Detailed syntax breakdown of Definition df-mnring
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | cmnring 44225 | . 2
class 
MndRing | 
| 2 |  | vr | . . 3
setvar 𝑟 | 
| 3 |  | vm | . . 3
setvar 𝑚 | 
| 4 |  | cvv 3480 | . . 3
class
V | 
| 5 |  | vv | . . . 4
setvar 𝑣 | 
| 6 | 2 | cv 1539 | . . . . 5
class 𝑟 | 
| 7 | 3 | cv 1539 | . . . . . 6
class 𝑚 | 
| 8 |  | cbs 17247 | . . . . . 6
class
Base | 
| 9 | 7, 8 | cfv 6561 | . . . . 5
class
(Base‘𝑚) | 
| 10 |  | cfrlm 21766 | . . . . 5
class 
freeLMod | 
| 11 | 6, 9, 10 | co 7431 | . . . 4
class (𝑟 freeLMod (Base‘𝑚)) | 
| 12 | 5 | cv 1539 | . . . . 5
class 𝑣 | 
| 13 |  | cnx 17230 | . . . . . . 7
class
ndx | 
| 14 |  | cmulr 17298 | . . . . . . 7
class
.r | 
| 15 | 13, 14 | cfv 6561 | . . . . . 6
class
(.r‘ndx) | 
| 16 |  | vx | . . . . . . 7
setvar 𝑥 | 
| 17 |  | vy | . . . . . . 7
setvar 𝑦 | 
| 18 | 12, 8 | cfv 6561 | . . . . . . 7
class
(Base‘𝑣) | 
| 19 |  | va | . . . . . . . . 9
setvar 𝑎 | 
| 20 |  | vb | . . . . . . . . 9
setvar 𝑏 | 
| 21 |  | vi | . . . . . . . . . 10
setvar 𝑖 | 
| 22 | 21 | cv 1539 | . . . . . . . . . . . 12
class 𝑖 | 
| 23 | 19 | cv 1539 | . . . . . . . . . . . . 13
class 𝑎 | 
| 24 | 20 | cv 1539 | . . . . . . . . . . . . 13
class 𝑏 | 
| 25 |  | cplusg 17297 | . . . . . . . . . . . . . 14
class
+g | 
| 26 | 7, 25 | cfv 6561 | . . . . . . . . . . . . 13
class
(+g‘𝑚) | 
| 27 | 23, 24, 26 | co 7431 | . . . . . . . . . . . 12
class (𝑎(+g‘𝑚)𝑏) | 
| 28 | 22, 27 | wceq 1540 | . . . . . . . . . . 11
wff 𝑖 = (𝑎(+g‘𝑚)𝑏) | 
| 29 | 16 | cv 1539 | . . . . . . . . . . . . 13
class 𝑥 | 
| 30 | 23, 29 | cfv 6561 | . . . . . . . . . . . 12
class (𝑥‘𝑎) | 
| 31 | 17 | cv 1539 | . . . . . . . . . . . . 13
class 𝑦 | 
| 32 | 24, 31 | cfv 6561 | . . . . . . . . . . . 12
class (𝑦‘𝑏) | 
| 33 | 6, 14 | cfv 6561 | . . . . . . . . . . . 12
class
(.r‘𝑟) | 
| 34 | 30, 32, 33 | co 7431 | . . . . . . . . . . 11
class ((𝑥‘𝑎)(.r‘𝑟)(𝑦‘𝑏)) | 
| 35 |  | c0g 17484 | . . . . . . . . . . . 12
class
0g | 
| 36 | 6, 35 | cfv 6561 | . . . . . . . . . . 11
class
(0g‘𝑟) | 
| 37 | 28, 34, 36 | cif 4525 | . . . . . . . . . 10
class if(𝑖 = (𝑎(+g‘𝑚)𝑏), ((𝑥‘𝑎)(.r‘𝑟)(𝑦‘𝑏)), (0g‘𝑟)) | 
| 38 | 21, 9, 37 | cmpt 5225 | . . . . . . . . 9
class (𝑖 ∈ (Base‘𝑚) ↦ if(𝑖 = (𝑎(+g‘𝑚)𝑏), ((𝑥‘𝑎)(.r‘𝑟)(𝑦‘𝑏)), (0g‘𝑟))) | 
| 39 | 19, 20, 9, 9, 38 | cmpo 7433 | . . . . . . . 8
class (𝑎 ∈ (Base‘𝑚), 𝑏 ∈ (Base‘𝑚) ↦ (𝑖 ∈ (Base‘𝑚) ↦ if(𝑖 = (𝑎(+g‘𝑚)𝑏), ((𝑥‘𝑎)(.r‘𝑟)(𝑦‘𝑏)), (0g‘𝑟)))) | 
| 40 |  | cgsu 17485 | . . . . . . . 8
class 
Σg | 
| 41 | 12, 39, 40 | co 7431 | . . . . . . 7
class (𝑣 Σg
(𝑎 ∈ (Base‘𝑚), 𝑏 ∈ (Base‘𝑚) ↦ (𝑖 ∈ (Base‘𝑚) ↦ if(𝑖 = (𝑎(+g‘𝑚)𝑏), ((𝑥‘𝑎)(.r‘𝑟)(𝑦‘𝑏)), (0g‘𝑟))))) | 
| 42 | 16, 17, 18, 18, 41 | cmpo 7433 | . . . . . 6
class (𝑥 ∈ (Base‘𝑣), 𝑦 ∈ (Base‘𝑣) ↦ (𝑣 Σg (𝑎 ∈ (Base‘𝑚), 𝑏 ∈ (Base‘𝑚) ↦ (𝑖 ∈ (Base‘𝑚) ↦ if(𝑖 = (𝑎(+g‘𝑚)𝑏), ((𝑥‘𝑎)(.r‘𝑟)(𝑦‘𝑏)), (0g‘𝑟)))))) | 
| 43 | 15, 42 | cop 4632 | . . . . 5
class
〈(.r‘ndx), (𝑥 ∈ (Base‘𝑣), 𝑦 ∈ (Base‘𝑣) ↦ (𝑣 Σg (𝑎 ∈ (Base‘𝑚), 𝑏 ∈ (Base‘𝑚) ↦ (𝑖 ∈ (Base‘𝑚) ↦ if(𝑖 = (𝑎(+g‘𝑚)𝑏), ((𝑥‘𝑎)(.r‘𝑟)(𝑦‘𝑏)), (0g‘𝑟))))))〉 | 
| 44 |  | csts 17200 | . . . . 5
class 
sSet | 
| 45 | 12, 43, 44 | co 7431 | . . . 4
class (𝑣 sSet
〈(.r‘ndx), (𝑥 ∈ (Base‘𝑣), 𝑦 ∈ (Base‘𝑣) ↦ (𝑣 Σg (𝑎 ∈ (Base‘𝑚), 𝑏 ∈ (Base‘𝑚) ↦ (𝑖 ∈ (Base‘𝑚) ↦ if(𝑖 = (𝑎(+g‘𝑚)𝑏), ((𝑥‘𝑎)(.r‘𝑟)(𝑦‘𝑏)), (0g‘𝑟))))))〉) | 
| 46 | 5, 11, 45 | csb 3899 | . . 3
class
⦋(𝑟
freeLMod (Base‘𝑚)) /
𝑣⦌(𝑣 sSet
〈(.r‘ndx), (𝑥 ∈ (Base‘𝑣), 𝑦 ∈ (Base‘𝑣) ↦ (𝑣 Σg (𝑎 ∈ (Base‘𝑚), 𝑏 ∈ (Base‘𝑚) ↦ (𝑖 ∈ (Base‘𝑚) ↦ if(𝑖 = (𝑎(+g‘𝑚)𝑏), ((𝑥‘𝑎)(.r‘𝑟)(𝑦‘𝑏)), (0g‘𝑟))))))〉) | 
| 47 | 2, 3, 4, 4, 46 | cmpo 7433 | . 2
class (𝑟 ∈ V, 𝑚 ∈ V ↦ ⦋(𝑟 freeLMod (Base‘𝑚)) / 𝑣⦌(𝑣 sSet 〈(.r‘ndx), (𝑥 ∈ (Base‘𝑣), 𝑦 ∈ (Base‘𝑣) ↦ (𝑣 Σg (𝑎 ∈ (Base‘𝑚), 𝑏 ∈ (Base‘𝑚) ↦ (𝑖 ∈ (Base‘𝑚) ↦ if(𝑖 = (𝑎(+g‘𝑚)𝑏), ((𝑥‘𝑎)(.r‘𝑟)(𝑦‘𝑏)), (0g‘𝑟))))))〉)) | 
| 48 | 1, 47 | wceq 1540 | 1
wff  MndRing =
(𝑟 ∈ V, 𝑚 ∈ V ↦
⦋(𝑟 freeLMod
(Base‘𝑚)) / 𝑣⦌(𝑣 sSet
〈(.r‘ndx), (𝑥 ∈ (Base‘𝑣), 𝑦 ∈ (Base‘𝑣) ↦ (𝑣 Σg (𝑎 ∈ (Base‘𝑚), 𝑏 ∈ (Base‘𝑚) ↦ (𝑖 ∈ (Base‘𝑚) ↦ if(𝑖 = (𝑎(+g‘𝑚)𝑏), ((𝑥‘𝑎)(.r‘𝑟)(𝑦‘𝑏)), (0g‘𝑟))))))〉)) |