![]() |
Metamath
Proof Explorer Theorem List (p. 433 of 484) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30767) |
![]() (30768-32290) |
![]() (32291-48346) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | relexpmulg 43201 | With ordered exponents, the composition of powers of a relation is the relation raised to the product of exponents. (Contributed by RP, 13-Jun-2020.) |
โข (((๐ โ ๐ โง ๐ผ = (๐ฝ ยท ๐พ) โง (๐ผ = 0 โ ๐ฝ โค ๐พ)) โง (๐ฝ โ โ0 โง ๐พ โ โ0)) โ ((๐ โ๐๐ฝ)โ๐๐พ) = (๐ โ๐๐ผ)) | ||
Theorem | trclrelexplem 43202* | The union of relational powers to positive multiples of ๐ is a subset to the transitive closure raised to the power of ๐. (Contributed by RP, 15-Jun-2020.) |
โข (๐ โ โ โ โช ๐ โ โ ((๐ทโ๐๐)โ๐๐) โ (โช ๐ โ โ (๐ทโ๐๐)โ๐๐)) | ||
Theorem | iunrelexpmin2 43203* | The indexed union of relation exponentiation over the natural numbers (including zero) is the minimum reflexive-transitive relation that includes the relation. (Contributed by RP, 4-Jun-2020.) |
โข ๐ถ = (๐ โ V โฆ โช ๐ โ ๐ (๐โ๐๐)) โ โข ((๐ โ ๐ โง ๐ = โ0) โ โ๐ ((( I โพ (dom ๐ โช ran ๐ )) โ ๐ โง ๐ โ ๐ โง (๐ โ ๐ ) โ ๐ ) โ (๐ถโ๐ ) โ ๐ )) | ||
Theorem | relexp01min 43204 | With exponents limited to 0 and 1, the composition of powers of a relation is the relation raised to the minimum of exponents. (Contributed by RP, 12-Jun-2020.) |
โข (((๐ โ ๐ โง ๐ผ = if(๐ฝ < ๐พ, ๐ฝ, ๐พ)) โง (๐ฝ โ {0, 1} โง ๐พ โ {0, 1})) โ ((๐ โ๐๐ฝ)โ๐๐พ) = (๐ โ๐๐ผ)) | ||
Theorem | relexp1idm 43205 | Repeated raising a relation to the first power is idempotent. (Contributed by RP, 12-Jun-2020.) |
โข (๐ โ ๐ โ ((๐ โ๐1)โ๐1) = (๐ โ๐1)) | ||
Theorem | relexp0idm 43206 | Repeated raising a relation to the zeroth power is idempotent. (Contributed by RP, 12-Jun-2020.) |
โข (๐ โ ๐ โ ((๐ โ๐0)โ๐0) = (๐ โ๐0)) | ||
Theorem | relexp0a 43207 | Absorption law for zeroth power of a relation. (Contributed by RP, 17-Jun-2020.) |
โข ((๐ด โ ๐ โง ๐ โ โ0) โ ((๐ดโ๐๐)โ๐0) โ (๐ดโ๐0)) | ||
Theorem | relexpxpmin 43208 | The composition of powers of a Cartesian product of non-disjoint sets is the Cartesian product raised to the minimum exponent. (Contributed by RP, 13-Jun-2020.) |
โข (((๐ด โ ๐ โง ๐ต โ ๐ โง (๐ด โฉ ๐ต) โ โ ) โง (๐ผ = if(๐ฝ < ๐พ, ๐ฝ, ๐พ) โง ๐ฝ โ โ0 โง ๐พ โ โ0)) โ (((๐ด ร ๐ต)โ๐๐ฝ)โ๐๐พ) = ((๐ด ร ๐ต)โ๐๐ผ)) | ||
Theorem | relexpaddss 43209 | The composition of two powers of a relation is a subset of the relation raised to the sum of those exponents. This is equality where ๐ is a relation as shown by relexpaddd 15028 or when the sum of the powers isn't 1 as shown by relexpaddg 15027. (Contributed by RP, 3-Jun-2020.) |
โข ((๐ โ โ0 โง ๐ โ โ0 โง ๐ โ ๐) โ ((๐ โ๐๐) โ (๐ โ๐๐)) โ (๐ โ๐(๐ + ๐))) | ||
Theorem | iunrelexpuztr 43210* | The indexed union of relation exponentiation over upper integers is a transive relation. Generalized from rtrclreclem3 15034. (Contributed by RP, 4-Jun-2020.) |
โข ๐ถ = (๐ โ V โฆ โช ๐ โ ๐ (๐โ๐๐)) โ โข ((๐ โ ๐ โง ๐ = (โคโฅโ๐) โง ๐ โ โ0) โ ((๐ถโ๐ ) โ (๐ถโ๐ )) โ (๐ถโ๐ )) | ||
Theorem | dftrcl3 43211* | Transitive closure of a relation, expressed as indexed union of powers of relations. (Contributed by RP, 5-Jun-2020.) |
โข t+ = (๐ โ V โฆ โช ๐ โ โ (๐โ๐๐)) | ||
Theorem | brfvtrcld 43212* | If two elements are connected by the transitive closure of a relation, then they are connected via ๐ instances the relation, for some counting number ๐. (Contributed by RP, 22-Jul-2020.) |
โข (๐ โ ๐ โ V) โ โข (๐ โ (๐ด(t+โ๐ )๐ต โ โ๐ โ โ ๐ด(๐ โ๐๐)๐ต)) | ||
Theorem | fvtrcllb1d 43213 | A set is a subset of its image under the transitive closure. (Contributed by RP, 22-Jul-2020.) |
โข (๐ โ ๐ โ V) โ โข (๐ โ ๐ โ (t+โ๐ )) | ||
Theorem | trclfvcom 43214 | The transitive closure of a relation commutes with the relation. (Contributed by RP, 18-Jul-2020.) |
โข (๐ โ ๐ โ ((t+โ๐ ) โ ๐ ) = (๐ โ (t+โ๐ ))) | ||
Theorem | cnvtrclfv 43215 | The converse of the transitive closure is equal to the transitive closure of the converse relation. (Contributed by RP, 19-Jul-2020.) |
โข (๐ โ ๐ โ โก(t+โ๐ ) = (t+โโก๐ )) | ||
Theorem | cotrcltrcl 43216 | The transitive closure is idempotent. (Contributed by RP, 16-Jun-2020.) |
โข (t+ โ t+) = t+ | ||
Theorem | trclimalb2 43217 | Lower bound for image under a transitive closure. (Contributed by RP, 1-Jul-2020.) |
โข ((๐ โ ๐ โง (๐ โ (๐ด โช ๐ต)) โ ๐ต) โ ((t+โ๐ ) โ ๐ด) โ ๐ต) | ||
Theorem | brtrclfv2 43218* | Two ways to indicate two elements are related by the transitive closure of a relation. (Contributed by RP, 1-Jul-2020.) |
โข ((๐ โ ๐ โง ๐ โ ๐ โง ๐ โ ๐) โ (๐(t+โ๐ )๐ โ ๐ โ โฉ {๐ โฃ (๐ โ ({๐} โช ๐)) โ ๐})) | ||
Theorem | trclfvdecomr 43219 | The transitive closure of a relation may be decomposed into a union of the relation and the composition of the relation with its transitive closure. (Contributed by RP, 18-Jul-2020.) |
โข (๐ โ ๐ โ (t+โ๐ ) = (๐ โช ((t+โ๐ ) โ ๐ ))) | ||
Theorem | trclfvdecoml 43220 | The transitive closure of a relation may be decomposed into a union of the relation and the composition of the relation with its transitive closure. (Contributed by RP, 18-Jul-2020.) |
โข (๐ โ ๐ โ (t+โ๐ ) = (๐ โช (๐ โ (t+โ๐ )))) | ||
Theorem | dmtrclfvRP 43221 | The domain of the transitive closure is equal to the domain of the relation. (Contributed by RP, 18-Jul-2020.) (Proof modification is discouraged.) |
โข (๐ โ ๐ โ dom (t+โ๐ ) = dom ๐ ) | ||
Theorem | rntrclfvRP 43222 | The range of the transitive closure is equal to the range of the relation. (Contributed by RP, 19-Jul-2020.) (Proof modification is discouraged.) |
โข (๐ โ ๐ โ ran (t+โ๐ ) = ran ๐ ) | ||
Theorem | rntrclfv 43223 | The range of the transitive closure is equal to the range of the relation. (Contributed by RP, 18-Jul-2020.) (Proof modification is discouraged.) |
โข (๐ โ ๐ โ ran (t+โ๐ ) = ran ๐ ) | ||
Theorem | dfrtrcl3 43224* | Reflexive-transitive closure of a relation, expressed as indexed union of powers of relations. Generalized from dfrtrcl2 15036. (Contributed by RP, 5-Jun-2020.) |
โข t* = (๐ โ V โฆ โช ๐ โ โ0 (๐โ๐๐)) | ||
Theorem | brfvrtrcld 43225* | If two elements are connected by the reflexive-transitive closure of a relation, then they are connected via ๐ instances the relation, for some natural number ๐. Similar of dfrtrclrec2 15032. (Contributed by RP, 22-Jul-2020.) |
โข (๐ โ ๐ โ V) โ โข (๐ โ (๐ด(t*โ๐ )๐ต โ โ๐ โ โ0 ๐ด(๐ โ๐๐)๐ต)) | ||
Theorem | fvrtrcllb0d 43226 | A restriction of the identity relation is a subset of the reflexive-transitive closure of a set. (Contributed by RP, 22-Jul-2020.) |
โข (๐ โ ๐ โ V) โ โข (๐ โ ( I โพ (dom ๐ โช ran ๐ )) โ (t*โ๐ )) | ||
Theorem | fvrtrcllb0da 43227 | A restriction of the identity relation is a subset of the reflexive-transitive closure of a relation. (Contributed by RP, 22-Jul-2020.) |
โข (๐ โ Rel ๐ ) & โข (๐ โ ๐ โ V) โ โข (๐ โ ( I โพ โช โช ๐ ) โ (t*โ๐ )) | ||
Theorem | fvrtrcllb1d 43228 | A set is a subset of its image under the reflexive-transitive closure. (Contributed by RP, 22-Jul-2020.) |
โข (๐ โ ๐ โ V) โ โข (๐ โ ๐ โ (t*โ๐ )) | ||
Theorem | dfrtrcl4 43229 | Reflexive-transitive closure of a relation, expressed as the union of the zeroth power and the transitive closure. (Contributed by RP, 5-Jun-2020.) |
โข t* = (๐ โ V โฆ ((๐โ๐0) โช (t+โ๐))) | ||
Theorem | corcltrcl 43230 | The composition of the reflexive and transitive closures is the reflexive-transitive closure. (Contributed by RP, 17-Jun-2020.) |
โข (r* โ t+) = t* | ||
Theorem | cortrcltrcl 43231 | Composition with the reflexive-transitive closure absorbs the transitive closure. (Contributed by RP, 13-Jun-2020.) |
โข (t* โ t+) = t* | ||
Theorem | corclrtrcl 43232 | Composition with the reflexive-transitive closure absorbs the reflexive closure. (Contributed by RP, 13-Jun-2020.) |
โข (r* โ t*) = t* | ||
Theorem | cotrclrcl 43233 | The composition of the reflexive and transitive closures is the reflexive-transitive closure. (Contributed by RP, 21-Jun-2020.) |
โข (t+ โ r*) = t* | ||
Theorem | cortrclrcl 43234 | Composition with the reflexive-transitive closure absorbs the reflexive closure. (Contributed by RP, 13-Jun-2020.) |
โข (t* โ r*) = t* | ||
Theorem | cotrclrtrcl 43235 | Composition with the reflexive-transitive closure absorbs the transitive closure. (Contributed by RP, 13-Jun-2020.) |
โข (t+ โ t*) = t* | ||
Theorem | cortrclrtrcl 43236 | The reflexive-transitive closure is idempotent. (Contributed by RP, 13-Jun-2020.) |
โข (t* โ t*) = t* | ||
Theorems inspired by Begriffsschrift without restricting form and content to closely parallel those in [Frege1879]. | ||
Theorem | frege77d 43237 | If the images of both {๐ด} and ๐ are subsets of ๐ and ๐ต follows ๐ด in the transitive closure of ๐ , then ๐ต is an element of ๐. Similar to Proposition 77 of [Frege1879] p. 62. Compare with frege77 43431. (Contributed by RP, 15-Jul-2020.) |
โข (๐ โ ๐ โ V) & โข (๐ โ ๐ด โ V) & โข (๐ โ ๐ต โ V) & โข (๐ โ ๐ด(t+โ๐ )๐ต) & โข (๐ โ (๐ โ ๐) โ ๐) & โข (๐ โ (๐ โ {๐ด}) โ ๐) โ โข (๐ โ ๐ต โ ๐) | ||
Theorem | frege81d 43238 | If the image of ๐ is a subset ๐, ๐ด is an element of ๐ and ๐ต follows ๐ด in the transitive closure of ๐ , then ๐ต is an element of ๐. Similar to Proposition 81 of [Frege1879] p. 63. Compare with frege81 43435. (Contributed by RP, 15-Jul-2020.) |
โข (๐ โ ๐ โ V) & โข (๐ โ ๐ด โ ๐) & โข (๐ โ ๐ต โ V) & โข (๐ โ ๐ด(t+โ๐ )๐ต) & โข (๐ โ (๐ โ ๐) โ ๐) โ โข (๐ โ ๐ต โ ๐) | ||
Theorem | frege83d 43239 | If the image of the union of ๐ and ๐ is a subset of the union of ๐ and ๐, ๐ด is an element of ๐ and ๐ต follows ๐ด in the transitive closure of ๐ , then ๐ต is an element of the union of ๐ and ๐. Similar to Proposition 83 of [Frege1879] p. 65. Compare with frege83 43437. (Contributed by RP, 15-Jul-2020.) |
โข (๐ โ ๐ โ V) & โข (๐ โ ๐ด โ ๐) & โข (๐ โ ๐ต โ V) & โข (๐ โ ๐ด(t+โ๐ )๐ต) & โข (๐ โ (๐ โ (๐ โช ๐)) โ (๐ โช ๐)) โ โข (๐ โ ๐ต โ (๐ โช ๐)) | ||
Theorem | frege96d 43240 | If ๐ถ follows ๐ด in the transitive closure of ๐ and ๐ต follows ๐ถ in ๐ , then ๐ต follows ๐ด in the transitive closure of ๐ . Similar to Proposition 96 of [Frege1879] p. 71. Compare with frege96 43450. (Contributed by RP, 15-Jul-2020.) |
โข (๐ โ ๐ โ V) & โข (๐ โ ๐ด โ V) & โข (๐ โ ๐ต โ V) & โข (๐ โ ๐ถ โ V) & โข (๐ โ ๐ด(t+โ๐ )๐ถ) & โข (๐ โ ๐ถ๐ ๐ต) โ โข (๐ โ ๐ด(t+โ๐ )๐ต) | ||
Theorem | frege87d 43241 | If the images of both {๐ด} and ๐ are subsets of ๐ and ๐ถ follows ๐ด in the transitive closure of ๐ and ๐ต follows ๐ถ in ๐ , then ๐ต is an element of ๐. Similar to Proposition 87 of [Frege1879] p. 66. Compare with frege87 43441. (Contributed by RP, 15-Jul-2020.) |
โข (๐ โ ๐ โ V) & โข (๐ โ ๐ด โ V) & โข (๐ โ ๐ต โ V) & โข (๐ โ ๐ถ โ V) & โข (๐ โ ๐ด(t+โ๐ )๐ถ) & โข (๐ โ ๐ถ๐ ๐ต) & โข (๐ โ (๐ โ {๐ด}) โ ๐) & โข (๐ โ (๐ โ ๐) โ ๐) โ โข (๐ โ ๐ต โ ๐) | ||
Theorem | frege91d 43242 | If ๐ต follows ๐ด in ๐ then ๐ต follows ๐ด in the transitive closure of ๐ . Similar to Proposition 91 of [Frege1879] p. 68. Comparw with frege91 43445. (Contributed by RP, 15-Jul-2020.) |
โข (๐ โ ๐ โ V) & โข (๐ โ ๐ด๐ ๐ต) โ โข (๐ โ ๐ด(t+โ๐ )๐ต) | ||
Theorem | frege97d 43243 | If ๐ด contains all elements after those in ๐ in the transitive closure of ๐ , then the image under ๐ of ๐ด is a subclass of ๐ด. Similar to Proposition 97 of [Frege1879] p. 71. Compare with frege97 43451. (Contributed by RP, 15-Jul-2020.) |
โข (๐ โ ๐ โ V) & โข (๐ โ ๐ด = ((t+โ๐ ) โ ๐)) โ โข (๐ โ (๐ โ ๐ด) โ ๐ด) | ||
Theorem | frege98d 43244 | If ๐ถ follows ๐ด and ๐ต follows ๐ถ in the transitive closure of ๐ , then ๐ต follows ๐ด in the transitive closure of ๐ . Similar to Proposition 98 of [Frege1879] p. 71. Compare with frege98 43452. (Contributed by RP, 15-Jul-2020.) |
โข (๐ โ ๐ด โ V) & โข (๐ โ ๐ต โ V) & โข (๐ โ ๐ถ โ V) & โข (๐ โ ๐ด(t+โ๐ )๐ถ) & โข (๐ โ ๐ถ(t+โ๐ )๐ต) โ โข (๐ โ ๐ด(t+โ๐ )๐ต) | ||
Theorem | frege102d 43245 | If either ๐ด and ๐ถ are the same or ๐ถ follows ๐ด in the transitive closure of ๐ and ๐ต is the successor to ๐ถ, then ๐ต follows ๐ด in the transitive closure of ๐ . Similar to Proposition 102 of [Frege1879] p. 72. Compare with frege102 43456. (Contributed by RP, 15-Jul-2020.) |
โข (๐ โ ๐ โ V) & โข (๐ โ ๐ด โ V) & โข (๐ โ ๐ต โ V) & โข (๐ โ ๐ถ โ V) & โข (๐ โ (๐ด(t+โ๐ )๐ถ โจ ๐ด = ๐ถ)) & โข (๐ โ ๐ถ๐ ๐ต) โ โข (๐ โ ๐ด(t+โ๐ )๐ต) | ||
Theorem | frege106d 43246 | If ๐ต follows ๐ด in ๐ , then either ๐ด and ๐ต are the same or ๐ต follows ๐ด in ๐ . Similar to Proposition 106 of [Frege1879] p. 73. Compare with frege106 43460. (Contributed by RP, 15-Jul-2020.) |
โข (๐ โ ๐ด๐ ๐ต) โ โข (๐ โ (๐ด๐ ๐ต โจ ๐ด = ๐ต)) | ||
Theorem | frege108d 43247 | If either ๐ด and ๐ถ are the same or ๐ถ follows ๐ด in the transitive closure of ๐ and ๐ต is the successor to ๐ถ, then either ๐ด and ๐ต are the same or ๐ต follows ๐ด in the transitive closure of ๐ . Similar to Proposition 108 of [Frege1879] p. 74. Compare with frege108 43462. (Contributed by RP, 15-Jul-2020.) |
โข (๐ โ ๐ โ V) & โข (๐ โ ๐ด โ V) & โข (๐ โ ๐ต โ V) & โข (๐ โ ๐ถ โ V) & โข (๐ โ (๐ด(t+โ๐ )๐ถ โจ ๐ด = ๐ถ)) & โข (๐ โ ๐ถ๐ ๐ต) โ โข (๐ โ (๐ด(t+โ๐ )๐ต โจ ๐ด = ๐ต)) | ||
Theorem | frege109d 43248 | If ๐ด contains all elements of ๐ and all elements after those in ๐ in the transitive closure of ๐ , then the image under ๐ of ๐ด is a subclass of ๐ด. Similar to Proposition 109 of [Frege1879] p. 74. Compare with frege109 43463. (Contributed by RP, 15-Jul-2020.) |
โข (๐ โ ๐ โ V) & โข (๐ โ ๐ด = (๐ โช ((t+โ๐ ) โ ๐))) โ โข (๐ โ (๐ โ ๐ด) โ ๐ด) | ||
Theorem | frege114d 43249 | If either ๐ relates ๐ด and ๐ต or ๐ด and ๐ต are the same, then either ๐ด and ๐ต are the same, ๐ relates ๐ด and ๐ต, ๐ relates ๐ต and ๐ด. Similar to Proposition 114 of [Frege1879] p. 76. Compare with frege114 43468. (Contributed by RP, 15-Jul-2020.) |
โข (๐ โ (๐ด๐ ๐ต โจ ๐ด = ๐ต)) โ โข (๐ โ (๐ด๐ ๐ต โจ ๐ด = ๐ต โจ ๐ต๐ ๐ด)) | ||
Theorem | frege111d 43250 | If either ๐ด and ๐ถ are the same or ๐ถ follows ๐ด in the transitive closure of ๐ and ๐ต is the successor to ๐ถ, then either ๐ด and ๐ต are the same or ๐ด follows ๐ต or ๐ต and ๐ด in the transitive closure of ๐ . Similar to Proposition 111 of [Frege1879] p. 75. Compare with frege111 43465. (Contributed by RP, 15-Jul-2020.) |
โข (๐ โ ๐ โ V) & โข (๐ โ ๐ด โ V) & โข (๐ โ ๐ต โ V) & โข (๐ โ ๐ถ โ V) & โข (๐ โ (๐ด(t+โ๐ )๐ถ โจ ๐ด = ๐ถ)) & โข (๐ โ ๐ถ๐ ๐ต) โ โข (๐ โ (๐ด(t+โ๐ )๐ต โจ ๐ด = ๐ต โจ ๐ต(t+โ๐ )๐ด)) | ||
Theorem | frege122d 43251 | If ๐น is a function, ๐ด is the successor of ๐, and ๐ต is the successor of ๐, then ๐ด and ๐ต are the same (or ๐ต follows ๐ด in the transitive closure of ๐น). Similar to Proposition 122 of [Frege1879] p. 79. Compare with frege122 43476. (Contributed by RP, 15-Jul-2020.) |
โข (๐ โ ๐ด = (๐นโ๐)) & โข (๐ โ ๐ต = (๐นโ๐)) โ โข (๐ โ (๐ด(t+โ๐น)๐ต โจ ๐ด = ๐ต)) | ||
Theorem | frege124d 43252 | If ๐น is a function, ๐ด is the successor of ๐, and ๐ต follows ๐ in the transitive closure of ๐น, then ๐ด and ๐ต are the same or ๐ต follows ๐ด in the transitive closure of ๐น. Similar to Proposition 124 of [Frege1879] p. 80. Compare with frege124 43478. (Contributed by RP, 16-Jul-2020.) |
โข (๐ โ ๐น โ V) & โข (๐ โ ๐ โ dom ๐น) & โข (๐ โ ๐ด = (๐นโ๐)) & โข (๐ โ ๐(t+โ๐น)๐ต) & โข (๐ โ Fun ๐น) โ โข (๐ โ (๐ด(t+โ๐น)๐ต โจ ๐ด = ๐ต)) | ||
Theorem | frege126d 43253 | If ๐น is a function, ๐ด is the successor of ๐, and ๐ต follows ๐ in the transitive closure of ๐น, then (for distinct ๐ด and ๐ต) either ๐ด follows ๐ต or ๐ต follows ๐ด in the transitive closure of ๐น. Similar to Proposition 126 of [Frege1879] p. 81. Compare with frege126 43480. (Contributed by RP, 16-Jul-2020.) |
โข (๐ โ ๐น โ V) & โข (๐ โ ๐ โ dom ๐น) & โข (๐ โ ๐ด = (๐นโ๐)) & โข (๐ โ ๐(t+โ๐น)๐ต) & โข (๐ โ Fun ๐น) โ โข (๐ โ (๐ด(t+โ๐น)๐ต โจ ๐ด = ๐ต โจ ๐ต(t+โ๐น)๐ด)) | ||
Theorem | frege129d 43254 | If ๐น is a function and (for distinct ๐ด and ๐ต) either ๐ด follows ๐ต or ๐ต follows ๐ด in the transitive closure of ๐น, the successor of ๐ด is either ๐ต or it follows ๐ต or it comes before ๐ต in the transitive closure of ๐น. Similar to Proposition 129 of [Frege1879] p. 83. Comparw with frege129 43483. (Contributed by RP, 16-Jul-2020.) |
โข (๐ โ ๐น โ V) & โข (๐ โ ๐ด โ dom ๐น) & โข (๐ โ ๐ถ = (๐นโ๐ด)) & โข (๐ โ (๐ด(t+โ๐น)๐ต โจ ๐ด = ๐ต โจ ๐ต(t+โ๐น)๐ด)) & โข (๐ โ Fun ๐น) โ โข (๐ โ (๐ต(t+โ๐น)๐ถ โจ ๐ต = ๐ถ โจ ๐ถ(t+โ๐น)๐ต)) | ||
Theorem | frege131d 43255 | If ๐น is a function and ๐ด contains all elements of ๐ and all elements before or after those elements of ๐ in the transitive closure of ๐น, then the image under ๐น of ๐ด is a subclass of ๐ด. Similar to Proposition 131 of [Frege1879] p. 85. Compare with frege131 43485. (Contributed by RP, 17-Jul-2020.) |
โข (๐ โ ๐น โ V) & โข (๐ โ ๐ด = (๐ โช ((โก(t+โ๐น) โ ๐) โช ((t+โ๐น) โ ๐)))) & โข (๐ โ Fun ๐น) โ โข (๐ โ (๐น โ ๐ด) โ ๐ด) | ||
Theorem | frege133d 43256 | If ๐น is a function and ๐ด and ๐ต both follow ๐ in the transitive closure of ๐น, then (for distinct ๐ด and ๐ต) either ๐ด follows ๐ต or ๐ต follows ๐ด in the transitive closure of ๐น (or both if it loops). Similar to Proposition 133 of [Frege1879] p. 86. Compare with frege133 43487. (Contributed by RP, 18-Jul-2020.) |
โข (๐ โ ๐น โ V) & โข (๐ โ ๐(t+โ๐น)๐ด) & โข (๐ โ ๐(t+โ๐น)๐ต) & โข (๐ โ Fun ๐น) โ โข (๐ โ (๐ด(t+โ๐น)๐ต โจ ๐ด = ๐ต โจ ๐ต(t+โ๐น)๐ด)) | ||
In 1879, Frege introduced notation for documenting formal reasoning about propositions (and classes) which covered elements of propositional logic, predicate calculus and reasoning about relations. However, due to the pitfalls of naive set theory, adapting this work for inclusion in set.mm required dividing statements about propositions from those about classes and identifying when a restriction to sets is required. For an overview comparing the details of Frege's two-dimensional notation and that used in set.mm, see mmfrege.html. See ru 3769 for discussion of an example of a class that is not a set. Numbered propositions from [Frege1879]. ax-frege1 43281, ax-frege2 43282, ax-frege8 43300, ax-frege28 43321, ax-frege31 43325, ax-frege41 43336, frege52 (see ax-frege52a 43348, frege52b 43380, and ax-frege52c 43379 for translations), frege54 (see ax-frege54a 43353, frege54b 43384 and ax-frege54c 43383 for translations) and frege58 (see ax-frege58a 43366, ax-frege58b 43392 and frege58c 43412 for translations) are considered "core" or axioms. However, at least ax-frege8 43300 can be derived from ax-frege1 43281 and ax-frege2 43282, see axfrege8 43298. Frege introduced implication, negation and the universal quantifier as primitives and did not in the numbered propositions use other logical connectives other than equivalence introduced in ax-frege52a 43348, frege52b 43380, and ax-frege52c 43379. In dffrege69 43423, Frege introduced ๐ hereditary ๐ด to say that relation ๐ , when restricted to operate on elements of class ๐ด, will only have elements of class ๐ด in its domain; see df-he 43264 for a definition in terms of image and subset. In dffrege76 43430, Frege introduced notation for the concept of two sets related by the transitive closure of a relation, for which we write ๐(t+โ๐ )๐, which requires ๐ to also be a set. In dffrege99 43453, Frege introduced notation for the concept of two sets either identical or related by the transitive closure of a relation, for which we write ๐((t+โ๐ ) โช I )๐, which is a superclass of sets related by the reflexive-transitive relation ๐(t*โ๐ )๐. Finally, in dffrege115 43469, Frege introduced notation for the concept of a relation having the property elements in its domain pair up with only one element each in its range, for which we write Fun โกโก๐ (to ignore any non-relational content of the class ๐ ). Frege did this without the expressing concept of a relation (or its transitive closure) as a class, and needed to invent conventions for discussing indeterminate propositions with two slots free and how to recognize which of the slots was domain and which was range. See mmfrege.html 43469 for details. English translations for specific propositions lifted in part from a translation by Stefan Bauer-Mengelberg as reprinted in From Frege to Goedel: A Source Book in Mathematical Logic, 1879-1931. An attempt to align these propositions in the larger set.mm database has also been made. See frege77d 43237 for an example. | ||
Section 2 introduces the turnstile โข which turns an idea which may be true ๐ into an assertion that it does hold true โข ๐. Section 5 introduces implication, (๐ โ ๐). Section 6 introduces the single rule of interference relied upon, modus ponens ax-mp 5. Section 7 introduces negation and with in synonyms for or (ยฌ ๐ โ ๐), and ยฌ (๐ โ ยฌ ๐), and two for exclusive-or corresponding to df-or 846, df-an 395, dfxor4 43257, dfxor5 43258. Section 8 introduces the problematic notation for identity of conceptual content which must be separated into cases for biconditional (๐ โ ๐) or class equality ๐ด = ๐ต in this adaptation. Section 10 introduces "truth functions" for one or two variables in equally troubling notation, as the arguments may be understood to be logical predicates or collections. Here f(๐) is interpreted to mean if-(๐, ๐, ๐) where the content of the "function" is specified by the latter two argments or logical equivalent, while g(๐ด) is read as ๐ด โ ๐บ and h(๐ด, ๐ต) as ๐ด๐ป๐ต. This necessarily introduces a need for set theory as both ๐ด โ ๐บ and ๐ด๐ป๐ต cannot hold unless ๐ด is a set. (Also ๐ต.) Section 11 introduces notation for generality, but there is no standard notation for generality when the variable is a proposition because it was realized after Frege that the universe of all possible propositions includes paradoxical constructions leading to the failure of naive set theory. So adopting f(๐) as if-(๐, ๐, ๐) would result in the translation of โ๐ f (๐) as (๐ โง ๐). For collections, we must generalize over set variables or run into the same problems; this leads to โ๐ด g(๐ด) being translated as โ๐๐ โ ๐บ and so forth. Under this interpreation the text of section 11 gives us sp 2171 (or simpl 481 and simpr 483 and anifp 1069 in the propositional case) and statements similar to cbvalivw 2002, ax-gen 1789, alrimiv 1922, and alrimdv 1924. These last four introduce a generality and have no useful definition in terms of propositional variables. Section 12 introduces some combinations of primitive symbols and their human language counterparts. Using class notation, these can also be expressed without dummy variables. All are A, โ๐ฅ๐ฅ โ ๐ด, ยฌ โ๐ฅยฌ ๐ฅ โ ๐ด alex 1820, ๐ด = V eqv 3472; Some are not B, ยฌ โ๐ฅ๐ฅ โ ๐ต, โ๐ฅยฌ ๐ฅ โ ๐ต exnal 1821, ๐ต โ V pssv 4443, ๐ต โ V nev 43261; There are no C, โ๐ฅยฌ ๐ฅ โ ๐ถ, ยฌ โ๐ฅ๐ฅ โ ๐ถ alnex 1775, ๐ถ = โ eq0 4340; There exist D, ยฌ โ๐ฅยฌ ๐ฅ โ ๐ท, โ๐ฅ๐ฅ โ ๐ท df-ex 1774, โ โ ๐ท 0pss 4441, ๐ท โ โ n0 4343. Notation for relations between expressions also can be written in various ways. All E are P, โ๐ฅ(๐ฅ โ ๐ธ โ ๐ฅ โ ๐), ยฌ โ๐ฅ(๐ฅ โ ๐ธ โง ยฌ ๐ฅ โ ๐) dfss6 3963, ๐ธ = (๐ธ โฉ ๐) dfss2 3959, ๐ธ โ ๐ df-ss 3958; No F are P, โ๐ฅ(๐ฅ โ ๐น โ ยฌ ๐ฅ โ ๐), ยฌ โ๐ฅ(๐ฅ โ ๐น โง ๐ฅ โ ๐) alinexa 1837, (๐น โฉ ๐) = โ disj1 4447; Some G are not P, ยฌ โ๐ฅ(๐ฅ โ ๐บ โ ๐ฅ โ ๐), โ๐ฅ(๐ฅ โ ๐บ โง ยฌ ๐ฅ โ ๐) exanali 1854, (๐บ โฉ ๐) โ ๐บ nssinpss 4252, ยฌ ๐บ โ ๐ nss 4038; Some H are P, ยฌ โ๐ฅ(๐ฅ โ ๐ป โ ยฌ ๐ฅ โ ๐), โ๐ฅ(๐ฅ โ ๐ป โง ๐ฅ โ ๐) exnalimn 1838, โ โ (๐ป โฉ ๐) 0pssin 43262, (๐ป โฉ ๐) โ โ ndisj 4364. | ||
Theorem | dfxor4 43257 | Express exclusive-or in terms of implication and negation. Statement in [Frege1879] p. 12. (Contributed by RP, 14-Apr-2020.) |
โข ((๐ โป ๐) โ ยฌ ((ยฌ ๐ โ ๐) โ ยฌ (๐ โ ยฌ ๐))) | ||
Theorem | dfxor5 43258 | Express exclusive-or in terms of implication and negation. Statement in [Frege1879] p. 12. (Contributed by RP, 14-Apr-2020.) |
โข ((๐ โป ๐) โ ยฌ ((๐ โ ยฌ ๐) โ ยฌ (ยฌ ๐ โ ๐))) | ||
Theorem | df3or2 43259 | Express triple-or in terms of implication and negation. Statement in [Frege1879] p. 11. (Contributed by RP, 25-Jul-2020.) |
โข ((๐ โจ ๐ โจ ๐) โ (ยฌ ๐ โ (ยฌ ๐ โ ๐))) | ||
Theorem | df3an2 43260 | Express triple-and in terms of implication and negation. Statement in [Frege1879] p. 12. (Contributed by RP, 25-Jul-2020.) |
โข ((๐ โง ๐ โง ๐) โ ยฌ (๐ โ (๐ โ ยฌ ๐))) | ||
Theorem | nev 43261* | Express that not every set is in a class. (Contributed by RP, 16-Apr-2020.) |
โข (๐ด โ V โ ยฌ โ๐ฅ ๐ฅ โ ๐ด) | ||
Theorem | 0pssin 43262* | Express that an intersection is not empty. (Contributed by RP, 16-Apr-2020.) |
โข (โ โ (๐ด โฉ ๐ต) โ โ๐ฅ(๐ฅ โ ๐ด โง ๐ฅ โ ๐ต)) | ||
The statement ๐ hereditary ๐ด means relation ๐ is hereditary (in the sense of Frege) in the class ๐ด or (๐ โ ๐ด) โ ๐ด. The former is only a slight reduction in the number of symbols, but this reduces the number of floating hypotheses needed to be checked. As Frege was not using the language of classes or sets, this naturally differs from the set-theoretic notion that a set is hereditary in a property: that all of its elements have a property and all of their elements have the property and so-on. | ||
Syntax | whe 43263 | The property of relation ๐ being hereditary in class ๐ด. |
wff ๐ hereditary ๐ด | ||
Definition | df-he 43264 | The property of relation ๐ being hereditary in class ๐ด. (Contributed by RP, 27-Mar-2020.) |
โข (๐ hereditary ๐ด โ (๐ โ ๐ด) โ ๐ด) | ||
Theorem | dfhe2 43265 | The property of relation ๐ being hereditary in class ๐ด. (Contributed by RP, 27-Mar-2020.) |
โข (๐ hereditary ๐ด โ (๐ โพ ๐ด) โ (๐ด ร ๐ด)) | ||
Theorem | dfhe3 43266* | The property of relation ๐ being hereditary in class ๐ด. (Contributed by RP, 27-Mar-2020.) |
โข (๐ hereditary ๐ด โ โ๐ฅ(๐ฅ โ ๐ด โ โ๐ฆ(๐ฅ๐ ๐ฆ โ ๐ฆ โ ๐ด))) | ||
Theorem | heeq12 43267 | Equality law for relations being herditary over a class. (Contributed by RP, 27-Mar-2020.) |
โข ((๐ = ๐ โง ๐ด = ๐ต) โ (๐ hereditary ๐ด โ ๐ hereditary ๐ต)) | ||
Theorem | heeq1 43268 | Equality law for relations being herditary over a class. (Contributed by RP, 27-Mar-2020.) |
โข (๐ = ๐ โ (๐ hereditary ๐ด โ ๐ hereditary ๐ด)) | ||
Theorem | heeq2 43269 | Equality law for relations being herditary over a class. (Contributed by RP, 27-Mar-2020.) |
โข (๐ด = ๐ต โ (๐ hereditary ๐ด โ ๐ hereditary ๐ต)) | ||
Theorem | sbcheg 43270 | Distribute proper substitution through herditary relation. (Contributed by RP, 29-Jun-2020.) |
โข (๐ด โ ๐ โ ([๐ด / ๐ฅ]๐ต hereditary ๐ถ โ โฆ๐ด / ๐ฅโฆ๐ต hereditary โฆ๐ด / ๐ฅโฆ๐ถ)) | ||
Theorem | hess 43271 | Subclass law for relations being herditary over a class. (Contributed by RP, 27-Mar-2020.) |
โข (๐ โ ๐ โ (๐ hereditary ๐ด โ ๐ hereditary ๐ด)) | ||
Theorem | xphe 43272 | Any Cartesian product is hereditary in its second class. (Contributed by RP, 27-Mar-2020.) (Proof shortened by OpenAI, 3-Jul-2020.) |
โข (๐ด ร ๐ต) hereditary ๐ต | ||
Theorem | 0he 43273 | The empty relation is hereditary in any class. (Contributed by RP, 27-Mar-2020.) |
โข โ hereditary ๐ด | ||
Theorem | 0heALT 43274 | The empty relation is hereditary in any class. (Contributed by RP, 27-Mar-2020.) (New usage is discouraged.) (Proof modification is discouraged.) |
โข โ hereditary ๐ด | ||
Theorem | he0 43275 | Any relation is hereditary in the empty set. (Contributed by RP, 27-Mar-2020.) |
โข ๐ด hereditary โ | ||
Theorem | unhe1 43276 | The union of two relations hereditary in a class is also hereditary in a class. (Contributed by RP, 28-Mar-2020.) |
โข ((๐ hereditary ๐ด โง ๐ hereditary ๐ด) โ (๐ โช ๐) hereditary ๐ด) | ||
Theorem | snhesn 43277 | Any singleton is hereditary in any singleton. (Contributed by RP, 28-Mar-2020.) |
โข {โจ๐ด, ๐ดโฉ} hereditary {๐ต} | ||
Theorem | idhe 43278 | The identity relation is hereditary in any class. (Contributed by RP, 28-Mar-2020.) |
โข I hereditary ๐ด | ||
Theorem | psshepw 43279 | The relation between sets and their proper subsets is hereditary in the powerclass of any class. (Contributed by RP, 28-Mar-2020.) |
โข โก [โ] hereditary ๐ซ ๐ด | ||
Theorem | sshepw 43280 | The relation between sets and their subsets is hereditary in the powerclass of any class. (Contributed by RP, 28-Mar-2020.) |
โข (โก [โ] โช I ) hereditary ๐ซ ๐ด | ||
Axiom | ax-frege1 43281 | The case in which ๐ is denied, ๐ is affirmed, and ๐ is affirmed is excluded. This is evident since ๐ cannot at the same time be denied and affirmed. Axiom 1 of [Frege1879] p. 26. Identical to ax-1 6. (Contributed by RP, 24-Dec-2019.) (New usage is discouraged.) |
โข (๐ โ (๐ โ ๐)) | ||
Axiom | ax-frege2 43282 | If a proposition ๐ is a necessary consequence of two propositions ๐ and ๐ and one of those, ๐, is in turn a necessary consequence of the other, ๐, then the proposition ๐ is a necessary consequence of the latter one, ๐, alone. Axiom 2 of [Frege1879] p. 26. Identical to ax-2 7. (Contributed by RP, 24-Dec-2019.) (New usage is discouraged.) |
โข ((๐ โ (๐ โ ๐)) โ ((๐ โ ๐) โ (๐ โ ๐))) | ||
Theorem | rp-simp2-frege 43283 | Simplification of triple conjunction. Compare with simp2 1134. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
โข (๐ โ (๐ โ (๐ โ ๐))) | ||
Theorem | rp-simp2 43284 | Simplification of triple conjunction. Identical to simp2 1134. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
โข ((๐ โง ๐ โง ๐) โ ๐) | ||
Theorem | rp-frege3g 43285 |
Add antecedent to ax-frege2 43282. More general statement than frege3 43286.
Like ax-frege2 43282, it is essentially a closed form of mpd 15,
however it
has an extra antecedent.
It would be more natural to prove from a1i 11 and ax-frege2 43282 in Metamath. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
โข (๐ โ ((๐ โ (๐ โ ๐)) โ ((๐ โ ๐) โ (๐ โ ๐)))) | ||
Theorem | frege3 43286 | Add antecedent to ax-frege2 43282. Special case of rp-frege3g 43285. Proposition 3 of [Frege1879] p. 29. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
โข ((๐ โ ๐) โ ((๐ โ (๐ โ ๐)) โ ((๐ โ ๐) โ (๐ โ ๐)))) | ||
Theorem | rp-misc1-frege 43287 | Double-use of ax-frege2 43282. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
โข (((๐ โ (๐ โ ๐)) โ (๐ โ ๐)) โ ((๐ โ (๐ โ ๐)) โ (๐ โ ๐))) | ||
Theorem | rp-frege24 43288 | Introducing an embedded antecedent. Alternate proof for frege24 43306. Closed form for a1d 25. (Contributed by RP, 24-Dec-2019.) |
โข ((๐ โ ๐) โ (๐ โ (๐ โ ๐))) | ||
Theorem | rp-frege4g 43289 | Deduction related to distribution. (Contributed by RP, 24-Dec-2019.) |
โข ((๐ โ (๐ โ (๐ โ ๐))) โ (๐ โ ((๐ โ ๐) โ (๐ โ ๐)))) | ||
Theorem | frege4 43290 | Special case of closed form of a2d 29. Special case of rp-frege4g 43289. Proposition 4 of [Frege1879] p. 31. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
โข (((๐ โ ๐) โ (๐ โ (๐ โ ๐))) โ ((๐ โ ๐) โ ((๐ โ ๐) โ (๐ โ ๐)))) | ||
Theorem | frege5 43291 | A closed form of syl 17. Identical to imim2 58. Theorem *2.05 of [WhiteheadRussell] p. 100. Proposition 5 of [Frege1879] p. 32. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
โข ((๐ โ ๐) โ ((๐ โ ๐) โ (๐ โ ๐))) | ||
Theorem | rp-7frege 43292 | Distribute antecedent and add another. (Contributed by RP, 24-Dec-2019.) |
โข ((๐ โ (๐ โ ๐)) โ (๐ โ ((๐ โ ๐) โ (๐ โ ๐)))) | ||
Theorem | rp-4frege 43293 | Elimination of a nested antecedent of special form. (Contributed by RP, 24-Dec-2019.) |
โข ((๐ โ ((๐ โ ๐) โ ๐)) โ (๐ โ ๐)) | ||
Theorem | rp-6frege 43294 | Elimination of a nested antecedent of special form. (Contributed by RP, 24-Dec-2019.) |
โข (๐ โ ((๐ โ ((๐ โ ๐) โ ๐)) โ (๐ โ ๐))) | ||
Theorem | rp-8frege 43295 | Eliminate antecedent when it is implied by previous antecedent. (Contributed by RP, 24-Dec-2019.) |
โข ((๐ โ (๐ โ ((๐ โ ๐) โ ๐))) โ (๐ โ (๐ โ ๐))) | ||
Theorem | rp-frege25 43296 | Closed form for a1dd 50. Alternate route to Proposition 25 of [Frege1879] p. 42. (Contributed by RP, 24-Dec-2019.) |
โข ((๐ โ (๐ โ ๐)) โ (๐ โ (๐ โ (๐ โ ๐)))) | ||
Theorem | frege6 43297 | A closed form of imim2d 57 which is a deduction adding nested antecedents. Proposition 6 of [Frege1879] p. 33. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
โข ((๐ โ (๐ โ ๐)) โ (๐ โ ((๐ โ ๐) โ (๐ โ ๐)))) | ||
Theorem | axfrege8 43298 |
Swap antecedents. Identical to pm2.04 90. This demonstrates that Axiom 8
of [Frege1879] p. 35 is redundant.
Proof follows closely proof of pm2.04 90 in https://us.metamath.org/mmsolitaire/pmproofs.txt 90, but in the style of Frege's 1879 work. (Contributed by RP, 24-Dec-2019.) (New usage is discouraged.) (Proof modification is discouraged.) |
โข ((๐ โ (๐ โ ๐)) โ (๐ โ (๐ โ ๐))) | ||
Theorem | frege7 43299 | A closed form of syl6 35. The first antecedent is used to replace the consequent of the second antecedent. Proposition 7 of [Frege1879] p. 34. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
โข ((๐ โ ๐) โ ((๐ โ (๐ โ ๐)) โ (๐ โ (๐ โ ๐)))) | ||
Axiom | ax-frege8 43300 | Swap antecedents. If two conditions have a proposition as a consequence, their order is immaterial. Third axiom of Frege's 1879 work but identical to pm2.04 90 which can be proved from only ax-mp 5, ax-frege1 43281, and ax-frege2 43282. (Redundant) Axiom 8 of [Frege1879] p. 35. (Contributed by RP, 24-Dec-2019.) (New usage is discouraged.) |
โข ((๐ โ (๐ โ ๐)) โ (๐ โ (๐ โ ๐))) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |