| Metamath
Proof Explorer Theorem List (p. 433 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30880) |
(30881-32403) |
(32404-49778) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | onsupnmax 43201 | If the union of a class of ordinals is not the maximum element of that class, then the union is a limit ordinal or empty. But this isn't a biconditional since 𝐴 could be a non-empty set where a limit ordinal or the empty set happens to be the largest element. (Contributed by RP, 27-Jan-2025.) |
| ⊢ (𝐴 ⊆ On → (¬ ∪ 𝐴 ∈ 𝐴 → ∪ 𝐴 = ∪ ∪ 𝐴)) | ||
| Theorem | onsupuni 43202 | The supremum of a set of ordinals is the union of that set. Lemma 2.10 of [Schloeder] p. 5. (Contributed by RP, 19-Jan-2025.) |
| ⊢ ((𝐴 ⊆ On ∧ 𝐴 ∈ 𝑉) → sup(𝐴, On, E ) = ∪ 𝐴) | ||
| Theorem | onsupuni2 43203 | The supremum of a set of ordinals is the union of that set. (Contributed by RP, 22-Jan-2025.) |
| ⊢ (𝐴 ∈ 𝒫 On → sup(𝐴, On, E ) = ∪ 𝐴) | ||
| Theorem | onsupintrab 43204* | The supremum of a set of ordinals is the intersection of every ordinal greater-than-or-equal to every member of the set. Definition 2.9 of [Schloeder] p. 5. (Contributed by RP, 23-Jan-2025.) |
| ⊢ ((𝐴 ⊆ On ∧ 𝐴 ∈ 𝑉) → sup(𝐴, On, E ) = ∩ {𝑥 ∈ On ∣ ∀𝑦 ∈ 𝐴 𝑦 ⊆ 𝑥}) | ||
| Theorem | onsupintrab2 43205* | The supremum of a set of ordinals is the intersection of every ordinal greater-than-or-equal to every member of the set. (Contributed by RP, 23-Jan-2025.) |
| ⊢ (𝐴 ∈ 𝒫 On → sup(𝐴, On, E ) = ∩ {𝑥 ∈ On ∣ ∀𝑦 ∈ 𝐴 𝑦 ⊆ 𝑥}) | ||
| Theorem | onsupcl3 43206* | The supremum of a set of ordinals is an ordinal. (Contributed by RP, 23-Jan-2025.) |
| ⊢ ((𝐴 ⊆ On ∧ 𝐴 ∈ 𝑉) → ∩ {𝑥 ∈ On ∣ ∀𝑦 ∈ 𝐴 𝑦 ⊆ 𝑥} ∈ On) | ||
| Theorem | onsupex3 43207* | The supremum of a set of ordinals exists. (Contributed by RP, 23-Jan-2025.) |
| ⊢ ((𝐴 ⊆ On ∧ 𝐴 ∈ 𝑉) → ∩ {𝑥 ∈ On ∣ ∀𝑦 ∈ 𝐴 𝑦 ⊆ 𝑥} ∈ V) | ||
| Theorem | onuniintrab2 43208* | The union of a set of ordinals is the intersection of every ordinal greater-than-or-equal to every member of the set. (Contributed by RP, 23-Jan-2025.) |
| ⊢ (𝐴 ∈ 𝒫 On → ∪ 𝐴 = ∩ {𝑥 ∈ On ∣ ∀𝑦 ∈ 𝐴 𝑦 ⊆ 𝑥}) | ||
| Theorem | oninfint 43209 | The infimum of a non-empty class of ordinals is the intersection of that class. (Contributed by RP, 23-Jan-2025.) |
| ⊢ ((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) → inf(𝐴, On, E ) = ∩ 𝐴) | ||
| Theorem | oninfunirab 43210* | The infimum of a non-empty class of ordinals is the union of every ordinal less-than-or-equal to every element of that class. (Contributed by RP, 23-Jan-2025.) |
| ⊢ ((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) → inf(𝐴, On, E ) = ∪ {𝑥 ∈ On ∣ ∀𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦}) | ||
| Theorem | oninfcl2 43211* | The infimum of a non-empty class of ordinals is an ordinal. (Contributed by RP, 23-Jan-2025.) |
| ⊢ ((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) → ∪ {𝑥 ∈ On ∣ ∀𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦} ∈ On) | ||
| Theorem | onsupmaxb 43212 | The union of a class of ordinals is an element is an element of that class if and only if there is a maximum element of that class under the epsilon relation, which is to say that the domain of the restricted epsilon relation is not the whole class. (Contributed by RP, 25-Jan-2025.) |
| ⊢ (𝐴 ⊆ On → (dom ( E ∩ (𝐴 × 𝐴)) = 𝐴 ↔ ¬ ∪ 𝐴 ∈ 𝐴)) | ||
| Theorem | onexgt 43213* | For any ordinal, there is always a larger ordinal. (Contributed by RP, 1-Feb-2025.) |
| ⊢ (𝐴 ∈ On → ∃𝑥 ∈ On 𝐴 ∈ 𝑥) | ||
| Theorem | onexomgt 43214* | For any ordinal, there is always a larger product of omega. (Contributed by RP, 1-Feb-2025.) |
| ⊢ (𝐴 ∈ On → ∃𝑥 ∈ On 𝐴 ∈ (ω ·o 𝑥)) | ||
| Theorem | omlimcl2 43215 | The product of a limit ordinal with any nonzero ordinal is a limit ordinal. (Contributed by RP, 8-Jan-2025.) |
| ⊢ (((𝐴 ∈ On ∧ (𝐵 ∈ 𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) → Lim (𝐵 ·o 𝐴)) | ||
| Theorem | onexlimgt 43216* | For any ordinal, there is always a larger limit ordinal. (Contributed by RP, 1-Feb-2025.) |
| ⊢ (𝐴 ∈ On → ∃𝑥 ∈ On (Lim 𝑥 ∧ 𝐴 ∈ 𝑥)) | ||
| Theorem | onexoegt 43217* | For any ordinal, there is always a larger power of omega. (Contributed by RP, 1-Feb-2025.) |
| ⊢ (𝐴 ∈ On → ∃𝑥 ∈ On 𝐴 ∈ (ω ↑o 𝑥)) | ||
| Theorem | oninfex2 43218* | The infimum of a non-empty class of ordinals exists. (Contributed by RP, 23-Jan-2025.) |
| ⊢ ((𝐴 ⊆ On ∧ 𝐴 ≠ ∅) → ∪ {𝑥 ∈ On ∣ ∀𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦} ∈ V) | ||
| Theorem | onsupeqmax 43219* | Condition when the supremum of a set of ordinals is the maximum element of that set. (Contributed by RP, 24-Jan-2025.) |
| ⊢ ((𝐴 ⊆ On ∧ 𝐴 ∈ 𝑉) → (∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝑦 ⊆ 𝑥 ↔ ∪ 𝐴 ∈ 𝐴)) | ||
| Theorem | onsupeqnmax 43220* | Condition when the supremum of a class of ordinals is not the maximum element of that class. (Contributed by RP, 27-Jan-2025.) |
| ⊢ (𝐴 ⊆ On → (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 𝑥 ∈ 𝑦 ↔ (∪ 𝐴 = ∪ ∪ 𝐴 ∧ ¬ ∪ 𝐴 ∈ 𝐴))) | ||
| Theorem | onsuplub 43221* | The supremum of a set of ordinals is the least upper bound. (Contributed by RP, 27-Jan-2025.) |
| ⊢ (((𝐴 ⊆ On ∧ 𝐴 ∈ 𝑉) ∧ 𝐵 ∈ On) → (𝐵 ∈ ∪ 𝐴 ↔ ∃𝑧 ∈ 𝐴 𝐵 ∈ 𝑧)) | ||
| Theorem | onsupnub 43222* | An upper bound of a set of ordinals is not less than the supremum. (Contributed by RP, 27-Jan-2025.) |
| ⊢ (((𝐴 ⊆ On ∧ 𝐴 ∈ 𝑉) ∧ (𝐵 ∈ On ∧ ∀𝑧 ∈ 𝐴 𝑧 ⊆ 𝐵)) → ∪ 𝐴 ⊆ 𝐵) | ||
| Theorem | onfisupcl 43223 | Sufficient condition when the supremum of a set of ordinals is the maximum element of that set. See ordunifi 9195. (Contributed by RP, 27-Jan-2025.) |
| ⊢ ((𝐴 ⊆ On ∧ 𝐴 ∈ 𝑉) → ((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∪ 𝐴 ∈ 𝐴)) | ||
| Theorem | onelord 43224 | Every element of a ordinal is an ordinal. Lemma 1.3 of [Schloeder] p. 1. Based on onelon 6336 and eloni 6321. (Contributed by RP, 15-Jan-2025.) |
| ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ 𝐴) → Ord 𝐵) | ||
| Theorem | onepsuc 43225 | Every ordinal is less than its successor, relationship version. Lemma 1.7 of [Schloeder] p. 1. (Contributed by RP, 15-Jan-2025.) |
| ⊢ (𝐴 ∈ On → 𝐴 E suc 𝐴) | ||
| Theorem | epsoon 43226 | The ordinals are strictly and completely (linearly) ordered. Theorem 1.9 of [Schloeder] p. 1. Based on epweon 7715 and weso 5614. (Contributed by RP, 15-Jan-2025.) |
| ⊢ E Or On | ||
| Theorem | epirron 43227 | The strict order on the ordinals is irreflexive. Theorem 1.9(i) of [Schloeder] p. 1. (Contributed by RP, 15-Jan-2025.) |
| ⊢ (𝐴 ∈ On → ¬ 𝐴 E 𝐴) | ||
| Theorem | oneptr 43228 | The strict order on the ordinals is transitive. Theorem 1.9(ii) of [Schloeder] p. 1. (Contributed by RP, 15-Jan-2025.) |
| ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐴 E 𝐵 ∧ 𝐵 E 𝐶) → 𝐴 E 𝐶)) | ||
| Theorem | oneltr 43229 | The elementhood relation on the ordinals is transitive. Theorem 1.9(ii) of [Schloeder] p. 1. See ontr1 6358. (Contributed by RP, 15-Jan-2025.) |
| ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ 𝐶)) | ||
| Theorem | oneptri 43230 | The strict, complete (linear) order on the ordinals is complete. Theorem 1.9(iii) of [Schloeder] p. 1. (Contributed by RP, 15-Jan-2025.) |
| ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 E 𝐵 ∨ 𝐵 E 𝐴 ∨ 𝐴 = 𝐵)) | ||
| Theorem | ordeldif 43231 | Membership in the difference of ordinals. (Contributed by RP, 15-Jan-2025.) |
| ⊢ ((Ord 𝐴 ∧ Ord 𝐵) → (𝐶 ∈ (𝐴 ∖ 𝐵) ↔ (𝐶 ∈ 𝐴 ∧ 𝐵 ⊆ 𝐶))) | ||
| Theorem | ordeldifsucon 43232 | Membership in the difference of ordinal and successor ordinal. (Contributed by RP, 16-Jan-2025.) |
| ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ On) → (𝐶 ∈ (𝐴 ∖ suc 𝐵) ↔ (𝐶 ∈ 𝐴 ∧ 𝐵 ∈ 𝐶))) | ||
| Theorem | ordeldif1o 43233 | Membership in the difference of ordinal and ordinal one. (Contributed by RP, 16-Jan-2025.) |
| ⊢ (Ord 𝐴 → (𝐵 ∈ (𝐴 ∖ 1o) ↔ (𝐵 ∈ 𝐴 ∧ 𝐵 ≠ ∅))) | ||
| Theorem | ordne0gt0 43234 | Ordinal zero is less than every non-zero ordinal. Theorem 1.10 of [Schloeder] p. 2. Closely related to ord0eln0 6367. (Contributed by RP, 16-Jan-2025.) |
| ⊢ ((Ord 𝐴 ∧ 𝐴 ≠ ∅) → ∅ ∈ 𝐴) | ||
| Theorem | ondif1i 43235 | Ordinal zero is less than every non-zero ordinal, class difference version. Theorem 1.10 of [Schloeder] p. 2. See ondif1 8426. (Contributed by RP, 16-Jan-2025.) |
| ⊢ (𝐴 ∈ (On ∖ 1o) → ∅ ∈ 𝐴) | ||
| Theorem | onsucelab 43236* | The successor of every ordinal is an element of the class of successor ordinals. Definition 1.11 of [Schloeder] p. 2. (Contributed by RP, 16-Jan-2025.) |
| ⊢ (𝐴 ∈ On → suc 𝐴 ∈ {𝑎 ∈ On ∣ ∃𝑏 ∈ On 𝑎 = suc 𝑏}) | ||
| Theorem | dflim6 43237* | A limit ordinal is a non-zero ordinal which is not a successor ordinal. Definition 1.11 of [Schloeder] p. 2. (Contributed by RP, 16-Jan-2025.) |
| ⊢ (Lim 𝐴 ↔ (Ord 𝐴 ∧ 𝐴 ≠ ∅ ∧ ¬ ∃𝑏 ∈ On 𝐴 = suc 𝑏)) | ||
| Theorem | limnsuc 43238* | A limit ordinal is not an element of the class of successor ordinals. Definition 1.11 of [Schloeder] p. 2. (Contributed by RP, 16-Jan-2025.) |
| ⊢ (Lim 𝐴 → ¬ 𝐴 ∈ {𝑎 ∈ On ∣ ∃𝑏 ∈ On 𝑎 = suc 𝑏}) | ||
| Theorem | onsucss 43239 | If one ordinal is less than another, then the successor of the first is less than or equal to the second. Lemma 1.13 of [Schloeder] p. 2. See ordsucss 7757. (Contributed by RP, 16-Jan-2025.) |
| ⊢ (𝐴 ∈ On → (𝐵 ∈ 𝐴 → suc 𝐵 ⊆ 𝐴)) | ||
| Theorem | ordnexbtwnsuc 43240* | For any distinct pair of ordinals, if there is no ordinal between the lesser and the greater, the greater is the successor of the lesser. Lemma 1.16 of [Schloeder] p. 2. (Contributed by RP, 16-Jan-2025.) |
| ⊢ ((𝐴 ∈ 𝐵 ∧ Ord 𝐵) → (∀𝑐 ∈ On ¬ (𝐴 ∈ 𝑐 ∧ 𝑐 ∈ 𝐵) → 𝐵 = suc 𝐴)) | ||
| Theorem | orddif0suc 43241 | For any distinct pair of ordinals, if the set difference between the greater and the successor of the lesser is empty, the greater is the successor of the lesser. Lemma 1.16 of [Schloeder] p. 2. (Contributed by RP, 17-Jan-2025.) |
| ⊢ ((𝐴 ∈ 𝐵 ∧ Ord 𝐵) → ((𝐵 ∖ suc 𝐴) = ∅ → 𝐵 = suc 𝐴)) | ||
| Theorem | onsucf1lem 43242* | For ordinals, the successor operation is injective, so there is at most one ordinal that a given ordinal could be the successor of. Lemma 1.17 of [Schloeder] p. 2. (Contributed by RP, 18-Jan-2025.) |
| ⊢ (𝐴 ∈ On → ∃*𝑏 ∈ On 𝐴 = suc 𝑏) | ||
| Theorem | onsucf1olem 43243* | The successor operation is bijective between the ordinals and the class of successor ordinals. Lemma 1.17 of [Schloeder] p. 2. (Contributed by RP, 18-Jan-2025.) |
| ⊢ ((𝐴 ∈ On ∧ 𝐴 ≠ ∅ ∧ ¬ Lim 𝐴) → ∃!𝑏 ∈ On 𝐴 = suc 𝑏) | ||
| Theorem | onsucrn 43244* | The successor operation is surjective onto its range, the class of successor ordinals. Lemma 1.17 of [Schloeder] p. 2. (Contributed by RP, 18-Jan-2025.) |
| ⊢ 𝐹 = (𝑥 ∈ On ↦ suc 𝑥) ⇒ ⊢ ran 𝐹 = {𝑎 ∈ On ∣ ∃𝑏 ∈ On 𝑎 = suc 𝑏} | ||
| Theorem | onsucf1o 43245* | The successor operation is a bijective function between the ordinals and the class of successor ordinals. Lemma 1.17 of [Schloeder] p. 2. (Contributed by RP, 18-Jan-2025.) |
| ⊢ 𝐹 = (𝑥 ∈ On ↦ suc 𝑥) ⇒ ⊢ 𝐹:On–1-1-onto→{𝑎 ∈ On ∣ ∃𝑏 ∈ On 𝑎 = suc 𝑏} | ||
| Theorem | dflim7 43246* | A limit ordinal is a non-zero ordinal that contains all the successors of its elements. Lemma 1.18 of [Schloeder] p. 2. Closely related to dflim4 7788. (Contributed by RP, 17-Jan-2025.) |
| ⊢ (Lim 𝐴 ↔ (Ord 𝐴 ∧ ∀𝑏 ∈ 𝐴 suc 𝑏 ∈ 𝐴 ∧ 𝐴 ≠ ∅)) | ||
| Theorem | onov0suclim 43247 | Compactly express rules for binary operations on ordinals. (Contributed by RP, 18-Jan-2025.) |
| ⊢ (𝐴 ∈ On → (𝐴 ⊗ ∅) = 𝐷) & ⊢ ((𝐴 ∈ On ∧ 𝐶 ∈ On) → (𝐴 ⊗ suc 𝐶) = 𝐸) & ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ Lim 𝐵) → (𝐴 ⊗ 𝐵) = 𝐹) ⇒ ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐵 = ∅ → (𝐴 ⊗ 𝐵) = 𝐷) ∧ ((𝐵 = suc 𝐶 ∧ 𝐶 ∈ On) → (𝐴 ⊗ 𝐵) = 𝐸) ∧ (Lim 𝐵 → (𝐴 ⊗ 𝐵) = 𝐹))) | ||
| Theorem | oa0suclim 43248* | Closed form expression of the value of ordinal addition for the cases when the second ordinal is zero, a successor ordinal, or a limit ordinal. Definition 2.3 of [Schloeder] p. 4. See oa0 8441, oasuc 8449, and oalim 8457. (Contributed by RP, 18-Jan-2025.) |
| ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐵 = ∅ → (𝐴 +o 𝐵) = 𝐴) ∧ ((𝐵 = suc 𝐶 ∧ 𝐶 ∈ On) → (𝐴 +o 𝐵) = suc (𝐴 +o 𝐶)) ∧ (Lim 𝐵 → (𝐴 +o 𝐵) = ∪ 𝑐 ∈ 𝐵 (𝐴 +o 𝑐)))) | ||
| Theorem | om0suclim 43249* | Closed form expression of the value of ordinal multiplication for the cases when the second ordinal is zero, a successor ordinal, or a limit ordinal. Definition 2.5 of [Schloeder] p. 4. See om0 8442, omsuc 8451, and omlim 8458. (Contributed by RP, 18-Jan-2025.) |
| ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐵 = ∅ → (𝐴 ·o 𝐵) = ∅) ∧ ((𝐵 = suc 𝐶 ∧ 𝐶 ∈ On) → (𝐴 ·o 𝐵) = ((𝐴 ·o 𝐶) +o 𝐴)) ∧ (Lim 𝐵 → (𝐴 ·o 𝐵) = ∪ 𝑐 ∈ 𝐵 (𝐴 ·o 𝑐)))) | ||
| Theorem | oe0suclim 43250* | Closed form expression of the value of ordinal exponentiation for the cases when the second ordinal is zero, a successor ordinal, or a limit ordinal. Definition 2.6 of [Schloeder] p. 4. See oe0 8447, oesuc 8452, oe0m1 8446, and oelim 8459. (Contributed by RP, 18-Jan-2025.) |
| ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐵 = ∅ → (𝐴 ↑o 𝐵) = 1o) ∧ ((𝐵 = suc 𝐶 ∧ 𝐶 ∈ On) → (𝐴 ↑o 𝐵) = ((𝐴 ↑o 𝐶) ·o 𝐴)) ∧ (Lim 𝐵 → (𝐴 ↑o 𝐵) = if(∅ ∈ 𝐴, ∪ 𝑐 ∈ 𝐵 (𝐴 ↑o 𝑐), ∅)))) | ||
| Theorem | oaomoecl 43251 | The operations of addition, multiplication, and exponentiation are closed. Remark 2.8 of [Schloeder] p. 5. See oacl 8460, omcl 8461, oecl 8462. (Contributed by RP, 18-Jan-2025.) |
| ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 +o 𝐵) ∈ On ∧ (𝐴 ·o 𝐵) ∈ On ∧ (𝐴 ↑o 𝐵) ∈ On)) | ||
| Theorem | onsupsucismax 43252* | If the union of a set of ordinals is a successor ordinal, then that union is the maximum element of the set. This is not a bijection because sets where the maximum element is zero or a limit ordinal exist. Lemma 2.11 of [Schloeder] p. 5. (Contributed by RP, 27-Jan-2025.) |
| ⊢ ((𝐴 ⊆ On ∧ 𝐴 ∈ 𝑉) → (∃𝑏 ∈ On ∪ 𝐴 = suc 𝑏 → ∪ 𝐴 ∈ 𝐴)) | ||
| Theorem | onsssupeqcond 43253* | If for every element of a set of ordinals there is an element of a subset which is at least as large, then the union of the set and the subset is the same. Lemma 2.12 of [Schloeder] p. 5. (Contributed by RP, 27-Jan-2025.) |
| ⊢ ((𝐴 ⊆ On ∧ 𝐴 ∈ 𝑉) → ((𝐵 ⊆ 𝐴 ∧ ∀𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 𝑎 ⊆ 𝑏) → ∪ 𝐴 = ∪ 𝐵)) | ||
| Theorem | limexissup 43254 | An ordinal which is a limit ordinal is equal to its supremum. Lemma 2.13 of [Schloeder] p. 5. (Contributed by RP, 27-Jan-2025.) |
| ⊢ ((Lim 𝐴 ∧ 𝐴 ∈ 𝑉) → 𝐴 = sup(𝐴, On, E )) | ||
| Theorem | limiun 43255* | A limit ordinal is the union of its elements, indexed union version. Lemma 2.13 of [Schloeder] p. 5. See limuni 6373. (Contributed by RP, 27-Jan-2025.) |
| ⊢ (Lim 𝐴 → 𝐴 = ∪ 𝑥 ∈ 𝐴 𝑥) | ||
| Theorem | limexissupab 43256* | An ordinal which is a limit ordinal is equal to the supremum of the class of all its elements. Lemma 2.13 of [Schloeder] p. 5. (Contributed by RP, 27-Jan-2025.) |
| ⊢ ((Lim 𝐴 ∧ 𝐴 ∈ 𝑉) → 𝐴 = sup({𝑥 ∣ 𝑥 ∈ 𝐴}, On, E )) | ||
| Theorem | om1om1r 43257 | Ordinal one is both a left and right identity of ordinal multiplication. Lemma 2.15 of [Schloeder] p. 5. See om1 8467 and om1r 8468 for individual statements. (Contributed by RP, 29-Jan-2025.) |
| ⊢ (𝐴 ∈ On → ((1o ·o 𝐴) = (𝐴 ·o 1o) ∧ (𝐴 ·o 1o) = 𝐴)) | ||
| Theorem | oe0rif 43258 | Ordinal zero raised to any non-zero ordinal power is zero and zero to the zeroth power is one. Lemma 2.18 of [Schloeder] p. 6. (Contributed by RP, 29-Jan-2025.) |
| ⊢ (𝐴 ∈ On → (∅ ↑o 𝐴) = if(∅ ∈ 𝐴, ∅, 1o)) | ||
| Theorem | oasubex 43259* | While subtraction can't be a binary operation on ordinals, for any pair of ordinals there exists an ordinal that can be added to the lessor (or equal) one which will sum to the greater. Theorem 2.19 of [Schloeder] p. 6. (Contributed by RP, 29-Jan-2025.) |
| ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ⊆ 𝐴) → ∃𝑐 ∈ On (𝑐 ⊆ 𝐴 ∧ (𝐵 +o 𝑐) = 𝐴)) | ||
| Theorem | nnamecl 43260 | Natural numbers are closed under ordinal addition, multiplication, and exponentiation. Theorem 2.20 of [Schloeder] p. 6. See nnacl 8536, nnmcl 8537, nnecl 8538. (Contributed by RP, 29-Jan-2025.) |
| ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → ((𝐴 +o 𝐵) ∈ ω ∧ (𝐴 ·o 𝐵) ∈ ω ∧ (𝐴 ↑o 𝐵) ∈ ω)) | ||
| Theorem | onsucwordi 43261 | The successor operation preserves the less-than-or-equal relationship between ordinals. Lemma 3.1 of [Schloeder] p. 7. (Contributed by RP, 29-Jan-2025.) |
| ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ⊆ 𝐵 → suc 𝐴 ⊆ suc 𝐵)) | ||
| Theorem | oalim2cl 43262 | The ordinal sum of any ordinal with a limit ordinal on the right is a limit ordinal. (Contributed by RP, 6-Feb-2025.) |
| ⊢ ((𝐴 ∈ On ∧ Lim 𝐵 ∧ 𝐵 ∈ 𝑉) → Lim (𝐴 +o 𝐵)) | ||
| Theorem | oaltublim 43263 | Given 𝐶 is a limit ordinal, the sum of any ordinal with an ordinal less than 𝐶 is less than the sum of the first ordinal with 𝐶. Lemma 3.5 of [Schloeder] p. 7. (Contributed by RP, 29-Jan-2025.) |
| ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ 𝐶 ∧ (Lim 𝐶 ∧ 𝐶 ∈ 𝑉)) → (𝐴 +o 𝐵) ∈ (𝐴 +o 𝐶)) | ||
| Theorem | oaordi3 43264 | Ordinal addition of the same number on the left preserves the ordering of the numbers on the right. Lemma 3.6 of [Schloeder] p. 8. (Contributed by RP, 29-Jan-2025.) |
| ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐵 ∈ 𝐶 → (𝐴 +o 𝐵) ∈ (𝐴 +o 𝐶))) | ||
| Theorem | oaord3 43265 | When the same ordinal is added on the left, ordering of the sums is equivalent to the ordering of the ordinals on the right. Theorem 3.7 of [Schloeder] p. 8. (Contributed by RP, 29-Jan-2025.) |
| ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐵 ∈ 𝐶 ↔ (𝐴 +o 𝐵) ∈ (𝐴 +o 𝐶))) | ||
| Theorem | 1oaomeqom 43266 | Ordinal one plus omega is equal to omega. See oaabs 8573 for the sum of any natural number on the left and ordinal at least as large as omega on the right. Lemma 3.8 of [Schloeder] p. 8. See oaabs2 8574 where a power of omega is the upper bound of the left and a lower bound on the right. (Contributed by RP, 29-Jan-2025.) |
| ⊢ (1o +o ω) = ω | ||
| Theorem | oaabsb 43267 | The right addend absorbs the sum with an ordinal iff that ordinal times omega is less than or equal to the right addend. (Contributed by RP, 19-Feb-2025.) |
| ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 ·o ω) ⊆ 𝐵 ↔ (𝐴 +o 𝐵) = 𝐵)) | ||
| Theorem | oaordnrex 43268 | When omega is added on the right to ordinals zero and one, ordering of the sums is not equivalent to the ordering of the ordinals on the left. Remark 3.9 of [Schloeder] p. 8. (Contributed by RP, 29-Jan-2025.) |
| ⊢ ¬ (∅ ∈ 1o ↔ (∅ +o ω) ∈ (1o +o ω)) | ||
| Theorem | oaordnr 43269* | When the same ordinal is added on the right, ordering of the sums is not equivalent to the ordering of the ordinals on the left. Remark 3.9 of [Schloeder] p. 8. (Contributed by RP, 29-Jan-2025.) |
| ⊢ ∃𝑎 ∈ On ∃𝑏 ∈ On ∃𝑐 ∈ On ¬ (𝑎 ∈ 𝑏 ↔ (𝑎 +o 𝑐) ∈ (𝑏 +o 𝑐)) | ||
| Theorem | omge1 43270 | Any non-zero ordinal product is greater-than-or-equal to the term on the left. Lemma 3.11 of [Schloeder] p. 8. See omword1 8498. (Contributed by RP, 29-Jan-2025.) |
| ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ≠ ∅) → 𝐴 ⊆ (𝐴 ·o 𝐵)) | ||
| Theorem | omge2 43271 | Any non-zero ordinal product is greater-than-or-equal to the term on the right. Lemma 3.12 of [Schloeder] p. 9. See omword2 8499. (Contributed by RP, 29-Jan-2025.) |
| ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ≠ ∅) → 𝐵 ⊆ (𝐴 ·o 𝐵)) | ||
| Theorem | omlim2 43272 | The non-zero product with an limit ordinal on the right is a limit ordinal. Lemma 3.13 of [Schloeder] p. 9. (Contributed by RP, 29-Jan-2025.) |
| ⊢ (((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (Lim 𝐵 ∧ 𝐵 ∈ 𝑉)) → Lim (𝐴 ·o 𝐵)) | ||
| Theorem | omord2lim 43273 | Given a limit ordinal, the product of any non-zero ordinal with an ordinal less than that limit ordinal is less than the product of the non-zero ordinal with the limit ordinal . Lemma 3.14 of [Schloeder] p. 9. (Contributed by RP, 29-Jan-2025.) |
| ⊢ (((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ (Lim 𝐶 ∧ 𝐶 ∈ 𝑉)) → (𝐵 ∈ 𝐶 → (𝐴 ·o 𝐵) ∈ (𝐴 ·o 𝐶))) | ||
| Theorem | omord2i 43274 | Ordinal multiplication of the same non-zero number on the left preserves the ordering of the numbers on the right. Lemma 3.15 of [Schloeder] p. 9. (Contributed by RP, 29-Jan-2025.) |
| ⊢ (((𝐴 ∈ On ∧ 𝐴 ≠ ∅) ∧ 𝐶 ∈ On) → (𝐵 ∈ 𝐶 → (𝐴 ·o 𝐵) ∈ (𝐴 ·o 𝐶))) | ||
| Theorem | omord2com 43275 | When the same non-zero ordinal is multiplied on the left, ordering of the products is equivalent to the ordering of the ordinals on the right. Theorem 3.16 of [Schloeder] p. 9. (Contributed by RP, 29-Jan-2025.) |
| ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐵 ∈ 𝐶 ∧ ∅ ∈ 𝐴) ↔ (𝐴 ·o 𝐵) ∈ (𝐴 ·o 𝐶))) | ||
| Theorem | 2omomeqom 43276 | Ordinal two times omega is omega. Lemma 3.17 of [Schloeder] p. 10. (Contributed by RP, 30-Jan-2025.) |
| ⊢ (2o ·o ω) = ω | ||
| Theorem | omnord1ex 43277 | When omega is multiplied on the right to ordinals one and two, ordering of the products is not equivalent to the ordering of the ordinals on the left. Remark 3.18 of [Schloeder] p. 10. (Contributed by RP, 29-Jan-2025.) |
| ⊢ ¬ (1o ∈ 2o ↔ (1o ·o ω) ∈ (2o ·o ω)) | ||
| Theorem | omnord1 43278* | When the same non-zero ordinal is multiplied on the right, ordering of the products is not equivalent to the ordering of the ordinals on the left. Remark 3.18 of [Schloeder] p. 10. (Contributed by RP, 4-Feb-2025.) |
| ⊢ ∃𝑎 ∈ On ∃𝑏 ∈ On ∃𝑐 ∈ (On ∖ 1o) ¬ (𝑎 ∈ 𝑏 ↔ (𝑎 ·o 𝑐) ∈ (𝑏 ·o 𝑐)) | ||
| Theorem | oege1 43279 | Any non-zero ordinal power is greater-than-or-equal to the term on the left. Lemma 3.19 of [Schloeder] p. 10. See oewordi 8516. (Contributed by RP, 29-Jan-2025.) |
| ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ≠ ∅) → 𝐴 ⊆ (𝐴 ↑o 𝐵)) | ||
| Theorem | oege2 43280 | Any power of an ordinal at least as large as two is greater-than-or-equal to the term on the right. Lemma 3.20 of [Schloeder] p. 10. See oeworde 8518. (Contributed by RP, 29-Jan-2025.) |
| ⊢ (((𝐴 ∈ On ∧ 1o ∈ 𝐴) ∧ 𝐵 ∈ On) → 𝐵 ⊆ (𝐴 ↑o 𝐵)) | ||
| Theorem | rp-oelim2 43281 | The power of an ordinal at least as large as two with a limit ordinal on thr right is a limit ordinal. Lemma 3.21 of [Schloeder] p. 10. See oelimcl 8525. (Contributed by RP, 30-Jan-2025.) |
| ⊢ (((𝐴 ∈ On ∧ 1o ∈ 𝐴) ∧ (Lim 𝐵 ∧ 𝐵 ∈ 𝑉)) → Lim (𝐴 ↑o 𝐵)) | ||
| Theorem | oeord2lim 43282 | Given a limit ordinal, the power of any base at least as large as two raised to an ordinal less than that limit ordinal is less than the power of that base raised to the limit ordinal . Lemma 3.22 of [Schloeder] p. 10. See oeordi 8512. (Contributed by RP, 30-Jan-2025.) |
| ⊢ (((𝐴 ∈ On ∧ 1o ∈ 𝐴) ∧ (Lim 𝐶 ∧ 𝐶 ∈ 𝑉)) → (𝐵 ∈ 𝐶 → (𝐴 ↑o 𝐵) ∈ (𝐴 ↑o 𝐶))) | ||
| Theorem | oeord2i 43283 | Ordinal exponentiation of the same base at least as large as two preserves the ordering of the exponents. Lemma 3.23 of [Schloeder] p. 11. (Contributed by RP, 30-Jan-2025.) |
| ⊢ (((𝐴 ∈ On ∧ 1o ∈ 𝐴) ∧ 𝐶 ∈ On) → (𝐵 ∈ 𝐶 → (𝐴 ↑o 𝐵) ∈ (𝐴 ↑o 𝐶))) | ||
| Theorem | oeord2com 43284 | When the same base at least as large as two is raised to ordinal powers, , ordering of the power is equivalent to the ordering of the exponents. Theorem 3.24 of [Schloeder] p. 11. (Contributed by RP, 30-Jan-2025.) |
| ⊢ (((𝐴 ∈ On ∧ 1o ∈ 𝐴) ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐵 ∈ 𝐶 ↔ (𝐴 ↑o 𝐵) ∈ (𝐴 ↑o 𝐶))) | ||
| Theorem | nnoeomeqom 43285 | Any natural number at least as large as two raised to the power of omega is omega. Lemma 3.25 of [Schloeder] p. 11. (Contributed by RP, 30-Jan-2025.) |
| ⊢ ((𝐴 ∈ ω ∧ 1o ∈ 𝐴) → (𝐴 ↑o ω) = ω) | ||
| Theorem | df3o2 43286 | Ordinal 3 is the unordered triple containing ordinals 0, 1, and 2. (Contributed by RP, 8-Jul-2021.) |
| ⊢ 3o = {∅, 1o, 2o} | ||
| Theorem | df3o3 43287 | Ordinal 3, fully expanded. (Contributed by RP, 8-Jul-2021.) |
| ⊢ 3o = {∅, {∅}, {∅, {∅}}} | ||
| Theorem | oenord1ex 43288 | When ordinals two and three are both raised to the power of omega, ordering of the powers is not equivalent to the ordering of the bases. Remark 3.26 of [Schloeder] p. 11. (Contributed by RP, 30-Jan-2025.) |
| ⊢ ¬ (2o ∈ 3o ↔ (2o ↑o ω) ∈ (3o ↑o ω)) | ||
| Theorem | oenord1 43289* | When two ordinals (both at least as large as two) are raised to the same power, ordering of the powers is not equivalent to the ordering of the bases. Remark 3.26 of [Schloeder] p. 11. (Contributed by RP, 4-Feb-2025.) |
| ⊢ ∃𝑎 ∈ (On ∖ 2o)∃𝑏 ∈ (On ∖ 2o)∃𝑐 ∈ (On ∖ 1o) ¬ (𝑎 ∈ 𝑏 ↔ (𝑎 ↑o 𝑐) ∈ (𝑏 ↑o 𝑐)) | ||
| Theorem | oaomoencom 43290* | Ordinal addition, multiplication, and exponentiation do not generally commute. Theorem 4.1 of [Schloeder] p. 11. (Contributed by RP, 30-Jan-2025.) |
| ⊢ (∃𝑎 ∈ On ∃𝑏 ∈ On ¬ (𝑎 +o 𝑏) = (𝑏 +o 𝑎) ∧ ∃𝑎 ∈ On ∃𝑏 ∈ On ¬ (𝑎 ·o 𝑏) = (𝑏 ·o 𝑎) ∧ ∃𝑎 ∈ On ∃𝑏 ∈ On ¬ (𝑎 ↑o 𝑏) = (𝑏 ↑o 𝑎)) | ||
| Theorem | oenassex 43291 | Ordinal two raised to two to the zeroth power is not the same as two squared then raised to the zeroth power. (Contributed by RP, 30-Jan-2025.) |
| ⊢ ¬ (2o ↑o (2o ↑o ∅)) = ((2o ↑o 2o) ↑o ∅) | ||
| Theorem | oenass 43292* | Ordinal exponentiation is not associative. Remark 4.6 of [Schloeder] p. 14. (Contributed by RP, 30-Jan-2025.) |
| ⊢ ∃𝑎 ∈ On ∃𝑏 ∈ On ∃𝑐 ∈ On ¬ (𝑎 ↑o (𝑏 ↑o 𝑐)) = ((𝑎 ↑o 𝑏) ↑o 𝑐) | ||
| Theorem | cantnftermord 43293 | For terms of the form of a power of omega times a non-zero natural number, ordering of the exponents implies ordering of the terms. Lemma 5.1 of [Schloeder] p. 15. (Contributed by RP, 30-Jan-2025.) |
| ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐶 ∈ (ω ∖ 1o) ∧ 𝐷 ∈ (ω ∖ 1o))) → (𝐴 ∈ 𝐵 → ((ω ↑o 𝐴) ·o 𝐶) ∈ ((ω ↑o 𝐵) ·o 𝐷))) | ||
| Theorem | cantnfub 43294* | Given a finite number of terms of the form ((ω ↑o (𝐴‘𝑛)) ·o (𝑀‘𝑛)) with distinct exponents, we may order them from largest to smallest and find the sum is less than (ω ↑o 𝑋) when (𝐴‘𝑛) is less than 𝑋 and (𝑀‘𝑛) is less than ω. Lemma 5.2 of [Schloeder] p. 15. (Contributed by RP, 31-Jan-2025.) |
| ⊢ (𝜑 → 𝑋 ∈ On) & ⊢ (𝜑 → 𝑁 ∈ ω) & ⊢ (𝜑 → 𝐴:𝑁–1-1→𝑋) & ⊢ (𝜑 → 𝑀:𝑁⟶ω) & ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ if(𝑥 ∈ ran 𝐴, (𝑀‘(◡𝐴‘𝑥)), ∅)) ⇒ ⊢ (𝜑 → (𝐹 ∈ dom (ω CNF 𝑋) ∧ ((ω CNF 𝑋)‘𝐹) ∈ (ω ↑o 𝑋))) | ||
| Theorem | cantnfub2 43295* | Given a finite number of terms of the form ((ω ↑o (𝐴‘𝑛)) ·o (𝑀‘𝑛)) with distinct exponents, we may order them from largest to smallest and find the sum is less than (ω ↑o suc ∪ ran 𝐴) when (𝑀‘𝑛) is less than ω. Lemma 5.2 of [Schloeder] p. 15. (Contributed by RP, 9-Feb-2025.) |
| ⊢ (𝜑 → 𝑁 ∈ ω) & ⊢ (𝜑 → 𝐴:𝑁–1-1→On) & ⊢ (𝜑 → 𝑀:𝑁⟶ω) & ⊢ 𝐹 = (𝑥 ∈ suc ∪ ran 𝐴 ↦ if(𝑥 ∈ ran 𝐴, (𝑀‘(◡𝐴‘𝑥)), ∅)) ⇒ ⊢ (𝜑 → (suc ∪ ran 𝐴 ∈ On ∧ 𝐹 ∈ dom (ω CNF suc ∪ ran 𝐴) ∧ ((ω CNF suc ∪ ran 𝐴)‘𝐹) ∈ (ω ↑o suc ∪ ran 𝐴))) | ||
| Theorem | bropabg 43296* | Equivalence for two classes related by an ordered-pair class abstraction. A generalization of brsslt 27714. (Contributed by RP, 26-Sep-2024.) |
| ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) & ⊢ 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝜑} ⇒ ⊢ (𝐴𝑅𝐵 ↔ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝜒)) | ||
| Theorem | cantnfresb 43297* | A Cantor normal form which sums to less than a certain power has only zeros for larger components. (Contributed by RP, 3-Feb-2025.) |
| ⊢ (((𝐴 ∈ (On ∖ 2o) ∧ 𝐵 ∈ On) ∧ (𝐶 ∈ On ∧ 𝐹 ∈ dom (𝐴 CNF 𝐵))) → (((𝐴 CNF 𝐵)‘𝐹) ∈ (𝐴 ↑o 𝐶) ↔ ∀𝑥 ∈ (𝐵 ∖ 𝐶)(𝐹‘𝑥) = ∅)) | ||
| Theorem | cantnf2 43298* | For every ordinal, 𝐴, there is a an ordinal exponent 𝑏 such that 𝐴 is less than (ω ↑o 𝑏) and for every ordinal at least as large as 𝑏 there is a unique Cantor normal form, 𝑓, with zeros for all the unnecessary higher terms, that sums to 𝐴. Theorem 5.3 of [Schloeder] p. 16. (Contributed by RP, 3-Feb-2025.) |
| ⊢ (𝐴 ∈ On → ∃𝑏 ∈ On ∀𝑐 ∈ (On ∖ 𝑏)∃!𝑓 ∈ dom (ω CNF 𝑐)((𝐴 ∈ (ω ↑o 𝑏) ∧ 𝑓 finSupp ∅) ∧ (((ω CNF 𝑏)‘(𝑓 ↾ 𝑏)) = 𝐴 ∧ ((ω CNF 𝑐)‘𝑓) = 𝐴))) | ||
| Theorem | oawordex2 43299* | If 𝐶 is between 𝐴 (inclusive) and (𝐴 +o 𝐵) (exclusive), there is an ordinal which equals 𝐶 when summed to 𝐴. This is a slightly different statement than oawordex 8482 or oawordeu 8480. (Contributed by RP, 7-Jan-2025.) |
| ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐴 ⊆ 𝐶 ∧ 𝐶 ∈ (𝐴 +o 𝐵))) → ∃𝑥 ∈ 𝐵 (𝐴 +o 𝑥) = 𝐶) | ||
| Theorem | nnawordexg 43300* | If an ordinal, 𝐵, is in a half-open interval between some 𝐴 and the next limit ordinal, 𝐵 is the sum of the 𝐴 and some natural number. This weakens the antecedent of nnawordex 8562. (Contributed by RP, 7-Jan-2025.) |
| ⊢ ((𝐴 ∈ On ∧ 𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ (𝐴 +o ω)) → ∃𝑥 ∈ ω (𝐴 +o 𝑥) = 𝐵) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |