![]() |
Metamath
Proof Explorer Theorem List (p. 433 of 489) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30950) |
![]() (30951-32473) |
![]() (32474-48899) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | onexgt 43201* | For any ordinal, there is always a larger ordinal. (Contributed by RP, 1-Feb-2025.) |
⊢ (𝐴 ∈ On → ∃𝑥 ∈ On 𝐴 ∈ 𝑥) | ||
Theorem | onexomgt 43202* | For any ordinal, there is always a larger product of omega. (Contributed by RP, 1-Feb-2025.) |
⊢ (𝐴 ∈ On → ∃𝑥 ∈ On 𝐴 ∈ (ω ·o 𝑥)) | ||
Theorem | omlimcl2 43203 | The product of a limit ordinal with any nonzero ordinal is a limit ordinal. (Contributed by RP, 8-Jan-2025.) |
⊢ (((𝐴 ∈ On ∧ (𝐵 ∈ 𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) → Lim (𝐵 ·o 𝐴)) | ||
Theorem | onexlimgt 43204* | For any ordinal, there is always a larger limit ordinal. (Contributed by RP, 1-Feb-2025.) |
⊢ (𝐴 ∈ On → ∃𝑥 ∈ On (Lim 𝑥 ∧ 𝐴 ∈ 𝑥)) | ||
Theorem | onexoegt 43205* | For any ordinal, there is always a larger power of omega. (Contributed by RP, 1-Feb-2025.) |
⊢ (𝐴 ∈ On → ∃𝑥 ∈ On 𝐴 ∈ (ω ↑o 𝑥)) | ||
Theorem | oninfex2 43206* | The infimum of a non-empty class of ordinals exists. (Contributed by RP, 23-Jan-2025.) |
⊢ ((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) → ∪ {𝑥 ∈ On ∣ ∀𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦} ∈ V) | ||
Theorem | onsupeqmax 43207* | Condition when the supremum of a set of ordinals is the maximum element of that set. (Contributed by RP, 24-Jan-2025.) |
⊢ ((𝐴 ⊆ On ∧ 𝐴 ∈ 𝑉) → (∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝑦 ⊆ 𝑥 ↔ ∪ 𝐴 ∈ 𝐴)) | ||
Theorem | onsupeqnmax 43208* | Condition when the supremum of a class of ordinals is not the maximum element of that class. (Contributed by RP, 27-Jan-2025.) |
⊢ (𝐴 ⊆ On → (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 𝑥 ∈ 𝑦 ↔ (∪ 𝐴 = ∪ ∪ 𝐴 ∧ ¬ ∪ 𝐴 ∈ 𝐴))) | ||
Theorem | onsuplub 43209* | The supremum of a set of ordinals is the least upper bound. (Contributed by RP, 27-Jan-2025.) |
⊢ (((𝐴 ⊆ On ∧ 𝐴 ∈ 𝑉) ∧ 𝐵 ∈ On) → (𝐵 ∈ ∪ 𝐴 ↔ ∃𝑧 ∈ 𝐴 𝐵 ∈ 𝑧)) | ||
Theorem | onsupnub 43210* | An upper bound of a set of ordinals is not less than the supremum. (Contributed by RP, 27-Jan-2025.) |
⊢ (((𝐴 ⊆ On ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ∈ On ∧ ∀𝑧 ∈ 𝐴 𝑧 ⊆ 𝐵)) → ∪ 𝐴 ⊆ 𝐵) | ||
Theorem | onfisupcl 43211 | Sufficient condition when the supremum of a set of ordinals is the maximum element of that set. See ordunifi 9354. (Contributed by RP, 27-Jan-2025.) |
⊢ ((𝐴 ⊆ On ∧ 𝐴 ∈ 𝑉) → ((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∪ 𝐴 ∈ 𝐴)) | ||
Theorem | onelord 43212 | Every element of a ordinal is an ordinal. Lemma 1.3 of [Schloeder] p. 1. Based on onelon 6420 and eloni 6405. (Contributed by RP, 15-Jan-2025.) |
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ 𝐴) → Ord 𝐵) | ||
Theorem | onepsuc 43213 | Every ordinal is less than its successor, relationship version. Lemma 1.7 of [Schloeder] p. 1. (Contributed by RP, 15-Jan-2025.) |
⊢ (𝐴 ∈ On → 𝐴 E suc 𝐴) | ||
Theorem | epsoon 43214 | The ordinals are strictly and completely (linearly) ordered. Theorem 1.9 of [Schloeder] p. 1. Based on epweon 7810 and weso 5691. (Contributed by RP, 15-Jan-2025.) |
⊢ E Or On | ||
Theorem | epirron 43215 | The strict order on the ordinals is irreflexive. Theorem 1.9(i) of [Schloeder] p. 1. (Contributed by RP, 15-Jan-2025.) |
⊢ (𝐴 ∈ On → ¬ 𝐴 E 𝐴) | ||
Theorem | oneptr 43216 | The strict order on the ordinals is transitive. Theorem 1.9(ii) of [Schloeder] p. 1. (Contributed by RP, 15-Jan-2025.) |
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐴 E 𝐵 ∧ 𝐵 E 𝐶) → 𝐴 E 𝐶)) | ||
Theorem | oneltr 43217 | The elementhood relation on the ordinals is transitive. Theorem 1.9(ii) of [Schloeder] p. 1. See ontr1 6441. (Contributed by RP, 15-Jan-2025.) |
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ 𝐶)) | ||
Theorem | oneptri 43218 | The strict, complete (linear) order on the ordinals is complete. Theorem 1.9(iii) of [Schloeder] p. 1. (Contributed by RP, 15-Jan-2025.) |
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 E 𝐵 ∨ 𝐵 E 𝐴 ∨ 𝐴 = 𝐵)) | ||
Theorem | oneltri 43219 | The elementhood relation on the ordinals is complete, so we have triality. Theorem 1.9(iii) of [Schloeder] p. 1. See ordtri3or 6427. (Contributed by RP, 15-Jan-2025.) |
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ∈ 𝐵 ∨ 𝐵 ∈ 𝐴 ∨ 𝐴 = 𝐵)) | ||
Theorem | ordeldif 43220 | Membership in the difference of ordinals. (Contributed by RP, 15-Jan-2025.) |
⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐶 ∈ (𝐴 ∖ 𝐵) ↔ (𝐶 ∈ 𝐴 ∧ 𝐵 ⊆ 𝐶))) | ||
Theorem | ordeldifsucon 43221 | Membership in the difference of ordinal and successor ordinal. (Contributed by RP, 16-Jan-2025.) |
⊢ ((Ord 𝐴 ∧ 𝐵 ∈ On) → (𝐶 ∈ (𝐴 ∖ suc 𝐵) ↔ (𝐶 ∈ 𝐴 ∧ 𝐵 ∈ 𝐶))) | ||
Theorem | ordeldif1o 43222 | Membership in the difference of ordinal and ordinal one. (Contributed by RP, 16-Jan-2025.) |
⊢ (Ord 𝐴 → (𝐵 ∈ (𝐴 ∖ 1o) ↔ (𝐵 ∈ 𝐴 ∧ 𝐵 ≠ ∅))) | ||
Theorem | ordne0gt0 43223 | Ordinal zero is less than every non-zero ordinal. Theorem 1.10 of [Schloeder] p. 2. Closely related to ord0eln0 6450. (Contributed by RP, 16-Jan-2025.) |
⊢ ((Ord 𝐴 ∧ 𝐴 ≠ ∅) → ∅ ∈ 𝐴) | ||
Theorem | ondif1i 43224 | Ordinal zero is less than every non-zero ordinal, class difference version. Theorem 1.10 of [Schloeder] p. 2. See ondif1 8557. (Contributed by RP, 16-Jan-2025.) |
⊢ (𝐴 ∈ (On ∖ 1o) → ∅ ∈ 𝐴) | ||
Theorem | onsucelab 43225* | The successor of every ordinal is an element of the class of successor ordinals. Definition 1.11 of [Schloeder] p. 2. (Contributed by RP, 16-Jan-2025.) |
⊢ (𝐴 ∈ On → suc 𝐴 ∈ {𝑎 ∈ On ∣ ∃𝑏 ∈ On 𝑎 = suc 𝑏}) | ||
Theorem | dflim6 43226* | A limit ordinal is a non-zero ordinal which is not a successor ordinal. Definition 1.11 of [Schloeder] p. 2. (Contributed by RP, 16-Jan-2025.) |
⊢ (Lim 𝐴 ↔ (Ord 𝐴 ∧ 𝐴 ≠ ∅ ∧ ¬ ∃𝑏 ∈ On 𝐴 = suc 𝑏)) | ||
Theorem | limnsuc 43227* | A limit ordinal is not an element of the class of successor ordinals. Definition 1.11 of [Schloeder] p. 2. (Contributed by RP, 16-Jan-2025.) |
⊢ (Lim 𝐴 → ¬ 𝐴 ∈ {𝑎 ∈ On ∣ ∃𝑏 ∈ On 𝑎 = suc 𝑏}) | ||
Theorem | onsucss 43228 | If one ordinal is less than another, then the successor of the first is less than or equal to the second. Lemma 1.13 of [Schloeder] p. 2. See ordsucss 7854. (Contributed by RP, 16-Jan-2025.) |
⊢ (𝐴 ∈ On → (𝐵 ∈ 𝐴 → suc 𝐵 ⊆ 𝐴)) | ||
Theorem | ordnexbtwnsuc 43229* | For any distinct pair of ordinals, if there is no ordinal between the lesser and the greater, the greater is the successor of the lesser. Lemma 1.16 of [Schloeder] p. 2. (Contributed by RP, 16-Jan-2025.) |
⊢ ((𝐴 ∈ 𝐵 ∧ Ord 𝐵) → (∀𝑐 ∈ On ¬ (𝐴 ∈ 𝑐 ∧ 𝑐 ∈ 𝐵) → 𝐵 = suc 𝐴)) | ||
Theorem | orddif0suc 43230 | For any distinct pair of ordinals, if the set difference between the greater and the successor of the lesser is empty, the greater is the successor of the lesser. Lemma 1.16 of [Schloeder] p. 2. (Contributed by RP, 17-Jan-2025.) |
⊢ ((𝐴 ∈ 𝐵 ∧ Ord 𝐵) → ((𝐵 ∖ suc 𝐴) = ∅ → 𝐵 = suc 𝐴)) | ||
Theorem | onsucf1lem 43231* | For ordinals, the successor operation is injective, so there is at most one ordinal that a given ordinal could be the successor of. Lemma 1.17 of [Schloeder] p. 2. (Contributed by RP, 18-Jan-2025.) |
⊢ (𝐴 ∈ On → ∃*𝑏 ∈ On 𝐴 = suc 𝑏) | ||
Theorem | onsucf1olem 43232* | The successor operation is bijective between the ordinals and the class of successor ordinals. Lemma 1.17 of [Schloeder] p. 2. (Contributed by RP, 18-Jan-2025.) |
⊢ ((𝐴 ∈ On ∧ 𝐴 ≠ ∅ ∧ ¬ Lim 𝐴) → ∃!𝑏 ∈ On 𝐴 = suc 𝑏) | ||
Theorem | onsucrn 43233* | The successor operation is surjective onto its range, the class of successor ordinals. Lemma 1.17 of [Schloeder] p. 2. (Contributed by RP, 18-Jan-2025.) |
⊢ 𝐹 = (𝑥 ∈ On ↦ suc 𝑥) ⇒ ⊢ ran 𝐹 = {𝑎 ∈ On ∣ ∃𝑏 ∈ On 𝑎 = suc 𝑏} | ||
Theorem | onsucf1o 43234* | The successor operation is a bijective function between the ordinals and the class of successor ordinals. Lemma 1.17 of [Schloeder] p. 2. (Contributed by RP, 18-Jan-2025.) |
⊢ 𝐹 = (𝑥 ∈ On ↦ suc 𝑥) ⇒ ⊢ 𝐹:On–1-1-onto→{𝑎 ∈ On ∣ ∃𝑏 ∈ On 𝑎 = suc 𝑏} | ||
Theorem | dflim7 43235* | A limit ordinal is a non-zero ordinal that contains all the successors of its elements. Lemma 1.18 of [Schloeder] p. 2. Closely related to dflim4 7885. (Contributed by RP, 17-Jan-2025.) |
⊢ (Lim 𝐴 ↔ (Ord 𝐴 ∧ ∀𝑏 ∈ 𝐴 suc 𝑏 ∈ 𝐴 ∧ 𝐴 ≠ ∅)) | ||
Theorem | onov0suclim 43236 | Compactly express rules for binary operations on ordinals. (Contributed by RP, 18-Jan-2025.) |
⊢ (𝐴 ∈ On → (𝐴 ⊗ ∅) = 𝐷) & ⊢ ((𝐴 ∈ On ∧ 𝐶 ∈ On) → (𝐴 ⊗ suc 𝐶) = 𝐸) & ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ Lim 𝐵) → (𝐴 ⊗ 𝐵) = 𝐹) ⇒ ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐵 = ∅ → (𝐴 ⊗ 𝐵) = 𝐷) ∧ ((𝐵 = suc 𝐶 ∧ 𝐶 ∈ On) → (𝐴 ⊗ 𝐵) = 𝐸) ∧ (Lim 𝐵 → (𝐴 ⊗ 𝐵) = 𝐹))) | ||
Theorem | oa0suclim 43237* | Closed form expression of the value of ordinal addition for the cases when the second ordinal is zero, a successor ordinal, or a limit ordinal. Definition 2.3 of [Schloeder] p. 4. See oa0 8572, oasuc 8580, and oalim 8588. (Contributed by RP, 18-Jan-2025.) |
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐵 = ∅ → (𝐴 +o 𝐵) = 𝐴) ∧ ((𝐵 = suc 𝐶 ∧ 𝐶 ∈ On) → (𝐴 +o 𝐵) = suc (𝐴 +o 𝐶)) ∧ (Lim 𝐵 → (𝐴 +o 𝐵) = ∪ 𝑐 ∈ 𝐵 (𝐴 +o 𝑐)))) | ||
Theorem | om0suclim 43238* | Closed form expression of the value of ordinal multiplication for the cases when the second ordinal is zero, a successor ordinal, or a limit ordinal. Definition 2.5 of [Schloeder] p. 4. See om0 8573, omsuc 8582, and omlim 8589. (Contributed by RP, 18-Jan-2025.) |
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐵 = ∅ → (𝐴 ·o 𝐵) = ∅) ∧ ((𝐵 = suc 𝐶 ∧ 𝐶 ∈ On) → (𝐴 ·o 𝐵) = ((𝐴 ·o 𝐶) +o 𝐴)) ∧ (Lim 𝐵 → (𝐴 ·o 𝐵) = ∪ 𝑐 ∈ 𝐵 (𝐴 ·o 𝑐)))) | ||
Theorem | oe0suclim 43239* | Closed form expression of the value of ordinal exponentiation for the cases when the second ordinal is zero, a successor ordinal, or a limit ordinal. Definition 2.6 of [Schloeder] p. 4. See oe0 8578, oesuc 8583, oe0m1 8577, and oelim 8590. (Contributed by RP, 18-Jan-2025.) |
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐵 = ∅ → (𝐴 ↑o 𝐵) = 1o) ∧ ((𝐵 = suc 𝐶 ∧ 𝐶 ∈ On) → (𝐴 ↑o 𝐵) = ((𝐴 ↑o 𝐶) ·o 𝐴)) ∧ (Lim 𝐵 → (𝐴 ↑o 𝐵) = if(∅ ∈ 𝐴, ∪ 𝑐 ∈ 𝐵 (𝐴 ↑o 𝑐), ∅)))) | ||
Theorem | oaomoecl 43240 | The operations of addition, multiplication, and exponentiation are closed. Remark 2.8 of [Schloeder] p. 5. See oacl 8591, omcl 8592, oecl 8593. (Contributed by RP, 18-Jan-2025.) |
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 +o 𝐵) ∈ On ∧ (𝐴 ·o 𝐵) ∈ On ∧ (𝐴 ↑o 𝐵) ∈ On)) | ||
Theorem | onsupsucismax 43241* | If the union of a set of ordinals is a successor ordinal, then that union is the maximum element of the set. This is not a bijection because sets where the maximum element is zero or a limit ordinal exist. Lemma 2.11 of [Schloeder] p. 5. (Contributed by RP, 27-Jan-2025.) |
⊢ ((𝐴 ⊆ On ∧ 𝐴 ∈ 𝑉) → (∃𝑏 ∈ On ∪ 𝐴 = suc 𝑏 → ∪ 𝐴 ∈ 𝐴)) | ||
Theorem | onsssupeqcond 43242* | If for every element of a set of ordinals there is an element of a subset which is at least as large, then the union of the set and the subset is the same. Lemma 2.12 of [Schloeder] p. 5. (Contributed by RP, 27-Jan-2025.) |
⊢ ((𝐴 ⊆ On ∧ 𝐴 ∈ 𝑉) → ((𝐵 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝑎 ⊆ 𝑏) → ∪ 𝐴 = ∪ 𝐵)) | ||
Theorem | limexissup 43243 | An ordinal which is a limit ordinal is equal to its supremum. Lemma 2.13 of [Schloeder] p. 5. (Contributed by RP, 27-Jan-2025.) |
⊢ ((Lim 𝐴 ∧ 𝐴 ∈ 𝑉) → 𝐴 = sup(𝐴, On, E )) | ||
Theorem | limiun 43244* | A limit ordinal is the union of its elements, indexed union version. Lemma 2.13 of [Schloeder] p. 5. See limuni 6456. (Contributed by RP, 27-Jan-2025.) |
⊢ (Lim 𝐴 → 𝐴 = ∪ 𝑥 ∈ 𝐴 𝑥) | ||
Theorem | limexissupab 43245* | An ordinal which is a limit ordinal is equal to the supremum of the class of all its elements. Lemma 2.13 of [Schloeder] p. 5. (Contributed by RP, 27-Jan-2025.) |
⊢ ((Lim 𝐴 ∧ 𝐴 ∈ 𝑉) → 𝐴 = sup({𝑥 ∣ 𝑥 ∈ 𝐴}, On, E )) | ||
Theorem | om1om1r 43246 | Ordinal one is both a left and right identity of ordinal multiplication. Lemma 2.15 of [Schloeder] p. 5. See om1 8598 and om1r 8599 for individual statements. (Contributed by RP, 29-Jan-2025.) |
⊢ (𝐴 ∈ On → ((1o ·o 𝐴) = (𝐴 ·o 1o) ∧ (𝐴 ·o 1o) = 𝐴)) | ||
Theorem | oe0rif 43247 | Ordinal zero raised to any non-zero ordinal power is zero and zero to the zeroth power is one. Lemma 2.18 of [Schloeder] p. 6. (Contributed by RP, 29-Jan-2025.) |
⊢ (𝐴 ∈ On → (∅ ↑o 𝐴) = if(∅ ∈ 𝐴, ∅, 1o)) | ||
Theorem | oasubex 43248* | While subtraction can't be a binary operation on ordinals, for any pair of ordinals there exists an ordinal that can be added to the lessor (or equal) one which will sum to the greater. Theorem 2.19 of [Schloeder] p. 6. (Contributed by RP, 29-Jan-2025.) |
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ⊆ 𝐴) → ∃𝑐 ∈ On (𝑐 ⊆ 𝐴 ∧ (𝐵 +o 𝑐) = 𝐴)) | ||
Theorem | nnamecl 43249 | Natural numbers are closed under ordinal addition, multiplication, and exponentiation. Theorem 2.20 of [Schloeder] p. 6. See nnacl 8667, nnmcl 8668, nnecl 8669. (Contributed by RP, 29-Jan-2025.) |
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((𝐴 +o 𝐵) ∈ ω ∧ (𝐴 ·o 𝐵) ∈ ω ∧ (𝐴 ↑o 𝐵) ∈ ω)) | ||
Theorem | onsucwordi 43250 | The successor operation preserves the less-than-or-equal relationship between ordinals. Lemma 3.1 of [Schloeder] p. 7. (Contributed by RP, 29-Jan-2025.) |
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ⊆ 𝐵 → suc 𝐴 ⊆ suc 𝐵)) | ||
Theorem | oalim2cl 43251 | The ordinal sum of any ordinal with a limit ordinal on the right is a limit ordinal. (Contributed by RP, 6-Feb-2025.) |
⊢ ((𝐴 ∈ On ∧ Lim 𝐵 ∧ 𝐵 ∈ 𝑉) → Lim (𝐴 +o 𝐵)) | ||
Theorem | oaltublim 43252 | Given 𝐶 is a limit ordinal, the sum of any ordinal with an ordinal less than 𝐶 is less than the sum of the first ordinal with 𝐶. Lemma 3.5 of [Schloeder] p. 7. (Contributed by RP, 29-Jan-2025.) |
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ 𝐶 ∧ (Lim 𝐶 ∧ 𝐶 ∈ 𝑉)) → (𝐴 +o 𝐵) ∈ (𝐴 +o 𝐶)) | ||
Theorem | oaordi3 43253 | Ordinal addition of the same number on the left preserves the ordering of the numbers on the right. Lemma 3.6 of [Schloeder] p. 8. (Contributed by RP, 29-Jan-2025.) |
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐵 ∈ 𝐶 → (𝐴 +o 𝐵) ∈ (𝐴 +o 𝐶))) | ||
Theorem | oaord3 43254 | When the same ordinal is added on the left, ordering of the sums is equivalent to the ordering of the ordinals on the right. Theorem 3.7 of [Schloeder] p. 8. (Contributed by RP, 29-Jan-2025.) |
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐵 ∈ 𝐶 ↔ (𝐴 +o 𝐵) ∈ (𝐴 +o 𝐶))) | ||
Theorem | 1oaomeqom 43255 | Ordinal one plus omega is equal to omega. See oaabs 8704 for the sum of any natural number on the left and ordinal at least as large as omega on the right. Lemma 3.8 of [Schloeder] p. 8. See oaabs2 8705 where a power of omega is the upper bound of the left and a lower bound on the right. (Contributed by RP, 29-Jan-2025.) |
⊢ (1o +o ω) = ω | ||
Theorem | oaabsb 43256 | The right addend absorbs the sum with an ordinal iff that ordinal times omega is less than or equal to the right addend. (Contributed by RP, 19-Feb-2025.) |
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 ·o ω) ⊆ 𝐵 ↔ (𝐴 +o 𝐵) = 𝐵)) | ||
Theorem | oaordnrex 43257 | When omega is added on the right to ordinals zero and one, ordering of the sums is not equivalent to the ordering of the ordinals on the left. Remark 3.9 of [Schloeder] p. 8. (Contributed by RP, 29-Jan-2025.) |
⊢ ¬ (∅ ∈ 1o ↔ (∅ +o ω) ∈ (1o +o ω)) | ||
Theorem | oaordnr 43258* | When the same ordinal is added on the right, ordering of the sums is not equivalent to the ordering of the ordinals on the left. Remark 3.9 of [Schloeder] p. 8. (Contributed by RP, 29-Jan-2025.) |
⊢ ∃𝑎 ∈ On ∃𝑏 ∈ On ∃𝑐 ∈ On ¬ (𝑎 ∈ 𝑏 ↔ (𝑎 +o 𝑐) ∈ (𝑏 +o 𝑐)) | ||
Theorem | omge1 43259 | Any non-zero ordinal product is greater-than-or-equal to the term on the left. Lemma 3.11 of [Schloeder] p. 8. See omword1 8629. (Contributed by RP, 29-Jan-2025.) |
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ≠ ∅) → 𝐴 ⊆ (𝐴 ·o 𝐵)) | ||
Theorem | omge2 43260 | Any non-zero ordinal product is greater-than-or-equal to the term on the right. Lemma 3.12 of [Schloeder] p. 9. See omword2 8630. (Contributed by RP, 29-Jan-2025.) |
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) → 𝐵 ⊆ (𝐴 ·o 𝐵)) | ||
Theorem | omlim2 43261 | The non-zero product with an limit ordinal on the right is a limit ordinal. Lemma 3.13 of [Schloeder] p. 9. (Contributed by RP, 29-Jan-2025.) |
⊢ (((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (Lim 𝐵 ∧ 𝐵 ∈ 𝑉)) → Lim (𝐴 ·o 𝐵)) | ||
Theorem | omord2lim 43262 | Given a limit ordinal, the product of any non-zero ordinal with an ordinal less than that limit ordinal is less than the product of the non-zero ordinal with the limit ordinal . Lemma 3.14 of [Schloeder] p. 9. (Contributed by RP, 29-Jan-2025.) |
⊢ (((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (Lim 𝐶 ∧ 𝐶 ∈ 𝑉)) → (𝐵 ∈ 𝐶 → (𝐴 ·o 𝐵) ∈ (𝐴 ·o 𝐶))) | ||
Theorem | omord2i 43263 | Ordinal multiplication of the same non-zero number on the left preserves the ordering of the numbers on the right. Lemma 3.15 of [Schloeder] p. 9. (Contributed by RP, 29-Jan-2025.) |
⊢ (((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ 𝐶 ∈ On) → (𝐵 ∈ 𝐶 → (𝐴 ·o 𝐵) ∈ (𝐴 ·o 𝐶))) | ||
Theorem | omord2com 43264 | When the same non-zero ordinal is multiplied on the left, ordering of the products is equivalent to the ordering of the ordinals on the right. Theorem 3.16 of [Schloeder] p. 9. (Contributed by RP, 29-Jan-2025.) |
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐵 ∈ 𝐶 ∧ ∅ ∈ 𝐴) ↔ (𝐴 ·o 𝐵) ∈ (𝐴 ·o 𝐶))) | ||
Theorem | 2omomeqom 43265 | Ordinal two times omega is omega. Lemma 3.17 of [Schloeder] p. 10. (Contributed by RP, 30-Jan-2025.) |
⊢ (2o ·o ω) = ω | ||
Theorem | omnord1ex 43266 | When omega is multiplied on the right to ordinals one and two, ordering of the products is not equivalent to the ordering of the ordinals on the left. Remark 3.18 of [Schloeder] p. 10. (Contributed by RP, 29-Jan-2025.) |
⊢ ¬ (1o ∈ 2o ↔ (1o ·o ω) ∈ (2o ·o ω)) | ||
Theorem | omnord1 43267* | When the same non-zero ordinal is multiplied on the right, ordering of the products is not equivalent to the ordering of the ordinals on the left. Remark 3.18 of [Schloeder] p. 10. (Contributed by RP, 4-Feb-2025.) |
⊢ ∃𝑎 ∈ On ∃𝑏 ∈ On ∃𝑐 ∈ (On ∖ 1o) ¬ (𝑎 ∈ 𝑏 ↔ (𝑎 ·o 𝑐) ∈ (𝑏 ·o 𝑐)) | ||
Theorem | oege1 43268 | Any non-zero ordinal power is greater-than-or-equal to the term on the left. Lemma 3.19 of [Schloeder] p. 10. See oewordi 8647. (Contributed by RP, 29-Jan-2025.) |
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ≠ ∅) → 𝐴 ⊆ (𝐴 ↑o 𝐵)) | ||
Theorem | oege2 43269 | Any power of an ordinal at least as large as two is greater-than-or-equal to the term on the right. Lemma 3.20 of [Schloeder] p. 10. See oeworde 8649. (Contributed by RP, 29-Jan-2025.) |
⊢ (((𝐴 ∈ On ∧ 1o ∈ 𝐴) ∧ 𝐵 ∈ On) → 𝐵 ⊆ (𝐴 ↑o 𝐵)) | ||
Theorem | rp-oelim2 43270 | The power of an ordinal at least as large as two with a limit ordinal on thr right is a limit ordinal. Lemma 3.21 of [Schloeder] p. 10. See oelimcl 8656. (Contributed by RP, 30-Jan-2025.) |
⊢ (((𝐴 ∈ On ∧ 1o ∈ 𝐴) ∧ (Lim 𝐵 ∧ 𝐵 ∈ 𝑉)) → Lim (𝐴 ↑o 𝐵)) | ||
Theorem | oeord2lim 43271 | Given a limit ordinal, the power of any base at least as large as two raised to an ordinal less than that limit ordinal is less than the power of that base raised to the limit ordinal . Lemma 3.22 of [Schloeder] p. 10. See oeordi 8643. (Contributed by RP, 30-Jan-2025.) |
⊢ (((𝐴 ∈ On ∧ 1o ∈ 𝐴) ∧ (Lim 𝐶 ∧ 𝐶 ∈ 𝑉)) → (𝐵 ∈ 𝐶 → (𝐴 ↑o 𝐵) ∈ (𝐴 ↑o 𝐶))) | ||
Theorem | oeord2i 43272 | Ordinal exponentiation of the same base at least as large as two preserves the ordering of the exponents. Lemma 3.23 of [Schloeder] p. 11. (Contributed by RP, 30-Jan-2025.) |
⊢ (((𝐴 ∈ On ∧ 1o ∈ 𝐴) ∧ 𝐶 ∈ On) → (𝐵 ∈ 𝐶 → (𝐴 ↑o 𝐵) ∈ (𝐴 ↑o 𝐶))) | ||
Theorem | oeord2com 43273 | When the same base at least as large as two is raised to ordinal powers, , ordering of the power is equivalent to the ordering of the exponents. Theorem 3.24 of [Schloeder] p. 11. (Contributed by RP, 30-Jan-2025.) |
⊢ (((𝐴 ∈ On ∧ 1o ∈ 𝐴) ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐵 ∈ 𝐶 ↔ (𝐴 ↑o 𝐵) ∈ (𝐴 ↑o 𝐶))) | ||
Theorem | nnoeomeqom 43274 | Any natural number at least as large as two raised to the power of omega is omega. Lemma 3.25 of [Schloeder] p. 11. (Contributed by RP, 30-Jan-2025.) |
⊢ ((𝐴 ∈ ω ∧ 1o ∈ 𝐴) → (𝐴 ↑o ω) = ω) | ||
Theorem | df3o2 43275 | Ordinal 3 is the unordered triple containing ordinals 0, 1, and 2. (Contributed by RP, 8-Jul-2021.) |
⊢ 3o = {∅, 1o, 2o} | ||
Theorem | df3o3 43276 | Ordinal 3, fully expanded. (Contributed by RP, 8-Jul-2021.) |
⊢ 3o = {∅, {∅}, {∅, {∅}}} | ||
Theorem | oenord1ex 43277 | When ordinals two and three are both raised to the power of omega, ordering of the powers is not equivalent to the ordering of the bases. Remark 3.26 of [Schloeder] p. 11. (Contributed by RP, 30-Jan-2025.) |
⊢ ¬ (2o ∈ 3o ↔ (2o ↑o ω) ∈ (3o ↑o ω)) | ||
Theorem | oenord1 43278* | When two ordinals (both at least as large as two) are raised to the same power, ordering of the powers is not equivalent to the ordering of the bases. Remark 3.26 of [Schloeder] p. 11. (Contributed by RP, 4-Feb-2025.) |
⊢ ∃𝑎 ∈ (On ∖ 2o)∃𝑏 ∈ (On ∖ 2o)∃𝑐 ∈ (On ∖ 1o) ¬ (𝑎 ∈ 𝑏 ↔ (𝑎 ↑o 𝑐) ∈ (𝑏 ↑o 𝑐)) | ||
Theorem | oaomoencom 43279* | Ordinal addition, multiplication, and exponentiation do not generally commute. Theorem 4.1 of [Schloeder] p. 11. (Contributed by RP, 30-Jan-2025.) |
⊢ (∃𝑎 ∈ On ∃𝑏 ∈ On ¬ (𝑎 +o 𝑏) = (𝑏 +o 𝑎) ∧ ∃𝑎 ∈ On ∃𝑏 ∈ On ¬ (𝑎 ·o 𝑏) = (𝑏 ·o 𝑎) ∧ ∃𝑎 ∈ On ∃𝑏 ∈ On ¬ (𝑎 ↑o 𝑏) = (𝑏 ↑o 𝑎)) | ||
Theorem | oenassex 43280 | Ordinal two raised to two to the zeroth power is not the same as two squared then raised to the zeroth power. (Contributed by RP, 30-Jan-2025.) |
⊢ ¬ (2o ↑o (2o ↑o ∅)) = ((2o ↑o 2o) ↑o ∅) | ||
Theorem | oenass 43281* | Ordinal exponentiation is not associative. Remark 4.6 of [Schloeder] p. 14. (Contributed by RP, 30-Jan-2025.) |
⊢ ∃𝑎 ∈ On ∃𝑏 ∈ On ∃𝑐 ∈ On ¬ (𝑎 ↑o (𝑏 ↑o 𝑐)) = ((𝑎 ↑o 𝑏) ↑o 𝑐) | ||
Theorem | cantnftermord 43282 | For terms of the form of a power of omega times a non-zero natural number, ordering of the exponents implies ordering of the terms. Lemma 5.1 of [Schloeder] p. 15. (Contributed by RP, 30-Jan-2025.) |
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐶 ∈ (ω ∖ 1o) ∧ 𝐷 ∈ (ω ∖ 1o))) → (𝐴 ∈ 𝐵 → ((ω ↑o 𝐴) ·o 𝐶) ∈ ((ω ↑o 𝐵) ·o 𝐷))) | ||
Theorem | cantnfub 43283* | Given a finite number of terms of the form ((ω ↑o (𝐴‘𝑛)) ·o (𝑀‘𝑛)) with distinct exponents, we may order them from largest to smallest and find the sum is less than (ω ↑o 𝑋) when (𝐴‘𝑛) is less than 𝑋 and (𝑀‘𝑛) is less than ω. Lemma 5.2 of [Schloeder] p. 15. (Contributed by RP, 31-Jan-2025.) |
⊢ (𝜑 → 𝑋 ∈ On) & ⊢ (𝜑 → 𝑁 ∈ ω) & ⊢ (𝜑 → 𝐴:𝑁–1-1→𝑋) & ⊢ (𝜑 → 𝑀:𝑁⟶ω) & ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ if(𝑥 ∈ ran 𝐴, (𝑀‘(◡𝐴‘𝑥)), ∅)) ⇒ ⊢ (𝜑 → (𝐹 ∈ dom (ω CNF 𝑋) ∧ ((ω CNF 𝑋)‘𝐹) ∈ (ω ↑o 𝑋))) | ||
Theorem | cantnfub2 43284* | Given a finite number of terms of the form ((ω ↑o (𝐴‘𝑛)) ·o (𝑀‘𝑛)) with distinct exponents, we may order them from largest to smallest and find the sum is less than (ω ↑o suc ∪ ran 𝐴) when (𝑀‘𝑛) is less than ω. Lemma 5.2 of [Schloeder] p. 15. (Contributed by RP, 9-Feb-2025.) |
⊢ (𝜑 → 𝑁 ∈ ω) & ⊢ (𝜑 → 𝐴:𝑁–1-1→On) & ⊢ (𝜑 → 𝑀:𝑁⟶ω) & ⊢ 𝐹 = (𝑥 ∈ suc ∪ ran 𝐴 ↦ if(𝑥 ∈ ran 𝐴, (𝑀‘(◡𝐴‘𝑥)), ∅)) ⇒ ⊢ (𝜑 → (suc ∪ ran 𝐴 ∈ On ∧ 𝐹 ∈ dom (ω CNF suc ∪ ran 𝐴) ∧ ((ω CNF suc ∪ ran 𝐴)‘𝐹) ∈ (ω ↑o suc ∪ ran 𝐴))) | ||
Theorem | bropabg 43285* | Equivalence for two classes related by an ordered-pair class abstraction. A generalization of brsslt 27848. (Contributed by RP, 26-Sep-2024.) |
⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) & ⊢ 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝜑} ⇒ ⊢ (𝐴𝑅𝐵 ↔ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝜒)) | ||
Theorem | cantnfresb 43286* | A Cantor normal form which sums to less than a certain power has only zeros for larger components. (Contributed by RP, 3-Feb-2025.) |
⊢ (((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ (𝐶 ∈ On ∧ 𝐹 ∈ dom (𝐴 CNF 𝐵))) → (((𝐴 CNF 𝐵)‘𝐹) ∈ (𝐴 ↑o 𝐶) ↔ ∀𝑥 ∈ (𝐵 ∖ 𝐶)(𝐹‘𝑥) = ∅)) | ||
Theorem | cantnf2 43287* | For every ordinal, 𝐴, there is a an ordinal exponent 𝑏 such that 𝐴 is less than (ω ↑o 𝑏) and for every ordinal at least as large as 𝑏 there is a unique Cantor normal form, 𝑓, with zeros for all the unnecessary higher terms, that sums to 𝐴. Theorem 5.3 of [Schloeder] p. 16. (Contributed by RP, 3-Feb-2025.) |
⊢ (𝐴 ∈ On → ∃𝑏 ∈ On ∀𝑐 ∈ (On ∖ 𝑏)∃!𝑓 ∈ dom (ω CNF 𝑐)((𝐴 ∈ (ω ↑o 𝑏) ∧ 𝑓 finSupp ∅) ∧ (((ω CNF 𝑏)‘(𝑓 ↾ 𝑏)) = 𝐴 ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴))) | ||
Theorem | oawordex2 43288* | If 𝐶 is between 𝐴 (inclusive) and (𝐴 +o 𝐵) (exclusive), there is an ordinal which equals 𝐶 when summed to 𝐴. This is a slightly different statement than oawordex 8613 or oawordeu 8611. (Contributed by RP, 7-Jan-2025.) |
⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐴 ⊆ 𝐶 ∧ 𝐶 ∈ (𝐴 +o 𝐵))) → ∃𝑥 ∈ 𝐵 (𝐴 +o 𝑥) = 𝐶) | ||
Theorem | nnawordexg 43289* | If an ordinal, 𝐵, is in a half-open interval between some 𝐴 and the next limit ordinal, 𝐵 is the sum of the 𝐴 and some natural number. This weakens the antecedent of nnawordex 8693. (Contributed by RP, 7-Jan-2025.) |
⊢ ((𝐴 ∈ On ∧ 𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ (𝐴 +o ω)) → ∃𝑥 ∈ ω (𝐴 +o 𝑥) = 𝐵) | ||
Theorem | succlg 43290 | Closure law for ordinal successor. (Contributed by RP, 8-Jan-2025.) |
⊢ ((𝐴 ∈ 𝐵 ∧ (𝐵 = ∅ ∨ (𝐵 = (ω ·o 𝐶) ∧ 𝐶 ∈ (On ∖ 1o)))) → suc 𝐴 ∈ 𝐵) | ||
Theorem | dflim5 43291* | A limit ordinal is either the proper class of ordinals or some nonzero product with omega. (Contributed by RP, 8-Jan-2025.) |
⊢ (Lim 𝐴 ↔ (𝐴 = On ∨ ∃𝑥 ∈ (On ∖ 1o)𝐴 = (ω ·o 𝑥))) | ||
Theorem | oacl2g 43292 | Closure law for ordinal addition. Here we show that ordinal addition is closed within the empty set or any ordinal power of omega. (Contributed by RP, 5-Jan-2025.) |
⊢ (((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) ∧ (𝐶 = ∅ ∨ (𝐶 = (ω ↑o 𝐷) ∧ 𝐷 ∈ On))) → (𝐴 +o 𝐵) ∈ 𝐶) | ||
Theorem | onmcl 43293 | If an ordinal is less than a power of omega, the product with a natural number is also less than that power of omega. (Contributed by RP, 19-Feb-2025.) |
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑁 ∈ ω) → (𝐴 ∈ (ω ↑o 𝐵) → (𝐴 ·o 𝑁) ∈ (ω ↑o 𝐵))) | ||
Theorem | omabs2 43294 | Ordinal multiplication by a larger ordinal is absorbed when the larger ordinal is either 2 or ω raised to some power of ω. (Contributed by RP, 12-Jan-2025.) |
⊢ (((𝐴 ∈ 𝐵 ∧ ∅ ∈ 𝐴) ∧ (𝐵 = ∅ ∨ 𝐵 = 2o ∨ (𝐵 = (ω ↑o (ω ↑o 𝐶)) ∧ 𝐶 ∈ On))) → (𝐴 ·o 𝐵) = 𝐵) | ||
Theorem | omcl2 43295 | Closure law for ordinal multiplication. (Contributed by RP, 12-Jan-2025.) |
⊢ (((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) ∧ (𝐶 = ∅ ∨ (𝐶 = (ω ↑o (ω ↑o 𝐷)) ∧ 𝐷 ∈ On))) → (𝐴 ·o 𝐵) ∈ 𝐶) | ||
Theorem | omcl3g 43296 | Closure law for ordinal multiplication. (Contributed by RP, 14-Jan-2025.) |
⊢ (((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐶) ∧ (𝐶 ∈ 3o ∨ (𝐶 = (ω ↑o (ω ↑o 𝐷)) ∧ 𝐷 ∈ On))) → (𝐴 ·o 𝐵) ∈ 𝐶) | ||
Theorem | ordsssucb 43297 | An ordinal number is less than or equal to the successor of an ordinal class iff the ordinal number is either less than or equal to the ordinal class or the ordinal number is equal to the successor of the ordinal class. See also ordsssucim 43364, limsssuc 7887. (Contributed by RP, 22-Feb-2025.) |
⊢ ((𝐴 ∈ On ∧ Ord 𝐵) → (𝐴 ⊆ suc 𝐵 ↔ (𝐴 ⊆ 𝐵 ∨ 𝐴 = suc 𝐵))) | ||
Theorem | tfsconcatlem 43298* | Lemma for tfsconcatun 43299. (Contributed by RP, 23-Feb-2025.) |
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ ((𝐴 +o 𝐵) ∖ 𝐴)) → ∃!𝑥∃𝑦 ∈ 𝐵 (𝐶 = (𝐴 +o 𝑦) ∧ 𝑥 = (𝐹‘𝑦))) | ||
Theorem | tfsconcatun 43299* | The concatenation of two transfinite series is a union of functions. (Contributed by RP, 23-Feb-2025.) |
⊢ + = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑎 ∪ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ((dom 𝑎 +o dom 𝑏) ∖ dom 𝑎) ∧ ∃𝑧 ∈ dom 𝑏(𝑥 = (dom 𝑎 +o 𝑧) ∧ 𝑦 = (𝑏‘𝑧)))})) ⇒ ⊢ (((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (𝐴 + 𝐵) = (𝐴 ∪ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ((𝐶 +o 𝐷) ∖ 𝐶) ∧ ∃𝑧 ∈ 𝐷 (𝑥 = (𝐶 +o 𝑧) ∧ 𝑦 = (𝐵‘𝑧)))})) | ||
Theorem | tfsconcatfn 43300* | The concatenation of two transfinite series is a transfinite series. (Contributed by RP, 22-Feb-2025.) |
⊢ + = (𝑎 ∈ V, 𝑏 ∈ V ↦ (𝑎 ∪ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ ((dom 𝑎 +o dom 𝑏) ∖ dom 𝑎) ∧ ∃𝑧 ∈ dom 𝑏(𝑥 = (dom 𝑎 +o 𝑧) ∧ 𝑦 = (𝑏‘𝑧)))})) ⇒ ⊢ (((𝐴 Fn 𝐶 ∧ 𝐵 Fn 𝐷) ∧ (𝐶 ∈ On ∧ 𝐷 ∈ On)) → (𝐴 + 𝐵) Fn (𝐶 +o 𝐷)) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |