝑑)(𝑓‘𝑘)) | ||
| Theorem | nnsum4primes4 47819* | 4 is the sum of at most 4 (actually 2) primes. (Contributed by AV, 23-Jul-2020.) (Proof shortened by AV, 2-Aug-2020.) |
| ⊢ ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 4 ∧ 4 = Σ𝑘 ∈ (1...𝑑)(𝑓‘𝑘)) | ||
| Theorem | nnsum3primesprm 47820* | Every prime is "the sum of at most 3" (actually one - the prime itself) primes. (Contributed by AV, 2-Aug-2020.) (Proof shortened by AV, 17-Apr-2021.) |
| ⊢ (𝑃 ∈ ℙ → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 𝑃 = Σ𝑘 ∈ (1...𝑑)(𝑓‘𝑘))) | ||
| Theorem | nnsum4primesprm 47821* | Every prime is "the sum of at most 4" (actually one - the prime itself) primes. (Contributed by AV, 23-Jul-2020.) (Proof shortened by AV, 2-Aug-2020.) |
| ⊢ (𝑃 ∈ ℙ → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 4 ∧ 𝑃 = Σ𝑘 ∈ (1...𝑑)(𝑓‘𝑘))) | ||
| Theorem | nnsum3primesgbe 47822* | Any even Goldbach number is the sum of at most 3 (actually 2) primes. (Contributed by AV, 2-Aug-2020.) |
| ⊢ (𝑁 ∈ GoldbachEven → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ (1...𝑑)(𝑓‘𝑘))) | ||
| Theorem | nnsum4primesgbe 47823* | Any even Goldbach number is the sum of at most 4 (actually 2) primes. (Contributed by AV, 23-Jul-2020.) (Proof shortened by AV, 2-Aug-2020.) |
| ⊢ (𝑁 ∈ GoldbachEven → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 4 ∧ 𝑁 = Σ𝑘 ∈ (1...𝑑)(𝑓‘𝑘))) | ||
| Theorem | nnsum3primesle9 47824* | Every integer greater than 1 and less than or equal to 8 is the sum of at most 3 primes. (Contributed by AV, 2-Aug-2020.) |
| ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ 𝑁 ≤ 8) → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 𝑁 = Σ𝑘 ∈ (1...𝑑)(𝑓‘𝑘))) | ||
| Theorem | nnsum4primesle9 47825* | Every integer greater than 1 and less than or equal to 8 is the sum of at most 4 primes. (Contributed by AV, 24-Jul-2020.) (Proof shortened by AV, 2-Aug-2020.) |
| ⊢ ((𝑁 ∈ (ℤ≥‘2) ∧ 𝑁 ≤ 8) → ∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 4 ∧ 𝑁 = Σ𝑘 ∈ (1...𝑑)(𝑓‘𝑘))) | ||
| Theorem | nnsum4primesodd 47826* | If the (weak) ternary Goldbach conjecture is valid, then every odd integer greater than 5 is the sum of 3 primes. (Contributed by AV, 2-Jul-2020.) |
| ⊢ (∀𝑚 ∈ Odd (5 < 𝑚 → 𝑚 ∈ GoldbachOddW ) → ((𝑁 ∈ (ℤ≥‘6) ∧ 𝑁 ∈ Odd ) → ∃𝑓 ∈ (ℙ ↑m (1...3))𝑁 = Σ𝑘 ∈ (1...3)(𝑓‘𝑘))) | ||
| Theorem | nnsum4primesoddALTV 47827* | If the (strong) ternary Goldbach conjecture is valid, then every odd integer greater than 7 is the sum of 3 primes. (Contributed by AV, 26-Jul-2020.) |
| ⊢ (∀𝑚 ∈ Odd (7 < 𝑚 → 𝑚 ∈ GoldbachOdd ) → ((𝑁 ∈ (ℤ≥‘8) ∧ 𝑁 ∈ Odd ) → ∃𝑓 ∈ (ℙ ↑m (1...3))𝑁 = Σ𝑘 ∈ (1...3)(𝑓‘𝑘))) | ||
| Theorem | evengpop3 47828* | If the (weak) ternary Goldbach conjecture is valid, then every even integer greater than 8 is the sum of an odd Goldbach number and 3. (Contributed by AV, 24-Jul-2020.) |
| ⊢ (∀𝑚 ∈ Odd (5 < 𝑚 → 𝑚 ∈ GoldbachOddW ) → ((𝑁 ∈ (ℤ≥‘9) ∧ 𝑁 ∈ Even ) → ∃𝑜 ∈ GoldbachOddW 𝑁 = (𝑜 + 3))) | ||
| Theorem | evengpoap3 47829* | If the (strong) ternary Goldbach conjecture is valid, then every even integer greater than 10 is the sum of an odd Goldbach number and 3. (Contributed by AV, 27-Jul-2020.) (Proof shortened by AV, 15-Sep-2021.) |
| ⊢ (∀𝑚 ∈ Odd (7 < 𝑚 → 𝑚 ∈ GoldbachOdd ) → ((𝑁 ∈ (ℤ≥‘;12) ∧ 𝑁 ∈ Even ) → ∃𝑜 ∈ GoldbachOdd 𝑁 = (𝑜 + 3))) | ||
| Theorem | nnsum4primeseven 47830* | If the (weak) ternary Goldbach conjecture is valid, then every even integer greater than 8 is the sum of 4 primes. (Contributed by AV, 25-Jul-2020.) |
| ⊢ (∀𝑚 ∈ Odd (5 < 𝑚 → 𝑚 ∈ GoldbachOddW ) → ((𝑁 ∈ (ℤ≥‘9) ∧ 𝑁 ∈ Even ) → ∃𝑓 ∈ (ℙ ↑m (1...4))𝑁 = Σ𝑘 ∈ (1...4)(𝑓‘𝑘))) | ||
| Theorem | nnsum4primesevenALTV 47831* | If the (strong) ternary Goldbach conjecture is valid, then every even integer greater than 10 is the sum of 4 primes. (Contributed by AV, 27-Jul-2020.) |
| ⊢ (∀𝑚 ∈ Odd (7 < 𝑚 → 𝑚 ∈ GoldbachOdd ) → ((𝑁 ∈ (ℤ≥‘;12) ∧ 𝑁 ∈ Even ) → ∃𝑓 ∈ (ℙ ↑m (1...4))𝑁 = Σ𝑘 ∈ (1...4)(𝑓‘𝑘))) | ||
| Theorem | wtgoldbnnsum4prm 47832* | If the (weak) ternary Goldbach conjecture is valid, then every integer greater than 1 is the sum of at most 4 primes, showing that Schnirelmann's constant would be less than or equal to 4. See corollary 1.1 in [Helfgott] p. 4. (Contributed by AV, 25-Jul-2020.) |
| ⊢ (∀𝑚 ∈ Odd (5 < 𝑚 → 𝑚 ∈ GoldbachOddW ) → ∀𝑛 ∈ (ℤ≥‘2)∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 4 ∧ 𝑛 = Σ𝑘 ∈ (1...𝑑)(𝑓‘𝑘))) | ||
| Theorem | stgoldbnnsum4prm 47833* | If the (strong) ternary Goldbach conjecture is valid, then every integer greater than 1 is the sum of at most 4 primes. (Contributed by AV, 27-Jul-2020.) |
| ⊢ (∀𝑚 ∈ Odd (7 < 𝑚 → 𝑚 ∈ GoldbachOdd ) → ∀𝑛 ∈ (ℤ≥‘2)∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 4 ∧ 𝑛 = Σ𝑘 ∈ (1...𝑑)(𝑓‘𝑘))) | ||
| Theorem | bgoldbnnsum3prm 47834* | If the binary Goldbach conjecture is valid, then every integer greater than 1 is the sum of at most 3 primes, showing that Schnirelmann's constant would be equal to 3. (Contributed by AV, 2-Aug-2020.) |
| ⊢ (∀𝑚 ∈ Even (4 < 𝑚 → 𝑚 ∈ GoldbachEven ) → ∀𝑛 ∈ (ℤ≥‘2)∃𝑑 ∈ ℕ ∃𝑓 ∈ (ℙ ↑m (1...𝑑))(𝑑 ≤ 3 ∧ 𝑛 = Σ𝑘 ∈ (1...𝑑)(𝑓‘𝑘))) | ||
| Theorem | bgoldbtbndlem1 47835 | Lemma 1 for bgoldbtbnd 47839: the odd numbers between 7 and 13 (exclusive) are odd Goldbach numbers. (Contributed by AV, 29-Jul-2020.) |
| ⊢ ((𝑁 ∈ Odd ∧ 7 < 𝑁 ∧ 𝑁 ∈ (7[,);13)) → 𝑁 ∈ GoldbachOdd ) | ||
| Theorem | bgoldbtbndlem2 47836* | Lemma 2 for bgoldbtbnd 47839. (Contributed by AV, 1-Aug-2020.) |
| ⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘;11)) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘;11)) & ⊢ (𝜑 → ∀𝑛 ∈ Even ((4 < 𝑛 ∧ 𝑛 < 𝑁) → 𝑛 ∈ GoldbachEven )) & ⊢ (𝜑 → 𝐷 ∈ (ℤ≥‘3)) & ⊢ (𝜑 → 𝐹 ∈ (RePart‘𝐷)) & ⊢ (𝜑 → ∀𝑖 ∈ (0..^𝐷)((𝐹‘𝑖) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑖 + 1)) − (𝐹‘𝑖)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑖 + 1)) − (𝐹‘𝑖)))) & ⊢ (𝜑 → (𝐹‘0) = 7) & ⊢ (𝜑 → (𝐹‘1) = ;13) & ⊢ (𝜑 → 𝑀 < (𝐹‘𝐷)) & ⊢ 𝑆 = (𝑋 − (𝐹‘(𝐼 − 1))) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) → ((𝑋 ∈ ((𝐹‘𝐼)[,)(𝐹‘(𝐼 + 1))) ∧ (𝑋 − (𝐹‘𝐼)) ≤ 4) → (𝑆 ∈ Even ∧ 𝑆 < 𝑁 ∧ 4 < 𝑆))) | ||
| Theorem | bgoldbtbndlem3 47837* | Lemma 3 for bgoldbtbnd 47839. (Contributed by AV, 1-Aug-2020.) |
| ⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘;11)) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘;11)) & ⊢ (𝜑 → ∀𝑛 ∈ Even ((4 < 𝑛 ∧ 𝑛 < 𝑁) → 𝑛 ∈ GoldbachEven )) & ⊢ (𝜑 → 𝐷 ∈ (ℤ≥‘3)) & ⊢ (𝜑 → 𝐹 ∈ (RePart‘𝐷)) & ⊢ (𝜑 → ∀𝑖 ∈ (0..^𝐷)((𝐹‘𝑖) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑖 + 1)) − (𝐹‘𝑖)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑖 + 1)) − (𝐹‘𝑖)))) & ⊢ (𝜑 → (𝐹‘0) = 7) & ⊢ (𝜑 → (𝐹‘1) = ;13) & ⊢ (𝜑 → 𝑀 < (𝐹‘𝐷)) & ⊢ (𝜑 → (𝐹‘𝐷) ∈ ℝ) & ⊢ 𝑆 = (𝑋 − (𝐹‘𝐼)) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ Odd ∧ 𝐼 ∈ (1..^𝐷)) → ((𝑋 ∈ ((𝐹‘𝐼)[,)(𝐹‘(𝐼 + 1))) ∧ 4 < 𝑆) → (𝑆 ∈ Even ∧ 𝑆 < 𝑁 ∧ 4 < 𝑆))) | ||
| Theorem | bgoldbtbndlem4 47838* | Lemma 4 for bgoldbtbnd 47839. (Contributed by AV, 1-Aug-2020.) |
| ⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘;11)) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘;11)) & ⊢ (𝜑 → ∀𝑛 ∈ Even ((4 < 𝑛 ∧ 𝑛 < 𝑁) → 𝑛 ∈ GoldbachEven )) & ⊢ (𝜑 → 𝐷 ∈ (ℤ≥‘3)) & ⊢ (𝜑 → 𝐹 ∈ (RePart‘𝐷)) & ⊢ (𝜑 → ∀𝑖 ∈ (0..^𝐷)((𝐹‘𝑖) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑖 + 1)) − (𝐹‘𝑖)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑖 + 1)) − (𝐹‘𝑖)))) & ⊢ (𝜑 → (𝐹‘0) = 7) & ⊢ (𝜑 → (𝐹‘1) = ;13) & ⊢ (𝜑 → 𝑀 < (𝐹‘𝐷)) & ⊢ (𝜑 → (𝐹‘𝐷) ∈ ℝ) ⇒ ⊢ (((𝜑 ∧ 𝐼 ∈ (1..^𝐷)) ∧ 𝑋 ∈ Odd ) → ((𝑋 ∈ ((𝐹‘𝐼)[,)(𝐹‘(𝐼 + 1))) ∧ (𝑋 − (𝐹‘𝐼)) ≤ 4) → ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ Odd ∧ 𝑞 ∈ Odd ∧ 𝑟 ∈ Odd ) ∧ 𝑋 = ((𝑝 + 𝑞) + 𝑟)))) | ||
| Theorem | bgoldbtbnd 47839* | If the binary Goldbach conjecture is valid up to an integer 𝑁, and there is a series ("ladder") of primes with a difference of at most 𝑁 up to an integer 𝑀, then the strong ternary Goldbach conjecture is valid up to 𝑀, see section 1.2.2 in [Helfgott] p. 4 with N = 4 x 10^18, taken from [OeSilva], and M = 8.875 x 10^30. (Contributed by AV, 1-Aug-2020.) |
| ⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘;11)) & ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘;11)) & ⊢ (𝜑 → ∀𝑛 ∈ Even ((4 < 𝑛 ∧ 𝑛 < 𝑁) → 𝑛 ∈ GoldbachEven )) & ⊢ (𝜑 → 𝐷 ∈ (ℤ≥‘3)) & ⊢ (𝜑 → 𝐹 ∈ (RePart‘𝐷)) & ⊢ (𝜑 → ∀𝑖 ∈ (0..^𝐷)((𝐹‘𝑖) ∈ (ℙ ∖ {2}) ∧ ((𝐹‘(𝑖 + 1)) − (𝐹‘𝑖)) < (𝑁 − 4) ∧ 4 < ((𝐹‘(𝑖 + 1)) − (𝐹‘𝑖)))) & ⊢ (𝜑 → (𝐹‘0) = 7) & ⊢ (𝜑 → (𝐹‘1) = ;13) & ⊢ (𝜑 → 𝑀 < (𝐹‘𝐷)) & ⊢ (𝜑 → (𝐹‘𝐷) ∈ ℝ) ⇒ ⊢ (𝜑 → ∀𝑛 ∈ Odd ((7 < 𝑛 ∧ 𝑛 < 𝑀) → 𝑛 ∈ GoldbachOdd )) | ||
| Axiom | ax-bgbltosilva 47840 | The binary Goldbach conjecture is valid for all even numbers less than or equal to 4x10^18, see section 2 in [OeSilva] p. 2042. Temporarily provided as "axiom". (Contributed by AV, 3-Aug-2020.) (Revised by AV, 9-Sep-2021.) |
| ⊢ ((𝑁 ∈ Even ∧ 4 < 𝑁 ∧ 𝑁 ≤ (4 · (;10↑;18))) → 𝑁 ∈ GoldbachEven ) | ||
| Axiom | ax-tgoldbachgt 47841* | Temporary duplicate of tgoldbachgt 34671, provided as "axiom" as long as this theorem is in the mathbox of Thierry Arnoux: Odd integers greater than (;10↑;27) have at least a representation as a sum of three odd primes. Final statement in section 7.4 of [Helfgott] p. 70 , expressed using the set 𝐺 of odd numbers which can be written as a sum of three odd primes. (Contributed by Thierry Arnoux, 22-Dec-2021.) |
| ⊢ 𝑂 = {𝑧 ∈ ℤ ∣ ¬ 2 ∥ 𝑧} & ⊢ 𝐺 = {𝑧 ∈ 𝑂 ∣ ∃𝑝 ∈ ℙ ∃𝑞 ∈ ℙ ∃𝑟 ∈ ℙ ((𝑝 ∈ 𝑂 ∧ 𝑞 ∈ 𝑂 ∧ 𝑟 ∈ 𝑂) ∧ 𝑧 = ((𝑝 + 𝑞) + 𝑟))} ⇒ ⊢ ∃𝑚 ∈ ℕ (𝑚 ≤ (;10↑;27) ∧ ∀𝑛 ∈ 𝑂 (𝑚 < 𝑛 → 𝑛 ∈ 𝐺)) | ||
| Theorem | tgoldbachgtALTV 47842* | Variant of Thierry Arnoux's tgoldbachgt 34671 using the symbols Odd and GoldbachOdd: The ternary Goldbach conjecture is valid for large odd numbers (i.e. for all odd numbers greater than a fixed 𝑚). This is proven by Helfgott (see section 7.4 in [Helfgott] p. 70) for 𝑚 = 10^27. (Contributed by AV, 2-Aug-2020.) (Revised by AV, 15-Jan-2022.) |
| ⊢ ∃𝑚 ∈ ℕ (𝑚 ≤ (;10↑;27) ∧ ∀𝑛 ∈ Odd (𝑚 < 𝑛 → 𝑛 ∈ GoldbachOdd )) | ||
| Theorem | bgoldbachlt 47843* | The binary Goldbach conjecture is valid for small even numbers (i.e. for all even numbers less than or equal to a fixed big 𝑚). This is verified for m = 4 x 10^18 by Oliveira e Silva, see ax-bgbltosilva 47840. (Contributed by AV, 3-Aug-2020.) (Revised by AV, 9-Sep-2021.) |
| ⊢ ∃𝑚 ∈ ℕ ((4 · (;10↑;18)) ≤ 𝑚 ∧ ∀𝑛 ∈ Even ((4 < 𝑛 ∧ 𝑛 < 𝑚) → 𝑛 ∈ GoldbachEven )) | ||
| Axiom | ax-hgprmladder 47844 | There is a partition ("ladder") of primes from 7 to 8.8 x 10^30 with parts ("rungs") having lengths of at least 4 and at most N - 4, see section 1.2.2 in [Helfgott] p. 4. Temporarily provided as "axiom". (Contributed by AV, 3-Aug-2020.) (Revised by AV, 9-Sep-2021.) |
| ⊢ ∃𝑑 ∈ (ℤ≥‘3)∃𝑓 ∈ (RePart‘𝑑)(((𝑓‘0) = 7 ∧ (𝑓‘1) = ;13 ∧ (𝑓‘𝑑) = (;89 · (;10↑;29))) ∧ ∀𝑖 ∈ (0..^𝑑)((𝑓‘𝑖) ∈ (ℙ ∖ {2}) ∧ ((𝑓‘(𝑖 + 1)) − (𝑓‘𝑖)) < ((4 · (;10↑;18)) − 4) ∧ 4 < ((𝑓‘(𝑖 + 1)) − (𝑓‘𝑖)))) | ||
| Theorem | tgblthelfgott 47845 | The ternary Goldbach conjecture is valid for all odd numbers less than 8.8 x 10^30 (actually 8.875694 x 10^30, see section 1.2.2 in [Helfgott] p. 4, using bgoldbachlt 47843, ax-hgprmladder 47844 and bgoldbtbnd 47839. (Contributed by AV, 4-Aug-2020.) (Revised by AV, 9-Sep-2021.) |
| ⊢ ((𝑁 ∈ Odd ∧ 7 < 𝑁 ∧ 𝑁 < (;88 · (;10↑;29))) → 𝑁 ∈ GoldbachOdd ) | ||
| Theorem | tgoldbachlt 47846* | The ternary Goldbach conjecture is valid for small odd numbers (i.e. for all odd numbers less than a fixed big 𝑚 greater than 8 x 10^30). This is verified for m = 8.875694 x 10^30 by Helfgott, see tgblthelfgott 47845. (Contributed by AV, 4-Aug-2020.) (Revised by AV, 9-Sep-2021.) |
| ⊢ ∃𝑚 ∈ ℕ ((8 · (;10↑;30)) < 𝑚 ∧ ∀𝑛 ∈ Odd ((7 < 𝑛 ∧ 𝑛 < 𝑚) → 𝑛 ∈ GoldbachOdd )) | ||
| Theorem | tgoldbach 47847 | The ternary Goldbach conjecture is valid. Main theorem in [Helfgott] p. 2. This follows from tgoldbachlt 47846 and ax-tgoldbachgt 47841. (Contributed by AV, 2-Aug-2020.) (Revised by AV, 9-Sep-2021.) |
| ⊢ ∀𝑛 ∈ Odd (7 < 𝑛 → 𝑛 ∈ GoldbachOdd ) | ||
| Syntax | cclnbgr 47848 | Extend class notation with closed neighborhoods (of a vertex in a graph). |
| class ClNeighbVtx | ||
| Definition | df-clnbgr 47849* | Define the closed neighborhood resp. the class of all neighbors of a vertex (in a graph) and the vertex itself, see definition in section I.1 of [Bollobas] p. 3. The closed neighborhood of a vertex is the set of all vertices which are connected with this vertex by an edge and the vertex itself (in contrast to an open neighborhood, see df-nbgr 29309). Alternatively, a closed neighborhood of a vertex could have been defined as its open neighborhood enhanced by the vertex itself, see dfclnbgr4 47854. This definition is applicable even for arbitrary hypergraphs. (Contributed by AV, 7-May-2025.) |
| ⊢ ClNeighbVtx = (𝑔 ∈ V, 𝑣 ∈ (Vtx‘𝑔) ↦ ({𝑣} ∪ {𝑛 ∈ (Vtx‘𝑔) ∣ ∃𝑒 ∈ (Edg‘𝑔){𝑣, 𝑛} ⊆ 𝑒})) | ||
| Theorem | clnbgrprc0 47850 | The closed neighborhood is empty if the graph 𝐺 or the vertex 𝑁 are proper classes. (Contributed by AV, 7-May-2025.) |
| ⊢ (¬ (𝐺 ∈ V ∧ 𝑁 ∈ V) → (𝐺 ClNeighbVtx 𝑁) = ∅) | ||
| Theorem | clnbgrcl 47851 | If a class 𝑋 has at least one element in its closed neighborhood, this class must be a vertex. (Contributed by AV, 7-May-2025.) |
| ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (𝑁 ∈ (𝐺 ClNeighbVtx 𝑋) → 𝑋 ∈ 𝑉) | ||
| Theorem | clnbgrval 47852* | The closed neighborhood of a vertex 𝑉 in a graph 𝐺. (Contributed by AV, 7-May-2025.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ (𝑁 ∈ 𝑉 → (𝐺 ClNeighbVtx 𝑁) = ({𝑁} ∪ {𝑛 ∈ 𝑉 ∣ ∃𝑒 ∈ 𝐸 {𝑁, 𝑛} ⊆ 𝑒})) | ||
| Theorem | dfclnbgr2 47853* | Alternate definition of the closed neighborhood of a vertex breaking up the subset relationship of an unordered pair. (Contributed by AV, 7-May-2025.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ (𝑁 ∈ 𝑉 → (𝐺 ClNeighbVtx 𝑁) = ({𝑁} ∪ {𝑛 ∈ 𝑉 ∣ ∃𝑒 ∈ 𝐸 (𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒)})) | ||
| Theorem | dfclnbgr4 47854 | Alternate definition of the closed neighborhood of a vertex as union of the vertex with its open neighborhood. (Contributed by AV, 8-May-2025.) |
| ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (𝑁 ∈ 𝑉 → (𝐺 ClNeighbVtx 𝑁) = ({𝑁} ∪ (𝐺 NeighbVtx 𝑁))) | ||
| Theorem | elclnbgrelnbgr 47855 | An element of the closed neighborhood of a vertex which is not the vertex itself is an element of the open neighborhood of the vertex. (Contributed by AV, 24-Sep-2025.) |
| ⊢ ((𝑋 ∈ (𝐺 ClNeighbVtx 𝑁) ∧ 𝑋 ≠ 𝑁) → 𝑋 ∈ (𝐺 NeighbVtx 𝑁)) | ||
| Theorem | dfclnbgr3 47856* | Alternate definition of the closed neighborhood of a vertex using the edge function instead of the edges themselves (see also clnbgrval 47852). (Contributed by AV, 8-May-2025.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) ⇒ ⊢ ((𝑁 ∈ 𝑉 ∧ Fun 𝐼) → (𝐺 ClNeighbVtx 𝑁) = ({𝑁} ∪ {𝑛 ∈ 𝑉 ∣ ∃𝑖 ∈ dom 𝐼{𝑁, 𝑛} ⊆ (𝐼‘𝑖)})) | ||
| Theorem | clnbgrnvtx0 47857 | If a class 𝑋 is not a vertex of a graph 𝐺, then it has an empty closed neighborhood in 𝐺. (Contributed by AV, 8-May-2025.) |
| ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (𝑋 ∉ 𝑉 → (𝐺 ClNeighbVtx 𝑋) = ∅) | ||
| Theorem | clnbgrel 47858* | Characterization of a member 𝑁 of the closed neighborhood of a vertex 𝑋 in a graph 𝐺. (Contributed by AV, 9-May-2025.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ (𝑁 ∈ (𝐺 ClNeighbVtx 𝑋) ↔ ((𝑁 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉) ∧ (𝑁 = 𝑋 ∨ ∃𝑒 ∈ 𝐸 {𝑋, 𝑁} ⊆ 𝑒))) | ||
| Theorem | clnbgrvtxel 47859 | Every vertex 𝐾 is a member of its closed neighborhood. (Contributed by AV, 10-May-2025.) |
| ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (𝐾 ∈ 𝑉 → 𝐾 ∈ (𝐺 ClNeighbVtx 𝐾)) | ||
| Theorem | clnbgrisvtx 47860 | Every member 𝑁 of the closed neighborhood of a vertex 𝐾 is a vertex. (Contributed by AV, 9-May-2025.) |
| ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (𝑁 ∈ (𝐺 ClNeighbVtx 𝐾) → 𝑁 ∈ 𝑉) | ||
| Theorem | clnbgrssvtx 47861 | The closed neighborhood of a vertex 𝐾 in a graph is a subset of all vertices of the graph. (Contributed by AV, 9-May-2025.) |
| ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (𝐺 ClNeighbVtx 𝐾) ⊆ 𝑉 | ||
| Theorem | clnbgrn0 47862 | The closed neighborhood of a vertex is never empty. (Contributed by AV, 16-May-2025.) |
| ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (𝑁 ∈ 𝑉 → (𝐺 ClNeighbVtx 𝑁) ≠ ∅) | ||
| Theorem | clnbupgr 47863* | The closed neighborhood of a vertex in a pseudograph. (Contributed by AV, 10-May-2025.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ ((𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉) → (𝐺 ClNeighbVtx 𝑁) = ({𝑁} ∪ {𝑛 ∈ 𝑉 ∣ {𝑁, 𝑛} ∈ 𝐸})) | ||
| Theorem | clnbupgrel 47864 | A member of the closed neighborhood of a vertex in a pseudograph. (Contributed by AV, 10-May-2025.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ ((𝐺 ∈ UPGraph ∧ 𝐾 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉) → (𝑁 ∈ (𝐺 ClNeighbVtx 𝐾) ↔ (𝑁 = 𝐾 ∨ {𝑁, 𝐾} ∈ 𝐸))) | ||
| Theorem | clnbupgreli 47865 | A member of the closed neighborhood of a vertex in a pseudograph. (Contributed by AV, 28-Dec-2025.) |
| ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ ((𝐺 ∈ UPGraph ∧ 𝑁 ∈ (𝐺 ClNeighbVtx 𝐾)) → (𝑁 = 𝐾 ∨ {𝑁, 𝐾} ∈ 𝐸)) | ||
| Theorem | clnbgr0vtx 47866 | In a null graph (with no vertices), all closed neighborhoods are empty. (Contributed by AV, 15-Nov-2020.) |
| ⊢ ((Vtx‘𝐺) = ∅ → (𝐺 ClNeighbVtx 𝐾) = ∅) | ||
| Theorem | clnbgr0edg 47867 | In an empty graph (with no edges), all closed neighborhoods consists of a single vertex. (Contributed by AV, 10-May-2025.) |
| ⊢ (((Edg‘𝐺) = ∅ ∧ 𝐾 ∈ (Vtx‘𝐺)) → (𝐺 ClNeighbVtx 𝐾) = {𝐾}) | ||
| Theorem | clnbgrsym 47868 | In a graph, the closed neighborhood relation is symmetric: a vertex 𝑁 in a graph 𝐺 is a neighbor of a second vertex 𝐾 iff the second vertex 𝐾 is a neighbor of the first vertex 𝑁. (Contributed by AV, 10-May-2025.) |
| ⊢ (𝑁 ∈ (𝐺 ClNeighbVtx 𝐾) ↔ 𝐾 ∈ (𝐺 ClNeighbVtx 𝑁)) | ||
| Theorem | predgclnbgrel 47869 | If a (not necessarily proper) unordered pair containing a vertex is an edge, the other vertex is in the closed neighborhood of the first vertex. (Contributed by AV, 23-Aug-2025.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ ((𝑁 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ∧ {𝑋, 𝑁} ∈ 𝐸) → 𝑁 ∈ (𝐺 ClNeighbVtx 𝑋)) | ||
| Theorem | clnbgredg 47870 | A vertex connected by an edge with another vertex is a neighbor of that vertex. (Contributed by AV, 24-Aug-2025.) |
| ⊢ 𝐸 = (Edg‘𝐺) & ⊢ 𝑁 = (𝐺 ClNeighbVtx 𝑋) ⇒ ⊢ ((𝐺 ∈ UHGraph ∧ (𝐾 ∈ 𝐸 ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾)) → 𝑌 ∈ 𝑁) | ||
| Theorem | clnbgrssedg 47871 | The vertices connected by an edge are a subset of the neighborhood of each of these vertices. (Contributed by AV, 26-May-2025.) (Proof shortened by AV, 24-Aug-2025.) |
| ⊢ 𝐸 = (Edg‘𝐺) & ⊢ 𝑁 = (𝐺 ClNeighbVtx 𝑋) ⇒ ⊢ ((𝐺 ∈ UHGraph ∧ 𝐾 ∈ 𝐸 ∧ 𝑋 ∈ 𝐾) → 𝐾 ⊆ 𝑁) | ||
| Theorem | edgusgrclnbfin 47872* | The size of the closed neighborhood of a vertex in a simple graph is finite iff the number of edges having this vertex as endpoint is finite. (Contributed by AV, 10-May-2025.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ ((𝐺 ∈ USGraph ∧ 𝑈 ∈ 𝑉) → ((𝐺 ClNeighbVtx 𝑈) ∈ Fin ↔ {𝑒 ∈ 𝐸 ∣ 𝑈 ∈ 𝑒} ∈ Fin)) | ||
| Theorem | clnbusgrfi 47873 | The closed neighborhood of a vertex in a simple graph with a finite number of edges is a finite set. (Contributed by AV, 10-May-2025.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ ((𝐺 ∈ USGraph ∧ 𝐸 ∈ Fin ∧ 𝑈 ∈ 𝑉) → (𝐺 ClNeighbVtx 𝑈) ∈ Fin) | ||
| Theorem | clnbfiusgrfi 47874 | The closed neighborhood of a vertex in a finite simple graph is a finite set. (Contributed by AV, 10-May-2025.) |
| ⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ (Vtx‘𝐺)) → (𝐺 ClNeighbVtx 𝑁) ∈ Fin) | ||
| Theorem | clnbgrlevtx 47875 | The size of the closed neighborhood of a vertex is at most the number of vertices of a graph. (Contributed by AV, 10-May-2025.) |
| ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (♯‘(𝐺 ClNeighbVtx 𝑈)) ≤ (♯‘𝑉) | ||
We have already definitions for open and closed neighborhoods of a vertex, which differs only in the fact that the first never contains the vertex, and the latter always contains the vertex. One of these definitions, however, cannot be simply derived from the other. This would be possible if a definition of a semiclosed neighborhood was available, see dfsclnbgr2 47876. The definitions for open and closed neighborhoods could be derived from such a more simple, but otherwise probably useless definition, see dfnbgr5 47881 and dfclnbgr5 47880. Depending on the existence of certain edges, a vertex belongs to its semiclosed neighborhood or not. An alternate approach is to introduce semiopen neighborhoods, see dfvopnbgr2 47883. The definitions for open and closed neighborhoods could also be derived from such a definition, see dfnbgr6 47887 and dfclnbgr6 47886. Like with semiclosed neighborhood, depending on the existence of certain edges, a vertex belongs to its semiopen neighborhood or not. It is unclear if either definition is/will be useful, and in contrast to dfsclnbgr2 47876, the definition of semiopen neighborhoods is much more complex. | ||
| Theorem | dfsclnbgr2 47876* | Alternate definition of the semiclosed neighborhood of a vertex breaking up the subset relationship of an unordered pair. A semiclosed neighborhood 𝑆 of a vertex 𝑁 is the set of all vertices incident with edges which join the vertex 𝑁 with a vertex. Therefore, a vertex is contained in its semiclosed neighborhood if it is connected with any vertex by an edge (see sclnbgrelself 47878), even only with itself (i.e., by a loop). (Contributed by AV, 16-May-2025.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝑆 = {𝑛 ∈ 𝑉 ∣ ∃𝑒 ∈ 𝐸 {𝑁, 𝑛} ⊆ 𝑒} & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ (𝑁 ∈ 𝑉 → 𝑆 = {𝑛 ∈ 𝑉 ∣ ∃𝑒 ∈ 𝐸 (𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒)}) | ||
| Theorem | sclnbgrel 47877* | Characterization of a member 𝑋 of the semiclosed neighborhood of a vertex 𝑁 in a graph 𝐺. (Contributed by AV, 16-May-2025.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝑆 = {𝑛 ∈ 𝑉 ∣ ∃𝑒 ∈ 𝐸 {𝑁, 𝑛} ⊆ 𝑒} & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ (𝑋 ∈ 𝑆 ↔ (𝑋 ∈ 𝑉 ∧ ∃𝑒 ∈ 𝐸 {𝑁, 𝑋} ⊆ 𝑒)) | ||
| Theorem | sclnbgrelself 47878* | A vertex 𝑁 is a member of its semiclosed neighborhood iff there is an edge joining the vertex with a vertex. (Contributed by AV, 16-May-2025.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝑆 = {𝑛 ∈ 𝑉 ∣ ∃𝑒 ∈ 𝐸 {𝑁, 𝑛} ⊆ 𝑒} & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ (𝑁 ∈ 𝑆 ↔ (𝑁 ∈ 𝑉 ∧ ∃𝑒 ∈ 𝐸 𝑁 ∈ 𝑒)) | ||
| Theorem | sclnbgrisvtx 47879* | Every member 𝑋 of the semiclosed neighborhood of a vertex 𝑁 is a vertex. (Contributed by AV, 16-May-2025.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝑆 = {𝑛 ∈ 𝑉 ∣ ∃𝑒 ∈ 𝐸 {𝑁, 𝑛} ⊆ 𝑒} & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ (𝑋 ∈ 𝑆 → 𝑋 ∈ 𝑉) | ||
| Theorem | dfclnbgr5 47880* | Alternate definition of the closed neighborhood of a vertex as union of the vertex with its semiclosed neighborhood. (Contributed by AV, 16-May-2025.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝑆 = {𝑛 ∈ 𝑉 ∣ ∃𝑒 ∈ 𝐸 {𝑁, 𝑛} ⊆ 𝑒} & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ (𝑁 ∈ 𝑉 → (𝐺 ClNeighbVtx 𝑁) = ({𝑁} ∪ 𝑆)) | ||
| Theorem | dfnbgr5 47881* | Alternate definition of the (open) neighborhood of a vertex as a semiclosed neighborhood without itself. (Contributed by AV, 16-May-2025.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝑆 = {𝑛 ∈ 𝑉 ∣ ∃𝑒 ∈ 𝐸 {𝑁, 𝑛} ⊆ 𝑒} & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ (𝑁 ∈ 𝑉 → (𝐺 NeighbVtx 𝑁) = (𝑆 ∖ {𝑁})) | ||
| Theorem | dfnbgrss 47882* | Subset chain for different kinds of neighborhoods of a vertex. (Contributed by AV, 16-May-2025.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝑆 = {𝑛 ∈ 𝑉 ∣ ∃𝑒 ∈ 𝐸 {𝑁, 𝑛} ⊆ 𝑒} & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ (𝑁 ∈ 𝑉 → ((𝐺 NeighbVtx 𝑁) ⊆ 𝑆 ∧ 𝑆 ⊆ (𝐺 ClNeighbVtx 𝑁))) | ||
| Theorem | dfvopnbgr2 47883* | Alternate definition of the semiopen neighborhood of a vertex breaking up the subset relationship of an unordered pair. A semiopen neighborhood 𝑈 of a vertex 𝑁 is its open neighborhood together with itself if there is a loop at this vertex. (Contributed by AV, 15-May-2025.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) & ⊢ 𝑈 = {𝑛 ∈ 𝑉 ∣ (𝑛 ∈ (𝐺 NeighbVtx 𝑁) ∨ ∃𝑒 ∈ 𝐸 (𝑁 = 𝑛 ∧ 𝑒 = {𝑁}))} ⇒ ⊢ (𝑁 ∈ 𝑉 → 𝑈 = {𝑛 ∈ 𝑉 ∣ ∃𝑒 ∈ 𝐸 ((𝑛 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑛 ∈ 𝑒) ∨ (𝑛 = 𝑁 ∧ 𝑒 = {𝑛}))}) | ||
| Theorem | vopnbgrel 47884* | Characterization of a member 𝑋 of the semiopen neighborhood of a vertex 𝑁 in a graph 𝐺. (Contributed by AV, 16-May-2025.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) & ⊢ 𝑈 = {𝑛 ∈ 𝑉 ∣ (𝑛 ∈ (𝐺 NeighbVtx 𝑁) ∨ ∃𝑒 ∈ 𝐸 (𝑁 = 𝑛 ∧ 𝑒 = {𝑁}))} ⇒ ⊢ (𝑁 ∈ 𝑉 → (𝑋 ∈ 𝑈 ↔ (𝑋 ∈ 𝑉 ∧ ∃𝑒 ∈ 𝐸 ((𝑋 ≠ 𝑁 ∧ 𝑁 ∈ 𝑒 ∧ 𝑋 ∈ 𝑒) ∨ (𝑋 = 𝑁 ∧ 𝑒 = {𝑋}))))) | ||
| Theorem | vopnbgrelself 47885* | A vertex 𝑁 is a member of its semiopen neighborhood iff there is a loop joining the vertex with itself. (Contributed by AV, 16-May-2025.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) & ⊢ 𝑈 = {𝑛 ∈ 𝑉 ∣ (𝑛 ∈ (𝐺 NeighbVtx 𝑁) ∨ ∃𝑒 ∈ 𝐸 (𝑁 = 𝑛 ∧ 𝑒 = {𝑁}))} ⇒ ⊢ (𝑁 ∈ 𝑉 → (𝑁 ∈ 𝑈 ↔ ∃𝑒 ∈ 𝐸 𝑒 = {𝑁})) | ||
| Theorem | dfclnbgr6 47886* | Alternate definition of the closed neighborhood of a vertex as union of the vertex with its semiopen neighborhood. (Contributed by AV, 17-May-2025.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) & ⊢ 𝑈 = {𝑛 ∈ 𝑉 ∣ (𝑛 ∈ (𝐺 NeighbVtx 𝑁) ∨ ∃𝑒 ∈ 𝐸 (𝑁 = 𝑛 ∧ 𝑒 = {𝑁}))} ⇒ ⊢ (𝑁 ∈ 𝑉 → (𝐺 ClNeighbVtx 𝑁) = ({𝑁} ∪ 𝑈)) | ||
| Theorem | dfnbgr6 47887* | Alternate definition of the (open) neighborhood of a vertex as a difference of its semiopen neighborhood and the singleton of itself. (Contributed by AV, 17-May-2025.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) & ⊢ 𝑈 = {𝑛 ∈ 𝑉 ∣ (𝑛 ∈ (𝐺 NeighbVtx 𝑁) ∨ ∃𝑒 ∈ 𝐸 (𝑁 = 𝑛 ∧ 𝑒 = {𝑁}))} ⇒ ⊢ (𝑁 ∈ 𝑉 → (𝐺 NeighbVtx 𝑁) = (𝑈 ∖ {𝑁})) | ||
| Theorem | dfsclnbgr6 47888* | Alternate definition of a semiclosed neighborhood of a vertex as a union of a semiopen neighborhood and the vertex itself if there is a loop at this vertex. (Contributed by AV, 17-May-2025.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) & ⊢ 𝑈 = {𝑛 ∈ 𝑉 ∣ (𝑛 ∈ (𝐺 NeighbVtx 𝑁) ∨ ∃𝑒 ∈ 𝐸 (𝑁 = 𝑛 ∧ 𝑒 = {𝑁}))} & ⊢ 𝑆 = {𝑛 ∈ 𝑉 ∣ ∃𝑒 ∈ 𝐸 {𝑁, 𝑛} ⊆ 𝑒} ⇒ ⊢ (𝑁 ∈ 𝑉 → 𝑆 = (𝑈 ∪ {𝑛 ∈ {𝑁} ∣ ∃𝑒 ∈ 𝐸 𝑛 ∈ 𝑒})) | ||
| Theorem | dfnbgrss2 47889* | Subset chain for different kinds of neighborhoods of a vertex. (Contributed by AV, 16-May-2025.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) & ⊢ 𝑈 = {𝑛 ∈ 𝑉 ∣ (𝑛 ∈ (𝐺 NeighbVtx 𝑁) ∨ ∃𝑒 ∈ 𝐸 (𝑁 = 𝑛 ∧ 𝑒 = {𝑁}))} & ⊢ 𝑆 = {𝑛 ∈ 𝑉 ∣ ∃𝑒 ∈ 𝐸 {𝑁, 𝑛} ⊆ 𝑒} ⇒ ⊢ (𝑁 ∈ 𝑉 → ((𝐺 NeighbVtx 𝑁) ⊆ 𝑈 ∧ 𝑈 ⊆ 𝑆 ∧ 𝑆 ⊆ (𝐺 ClNeighbVtx 𝑁))) | ||
| Syntax | cisubgr 47890 | Extend class notation with induced subgraphs. |
| class ISubGr | ||
| Definition | df-isubgr 47891* | Define the function mapping graphs and subsets of their vertices to their induced subgraphs. A subgraph induced by a subset of vertices of a graph is a subgraph of the graph which contains all edges of the graph that join vertices of the subgraph (see section I.1 in [Bollobas] p. 2 or section 1.1 in [Diestel] p. 4). Although a graph may be given in any meaningful representation, its induced subgraphs are always ordered pairs of vertices and edges. (Contributed by AV, 27-Apr-2025.) |
| ⊢ ISubGr = (𝑔 ∈ V, 𝑣 ∈ 𝒫 (Vtx‘𝑔) ↦ 〈𝑣, ⦋(iEdg‘𝑔) / 𝑒⦌(𝑒 ↾ {𝑥 ∈ dom 𝑒 ∣ (𝑒‘𝑥) ⊆ 𝑣})〉) | ||
| Theorem | isisubgr 47892* | The subgraph induced by a subset of vertices. (Contributed by AV, 12-May-2025.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (iEdg‘𝐺) ⇒ ⊢ ((𝐺 ∈ 𝑊 ∧ 𝑆 ⊆ 𝑉) → (𝐺 ISubGr 𝑆) = 〈𝑆, (𝐸 ↾ {𝑥 ∈ dom 𝐸 ∣ (𝐸‘𝑥) ⊆ 𝑆})〉) | ||
| Theorem | isubgriedg 47893* | The edges of an induced subgraph. (Contributed by AV, 12-May-2025.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (iEdg‘𝐺) ⇒ ⊢ ((𝐺 ∈ 𝑊 ∧ 𝑆 ⊆ 𝑉) → (iEdg‘(𝐺 ISubGr 𝑆)) = (𝐸 ↾ {𝑥 ∈ dom 𝐸 ∣ (𝐸‘𝑥) ⊆ 𝑆})) | ||
| Theorem | isubgrvtxuhgr 47894 | The subgraph induced by the full set of vertices of a hypergraph. (Contributed by AV, 12-May-2025.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (iEdg‘𝐺) ⇒ ⊢ (𝐺 ∈ UHGraph → (𝐺 ISubGr 𝑉) = 〈𝑉, 𝐸〉) | ||
| Theorem | isubgredgss 47895 | The edges of an induced subgraph of a graph are edges of the graph. (Contributed by AV, 24-Sep-2025.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) & ⊢ 𝐻 = (𝐺 ISubGr 𝑆) & ⊢ 𝐼 = (Edg‘𝐻) ⇒ ⊢ ((𝐺 ∈ 𝑊 ∧ 𝑆 ⊆ 𝑉) → 𝐼 ⊆ 𝐸) | ||
| Theorem | isubgredg 47896 | An edge of an induced subgraph of a hypergraph is an edge of the hypergraph connecting vertices of the subgraph. (Contributed by AV, 24-Sep-2025.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) & ⊢ 𝐻 = (𝐺 ISubGr 𝑆) & ⊢ 𝐼 = (Edg‘𝐻) ⇒ ⊢ ((𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉) → (𝐾 ∈ 𝐼 ↔ (𝐾 ∈ 𝐸 ∧ 𝐾 ⊆ 𝑆))) | ||
| Theorem | isubgrvtx 47897 | The vertices of an induced subgraph. (Contributed by AV, 12-May-2025.) |
| ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ ((𝐺 ∈ 𝑊 ∧ 𝑆 ⊆ 𝑉) → (Vtx‘(𝐺 ISubGr 𝑆)) = 𝑆) | ||
| Theorem | isubgruhgr 47898 | An induced subgraph of a hypergraph is a hypergraph. (Contributed by AV, 13-May-2025.) |
| ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ ((𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉) → (𝐺 ISubGr 𝑆) ∈ UHGraph) | ||
| Theorem | isubgrsubgr 47899 | An induced subgraph of a hypergraph is a subgraph of the hypergraph. (Contributed by AV, 14-May-2025.) |
| ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ ((𝐺 ∈ UHGraph ∧ 𝑆 ⊆ 𝑉) → (𝐺 ISubGr 𝑆) SubGraph 𝐺) | ||
| Theorem | isubgrupgr 47900 | An induced subgraph of a pseudograph is a pseudograph. (Contributed by AV, 14-May-2025.) |
| ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ ((𝐺 ∈ UPGraph ∧ 𝑆 ⊆ 𝑉) → (𝐺 ISubGr 𝑆) ∈ UPGraph) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |