![]() |
Metamath
Proof Explorer Theorem List (p. 479 of 489) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30950) |
![]() (30951-32473) |
![]() (32474-48899) |
Type | Label | Description |
---|---|---|
Statement | ||
Syntax | cgrlic 47801 | The class of the graph local isomorphism relation. |
class ≃𝑙𝑔𝑟 | ||
Definition | df-grlim 47802* | A local isomorphism of graphs is a bijection between the sets of vertices of two graphs that preserves local adjacency, i.e. the subgraph induced by the closed neighborhood of a vertex of the first graph and the subgraph induced by the closed neighborhood of the associated vertex of the second graph are isomorphic. See the following chat in mathoverflow: https://mathoverflow.net/questions/491133/locally-isomorphic-graphs. (Contributed by AV, 27-Apr-2025.) |
⊢ GraphLocIso = (𝑔 ∈ V, ℎ ∈ V ↦ {𝑓 ∣ (𝑓:(Vtx‘𝑔)–1-1-onto→(Vtx‘ℎ) ∧ ∀𝑣 ∈ (Vtx‘𝑔)(𝑔 ISubGr (𝑔 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (ℎ ISubGr (ℎ ClNeighbVtx (𝑓‘𝑣))))}) | ||
Theorem | grlimfn 47803 | The graph local isomorphism function is a well-defined function. (Contributed by AV, 20-May-2025.) |
⊢ GraphLocIso Fn (V × V) | ||
Theorem | grlimdmrel 47804 | The domain of the graph local isomorphism function is a relation. (Contributed by AV, 20-May-2025.) |
⊢ Rel dom GraphLocIso | ||
Definition | df-grlic 47805 | Two graphs are said to be locally isomorphic iff they are connected by at least one local isomorphism. (Contributed by AV, 27-Apr-2025.) |
⊢ ≃𝑙𝑔𝑟 = (◡ GraphLocIso “ (V ∖ 1o)) | ||
Theorem | isgrlim 47806* | A local isomorphism of graphs is a bijection between their vertices that preserves neighborhoods. (Contributed by AV, 20-May-2025.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝑊 = (Vtx‘𝐻) ⇒ ⊢ ((𝐺 ∈ 𝑋 ∧ 𝐻 ∈ 𝑌 ∧ 𝐹 ∈ 𝑍) → (𝐹 ∈ (𝐺 GraphLocIso 𝐻) ↔ (𝐹:𝑉–1-1-onto→𝑊 ∧ ∀𝑣 ∈ 𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝐻 ISubGr (𝐻 ClNeighbVtx (𝐹‘𝑣)))))) | ||
Theorem | isgrlim2 47807* | A local isomorphism of graphs is a bijection between their vertices that preserves neighborhoods. Definitions expanded. (Contributed by AV, 29-May-2025.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝑊 = (Vtx‘𝐻) & ⊢ 𝑁 = (𝐺 ClNeighbVtx 𝑣) & ⊢ 𝑀 = (𝐻 ClNeighbVtx (𝐹‘𝑣)) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ 𝐽 = (iEdg‘𝐻) & ⊢ 𝐾 = {𝑥 ∈ dom 𝐼 ∣ (𝐼‘𝑥) ⊆ 𝑁} & ⊢ 𝐿 = {𝑥 ∈ dom 𝐽 ∣ (𝐽‘𝑥) ⊆ 𝑀} ⇒ ⊢ ((𝐺 ∈ 𝑋 ∧ 𝐻 ∈ 𝑌 ∧ 𝐹 ∈ 𝑍) → (𝐹 ∈ (𝐺 GraphLocIso 𝐻) ↔ (𝐹:𝑉–1-1-onto→𝑊 ∧ ∀𝑣 ∈ 𝑉 ∃𝑓(𝑓:𝑁–1-1-onto→𝑀 ∧ ∃𝑔(𝑔:𝐾–1-1-onto→𝐿 ∧ ∀𝑖 ∈ 𝐾 (𝑓 “ (𝐼‘𝑖)) = (𝐽‘(𝑔‘𝑖))))))) | ||
Theorem | grlimprop 47808* | Properties of a local isomorphism of graphs. (Contributed by AV, 21-May-2025.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝑊 = (Vtx‘𝐻) ⇒ ⊢ (𝐹 ∈ (𝐺 GraphLocIso 𝐻) → (𝐹:𝑉–1-1-onto→𝑊 ∧ ∀𝑣 ∈ 𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝐻 ISubGr (𝐻 ClNeighbVtx (𝐹‘𝑣))))) | ||
Theorem | grlimf1o 47809 | A local isomorphism of graphs is a bijection between their vertices. (Contributed by AV, 21-May-2025.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝑊 = (Vtx‘𝐻) ⇒ ⊢ (𝐹 ∈ (𝐺 GraphLocIso 𝐻) → 𝐹:𝑉–1-1-onto→𝑊) | ||
Theorem | grlimprop2 47810* | Properties of a local isomorphism of graphs. (Contributed by AV, 29-May-2025.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝑊 = (Vtx‘𝐻) & ⊢ 𝑁 = (𝐺 ClNeighbVtx 𝑣) & ⊢ 𝑀 = (𝐻 ClNeighbVtx (𝐹‘𝑣)) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ 𝐽 = (iEdg‘𝐻) & ⊢ 𝐾 = {𝑥 ∈ dom 𝐼 ∣ (𝐼‘𝑥) ⊆ 𝑁} & ⊢ 𝐿 = {𝑥 ∈ dom 𝐽 ∣ (𝐽‘𝑥) ⊆ 𝑀} ⇒ ⊢ (𝐹 ∈ (𝐺 GraphLocIso 𝐻) → (𝐹:𝑉–1-1-onto→𝑊 ∧ ∀𝑣 ∈ 𝑉 ∃𝑓(𝑓:𝑁–1-1-onto→𝑀 ∧ ∃𝑔(𝑔:𝐾–1-1-onto→𝐿 ∧ ∀𝑖 ∈ 𝐾 (𝑓 “ (𝐼‘𝑖)) = (𝐽‘(𝑔‘𝑖)))))) | ||
Theorem | uhgrimgrlim 47811 | An isomorphism of hypergraphs is a local isomorphism between the two graphs. (Contributed by AV, 2-Jun-2025.) |
⊢ ((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph ∧ 𝐹 ∈ (𝐺 GraphIso 𝐻)) → 𝐹 ∈ (𝐺 GraphLocIso 𝐻)) | ||
Theorem | uspgrlimlem1 47812* | Lemma 1 for uspgrlim 47816. (Contributed by AV, 16-Aug-2025.) |
⊢ 𝑀 = (𝐻 ClNeighbVtx 𝑋) & ⊢ 𝐽 = (Edg‘𝐻) & ⊢ 𝐿 = {𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ 𝑀} ⇒ ⊢ (𝐻 ∈ USPGraph → 𝐿 = ((iEdg‘𝐻) “ {𝑥 ∈ dom (iEdg‘𝐻) ∣ ((iEdg‘𝐻)‘𝑥) ⊆ 𝑀})) | ||
Theorem | uspgrlimlem2 47813* | Lemma 2 for uspgrlim 47816. (Contributed by AV, 16-Aug-2025.) |
⊢ 𝑀 = (𝐻 ClNeighbVtx 𝑋) & ⊢ 𝐽 = (Edg‘𝐻) & ⊢ 𝐿 = {𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ 𝑀} ⇒ ⊢ (𝐻 ∈ USPGraph → (◡(iEdg‘𝐻) “ 𝐿) = {𝑥 ∈ dom (iEdg‘𝐻) ∣ ((iEdg‘𝐻)‘𝑥) ⊆ 𝑀}) | ||
Theorem | uspgrlimlem3 47814* | Lemma 3 for uspgrlim 47816. (Contributed by AV, 16-Aug-2025.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝑊 = (Vtx‘𝐻) & ⊢ 𝑁 = (𝐺 ClNeighbVtx 𝑣) & ⊢ 𝑀 = (𝐻 ClNeighbVtx (𝐹‘𝑣)) & ⊢ 𝐼 = (Edg‘𝐺) & ⊢ 𝐽 = (Edg‘𝐻) & ⊢ 𝐾 = {𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ 𝑁} & ⊢ 𝐿 = {𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ 𝑀} ⇒ ⊢ ((𝐺 ∈ USPGraph ∧ ℎ:{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁}–1-1-onto→𝑅 ∧ ∀𝑖 ∈ {𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) ⊆ 𝑁} (𝑓 “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(ℎ‘𝑖))) → (𝑒 ∈ 𝐾 → (𝑓 “ 𝑒) = ((((iEdg‘𝐻) ∘ ℎ) ∘ ◡(iEdg‘𝐺))‘𝑒))) | ||
Theorem | uspgrlimlem4 47815* | Lemma 4 for uspgrlim 47816. (Contributed by AV, 16-Aug-2025.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝑊 = (Vtx‘𝐻) & ⊢ 𝑁 = (𝐺 ClNeighbVtx 𝑣) & ⊢ 𝑀 = (𝐻 ClNeighbVtx (𝐹‘𝑣)) & ⊢ 𝐼 = (Edg‘𝐺) & ⊢ 𝐽 = (Edg‘𝐻) & ⊢ 𝐾 = {𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ 𝑁} & ⊢ 𝐿 = {𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ 𝑀} ⇒ ⊢ (((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph) ∧ (𝑔:𝐾–1-1-onto→𝐿 ∧ ∀𝑒 ∈ 𝐾 (𝑓 “ 𝑒) = (𝑔‘𝑒))) → ((𝑖 ∈ dom (iEdg‘𝐺) ∧ ((iEdg‘𝐺)‘𝑖) ⊆ 𝑁) → (𝑓 “ ((iEdg‘𝐺)‘𝑖)) = ((iEdg‘𝐻)‘(((◡(iEdg‘𝐻) ∘ 𝑔) ∘ (iEdg‘𝐺))‘𝑖)))) | ||
Theorem | uspgrlim 47816* | A local isomorphism of simple pseudographs is a bijection between their vertices that preserves neighborhoods, expressed by properties of their edges (not edge functions as in isgrlim2 47807). (Contributed by AV, 15-Aug-2025.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝑊 = (Vtx‘𝐻) & ⊢ 𝑁 = (𝐺 ClNeighbVtx 𝑣) & ⊢ 𝑀 = (𝐻 ClNeighbVtx (𝐹‘𝑣)) & ⊢ 𝐼 = (Edg‘𝐺) & ⊢ 𝐽 = (Edg‘𝐻) & ⊢ 𝐾 = {𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ 𝑁} & ⊢ 𝐿 = {𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ 𝑀} ⇒ ⊢ ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ 𝑍) → (𝐹 ∈ (𝐺 GraphLocIso 𝐻) ↔ (𝐹:𝑉–1-1-onto→𝑊 ∧ ∀𝑣 ∈ 𝑉 ∃𝑓(𝑓:𝑁–1-1-onto→𝑀 ∧ ∃𝑔(𝑔:𝐾–1-1-onto→𝐿 ∧ ∀𝑒 ∈ 𝐾 (𝑓 “ 𝑒) = (𝑔‘𝑒)))))) | ||
Theorem | usgrlimprop 47817* | Properties of a local isomorphism of simple pseudographs. (Contributed by AV, 17-Aug-2025.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝑊 = (Vtx‘𝐻) & ⊢ 𝑁 = (𝐺 ClNeighbVtx 𝑣) & ⊢ 𝑀 = (𝐻 ClNeighbVtx (𝐹‘𝑣)) & ⊢ 𝐼 = (Edg‘𝐺) & ⊢ 𝐽 = (Edg‘𝐻) & ⊢ 𝐾 = {𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ 𝑁} & ⊢ 𝐿 = {𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ 𝑀} ⇒ ⊢ ((𝐺 ∈ USPGraph ∧ 𝐻 ∈ USPGraph ∧ 𝐹 ∈ (𝐺 GraphLocIso 𝐻)) → (𝐹:𝑉–1-1-onto→𝑊 ∧ ∀𝑣 ∈ 𝑉 ∃𝑓(𝑓:𝑁–1-1-onto→𝑀 ∧ ∃𝑔(𝑔:𝐾–1-1-onto→𝐿 ∧ ∀𝑒 ∈ 𝐾 (𝑓 “ 𝑒) = (𝑔‘𝑒))))) | ||
Theorem | grlimgrtrilem1 47818* | Lemma 3 for grlimgrtri 47820. (Contributed by AV, 24-Aug-2025.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝑁 = (𝐺 ClNeighbVtx 𝑎) & ⊢ 𝐼 = (Edg‘𝐺) & ⊢ 𝐾 = {𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ 𝑁} ⇒ ⊢ ((𝐺 ∈ UHGraph ∧ ({𝑎, 𝑏} ∈ 𝐼 ∧ {𝑎, 𝑐} ∈ 𝐼 ∧ {𝑏, 𝑐} ∈ 𝐼)) → ({𝑎, 𝑏} ∈ 𝐾 ∧ {𝑎, 𝑐} ∈ 𝐾 ∧ {𝑏, 𝑐} ∈ 𝐾)) | ||
Theorem | grlimgrtrilem2 47819* | Lemma 3 for grlimgrtri 47820. (Contributed by AV, 23-Aug-2025.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝑁 = (𝐺 ClNeighbVtx 𝑎) & ⊢ 𝐼 = (Edg‘𝐺) & ⊢ 𝐾 = {𝑥 ∈ 𝐼 ∣ 𝑥 ⊆ 𝑁} & ⊢ 𝑀 = (𝐻 ClNeighbVtx (𝐹‘𝑎)) & ⊢ 𝐽 = (Edg‘𝐻) & ⊢ 𝐿 = {𝑥 ∈ 𝐽 ∣ 𝑥 ⊆ 𝑀} ⇒ ⊢ (((𝑓:𝑁–1-1-onto→𝑀 ∧ 𝑔:𝐾–1-1-onto→𝐿) ∧ ∀𝑖 ∈ 𝐾 (𝑓 “ 𝑖) = (𝑔‘𝑖) ∧ {𝑏, 𝑐} ∈ 𝐾) → {(𝑓‘𝑏), (𝑓‘𝑐)} ∈ 𝐽) | ||
Theorem | grlimgrtri 47820* | Local isomorphisms between simple pseudographs map triangles onto triangles. (Contributed by AV, 24-Aug-2025.) |
⊢ (𝜑 → 𝐺 ∈ USPGraph) & ⊢ (𝜑 → 𝐻 ∈ USPGraph) & ⊢ (𝜑 → 𝐹 ∈ (𝐺 GraphLocIso 𝐻)) & ⊢ (𝜑 → 𝑇 ∈ (GrTriangles‘𝐺)) ⇒ ⊢ (𝜑 → ∃𝑡 𝑡 ∈ (GrTriangles‘𝐻)) | ||
Theorem | brgrlic 47821 | The relation "is locally isomorphic to" for graphs. (Contributed by AV, 9-Jun-2025.) |
⊢ (𝑅 ≃𝑙𝑔𝑟 𝑆 ↔ (𝑅 GraphLocIso 𝑆) ≠ ∅) | ||
Theorem | brgrilci 47822 | Prove that two graphs are locally isomorphic by an explicit local isomorphism. (Contributed by AV, 9-Jun-2025.) |
⊢ (𝐹 ∈ (𝑅 GraphLocIso 𝑆) → 𝑅 ≃𝑙𝑔𝑟 𝑆) | ||
Theorem | grlicrel 47823 | The "is locally isomorphic to" relation for graphs is a relation. (Contributed by AV, 9-Jun-2025.) |
⊢ Rel ≃𝑙𝑔𝑟 | ||
Theorem | grlicrcl 47824 | Reverse closure of the "is locally isomorphic to" relation for graphs. (Contributed by AV, 9-Jun-2025.) |
⊢ (𝐺 ≃𝑙𝑔𝑟 𝑆 → (𝐺 ∈ V ∧ 𝑆 ∈ V)) | ||
Theorem | dfgrlic2 47825* | Alternate, explicit definition of the "is locally isomorphic to" relation for two graphs. (Contributed by AV, 9-Jun-2025.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝑊 = (Vtx‘𝐻) ⇒ ⊢ ((𝐺 ∈ 𝑋 ∧ 𝐻 ∈ 𝑌) → (𝐺 ≃𝑙𝑔𝑟 𝐻 ↔ ∃𝑓(𝑓:𝑉–1-1-onto→𝑊 ∧ ∀𝑣 ∈ 𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝐻 ISubGr (𝐻 ClNeighbVtx (𝑓‘𝑣)))))) | ||
Theorem | grilcbri 47826* | Implications of two graphs being locally isomorphic. (Contributed by AV, 9-Jun-2025.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝑊 = (Vtx‘𝐻) ⇒ ⊢ (𝐺 ≃𝑙𝑔𝑟 𝐻 → ∃𝑓(𝑓:𝑉–1-1-onto→𝑊 ∧ ∀𝑣 ∈ 𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝐻 ISubGr (𝐻 ClNeighbVtx (𝑓‘𝑣))))) | ||
Theorem | dfgrlic3 47827* | Alternate, explicit definition of the "is locally isomorphic to" relation for two graphs. (Contributed by AV, 9-Jun-2025.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝑊 = (Vtx‘𝐻) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ 𝐽 = (iEdg‘𝐻) & ⊢ 𝑁 = (𝐺 ClNeighbVtx 𝑣) & ⊢ 𝑀 = (𝐻 ClNeighbVtx (𝑓‘𝑣)) & ⊢ 𝐾 = {𝑥 ∈ dom 𝐼 ∣ (𝐼‘𝑥) ⊆ 𝑁} & ⊢ 𝐿 = {𝑥 ∈ dom 𝐽 ∣ (𝐽‘𝑥) ⊆ 𝑀} ⇒ ⊢ ((𝐺 ∈ 𝑋 ∧ 𝐻 ∈ 𝑌) → (𝐺 ≃𝑙𝑔𝑟 𝐻 ↔ ∃𝑓(𝑓:𝑉–1-1-onto→𝑊 ∧ ∀𝑣 ∈ 𝑉 ∃𝑗(𝑗:𝑁–1-1-onto→𝑀 ∧ ∃𝑔(𝑔:𝐾–1-1-onto→𝐿 ∧ ∀𝑖 ∈ 𝐾 (𝑗 “ (𝐼‘𝑖)) = (𝐽‘(𝑔‘𝑖))))))) | ||
Theorem | grilcbri2 47828* | Implications of two graphs being locally isomorphic. (Contributed by AV, 9-Jun-2025.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝑊 = (Vtx‘𝐻) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ 𝐽 = (iEdg‘𝐻) & ⊢ 𝑁 = (𝐺 ClNeighbVtx 𝑋) & ⊢ 𝑀 = (𝐻 ClNeighbVtx (𝑓‘𝑋)) & ⊢ 𝐾 = {𝑥 ∈ dom 𝐼 ∣ (𝐼‘𝑥) ⊆ 𝑁} & ⊢ 𝐿 = {𝑥 ∈ dom 𝐽 ∣ (𝐽‘𝑥) ⊆ 𝑀} ⇒ ⊢ (𝐺 ≃𝑙𝑔𝑟 𝐻 → ∃𝑓(𝑓:𝑉–1-1-onto→𝑊 ∧ (𝑋 ∈ 𝑉 → ∃𝑗(𝑗:𝑁–1-1-onto→𝑀 ∧ ∃𝑔(𝑔:𝐾–1-1-onto→𝐿 ∧ ∀𝑖 ∈ 𝐾 (𝑗 “ (𝐼‘𝑖)) = (𝐽‘(𝑔‘𝑖))))))) | ||
Theorem | grlicref 47829 | Graph local isomorphism is reflexive for hypergraphs. (Contributed by AV, 9-Jun-2025.) |
⊢ (𝐺 ∈ UHGraph → 𝐺 ≃𝑙𝑔𝑟 𝐺) | ||
Theorem | grlicsym 47830 | Graph local isomorphism is symmetric for hypergraphs. (Contributed by AV, 9-Jun-2025.) |
⊢ (𝐺 ∈ UHGraph → (𝐺 ≃𝑙𝑔𝑟 𝑆 → 𝑆 ≃𝑙𝑔𝑟 𝐺)) | ||
Theorem | grlicsymb 47831 | Graph local isomorphism is symmetric in both directions for hypergraphs. (Contributed by AV, 9-Jun-2025.) |
⊢ ((𝐴 ∈ UHGraph ∧ 𝐵 ∈ UHGraph) → (𝐴 ≃𝑙𝑔𝑟 𝐵 ↔ 𝐵 ≃𝑙𝑔𝑟 𝐴)) | ||
Theorem | grlictr 47832 | Graph local isomorphism is transitive. (Contributed by AV, 10-Jun-2025.) |
⊢ ((𝑅 ≃𝑙𝑔𝑟 𝑆 ∧ 𝑆 ≃𝑙𝑔𝑟 𝑇) → 𝑅 ≃𝑙𝑔𝑟 𝑇) | ||
Theorem | grlicer 47833 | Local isomorphism is an equivalence relation on hypergraphs. (Contributed by AV, 11-Jun-2025.) |
⊢ ( ≃𝑙𝑔𝑟 ∩ (UHGraph × UHGraph)) Er UHGraph | ||
Theorem | grlicen 47834 | Locally isomorphic graphs have equinumerous sets of vertices. (Contributed by AV, 11-Jun-2025.) |
⊢ 𝐵 = (Vtx‘𝑅) & ⊢ 𝐶 = (Vtx‘𝑆) ⇒ ⊢ (𝑅 ≃𝑙𝑔𝑟 𝑆 → 𝐵 ≈ 𝐶) | ||
Theorem | gricgrlic 47835 | Isomorphic hypergraphs are locally isomorphic. (Contributed by AV, 12-Jun-2025.) (Proof shortened by AV, 11-Jul-2025.) |
⊢ ((𝐺 ∈ UHGraph ∧ 𝐻 ∈ UHGraph) → (𝐺 ≃𝑔𝑟 𝐻 → 𝐺 ≃𝑙𝑔𝑟 𝐻)) | ||
Theorem | usgrexmpl1lem 47836* | Lemma for usgrexmpl1 47837. (Contributed by AV, 2-Aug-2025.) |
⊢ 𝑉 = (0...5) & ⊢ 𝐸 = 〈“{0, 1} {0, 2} {1, 2} {0, 3} {3, 4} {3, 5} {4, 5}”〉 ⇒ ⊢ 𝐸:dom 𝐸–1-1→{𝑒 ∈ 𝒫 𝑉 ∣ (♯‘𝑒) = 2} | ||
Theorem | usgrexmpl1 47837 | 𝐺 is a simple graph of six vertices 0, 1, 2, 3, 4, 5, with edges {0, 1}, {1, 2}, {0, 2}, {0, 3}, {3, 4}, {3, 5}, {4, 5}. (Contributed by AV, 3-Aug-2025.) |
⊢ 𝑉 = (0...5) & ⊢ 𝐸 = 〈“{0, 1} {0, 2} {1, 2} {0, 3} {3, 4} {3, 5} {4, 5}”〉 & ⊢ 𝐺 = 〈𝑉, 𝐸〉 ⇒ ⊢ 𝐺 ∈ USGraph | ||
Theorem | usgrexmpl1vtx 47838 | The vertices 0, 1, 2, 3, 4, 5 of the graph 𝐺 = 〈𝑉, 𝐸〉. (Contributed by AV, 3-Aug-2025.) |
⊢ 𝑉 = (0...5) & ⊢ 𝐸 = 〈“{0, 1} {0, 2} {1, 2} {0, 3} {3, 4} {3, 5} {4, 5}”〉 & ⊢ 𝐺 = 〈𝑉, 𝐸〉 ⇒ ⊢ (Vtx‘𝐺) = ({0, 1, 2} ∪ {3, 4, 5}) | ||
Theorem | usgrexmpl1edg 47839 | The edges {0, 1}, {1, 2}, {0, 2}, {0, 3}, {3, 4}, {3, 5}, {4, 5} of the graph 𝐺 = 〈𝑉, 𝐸〉. (Contributed by AV, 3-Aug-2025.) |
⊢ 𝑉 = (0...5) & ⊢ 𝐸 = 〈“{0, 1} {0, 2} {1, 2} {0, 3} {3, 4} {3, 5} {4, 5}”〉 & ⊢ 𝐺 = 〈𝑉, 𝐸〉 ⇒ ⊢ (Edg‘𝐺) = ({{0, 3}} ∪ ({{0, 1}, {0, 2}, {1, 2}} ∪ {{3, 4}, {3, 5}, {4, 5}})) | ||
Theorem | usgrexmpl1tri 47840 | 𝐺 contains a triangle 0, 1, 2, with corresponding edges {0, 1}, {1, 2}, {0, 2}. (Contributed by AV, 3-Aug-2025.) |
⊢ 𝑉 = (0...5) & ⊢ 𝐸 = 〈“{0, 1} {0, 2} {1, 2} {0, 3} {3, 4} {3, 5} {4, 5}”〉 & ⊢ 𝐺 = 〈𝑉, 𝐸〉 ⇒ ⊢ {0, 1, 2} ∈ (GrTriangles‘𝐺) | ||
Theorem | usgrexmpl2lem 47841* | Lemma for usgrexmpl2 47842. (Contributed by AV, 3-Aug-2025.) |
⊢ 𝑉 = (0...5) & ⊢ 𝐸 = 〈“{0, 1} {1, 2} {2, 3} {3, 4} {4, 5} {0, 3} {0, 5}”〉 ⇒ ⊢ 𝐸:dom 𝐸–1-1→{𝑒 ∈ 𝒫 𝑉 ∣ (♯‘𝑒) = 2} | ||
Theorem | usgrexmpl2 47842 | 𝐺 is a simple graph of six vertices 0, 1, 2, 3, 4, 5, with edges {0, 1}, {1, 2}, {2, 3}, {0, 3}, {3, 4}, {4, 5}, {0, 5}. (Contributed by AV, 3-Aug-2025.) |
⊢ 𝑉 = (0...5) & ⊢ 𝐸 = 〈“{0, 1} {1, 2} {2, 3} {3, 4} {4, 5} {0, 3} {0, 5}”〉 & ⊢ 𝐺 = 〈𝑉, 𝐸〉 ⇒ ⊢ 𝐺 ∈ USGraph | ||
Theorem | usgrexmpl2vtx 47843 | The vertices 0, 1, 2, 3, 4, 5 of the graph 𝐺 = 〈𝑉, 𝐸〉. (Contributed by AV, 3-Aug-2025.) |
⊢ 𝑉 = (0...5) & ⊢ 𝐸 = 〈“{0, 1} {1, 2} {2, 3} {3, 4} {4, 5} {0, 3} {0, 5}”〉 & ⊢ 𝐺 = 〈𝑉, 𝐸〉 ⇒ ⊢ (Vtx‘𝐺) = ({0, 1, 2} ∪ {3, 4, 5}) | ||
Theorem | usgrexmpl2edg 47844 | The edges {0, 1}, {1, 2}, {2, 3}, {0, 3}, {3, 4}, {4, 5}, {0, 5} of the graph 𝐺 = 〈𝑉, 𝐸〉. (Contributed by AV, 3-Aug-2025.) |
⊢ 𝑉 = (0...5) & ⊢ 𝐸 = 〈“{0, 1} {1, 2} {2, 3} {3, 4} {4, 5} {0, 3} {0, 5}”〉 & ⊢ 𝐺 = 〈𝑉, 𝐸〉 ⇒ ⊢ (Edg‘𝐺) = ({{0, 3}} ∪ ({{0, 1}, {1, 2}, {2, 3}} ∪ {{3, 4}, {4, 5}, {0, 5}})) | ||
Theorem | usgrexmpl2nblem 47845* | Lemma for usgrexmpl2nb0 47846 etc. (Contributed by AV, 9-Aug-2025.) |
⊢ 𝑉 = (0...5) & ⊢ 𝐸 = 〈“{0, 1} {1, 2} {2, 3} {3, 4} {4, 5} {0, 3} {0, 5}”〉 & ⊢ 𝐺 = 〈𝑉, 𝐸〉 ⇒ ⊢ (𝐾 ∈ ({0, 1, 2} ∪ {3, 4, 5}) → (𝐺 NeighbVtx 𝐾) = {𝑛 ∈ ({0, 1, 2} ∪ {3, 4, 5}) ∣ {𝐾, 𝑛} ∈ ({{0, 3}} ∪ ({{0, 1}, {1, 2}, {2, 3}} ∪ {{3, 4}, {4, 5}, {0, 5}}))}) | ||
Theorem | usgrexmpl2nb0 47846 | The neighborhood of the first vertex of graph 𝐺. (Contributed by AV, 9-Aug-2025.) |
⊢ 𝑉 = (0...5) & ⊢ 𝐸 = 〈“{0, 1} {1, 2} {2, 3} {3, 4} {4, 5} {0, 3} {0, 5}”〉 & ⊢ 𝐺 = 〈𝑉, 𝐸〉 ⇒ ⊢ (𝐺 NeighbVtx 0) = {1, 3, 5} | ||
Theorem | usgrexmpl2nb1 47847 | The neighborhood of the second vertex of graph 𝐺. (Contributed by AV, 9-Aug-2025.) |
⊢ 𝑉 = (0...5) & ⊢ 𝐸 = 〈“{0, 1} {1, 2} {2, 3} {3, 4} {4, 5} {0, 3} {0, 5}”〉 & ⊢ 𝐺 = 〈𝑉, 𝐸〉 ⇒ ⊢ (𝐺 NeighbVtx 1) = {0, 2} | ||
Theorem | usgrexmpl2nb2 47848 | The neighborhood of the third vertex of graph 𝐺. (Contributed by AV, 9-Aug-2025.) |
⊢ 𝑉 = (0...5) & ⊢ 𝐸 = 〈“{0, 1} {1, 2} {2, 3} {3, 4} {4, 5} {0, 3} {0, 5}”〉 & ⊢ 𝐺 = 〈𝑉, 𝐸〉 ⇒ ⊢ (𝐺 NeighbVtx 2) = {1, 3} | ||
Theorem | usgrexmpl2nb3 47849 | The neighborhood of the forth vertex of graph 𝐺. (Contributed by AV, 9-Aug-2025.) |
⊢ 𝑉 = (0...5) & ⊢ 𝐸 = 〈“{0, 1} {1, 2} {2, 3} {3, 4} {4, 5} {0, 3} {0, 5}”〉 & ⊢ 𝐺 = 〈𝑉, 𝐸〉 ⇒ ⊢ (𝐺 NeighbVtx 3) = {0, 2, 4} | ||
Theorem | usgrexmpl2nb4 47850 | The neighborhood of the fifth vertex of graph 𝐺. (Contributed by AV, 9-Aug-2025.) |
⊢ 𝑉 = (0...5) & ⊢ 𝐸 = 〈“{0, 1} {1, 2} {2, 3} {3, 4} {4, 5} {0, 3} {0, 5}”〉 & ⊢ 𝐺 = 〈𝑉, 𝐸〉 ⇒ ⊢ (𝐺 NeighbVtx 4) = {3, 5} | ||
Theorem | usgrexmpl2nb5 47851 | The neighborhood of the sixth vertex of graph 𝐺. (Contributed by AV, 10-Aug-2025.) |
⊢ 𝑉 = (0...5) & ⊢ 𝐸 = 〈“{0, 1} {1, 2} {2, 3} {3, 4} {4, 5} {0, 3} {0, 5}”〉 & ⊢ 𝐺 = 〈𝑉, 𝐸〉 ⇒ ⊢ (𝐺 NeighbVtx 5) = {0, 4} | ||
Theorem | usgrexmpl2trifr 47852* | 𝐺 is triangle-free. (Contributed by AV, 10-Aug-2025.) |
⊢ 𝑉 = (0...5) & ⊢ 𝐸 = 〈“{0, 1} {1, 2} {2, 3} {3, 4} {4, 5} {0, 3} {0, 5}”〉 & ⊢ 𝐺 = 〈𝑉, 𝐸〉 ⇒ ⊢ ¬ ∃𝑡 𝑡 ∈ (GrTriangles‘𝐺) | ||
Theorem | usgrexmpl12ngric 47853 | The graphs 𝐻 and 𝐺 are not isomorphic (𝐻 contains a triangle, see usgrexmpl1tri 47840, whereas 𝐺 does not, see usgrexmpl2trifr 47852. (Contributed by AV, 10-Aug-2025.) |
⊢ 𝑉 = (0...5) & ⊢ 𝐸 = 〈“{0, 1} {1, 2} {2, 3} {3, 4} {4, 5} {0, 3} {0, 5}”〉 & ⊢ 𝐺 = 〈𝑉, 𝐸〉 & ⊢ 𝐾 = 〈“{0, 1} {0, 2} {1, 2} {0, 3} {3, 4} {3, 5} {4, 5}”〉 & ⊢ 𝐻 = 〈𝑉, 𝐾〉 ⇒ ⊢ ¬ 𝐺 ≃𝑔𝑟 𝐻 | ||
Theorem | usgrexmpl12ngrlic 47854 | The graphs 𝐻 and 𝐺 are not locally isomorphic (𝐻 contains a triangle, see usgrexmpl1tri 47840, whereas 𝐺 does not, see usgrexmpl2trifr 47852. (Contributed by AV, 24-Aug-2025.) |
⊢ 𝑉 = (0...5) & ⊢ 𝐸 = 〈“{0, 1} {1, 2} {2, 3} {3, 4} {4, 5} {0, 3} {0, 5}”〉 & ⊢ 𝐺 = 〈𝑉, 𝐸〉 & ⊢ 𝐾 = 〈“{0, 1} {0, 2} {1, 2} {0, 3} {3, 4} {3, 5} {4, 5}”〉 & ⊢ 𝐻 = 〈𝑉, 𝐾〉 ⇒ ⊢ ¬ 𝐺 ≃𝑙𝑔𝑟 𝐻 | ||
Theorem | 1hegrlfgr 47855* | A graph 𝐺 with one hyperedge joining at least two vertices is a loop-free graph. (Contributed by AV, 23-Feb-2021.) |
⊢ (𝜑 → 𝐴 ∈ 𝑋) & ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ≠ 𝐶) & ⊢ (𝜑 → 𝐸 ∈ 𝒫 𝑉) & ⊢ (𝜑 → (iEdg‘𝐺) = {〈𝐴, 𝐸〉}) & ⊢ (𝜑 → {𝐵, 𝐶} ⊆ 𝐸) ⇒ ⊢ (𝜑 → (iEdg‘𝐺):{𝐴}⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}) | ||
Syntax | cupwlks 47856 | Extend class notation with walks (of a pseudograph). |
class UPWalks | ||
Definition | df-upwlks 47857* |
Define the set of all walks (in a pseudograph), called "simple walks"
in
the following.
According to Wikipedia ("Path (graph theory)", https://en.wikipedia.org/wiki/Path_(graph_theory), 3-Oct-2017): "A walk of length k in a graph is an alternating sequence of vertices and edges, v0 , e0 , v1 , e1 , v2 , ... , v(k-1) , e(k-1) , v(k) which begins and ends with vertices. If the graph is undirected, then the endpoints of e(i) are v(i) and v(i+1)." According to Bollobas: " A walk W in a graph is an alternating sequence of vertices and edges x0 , e1 , x1 , e2 , ... , e(l) , x(l) where e(i) = x(i-1)x(i), 0<i<=l.", see Definition of [Bollobas] p. 4. Therefore, a walk can be represented by two mappings f from { 1 , ... , n } and p from { 0 , ... , n }, where f enumerates the (indices of the) edges, and p enumerates the vertices. So the walk is represented by the following sequence: p(0) e(f(1)) p(1) e(f(2)) ... p(n-1) e(f(n)) p(n). Although this definition is also applicable for arbitrary hypergraphs, it allows only walks consisting of not proper hyperedges (i.e. edges connecting at most two vertices). Therefore, it should be used for pseudographs only. (Contributed by Alexander van der Vekens and Mario Carneiro, 4-Oct-2017.) (Revised by AV, 28-Dec-2020.) |
⊢ UPWalks = (𝑔 ∈ V ↦ {〈𝑓, 𝑝〉 ∣ (𝑓 ∈ Word dom (iEdg‘𝑔) ∧ 𝑝:(0...(♯‘𝑓))⟶(Vtx‘𝑔) ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))((iEdg‘𝑔)‘(𝑓‘𝑘)) = {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))})}) | ||
Theorem | upwlksfval 47858* | The set of simple walks (in an undirected graph). (Contributed by Alexander van der Vekens, 19-Oct-2017.) (Revised by AV, 28-Dec-2020.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) ⇒ ⊢ (𝐺 ∈ 𝑊 → (UPWalks‘𝐺) = {〈𝑓, 𝑝〉 ∣ (𝑓 ∈ Word dom 𝐼 ∧ 𝑝:(0...(♯‘𝑓))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝑓))(𝐼‘(𝑓‘𝑘)) = {(𝑝‘𝑘), (𝑝‘(𝑘 + 1))})}) | ||
Theorem | isupwlk 47859* | Properties of a pair of functions to be a simple walk. (Contributed by Alexander van der Vekens, 20-Oct-2017.) (Revised by AV, 28-Dec-2020.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) ⇒ ⊢ ((𝐺 ∈ 𝑊 ∧ 𝐹 ∈ 𝑈 ∧ 𝑃 ∈ 𝑍) → (𝐹(UPWalks‘𝐺)𝑃 ↔ (𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))}))) | ||
Theorem | isupwlkg 47860* | Generalization of isupwlk 47859: Conditions for two classes to represent a simple walk. (Contributed by AV, 5-Nov-2021.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) ⇒ ⊢ (𝐺 ∈ 𝑊 → (𝐹(UPWalks‘𝐺)𝑃 ↔ (𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))}))) | ||
Theorem | upwlkbprop 47861 | Basic properties of a simple walk. (Contributed by Alexander van der Vekens, 31-Oct-2017.) (Revised by AV, 29-Dec-2020.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) ⇒ ⊢ (𝐹(UPWalks‘𝐺)𝑃 → (𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V)) | ||
Theorem | upwlkwlk 47862 | A simple walk is a walk. (Contributed by AV, 30-Dec-2020.) (Proof shortened by AV, 27-Feb-2021.) |
⊢ (𝐹(UPWalks‘𝐺)𝑃 → 𝐹(Walks‘𝐺)𝑃) | ||
Theorem | upgrwlkupwlk 47863 | In a pseudograph, a walk is a simple walk. (Contributed by AV, 30-Dec-2020.) (Proof shortened by AV, 2-Jan-2021.) |
⊢ ((𝐺 ∈ UPGraph ∧ 𝐹(Walks‘𝐺)𝑃) → 𝐹(UPWalks‘𝐺)𝑃) | ||
Theorem | upgrwlkupwlkb 47864 | In a pseudograph, the definitions for a walk and a simple walk are equivalent. (Contributed by AV, 30-Dec-2020.) |
⊢ (𝐺 ∈ UPGraph → (𝐹(Walks‘𝐺)𝑃 ↔ 𝐹(UPWalks‘𝐺)𝑃)) | ||
Theorem | upgrisupwlkALT 47865* | Alternate proof of upgriswlk 29677 using the definition of UPGraph and related theorems. (Contributed by AV, 2-Jan-2021.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) ⇒ ⊢ ((𝐺 ∈ UPGraph ∧ 𝐹 ∈ 𝑈 ∧ 𝑃 ∈ 𝑍) → (𝐹(Walks‘𝐺)𝑃 ↔ (𝐹 ∈ Word dom 𝐼 ∧ 𝑃:(0...(♯‘𝐹))⟶𝑉 ∧ ∀𝑘 ∈ (0..^(♯‘𝐹))(𝐼‘(𝐹‘𝑘)) = {(𝑃‘𝑘), (𝑃‘(𝑘 + 1))}))) | ||
Theorem | upgredgssspr 47866 | The set of edges of a pseudograph is a subset of the set of unordered pairs of vertices. (Contributed by AV, 24-Nov-2021.) |
⊢ (𝐺 ∈ UPGraph → (Edg‘𝐺) ⊆ (Pairs‘(Vtx‘𝐺))) | ||
Theorem | uspgropssxp 47867* | The set 𝐺 of "simple pseudographs" for a fixed set 𝑉 of vertices is a subset of a Cartesian product. For more details about the class 𝐺 of all "simple pseudographs" see comments on uspgrbisymrel 47877. (Contributed by AV, 24-Nov-2021.) |
⊢ 𝑃 = 𝒫 (Pairs‘𝑉) & ⊢ 𝐺 = {〈𝑣, 𝑒〉 ∣ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))} ⇒ ⊢ (𝑉 ∈ 𝑊 → 𝐺 ⊆ (𝑊 × 𝑃)) | ||
Theorem | uspgrsprfv 47868* | The value of the function 𝐹 which maps a "simple pseudograph" for a fixed set 𝑉 of vertices to the set of edges (i.e. range of the edge function) of the graph. Solely for 𝐺 as defined here, the function 𝐹 is a bijection between the "simple pseudographs" and the subsets of the set of pairs 𝑃 over the fixed set 𝑉 of vertices, see uspgrbispr 47874. (Contributed by AV, 24-Nov-2021.) |
⊢ 𝑃 = 𝒫 (Pairs‘𝑉) & ⊢ 𝐺 = {〈𝑣, 𝑒〉 ∣ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))} & ⊢ 𝐹 = (𝑔 ∈ 𝐺 ↦ (2nd ‘𝑔)) ⇒ ⊢ (𝑋 ∈ 𝐺 → (𝐹‘𝑋) = (2nd ‘𝑋)) | ||
Theorem | uspgrsprf 47869* | The mapping 𝐹 is a function from the "simple pseudographs" with a fixed set of vertices 𝑉 into the subsets of the set of pairs over the set 𝑉. (Contributed by AV, 24-Nov-2021.) |
⊢ 𝑃 = 𝒫 (Pairs‘𝑉) & ⊢ 𝐺 = {〈𝑣, 𝑒〉 ∣ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))} & ⊢ 𝐹 = (𝑔 ∈ 𝐺 ↦ (2nd ‘𝑔)) ⇒ ⊢ 𝐹:𝐺⟶𝑃 | ||
Theorem | uspgrsprf1 47870* | The mapping 𝐹 is a one-to-one function from the "simple pseudographs" with a fixed set of vertices 𝑉 into the subsets of the set of pairs over the set 𝑉. (Contributed by AV, 25-Nov-2021.) |
⊢ 𝑃 = 𝒫 (Pairs‘𝑉) & ⊢ 𝐺 = {〈𝑣, 𝑒〉 ∣ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))} & ⊢ 𝐹 = (𝑔 ∈ 𝐺 ↦ (2nd ‘𝑔)) ⇒ ⊢ 𝐹:𝐺–1-1→𝑃 | ||
Theorem | uspgrsprfo 47871* | The mapping 𝐹 is a function from the "simple pseudographs" with a fixed set of vertices 𝑉 onto the subsets of the set of pairs over the set 𝑉. (Contributed by AV, 25-Nov-2021.) |
⊢ 𝑃 = 𝒫 (Pairs‘𝑉) & ⊢ 𝐺 = {〈𝑣, 𝑒〉 ∣ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))} & ⊢ 𝐹 = (𝑔 ∈ 𝐺 ↦ (2nd ‘𝑔)) ⇒ ⊢ (𝑉 ∈ 𝑊 → 𝐹:𝐺–onto→𝑃) | ||
Theorem | uspgrsprf1o 47872* | The mapping 𝐹 is a bijection between the "simple pseudographs" with a fixed set of vertices 𝑉 and the subsets of the set of pairs over the set 𝑉. See also the comments on uspgrbisymrel 47877. (Contributed by AV, 25-Nov-2021.) |
⊢ 𝑃 = 𝒫 (Pairs‘𝑉) & ⊢ 𝐺 = {〈𝑣, 𝑒〉 ∣ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))} & ⊢ 𝐹 = (𝑔 ∈ 𝐺 ↦ (2nd ‘𝑔)) ⇒ ⊢ (𝑉 ∈ 𝑊 → 𝐹:𝐺–1-1-onto→𝑃) | ||
Theorem | uspgrex 47873* | The class 𝐺 of all "simple pseudographs" with a fixed set of vertices 𝑉 is a set. (Contributed by AV, 26-Nov-2021.) |
⊢ 𝑃 = 𝒫 (Pairs‘𝑉) & ⊢ 𝐺 = {〈𝑣, 𝑒〉 ∣ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))} ⇒ ⊢ (𝑉 ∈ 𝑊 → 𝐺 ∈ V) | ||
Theorem | uspgrbispr 47874* | There is a bijection between the "simple pseudographs" with a fixed set of vertices 𝑉 and the subsets of the set of pairs over the set 𝑉. (Contributed by AV, 26-Nov-2021.) |
⊢ 𝑃 = 𝒫 (Pairs‘𝑉) & ⊢ 𝐺 = {〈𝑣, 𝑒〉 ∣ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))} ⇒ ⊢ (𝑉 ∈ 𝑊 → ∃𝑓 𝑓:𝐺–1-1-onto→𝑃) | ||
Theorem | uspgrspren 47875* | The set 𝐺 of the "simple pseudographs" with a fixed set of vertices 𝑉 and the class 𝑃 of subsets of the set of pairs over the fixed set 𝑉 are equinumerous. (Contributed by AV, 27-Nov-2021.) |
⊢ 𝑃 = 𝒫 (Pairs‘𝑉) & ⊢ 𝐺 = {〈𝑣, 𝑒〉 ∣ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))} ⇒ ⊢ (𝑉 ∈ 𝑊 → 𝐺 ≈ 𝑃) | ||
Theorem | uspgrymrelen 47876* | The set 𝐺 of the "simple pseudographs" with a fixed set of vertices 𝑉 and the class 𝑅 of the symmetric relations on the fixed set 𝑉 are equinumerous. For more details about the class 𝐺 of all "simple pseudographs" see comments on uspgrbisymrel 47877. (Contributed by AV, 27-Nov-2021.) |
⊢ 𝐺 = {〈𝑣, 𝑒〉 ∣ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))} & ⊢ 𝑅 = {𝑟 ∈ 𝒫 (𝑉 × 𝑉) ∣ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (𝑥𝑟𝑦 ↔ 𝑦𝑟𝑥)} ⇒ ⊢ (𝑉 ∈ 𝑊 → 𝐺 ≈ 𝑅) | ||
Theorem | uspgrbisymrel 47877* |
There is a bijection between the "simple pseudographs" for a fixed
set
𝑉 of vertices and the class 𝑅 of the
symmetric relations on the
fixed set 𝑉. The simple pseudographs, which are
graphs without
hyper- or multiedges, but which may contain loops, are expressed as
ordered pairs of the vertices and the edges (as proper or improper
unordered pairs of vertices, not as indexed edges!) in this theorem.
That class 𝐺 of such simple pseudographs is a set
(if 𝑉 is a
set, see uspgrex 47873) of equivalence classes of graphs
abstracting from
the index sets of their edge functions.
Solely for this abstraction, there is a bijection between the "simple pseudographs" as members of 𝐺 and the symmetric relations 𝑅 on the fixed set 𝑉 of vertices. This theorem would not hold for 𝐺 = {𝑔 ∈ USPGraph ∣ (Vtx‘𝑔) = 𝑉} and even not for 𝐺 = {〈𝑣, 𝑒〉 ∣ (𝑣 = 𝑉 ∧ 〈𝑣, 𝑒〉 ∈ USPGraph)}, because these are much bigger classes. (Proposed by Gerard Lang, 16-Nov-2021.) (Contributed by AV, 27-Nov-2021.) |
⊢ 𝐺 = {〈𝑣, 𝑒〉 ∣ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))} & ⊢ 𝑅 = {𝑟 ∈ 𝒫 (𝑉 × 𝑉) ∣ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (𝑥𝑟𝑦 ↔ 𝑦𝑟𝑥)} ⇒ ⊢ (𝑉 ∈ 𝑊 → ∃𝑓 𝑓:𝐺–1-1-onto→𝑅) | ||
Theorem | uspgrbisymrelALT 47878* | Alternate proof of uspgrbisymrel 47877 not using the definition of equinumerosity. (Contributed by AV, 26-Nov-2021.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ 𝐺 = {〈𝑣, 𝑒〉 ∣ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))} & ⊢ 𝑅 = {𝑟 ∈ 𝒫 (𝑉 × 𝑉) ∣ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (𝑥𝑟𝑦 ↔ 𝑦𝑟𝑥)} ⇒ ⊢ (𝑉 ∈ 𝑊 → ∃𝑓 𝑓:𝐺–1-1-onto→𝑅) | ||
Theorem | ovn0dmfun 47879 | If a class operation value for two operands is not the empty set, then the operands are contained in the domain of the class, and the class restricted to the operands is a function, analogous to fvfundmfvn0 6963. (Contributed by AV, 27-Jan-2020.) |
⊢ ((𝐴𝐹𝐵) ≠ ∅ → (〈𝐴, 𝐵〉 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {〈𝐴, 𝐵〉}))) | ||
Theorem | xpsnopab 47880* | A Cartesian product with a singleton expressed as ordered-pair class abstraction. (Contributed by AV, 27-Jan-2020.) |
⊢ ({𝑋} × 𝐶) = {〈𝑎, 𝑏〉 ∣ (𝑎 = 𝑋 ∧ 𝑏 ∈ 𝐶)} | ||
Theorem | xpiun 47881* | A Cartesian product expressed as indexed union of ordered-pair class abstractions. (Contributed by AV, 27-Jan-2020.) |
⊢ (𝐵 × 𝐶) = ∪ 𝑥 ∈ 𝐵 {〈𝑎, 𝑏〉 ∣ (𝑎 = 𝑥 ∧ 𝑏 ∈ 𝐶)} | ||
Theorem | ovn0ssdmfun 47882* | If a class' operation value for two operands is not the empty set, the operands are contained in the domain of the class, and the class restricted to the operands is a function, analogous to fvfundmfvn0 6963. (Contributed by AV, 27-Jan-2020.) |
⊢ (∀𝑎 ∈ 𝐷 ∀𝑏 ∈ 𝐸 (𝑎𝐹𝑏) ≠ ∅ → ((𝐷 × 𝐸) ⊆ dom 𝐹 ∧ Fun (𝐹 ↾ (𝐷 × 𝐸)))) | ||
Theorem | fnxpdmdm 47883 | The domain of the domain of a function over a Cartesian square. (Contributed by AV, 13-Jan-2020.) |
⊢ (𝐹 Fn (𝐴 × 𝐴) → dom dom 𝐹 = 𝐴) | ||
Theorem | cnfldsrngbas 47884 | The base set of a subring of the field of complex numbers. (Contributed by AV, 31-Jan-2020.) |
⊢ 𝑅 = (ℂfld ↾s 𝑆) ⇒ ⊢ (𝑆 ⊆ ℂ → 𝑆 = (Base‘𝑅)) | ||
Theorem | cnfldsrngadd 47885 | The group addition operation of a subring of the field of complex numbers. (Contributed by AV, 31-Jan-2020.) |
⊢ 𝑅 = (ℂfld ↾s 𝑆) ⇒ ⊢ (𝑆 ∈ 𝑉 → + = (+g‘𝑅)) | ||
Theorem | cnfldsrngmul 47886 | The ring multiplication operation of a subring of the field of complex numbers. (Contributed by AV, 31-Jan-2020.) |
⊢ 𝑅 = (ℂfld ↾s 𝑆) ⇒ ⊢ (𝑆 ∈ 𝑉 → · = (.r‘𝑅)) | ||
Theorem | plusfreseq 47887 | If the empty set is not contained in the range of the group addition function of an extensible structure (not necessarily a magma), the restriction of the addition operation to (the Cartesian square of) the base set is the functionalization of it. (Contributed by AV, 28-Jan-2020.) |
⊢ 𝐵 = (Base‘𝑀) & ⊢ + = (+g‘𝑀) & ⊢ ⨣ = (+𝑓‘𝑀) ⇒ ⊢ (∅ ∉ ran ⨣ → ( + ↾ (𝐵 × 𝐵)) = ⨣ ) | ||
Theorem | mgmplusfreseq 47888 | If the empty set is not contained in the base set of a magma, the restriction of the addition operation to (the Cartesian square of) the base set is the functionalization of it. (Contributed by AV, 28-Jan-2020.) |
⊢ 𝐵 = (Base‘𝑀) & ⊢ + = (+g‘𝑀) & ⊢ ⨣ = (+𝑓‘𝑀) ⇒ ⊢ ((𝑀 ∈ Mgm ∧ ∅ ∉ 𝐵) → ( + ↾ (𝐵 × 𝐵)) = ⨣ ) | ||
Theorem | 0mgm 47889 | A set with an empty base set is always a magma. (Contributed by AV, 25-Feb-2020.) |
⊢ (Base‘𝑀) = ∅ ⇒ ⊢ (𝑀 ∈ 𝑉 → 𝑀 ∈ Mgm) | ||
Theorem | opmpoismgm 47890* | A structure with a group addition operation in maps-to notation is a magma if the operation value is contained in the base set. (Contributed by AV, 16-Feb-2020.) |
⊢ 𝐵 = (Base‘𝑀) & ⊢ (+g‘𝑀) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶) & ⊢ (𝜑 → 𝐵 ≠ ∅) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → 𝐶 ∈ 𝐵) ⇒ ⊢ (𝜑 → 𝑀 ∈ Mgm) | ||
Theorem | copissgrp 47891* | A structure with a constant group addition operation is a semigroup if the constant is contained in the base set. (Contributed by AV, 16-Feb-2020.) |
⊢ 𝐵 = (Base‘𝑀) & ⊢ (+g‘𝑀) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶) & ⊢ (𝜑 → 𝐵 ≠ ∅) & ⊢ (𝜑 → 𝐶 ∈ 𝐵) ⇒ ⊢ (𝜑 → 𝑀 ∈ Smgrp) | ||
Theorem | copisnmnd 47892* | A structure with a constant group addition operation and at least two elements is not a monoid. (Contributed by AV, 16-Feb-2020.) |
⊢ 𝐵 = (Base‘𝑀) & ⊢ (+g‘𝑀) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ 𝐶) & ⊢ (𝜑 → 𝐶 ∈ 𝐵) & ⊢ (𝜑 → 1 < (♯‘𝐵)) ⇒ ⊢ (𝜑 → 𝑀 ∉ Mnd) | ||
Theorem | 0nodd 47893* | 0 is not an odd integer. (Contributed by AV, 3-Feb-2020.) |
⊢ 𝑂 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = ((2 · 𝑥) + 1)} ⇒ ⊢ 0 ∉ 𝑂 | ||
Theorem | 1odd 47894* | 1 is an odd integer. (Contributed by AV, 3-Feb-2020.) |
⊢ 𝑂 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = ((2 · 𝑥) + 1)} ⇒ ⊢ 1 ∈ 𝑂 | ||
Theorem | 2nodd 47895* | 2 is not an odd integer. (Contributed by AV, 3-Feb-2020.) |
⊢ 𝑂 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = ((2 · 𝑥) + 1)} ⇒ ⊢ 2 ∉ 𝑂 | ||
Theorem | oddibas 47896* | Lemma 1 for oddinmgm 47898: The base set of M is the set of all odd integers. (Contributed by AV, 3-Feb-2020.) |
⊢ 𝑂 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = ((2 · 𝑥) + 1)} & ⊢ 𝑀 = (ℂfld ↾s 𝑂) ⇒ ⊢ 𝑂 = (Base‘𝑀) | ||
Theorem | oddiadd 47897* | Lemma 2 for oddinmgm 47898: The group addition operation of M is the addition of complex numbers. (Contributed by AV, 3-Feb-2020.) |
⊢ 𝑂 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = ((2 · 𝑥) + 1)} & ⊢ 𝑀 = (ℂfld ↾s 𝑂) ⇒ ⊢ + = (+g‘𝑀) | ||
Theorem | oddinmgm 47898* | The structure of all odd integers together with the addition of complex numbers is not a magma. Remark: the structure of the complementary subset of the set of integers, the even integers, is a magma, actually an abelian group, see 2zrngaabl 47973, and even a non-unital ring, see 2zrng 47964. (Contributed by AV, 3-Feb-2020.) |
⊢ 𝑂 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = ((2 · 𝑥) + 1)} & ⊢ 𝑀 = (ℂfld ↾s 𝑂) ⇒ ⊢ 𝑀 ∉ Mgm | ||
Theorem | nnsgrpmgm 47899 | The structure of positive integers together with the addition of complex numbers is a magma. (Contributed by AV, 4-Feb-2020.) |
⊢ 𝑀 = (ℂfld ↾s ℕ) ⇒ ⊢ 𝑀 ∈ Mgm | ||
Theorem | nnsgrp 47900 | The structure of positive integers together with the addition of complex numbers is a semigroup. (Contributed by AV, 4-Feb-2020.) |
⊢ 𝑀 = (ℂfld ↾s ℕ) ⇒ ⊢ 𝑀 ∈ Smgrp |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |