Detailed syntax breakdown of Definition df-mnring
| Step | Hyp | Ref
| Expression |
| 1 | | cmnring 44202 |
. 2
class
MndRing |
| 2 | | vr |
. . 3
setvar 𝑟 |
| 3 | | vm |
. . 3
setvar 𝑚 |
| 4 | | cvv 3464 |
. . 3
class
V |
| 5 | | vv |
. . . 4
setvar 𝑣 |
| 6 | 2 | cv 1539 |
. . . . 5
class 𝑟 |
| 7 | 3 | cv 1539 |
. . . . . 6
class 𝑚 |
| 8 | | cbs 17233 |
. . . . . 6
class
Base |
| 9 | 7, 8 | cfv 6536 |
. . . . 5
class
(Base‘𝑚) |
| 10 | | cfrlm 21711 |
. . . . 5
class
freeLMod |
| 11 | 6, 9, 10 | co 7410 |
. . . 4
class (𝑟 freeLMod (Base‘𝑚)) |
| 12 | 5 | cv 1539 |
. . . . 5
class 𝑣 |
| 13 | | cnx 17217 |
. . . . . . 7
class
ndx |
| 14 | | cmulr 17277 |
. . . . . . 7
class
.r |
| 15 | 13, 14 | cfv 6536 |
. . . . . 6
class
(.r‘ndx) |
| 16 | | vx |
. . . . . . 7
setvar 𝑥 |
| 17 | | vy |
. . . . . . 7
setvar 𝑦 |
| 18 | 12, 8 | cfv 6536 |
. . . . . . 7
class
(Base‘𝑣) |
| 19 | | va |
. . . . . . . . 9
setvar 𝑎 |
| 20 | | vb |
. . . . . . . . 9
setvar 𝑏 |
| 21 | | vi |
. . . . . . . . . 10
setvar 𝑖 |
| 22 | 21 | cv 1539 |
. . . . . . . . . . . 12
class 𝑖 |
| 23 | 19 | cv 1539 |
. . . . . . . . . . . . 13
class 𝑎 |
| 24 | 20 | cv 1539 |
. . . . . . . . . . . . 13
class 𝑏 |
| 25 | | cplusg 17276 |
. . . . . . . . . . . . . 14
class
+g |
| 26 | 7, 25 | cfv 6536 |
. . . . . . . . . . . . 13
class
(+g‘𝑚) |
| 27 | 23, 24, 26 | co 7410 |
. . . . . . . . . . . 12
class (𝑎(+g‘𝑚)𝑏) |
| 28 | 22, 27 | wceq 1540 |
. . . . . . . . . . 11
wff 𝑖 = (𝑎(+g‘𝑚)𝑏) |
| 29 | 16 | cv 1539 |
. . . . . . . . . . . . 13
class 𝑥 |
| 30 | 23, 29 | cfv 6536 |
. . . . . . . . . . . 12
class (𝑥‘𝑎) |
| 31 | 17 | cv 1539 |
. . . . . . . . . . . . 13
class 𝑦 |
| 32 | 24, 31 | cfv 6536 |
. . . . . . . . . . . 12
class (𝑦‘𝑏) |
| 33 | 6, 14 | cfv 6536 |
. . . . . . . . . . . 12
class
(.r‘𝑟) |
| 34 | 30, 32, 33 | co 7410 |
. . . . . . . . . . 11
class ((𝑥‘𝑎)(.r‘𝑟)(𝑦‘𝑏)) |
| 35 | | c0g 17458 |
. . . . . . . . . . . 12
class
0g |
| 36 | 6, 35 | cfv 6536 |
. . . . . . . . . . 11
class
(0g‘𝑟) |
| 37 | 28, 34, 36 | cif 4505 |
. . . . . . . . . 10
class if(𝑖 = (𝑎(+g‘𝑚)𝑏), ((𝑥‘𝑎)(.r‘𝑟)(𝑦‘𝑏)), (0g‘𝑟)) |
| 38 | 21, 9, 37 | cmpt 5206 |
. . . . . . . . 9
class (𝑖 ∈ (Base‘𝑚) ↦ if(𝑖 = (𝑎(+g‘𝑚)𝑏), ((𝑥‘𝑎)(.r‘𝑟)(𝑦‘𝑏)), (0g‘𝑟))) |
| 39 | 19, 20, 9, 9, 38 | cmpo 7412 |
. . . . . . . 8
class (𝑎 ∈ (Base‘𝑚), 𝑏 ∈ (Base‘𝑚) ↦ (𝑖 ∈ (Base‘𝑚) ↦ if(𝑖 = (𝑎(+g‘𝑚)𝑏), ((𝑥‘𝑎)(.r‘𝑟)(𝑦‘𝑏)), (0g‘𝑟)))) |
| 40 | | cgsu 17459 |
. . . . . . . 8
class
Σg |
| 41 | 12, 39, 40 | co 7410 |
. . . . . . 7
class (𝑣 Σg
(𝑎 ∈ (Base‘𝑚), 𝑏 ∈ (Base‘𝑚) ↦ (𝑖 ∈ (Base‘𝑚) ↦ if(𝑖 = (𝑎(+g‘𝑚)𝑏), ((𝑥‘𝑎)(.r‘𝑟)(𝑦‘𝑏)), (0g‘𝑟))))) |
| 42 | 16, 17, 18, 18, 41 | cmpo 7412 |
. . . . . 6
class (𝑥 ∈ (Base‘𝑣), 𝑦 ∈ (Base‘𝑣) ↦ (𝑣 Σg (𝑎 ∈ (Base‘𝑚), 𝑏 ∈ (Base‘𝑚) ↦ (𝑖 ∈ (Base‘𝑚) ↦ if(𝑖 = (𝑎(+g‘𝑚)𝑏), ((𝑥‘𝑎)(.r‘𝑟)(𝑦‘𝑏)), (0g‘𝑟)))))) |
| 43 | 15, 42 | cop 4612 |
. . . . 5
class
〈(.r‘ndx), (𝑥 ∈ (Base‘𝑣), 𝑦 ∈ (Base‘𝑣) ↦ (𝑣 Σg (𝑎 ∈ (Base‘𝑚), 𝑏 ∈ (Base‘𝑚) ↦ (𝑖 ∈ (Base‘𝑚) ↦ if(𝑖 = (𝑎(+g‘𝑚)𝑏), ((𝑥‘𝑎)(.r‘𝑟)(𝑦‘𝑏)), (0g‘𝑟))))))〉 |
| 44 | | csts 17187 |
. . . . 5
class
sSet |
| 45 | 12, 43, 44 | co 7410 |
. . . 4
class (𝑣 sSet
〈(.r‘ndx), (𝑥 ∈ (Base‘𝑣), 𝑦 ∈ (Base‘𝑣) ↦ (𝑣 Σg (𝑎 ∈ (Base‘𝑚), 𝑏 ∈ (Base‘𝑚) ↦ (𝑖 ∈ (Base‘𝑚) ↦ if(𝑖 = (𝑎(+g‘𝑚)𝑏), ((𝑥‘𝑎)(.r‘𝑟)(𝑦‘𝑏)), (0g‘𝑟))))))〉) |
| 46 | 5, 11, 45 | csb 3879 |
. . 3
class
⦋(𝑟
freeLMod (Base‘𝑚)) /
𝑣⦌(𝑣 sSet
〈(.r‘ndx), (𝑥 ∈ (Base‘𝑣), 𝑦 ∈ (Base‘𝑣) ↦ (𝑣 Σg (𝑎 ∈ (Base‘𝑚), 𝑏 ∈ (Base‘𝑚) ↦ (𝑖 ∈ (Base‘𝑚) ↦ if(𝑖 = (𝑎(+g‘𝑚)𝑏), ((𝑥‘𝑎)(.r‘𝑟)(𝑦‘𝑏)), (0g‘𝑟))))))〉) |
| 47 | 2, 3, 4, 4, 46 | cmpo 7412 |
. 2
class (𝑟 ∈ V, 𝑚 ∈ V ↦ ⦋(𝑟 freeLMod (Base‘𝑚)) / 𝑣⦌(𝑣 sSet 〈(.r‘ndx), (𝑥 ∈ (Base‘𝑣), 𝑦 ∈ (Base‘𝑣) ↦ (𝑣 Σg (𝑎 ∈ (Base‘𝑚), 𝑏 ∈ (Base‘𝑚) ↦ (𝑖 ∈ (Base‘𝑚) ↦ if(𝑖 = (𝑎(+g‘𝑚)𝑏), ((𝑥‘𝑎)(.r‘𝑟)(𝑦‘𝑏)), (0g‘𝑟))))))〉)) |
| 48 | 1, 47 | wceq 1540 |
1
wff MndRing =
(𝑟 ∈ V, 𝑚 ∈ V ↦
⦋(𝑟 freeLMod
(Base‘𝑚)) / 𝑣⦌(𝑣 sSet
〈(.r‘ndx), (𝑥 ∈ (Base‘𝑣), 𝑦 ∈ (Base‘𝑣) ↦ (𝑣 Σg (𝑎 ∈ (Base‘𝑚), 𝑏 ∈ (Base‘𝑚) ↦ (𝑖 ∈ (Base‘𝑚) ↦ if(𝑖 = (𝑎(+g‘𝑚)𝑏), ((𝑥‘𝑎)(.r‘𝑟)(𝑦‘𝑏)), (0g‘𝑟))))))〉)) |