| Metamath
Proof Explorer Theorem List (p. 433 of 500) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30909) |
(30910-32432) |
(32433-49920) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | pwslnm 43201 | Finite powers of Noetherian modules are Noetherian. (Contributed by Stefan O'Rear, 24-Jan-2015.) |
| ⊢ 𝑌 = (𝑊 ↑s 𝐼) ⇒ ⊢ ((𝑊 ∈ LNoeM ∧ 𝐼 ∈ Fin) → 𝑌 ∈ LNoeM) | ||
| Theorem | unxpwdom3 43202* | Weaker version of unxpwdom 9485 where a function is required only to be cancellative, not an injection. 𝐷 and 𝐵 are to be thought of as "large" "horizonal" sets, the others as "small". Because the operator is row-wise injective, but the whole row cannot inject into 𝐴, each row must hit an element of 𝐵; by column injectivity, each row can be identified in at least one way by the 𝐵 element that it hits and the column in which it is hit. (Contributed by Stefan O'Rear, 8-Jul-2015.) MOVABLE |
| ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → 𝐷 ∈ 𝑋) & ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐶 ∧ 𝑏 ∈ 𝐷) → (𝑎 + 𝑏) ∈ (𝐴 ∪ 𝐵)) & ⊢ (((𝜑 ∧ 𝑎 ∈ 𝐶) ∧ (𝑏 ∈ 𝐷 ∧ 𝑐 ∈ 𝐷)) → ((𝑎 + 𝑏) = (𝑎 + 𝑐) ↔ 𝑏 = 𝑐)) & ⊢ (((𝜑 ∧ 𝑑 ∈ 𝐷) ∧ (𝑎 ∈ 𝐶 ∧ 𝑐 ∈ 𝐶)) → ((𝑐 + 𝑑) = (𝑎 + 𝑑) ↔ 𝑐 = 𝑎)) & ⊢ (𝜑 → ¬ 𝐷 ≼ 𝐴) ⇒ ⊢ (𝜑 → 𝐶 ≼* (𝐷 × 𝐵)) | ||
| Theorem | pwfi2f1o 43203* | The pw2f1o 9005 bijection relates finitely supported indicator functions on a two-element set to finite subsets. MOVABLE (Contributed by Stefan O'Rear, 10-Jul-2015.) (Revised by AV, 14-Jun-2020.) |
| ⊢ 𝑆 = {𝑦 ∈ (2o ↑m 𝐴) ∣ 𝑦 finSupp ∅} & ⊢ 𝐹 = (𝑥 ∈ 𝑆 ↦ (◡𝑥 “ {1o})) ⇒ ⊢ (𝐴 ∈ 𝑉 → 𝐹:𝑆–1-1-onto→(𝒫 𝐴 ∩ Fin)) | ||
| Theorem | pwfi2en 43204* | Finitely supported indicator functions are equinumerous to finite subsets. MOVABLE (Contributed by Stefan O'Rear, 10-Jul-2015.) (Revised by AV, 14-Jun-2020.) |
| ⊢ 𝑆 = {𝑦 ∈ (2o ↑m 𝐴) ∣ 𝑦 finSupp ∅} ⇒ ⊢ (𝐴 ∈ 𝑉 → 𝑆 ≈ (𝒫 𝐴 ∩ Fin)) | ||
| Theorem | frlmpwfi 43205 | Formal linear combinations over Z/2Z are equivalent to finite subsets. MOVABLE (Contributed by Stefan O'Rear, 10-Jul-2015.) (Proof shortened by AV, 14-Jun-2020.) |
| ⊢ 𝑅 = (ℤ/nℤ‘2) & ⊢ 𝑌 = (𝑅 freeLMod 𝐼) & ⊢ 𝐵 = (Base‘𝑌) ⇒ ⊢ (𝐼 ∈ 𝑉 → 𝐵 ≈ (𝒫 𝐼 ∩ Fin)) | ||
| Theorem | gicabl 43206 | Being Abelian is a group invariant. MOVABLE (Contributed by Stefan O'Rear, 8-Jul-2015.) |
| ⊢ (𝐺 ≃𝑔 𝐻 → (𝐺 ∈ Abel ↔ 𝐻 ∈ Abel)) | ||
| Theorem | imasgim 43207 | A relabeling of the elements of a group induces an isomorphism to the relabeled group. MOVABLE (Contributed by Stefan O'Rear, 8-Jul-2015.) (Revised by Mario Carneiro, 11-Aug-2015.) |
| ⊢ (𝜑 → 𝑈 = (𝐹 “s 𝑅)) & ⊢ (𝜑 → 𝑉 = (Base‘𝑅)) & ⊢ (𝜑 → 𝐹:𝑉–1-1-onto→𝐵) & ⊢ (𝜑 → 𝑅 ∈ Grp) ⇒ ⊢ (𝜑 → 𝐹 ∈ (𝑅 GrpIso 𝑈)) | ||
| Theorem | isnumbasgrplem1 43208 | A set which is equipollent to the base set of a definable Abelian group is the base set of some (relabeled) Abelian group. (Contributed by Stefan O'Rear, 8-Jul-2015.) |
| ⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ ((𝑅 ∈ Abel ∧ 𝐶 ≈ 𝐵) → 𝐶 ∈ (Base “ Abel)) | ||
| Theorem | harn0 43209 | The Hartogs number of a set is never zero. MOVABLE (Contributed by Stefan O'Rear, 9-Jul-2015.) |
| ⊢ (𝑆 ∈ 𝑉 → (har‘𝑆) ≠ ∅) | ||
| Theorem | numinfctb 43210 | A numerable infinite set contains a countable subset. MOVABLE (Contributed by Stefan O'Rear, 9-Jul-2015.) |
| ⊢ ((𝑆 ∈ dom card ∧ ¬ 𝑆 ∈ Fin) → ω ≼ 𝑆) | ||
| Theorem | isnumbasgrplem2 43211 | If the (to be thought of as disjoint, although the proof does not require this) union of a set and its Hartogs number supports a group structure (more generally, a cancellative magma), then the set must be numerable. (Contributed by Stefan O'Rear, 9-Jul-2015.) |
| ⊢ ((𝑆 ∪ (har‘𝑆)) ∈ (Base “ Grp) → 𝑆 ∈ dom card) | ||
| Theorem | isnumbasgrplem3 43212 | Every nonempty numerable set can be given the structure of an Abelian group, either a finite cyclic group or a vector space over Z/2Z. (Contributed by Stefan O'Rear, 10-Jul-2015.) |
| ⊢ ((𝑆 ∈ dom card ∧ 𝑆 ≠ ∅) → 𝑆 ∈ (Base “ Abel)) | ||
| Theorem | isnumbasabl 43213 | A set is numerable iff it and its Hartogs number can be jointly given the structure of an Abelian group. (Contributed by Stefan O'Rear, 9-Jul-2015.) |
| ⊢ (𝑆 ∈ dom card ↔ (𝑆 ∪ (har‘𝑆)) ∈ (Base “ Abel)) | ||
| Theorem | isnumbasgrp 43214 | A set is numerable iff it and its Hartogs number can be jointly given the structure of a group. (Contributed by Stefan O'Rear, 9-Jul-2015.) |
| ⊢ (𝑆 ∈ dom card ↔ (𝑆 ∪ (har‘𝑆)) ∈ (Base “ Grp)) | ||
| Theorem | dfacbasgrp 43215 | A choice equivalent in abstract algebra: All nonempty sets admit a group structure. From http://mathoverflow.net/a/12988. (Contributed by Stefan O'Rear, 9-Jul-2015.) |
| ⊢ (CHOICE ↔ (Base “ Grp) = (V ∖ {∅})) | ||
| Syntax | clnr 43216 | Extend class notation with the class of left Noetherian rings. |
| class LNoeR | ||
| Definition | df-lnr 43217 | A ring is left-Noetherian iff it is Noetherian as a left module over itself. (Contributed by Stefan O'Rear, 24-Jan-2015.) |
| ⊢ LNoeR = {𝑎 ∈ Ring ∣ (ringLMod‘𝑎) ∈ LNoeM} | ||
| Theorem | islnr 43218 | Property of a left-Noetherian ring. (Contributed by Stefan O'Rear, 24-Jan-2015.) |
| ⊢ (𝐴 ∈ LNoeR ↔ (𝐴 ∈ Ring ∧ (ringLMod‘𝐴) ∈ LNoeM)) | ||
| Theorem | lnrring 43219 | Left-Noetherian rings are rings. (Contributed by Stefan O'Rear, 24-Jan-2015.) |
| ⊢ (𝐴 ∈ LNoeR → 𝐴 ∈ Ring) | ||
| Theorem | lnrlnm 43220 | Left-Noetherian rings have Noetherian associated modules. (Contributed by Stefan O'Rear, 24-Jan-2015.) |
| ⊢ (𝐴 ∈ LNoeR → (ringLMod‘𝐴) ∈ LNoeM) | ||
| Theorem | islnr2 43221* | Property of being a left-Noetherian ring in terms of finite generation of ideals (the usual "pure ring theory" definition). (Contributed by Stefan O'Rear, 24-Jan-2015.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑈 = (LIdeal‘𝑅) & ⊢ 𝑁 = (RSpan‘𝑅) ⇒ ⊢ (𝑅 ∈ LNoeR ↔ (𝑅 ∈ Ring ∧ ∀𝑖 ∈ 𝑈 ∃𝑔 ∈ (𝒫 𝐵 ∩ Fin)𝑖 = (𝑁‘𝑔))) | ||
| Theorem | islnr3 43222 | Relate left-Noetherian rings to Noetherian-type closure property of the left ideal system. (Contributed by Stefan O'Rear, 4-Apr-2015.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑈 = (LIdeal‘𝑅) ⇒ ⊢ (𝑅 ∈ LNoeR ↔ (𝑅 ∈ Ring ∧ 𝑈 ∈ (NoeACS‘𝐵))) | ||
| Theorem | lnr2i 43223* | Given an ideal in a left-Noetherian ring, there is a finite subset which generates it. (Contributed by Stefan O'Rear, 31-Mar-2015.) |
| ⊢ 𝑈 = (LIdeal‘𝑅) & ⊢ 𝑁 = (RSpan‘𝑅) ⇒ ⊢ ((𝑅 ∈ LNoeR ∧ 𝐼 ∈ 𝑈) → ∃𝑔 ∈ (𝒫 𝐼 ∩ Fin)𝐼 = (𝑁‘𝑔)) | ||
| Theorem | lpirlnr 43224 | Left principal ideal rings are left Noetherian. (Contributed by Stefan O'Rear, 24-Jan-2015.) |
| ⊢ (𝑅 ∈ LPIR → 𝑅 ∈ LNoeR) | ||
| Theorem | lnrfrlm 43225 | Finite-dimensional free modules over a Noetherian ring are Noetherian. (Contributed by Stefan O'Rear, 3-Feb-2015.) |
| ⊢ 𝑌 = (𝑅 freeLMod 𝐼) ⇒ ⊢ ((𝑅 ∈ LNoeR ∧ 𝐼 ∈ Fin) → 𝑌 ∈ LNoeM) | ||
| Theorem | lnrfg 43226 | Finitely-generated modules over a Noetherian ring, being homomorphic images of free modules, are Noetherian. (Contributed by Stefan O'Rear, 7-Feb-2015.) |
| ⊢ 𝑆 = (Scalar‘𝑀) ⇒ ⊢ ((𝑀 ∈ LFinGen ∧ 𝑆 ∈ LNoeR) → 𝑀 ∈ LNoeM) | ||
| Theorem | lnrfgtr 43227 | A submodule of a finitely generated module over a Noetherian ring is finitely generated. Often taken as the definition of Noetherian ring. (Contributed by Stefan O'Rear, 7-Feb-2015.) |
| ⊢ 𝑆 = (Scalar‘𝑀) & ⊢ 𝑈 = (LSubSp‘𝑀) & ⊢ 𝑁 = (𝑀 ↾s 𝑃) ⇒ ⊢ ((𝑀 ∈ LFinGen ∧ 𝑆 ∈ LNoeR ∧ 𝑃 ∈ 𝑈) → 𝑁 ∈ LFinGen) | ||
| Syntax | cldgis 43228 | The leading ideal sequence used in the Hilbert Basis Theorem. |
| class ldgIdlSeq | ||
| Definition | df-ldgis 43229* | Define a function which carries polynomial ideals to the sequence of coefficient ideals of leading coefficients of degree- 𝑥 elements in the polynomial ideal. The proof that this map is strictly monotone is the core of the Hilbert Basis Theorem hbt 43237. (Contributed by Stefan O'Rear, 31-Mar-2015.) |
| ⊢ ldgIdlSeq = (𝑟 ∈ V ↦ (𝑖 ∈ (LIdeal‘(Poly1‘𝑟)) ↦ (𝑥 ∈ ℕ0 ↦ {𝑗 ∣ ∃𝑘 ∈ 𝑖 (((deg1‘𝑟)‘𝑘) ≤ 𝑥 ∧ 𝑗 = ((coe1‘𝑘)‘𝑥))}))) | ||
| Theorem | hbtlem1 43230* | Value of the leading coefficient sequence function. (Contributed by Stefan O'Rear, 31-Mar-2015.) |
| ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑈 = (LIdeal‘𝑃) & ⊢ 𝑆 = (ldgIdlSeq‘𝑅) & ⊢ 𝐷 = (deg1‘𝑅) ⇒ ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0) → ((𝑆‘𝐼)‘𝑋) = {𝑗 ∣ ∃𝑘 ∈ 𝐼 ((𝐷‘𝑘) ≤ 𝑋 ∧ 𝑗 = ((coe1‘𝑘)‘𝑋))}) | ||
| Theorem | hbtlem2 43231 | Leading coefficient ideals are ideals. (Contributed by Stefan O'Rear, 1-Apr-2015.) |
| ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑈 = (LIdeal‘𝑃) & ⊢ 𝑆 = (ldgIdlSeq‘𝑅) & ⊢ 𝑇 = (LIdeal‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝑋 ∈ ℕ0) → ((𝑆‘𝐼)‘𝑋) ∈ 𝑇) | ||
| Theorem | hbtlem7 43232 | Functionality of leading coefficient ideal sequence. (Contributed by Stefan O'Rear, 4-Apr-2015.) |
| ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑈 = (LIdeal‘𝑃) & ⊢ 𝑆 = (ldgIdlSeq‘𝑅) & ⊢ 𝑇 = (LIdeal‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) → (𝑆‘𝐼):ℕ0⟶𝑇) | ||
| Theorem | hbtlem4 43233 | The leading ideal function goes to increasing sequences. (Contributed by Stefan O'Rear, 1-Apr-2015.) |
| ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑈 = (LIdeal‘𝑃) & ⊢ 𝑆 = (ldgIdlSeq‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐼 ∈ 𝑈) & ⊢ (𝜑 → 𝑋 ∈ ℕ0) & ⊢ (𝜑 → 𝑌 ∈ ℕ0) & ⊢ (𝜑 → 𝑋 ≤ 𝑌) ⇒ ⊢ (𝜑 → ((𝑆‘𝐼)‘𝑋) ⊆ ((𝑆‘𝐼)‘𝑌)) | ||
| Theorem | hbtlem3 43234 | The leading ideal function is monotone. (Contributed by Stefan O'Rear, 31-Mar-2015.) |
| ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑈 = (LIdeal‘𝑃) & ⊢ 𝑆 = (ldgIdlSeq‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐼 ∈ 𝑈) & ⊢ (𝜑 → 𝐽 ∈ 𝑈) & ⊢ (𝜑 → 𝐼 ⊆ 𝐽) & ⊢ (𝜑 → 𝑋 ∈ ℕ0) ⇒ ⊢ (𝜑 → ((𝑆‘𝐼)‘𝑋) ⊆ ((𝑆‘𝐽)‘𝑋)) | ||
| Theorem | hbtlem5 43235* | The leading ideal function is strictly monotone. (Contributed by Stefan O'Rear, 1-Apr-2015.) |
| ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑈 = (LIdeal‘𝑃) & ⊢ 𝑆 = (ldgIdlSeq‘𝑅) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐼 ∈ 𝑈) & ⊢ (𝜑 → 𝐽 ∈ 𝑈) & ⊢ (𝜑 → 𝐼 ⊆ 𝐽) & ⊢ (𝜑 → ∀𝑥 ∈ ℕ0 ((𝑆‘𝐽)‘𝑥) ⊆ ((𝑆‘𝐼)‘𝑥)) ⇒ ⊢ (𝜑 → 𝐼 = 𝐽) | ||
| Theorem | hbtlem6 43236* | There is a finite set of polynomials matching any single stage of the image. (Contributed by Stefan O'Rear, 1-Apr-2015.) |
| ⊢ 𝑃 = (Poly1‘𝑅) & ⊢ 𝑈 = (LIdeal‘𝑃) & ⊢ 𝑆 = (ldgIdlSeq‘𝑅) & ⊢ 𝑁 = (RSpan‘𝑃) & ⊢ (𝜑 → 𝑅 ∈ LNoeR) & ⊢ (𝜑 → 𝐼 ∈ 𝑈) & ⊢ (𝜑 → 𝑋 ∈ ℕ0) ⇒ ⊢ (𝜑 → ∃𝑘 ∈ (𝒫 𝐼 ∩ Fin)((𝑆‘𝐼)‘𝑋) ⊆ ((𝑆‘(𝑁‘𝑘))‘𝑋)) | ||
| Theorem | hbt 43237 | The Hilbert Basis Theorem - the ring of univariate polynomials over a Noetherian ring is a Noetherian ring. (Contributed by Stefan O'Rear, 4-Apr-2015.) |
| ⊢ 𝑃 = (Poly1‘𝑅) ⇒ ⊢ (𝑅 ∈ LNoeR → 𝑃 ∈ LNoeR) | ||
| Syntax | cmnc 43238 | Extend class notation with the class of monic polynomials. |
| class Monic | ||
| Syntax | cplylt 43239 | Extend class notation with the class of limited-degree polynomials. |
| class Poly< | ||
| Definition | df-mnc 43240* | Define the class of monic polynomials. (Contributed by Stefan O'Rear, 5-Dec-2014.) |
| ⊢ Monic = (𝑠 ∈ 𝒫 ℂ ↦ {𝑝 ∈ (Poly‘𝑠) ∣ ((coeff‘𝑝)‘(deg‘𝑝)) = 1}) | ||
| Definition | df-plylt 43241* | Define the class of limited-degree polynomials. (Contributed by Stefan O'Rear, 8-Dec-2014.) |
| ⊢ Poly< = (𝑠 ∈ 𝒫 ℂ, 𝑥 ∈ ℕ0 ↦ {𝑝 ∈ (Poly‘𝑠) ∣ (𝑝 = 0𝑝 ∨ (deg‘𝑝) < 𝑥)}) | ||
| Theorem | dgrsub2 43242 | Subtracting two polynomials with the same degree and top coefficient gives a polynomial of strictly lower degree. (Contributed by Stefan O'Rear, 25-Nov-2014.) |
| ⊢ 𝑁 = (deg‘𝐹) ⇒ ⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑇)) ∧ ((deg‘𝐺) = 𝑁 ∧ 𝑁 ∈ ℕ ∧ ((coeff‘𝐹)‘𝑁) = ((coeff‘𝐺)‘𝑁))) → (deg‘(𝐹 ∘f − 𝐺)) < 𝑁) | ||
| Theorem | elmnc 43243 | Property of a monic polynomial. (Contributed by Stefan O'Rear, 5-Dec-2014.) |
| ⊢ (𝑃 ∈ ( Monic ‘𝑆) ↔ (𝑃 ∈ (Poly‘𝑆) ∧ ((coeff‘𝑃)‘(deg‘𝑃)) = 1)) | ||
| Theorem | mncply 43244 | A monic polynomial is a polynomial. (Contributed by Stefan O'Rear, 5-Dec-2014.) |
| ⊢ (𝑃 ∈ ( Monic ‘𝑆) → 𝑃 ∈ (Poly‘𝑆)) | ||
| Theorem | mnccoe 43245 | A monic polynomial has leading coefficient 1. (Contributed by Stefan O'Rear, 5-Dec-2014.) |
| ⊢ (𝑃 ∈ ( Monic ‘𝑆) → ((coeff‘𝑃)‘(deg‘𝑃)) = 1) | ||
| Theorem | mncn0 43246 | A monic polynomial is not zero. (Contributed by Stefan O'Rear, 5-Dec-2014.) |
| ⊢ (𝑃 ∈ ( Monic ‘𝑆) → 𝑃 ≠ 0𝑝) | ||
| Syntax | cdgraa 43247 | Extend class notation to include the degree function for algebraic numbers. |
| class degAA | ||
| Syntax | cmpaa 43248 | Extend class notation to include the minimal polynomial for an algebraic number. |
| class minPolyAA | ||
| Definition | df-dgraa 43249* | Define the degree of an algebraic number as the smallest degree of any nonzero polynomial which has said number as a root. (Contributed by Stefan O'Rear, 25-Nov-2014.) (Revised by AV, 29-Sep-2020.) |
| ⊢ degAA = (𝑥 ∈ 𝔸 ↦ inf({𝑑 ∈ ℕ ∣ ∃𝑝 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑝) = 𝑑 ∧ (𝑝‘𝑥) = 0)}, ℝ, < )) | ||
| Definition | df-mpaa 43250* | Define the minimal polynomial of an algebraic number as the unique monic polynomial which achieves the minimum of degAA. (Contributed by Stefan O'Rear, 25-Nov-2014.) |
| ⊢ minPolyAA = (𝑥 ∈ 𝔸 ↦ (℩𝑝 ∈ (Poly‘ℚ)((deg‘𝑝) = (degAA‘𝑥) ∧ (𝑝‘𝑥) = 0 ∧ ((coeff‘𝑝)‘(degAA‘𝑥)) = 1))) | ||
| Theorem | dgraaval 43251* | Value of the degree function on an algebraic number. (Contributed by Stefan O'Rear, 25-Nov-2014.) (Revised by AV, 29-Sep-2020.) |
| ⊢ (𝐴 ∈ 𝔸 → (degAA‘𝐴) = inf({𝑑 ∈ ℕ ∣ ∃𝑝 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑝) = 𝑑 ∧ (𝑝‘𝐴) = 0)}, ℝ, < )) | ||
| Theorem | dgraalem 43252* | Properties of the degree of an algebraic number. (Contributed by Stefan O'Rear, 25-Nov-2014.) (Proof shortened by AV, 29-Sep-2020.) |
| ⊢ (𝐴 ∈ 𝔸 → ((degAA‘𝐴) ∈ ℕ ∧ ∃𝑝 ∈ ((Poly‘ℚ) ∖ {0𝑝})((deg‘𝑝) = (degAA‘𝐴) ∧ (𝑝‘𝐴) = 0))) | ||
| Theorem | dgraacl 43253 | Closure of the degree function on algebraic numbers. (Contributed by Stefan O'Rear, 25-Nov-2014.) |
| ⊢ (𝐴 ∈ 𝔸 → (degAA‘𝐴) ∈ ℕ) | ||
| Theorem | dgraaf 43254 | Degree function on algebraic numbers is a function. (Contributed by Stefan O'Rear, 25-Nov-2014.) (Proof shortened by AV, 29-Sep-2020.) |
| ⊢ degAA:𝔸⟶ℕ | ||
| Theorem | dgraaub 43255 | Upper bound on degree of an algebraic number. (Contributed by Stefan O'Rear, 25-Nov-2014.) (Proof shortened by AV, 29-Sep-2020.) |
| ⊢ (((𝑃 ∈ (Poly‘ℚ) ∧ 𝑃 ≠ 0𝑝) ∧ (𝐴 ∈ ℂ ∧ (𝑃‘𝐴) = 0)) → (degAA‘𝐴) ≤ (deg‘𝑃)) | ||
| Theorem | dgraa0p 43256 | A rational polynomial of degree less than an algebraic number cannot be zero at that number unless it is the zero polynomial. (Contributed by Stefan O'Rear, 25-Nov-2014.) |
| ⊢ ((𝐴 ∈ 𝔸 ∧ 𝑃 ∈ (Poly‘ℚ) ∧ (deg‘𝑃) < (degAA‘𝐴)) → ((𝑃‘𝐴) = 0 ↔ 𝑃 = 0𝑝)) | ||
| Theorem | mpaaeu 43257* | An algebraic number has exactly one monic polynomial of the least degree. (Contributed by Stefan O'Rear, 25-Nov-2014.) |
| ⊢ (𝐴 ∈ 𝔸 → ∃!𝑝 ∈ (Poly‘ℚ)((deg‘𝑝) = (degAA‘𝐴) ∧ (𝑝‘𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA‘𝐴)) = 1)) | ||
| Theorem | mpaaval 43258* | Value of the minimal polynomial of an algebraic number. (Contributed by Stefan O'Rear, 25-Nov-2014.) |
| ⊢ (𝐴 ∈ 𝔸 → (minPolyAA‘𝐴) = (℩𝑝 ∈ (Poly‘ℚ)((deg‘𝑝) = (degAA‘𝐴) ∧ (𝑝‘𝐴) = 0 ∧ ((coeff‘𝑝)‘(degAA‘𝐴)) = 1))) | ||
| Theorem | mpaalem 43259 | Properties of the minimal polynomial of an algebraic number. (Contributed by Stefan O'Rear, 25-Nov-2014.) |
| ⊢ (𝐴 ∈ 𝔸 → ((minPolyAA‘𝐴) ∈ (Poly‘ℚ) ∧ ((deg‘(minPolyAA‘𝐴)) = (degAA‘𝐴) ∧ ((minPolyAA‘𝐴)‘𝐴) = 0 ∧ ((coeff‘(minPolyAA‘𝐴))‘(degAA‘𝐴)) = 1))) | ||
| Theorem | mpaacl 43260 | Minimal polynomial is a polynomial. (Contributed by Stefan O'Rear, 25-Nov-2014.) |
| ⊢ (𝐴 ∈ 𝔸 → (minPolyAA‘𝐴) ∈ (Poly‘ℚ)) | ||
| Theorem | mpaadgr 43261 | Minimal polynomial has degree the degree of the number. (Contributed by Stefan O'Rear, 25-Nov-2014.) |
| ⊢ (𝐴 ∈ 𝔸 → (deg‘(minPolyAA‘𝐴)) = (degAA‘𝐴)) | ||
| Theorem | mpaaroot 43262 | The minimal polynomial of an algebraic number has the number as a root. (Contributed by Stefan O'Rear, 25-Nov-2014.) |
| ⊢ (𝐴 ∈ 𝔸 → ((minPolyAA‘𝐴)‘𝐴) = 0) | ||
| Theorem | mpaamn 43263 | Minimal polynomial is monic. (Contributed by Stefan O'Rear, 25-Nov-2014.) |
| ⊢ (𝐴 ∈ 𝔸 → ((coeff‘(minPolyAA‘𝐴))‘(degAA‘𝐴)) = 1) | ||
| Syntax | citgo 43264 | Extend class notation with the integral-over predicate. |
| class IntgOver | ||
| Syntax | cza 43265 | Extend class notation with the class of algebraic integers. |
| class ℤ | ||
| Definition | df-itgo 43266* | A complex number is said to be integral over a subset if it is the root of a monic polynomial with coefficients from the subset. This definition is typically not used for fields but it works there, see aaitgo 43269. This definition could work for subsets of an arbitrary ring with a more general definition of polynomials. TODO: use Monic. (Contributed by Stefan O'Rear, 27-Nov-2014.) |
| ⊢ IntgOver = (𝑠 ∈ 𝒫 ℂ ↦ {𝑥 ∈ ℂ ∣ ∃𝑝 ∈ (Poly‘𝑠)((𝑝‘𝑥) = 0 ∧ ((coeff‘𝑝)‘(deg‘𝑝)) = 1)}) | ||
| Definition | df-za 43267 | Define an algebraic integer as a complex number which is the root of a monic integer polynomial. (Contributed by Stefan O'Rear, 30-Nov-2014.) |
| ⊢ ℤ = (IntgOver‘ℤ) | ||
| Theorem | itgoval 43268* | Value of the integral-over function. (Contributed by Stefan O'Rear, 27-Nov-2014.) |
| ⊢ (𝑆 ⊆ ℂ → (IntgOver‘𝑆) = {𝑥 ∈ ℂ ∣ ∃𝑝 ∈ (Poly‘𝑆)((𝑝‘𝑥) = 0 ∧ ((coeff‘𝑝)‘(deg‘𝑝)) = 1)}) | ||
| Theorem | aaitgo 43269 | The standard algebraic numbers 𝔸 are generated by IntgOver. (Contributed by Stefan O'Rear, 27-Nov-2014.) |
| ⊢ 𝔸 = (IntgOver‘ℚ) | ||
| Theorem | itgoss 43270 | An integral element is integral over a subset. (Contributed by Stefan O'Rear, 27-Nov-2014.) |
| ⊢ ((𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ ℂ) → (IntgOver‘𝑆) ⊆ (IntgOver‘𝑇)) | ||
| Theorem | itgocn 43271 | All integral elements are complex numbers. (Contributed by Stefan O'Rear, 27-Nov-2014.) |
| ⊢ (IntgOver‘𝑆) ⊆ ℂ | ||
| Theorem | cnsrexpcl 43272 | Exponentiation is closed in number rings. (Contributed by Stefan O'Rear, 30-Nov-2014.) |
| ⊢ (𝜑 → 𝑆 ∈ (SubRing‘ℂfld)) & ⊢ (𝜑 → 𝑋 ∈ 𝑆) & ⊢ (𝜑 → 𝑌 ∈ ℕ0) ⇒ ⊢ (𝜑 → (𝑋↑𝑌) ∈ 𝑆) | ||
| Theorem | fsumcnsrcl 43273* | Finite sums are closed in number rings. (Contributed by Stefan O'Rear, 30-Nov-2014.) |
| ⊢ (𝜑 → 𝑆 ∈ (SubRing‘ℂfld)) & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ 𝑆) ⇒ ⊢ (𝜑 → Σ𝑘 ∈ 𝐴 𝐵 ∈ 𝑆) | ||
| Theorem | cnsrplycl 43274 | Polynomials are closed in number rings. (Contributed by Stefan O'Rear, 30-Nov-2014.) |
| ⊢ (𝜑 → 𝑆 ∈ (SubRing‘ℂfld)) & ⊢ (𝜑 → 𝑃 ∈ (Poly‘𝐶)) & ⊢ (𝜑 → 𝑋 ∈ 𝑆) & ⊢ (𝜑 → 𝐶 ⊆ 𝑆) ⇒ ⊢ (𝜑 → (𝑃‘𝑋) ∈ 𝑆) | ||
| Theorem | rgspnid 43275 | The span of a subring is itself. (Contributed by Stefan O'Rear, 30-Nov-2014.) |
| ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐴 ∈ (SubRing‘𝑅)) & ⊢ (𝜑 → 𝑆 = ((RingSpan‘𝑅)‘𝐴)) ⇒ ⊢ (𝜑 → 𝑆 = 𝐴) | ||
| Theorem | rngunsnply 43276* | Adjoining one element to a ring results in a set of polynomial evaluations. (Contributed by Stefan O'Rear, 30-Nov-2014.) |
| ⊢ (𝜑 → 𝐵 ∈ (SubRing‘ℂfld)) & ⊢ (𝜑 → 𝑋 ∈ ℂ) & ⊢ (𝜑 → 𝑆 = ((RingSpan‘ℂfld)‘(𝐵 ∪ {𝑋}))) ⇒ ⊢ (𝜑 → (𝑉 ∈ 𝑆 ↔ ∃𝑝 ∈ (Poly‘𝐵)𝑉 = (𝑝‘𝑋))) | ||
| Theorem | flcidc 43277* | Finite linear combinations with an indicator function. (Contributed by Stefan O'Rear, 5-Dec-2014.) |
| ⊢ (𝜑 → 𝐹 = (𝑗 ∈ 𝑆 ↦ if(𝑗 = 𝐾, 1, 0))) & ⊢ (𝜑 → 𝑆 ∈ Fin) & ⊢ (𝜑 → 𝐾 ∈ 𝑆) & ⊢ ((𝜑 ∧ 𝑖 ∈ 𝑆) → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → Σ𝑖 ∈ 𝑆 ((𝐹‘𝑖) · 𝐵) = ⦋𝐾 / 𝑖⦌𝐵) | ||
| Syntax | cmend 43278 | Syntax for module endomorphism algebra. |
| class MEndo | ||
| Definition | df-mend 43279* | Define the endomorphism algebra of a module. (Contributed by Stefan O'Rear, 2-Sep-2015.) |
| ⊢ MEndo = (𝑚 ∈ V ↦ ⦋(𝑚 LMHom 𝑚) / 𝑏⦌({〈(Base‘ndx), 𝑏〉, 〈(+g‘ndx), (𝑥 ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ (𝑥 ∘f (+g‘𝑚)𝑦))〉, 〈(.r‘ndx), (𝑥 ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ (𝑥 ∘ 𝑦))〉} ∪ {〈(Scalar‘ndx), (Scalar‘𝑚)〉, 〈( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘(Scalar‘𝑚)), 𝑦 ∈ 𝑏 ↦ (((Base‘𝑚) × {𝑥}) ∘f ( ·𝑠 ‘𝑚)𝑦))〉})) | ||
| Theorem | algstr 43280 | Lemma to shorten proofs of algbase 43281 through algvsca 43285. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 29-Aug-2015.) |
| ⊢ 𝐴 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉}) ⇒ ⊢ 𝐴 Struct 〈1, 6〉 | ||
| Theorem | algbase 43281 | The base set of a constructed algebra. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 29-Aug-2015.) |
| ⊢ 𝐴 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉}) ⇒ ⊢ (𝐵 ∈ 𝑉 → 𝐵 = (Base‘𝐴)) | ||
| Theorem | algaddg 43282 | The additive operation of a constructed algebra. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 29-Aug-2015.) |
| ⊢ 𝐴 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉}) ⇒ ⊢ ( + ∈ 𝑉 → + = (+g‘𝐴)) | ||
| Theorem | algmulr 43283 | The multiplicative operation of a constructed algebra. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 29-Aug-2015.) |
| ⊢ 𝐴 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉}) ⇒ ⊢ ( × ∈ 𝑉 → × = (.r‘𝐴)) | ||
| Theorem | algsca 43284 | The set of scalars of a constructed algebra. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 29-Aug-2015.) |
| ⊢ 𝐴 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉}) ⇒ ⊢ (𝑆 ∈ 𝑉 → 𝑆 = (Scalar‘𝐴)) | ||
| Theorem | algvsca 43285 | The scalar product operation of a constructed algebra. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 29-Aug-2015.) |
| ⊢ 𝐴 = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉}) ⇒ ⊢ ( · ∈ 𝑉 → · = ( ·𝑠 ‘𝐴)) | ||
| Theorem | mendval 43286* | Value of the module endomorphism algebra. (Contributed by Stefan O'Rear, 2-Sep-2015.) |
| ⊢ 𝐵 = (𝑀 LMHom 𝑀) & ⊢ + = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 ∘f (+g‘𝑀)𝑦)) & ⊢ × = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 ∘ 𝑦)) & ⊢ 𝑆 = (Scalar‘𝑀) & ⊢ · = (𝑥 ∈ (Base‘𝑆), 𝑦 ∈ 𝐵 ↦ (((Base‘𝑀) × {𝑥}) ∘f ( ·𝑠 ‘𝑀)𝑦)) ⇒ ⊢ (𝑀 ∈ 𝑋 → (MEndo‘𝑀) = ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉})) | ||
| Theorem | mendbas 43287 | Base set of the module endomorphism algebra. (Contributed by Stefan O'Rear, 2-Sep-2015.) |
| ⊢ 𝐴 = (MEndo‘𝑀) ⇒ ⊢ (𝑀 LMHom 𝑀) = (Base‘𝐴) | ||
| Theorem | mendplusgfval 43288* | Addition in the module endomorphism algebra. (Contributed by Stefan O'Rear, 2-Sep-2015.) (Proof shortened by AV, 31-Oct-2024.) |
| ⊢ 𝐴 = (MEndo‘𝑀) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ + = (+g‘𝑀) ⇒ ⊢ (+g‘𝐴) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 ∘f + 𝑦)) | ||
| Theorem | mendplusg 43289 | A specific addition in the module endomorphism algebra. (Contributed by Stefan O'Rear, 3-Sep-2015.) |
| ⊢ 𝐴 = (MEndo‘𝑀) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ + = (+g‘𝑀) & ⊢ ✚ = (+g‘𝐴) ⇒ ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ✚ 𝑌) = (𝑋 ∘f + 𝑌)) | ||
| Theorem | mendmulrfval 43290* | Multiplication in the module endomorphism algebra. (Contributed by Stefan O'Rear, 2-Sep-2015.) (Proof shortened by AV, 31-Oct-2024.) |
| ⊢ 𝐴 = (MEndo‘𝑀) & ⊢ 𝐵 = (Base‘𝐴) ⇒ ⊢ (.r‘𝐴) = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 ∘ 𝑦)) | ||
| Theorem | mendmulr 43291 | A specific multiplication in the module endormoprhism algebra. (Contributed by Stefan O'Rear, 3-Sep-2015.) |
| ⊢ 𝐴 = (MEndo‘𝑀) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ · = (.r‘𝐴) ⇒ ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 · 𝑌) = (𝑋 ∘ 𝑌)) | ||
| Theorem | mendsca 43292 | The module endomorphism algebra has the same scalars as the underlying module. (Contributed by Stefan O'Rear, 2-Sep-2015.) (Proof shortened by AV, 31-Oct-2024.) |
| ⊢ 𝐴 = (MEndo‘𝑀) & ⊢ 𝑆 = (Scalar‘𝑀) ⇒ ⊢ 𝑆 = (Scalar‘𝐴) | ||
| Theorem | mendvscafval 43293* | Scalar multiplication in the module endomorphism algebra. (Contributed by Stefan O'Rear, 2-Sep-2015.) (Proof shortened by AV, 31-Oct-2024.) |
| ⊢ 𝐴 = (MEndo‘𝑀) & ⊢ · = ( ·𝑠 ‘𝑀) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑆 = (Scalar‘𝑀) & ⊢ 𝐾 = (Base‘𝑆) & ⊢ 𝐸 = (Base‘𝑀) ⇒ ⊢ ( ·𝑠 ‘𝐴) = (𝑥 ∈ 𝐾, 𝑦 ∈ 𝐵 ↦ ((𝐸 × {𝑥}) ∘f · 𝑦)) | ||
| Theorem | mendvsca 43294 | A specific scalar multiplication in the module endomorphism algebra. (Contributed by Stefan O'Rear, 3-Sep-2015.) |
| ⊢ 𝐴 = (MEndo‘𝑀) & ⊢ · = ( ·𝑠 ‘𝑀) & ⊢ 𝐵 = (Base‘𝐴) & ⊢ 𝑆 = (Scalar‘𝑀) & ⊢ 𝐾 = (Base‘𝑆) & ⊢ 𝐸 = (Base‘𝑀) & ⊢ ∙ = ( ·𝑠 ‘𝐴) ⇒ ⊢ ((𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∙ 𝑌) = ((𝐸 × {𝑋}) ∘f · 𝑌)) | ||
| Theorem | mendring 43295 | The module endomorphism algebra is a ring. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
| ⊢ 𝐴 = (MEndo‘𝑀) ⇒ ⊢ (𝑀 ∈ LMod → 𝐴 ∈ Ring) | ||
| Theorem | mendlmod 43296 | The module endomorphism algebra is a left module. (Contributed by Mario Carneiro, 22-Sep-2015.) |
| ⊢ 𝐴 = (MEndo‘𝑀) & ⊢ 𝑆 = (Scalar‘𝑀) ⇒ ⊢ ((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) → 𝐴 ∈ LMod) | ||
| Theorem | mendassa 43297 | The module endomorphism algebra is an algebra. (Contributed by Mario Carneiro, 22-Sep-2015.) |
| ⊢ 𝐴 = (MEndo‘𝑀) & ⊢ 𝑆 = (Scalar‘𝑀) ⇒ ⊢ ((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) → 𝐴 ∈ AssAlg) | ||
| Theorem | idomodle 43298* | Limit on the number of 𝑁-th roots of unity in an integral domain. (Contributed by Stefan O'Rear, 12-Sep-2015.) |
| ⊢ 𝐺 = ((mulGrp‘𝑅) ↾s (Unit‘𝑅)) & ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝑂 = (od‘𝐺) ⇒ ⊢ ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) → (♯‘{𝑥 ∈ 𝐵 ∣ (𝑂‘𝑥) ∥ 𝑁}) ≤ 𝑁) | ||
| Theorem | fiuneneq 43299 | Two finite sets of equal size have a union of the same size iff they were equal. (Contributed by Stefan O'Rear, 12-Sep-2015.) |
| ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐴 ∈ Fin) → ((𝐴 ∪ 𝐵) ≈ 𝐴 ↔ 𝐴 = 𝐵)) | ||
| Theorem | idomsubgmo 43300* | The units of an integral domain have at most one subgroup of any single finite cardinality. (Contributed by Stefan O'Rear, 12-Sep-2015.) (Revised by NM, 17-Jun-2017.) |
| ⊢ 𝐺 = ((mulGrp‘𝑅) ↾s (Unit‘𝑅)) ⇒ ⊢ ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) → ∃*𝑦 ∈ (SubGrp‘𝐺)(♯‘𝑦) = 𝑁) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |