![]() |
Mathbox for Adrian Ducourtial |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > df-prj | Structured version Visualization version GIF version |
Description: Define the function that, for a set 𝑎, arity 𝑛, and index 𝑖, returns the 𝑖-th 𝑛-ary projection on 𝑎. This is the 𝑛-ary operation on 𝑎 that, for any sequence of 𝑛 elements of 𝑎, returns the element having index 𝑖. (Contributed by Adrian Ducourtial, 3-Apr-2025.) |
Ref | Expression |
---|---|
df-prj | ⊢ prj = (𝑎 ∈ V ↦ (𝑛 ∈ (ω ∖ 1o), 𝑖 ∈ 𝑛 ↦ (𝑥 ∈ (𝑎 ↑m 𝑛) ↦ (𝑥‘𝑖)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cprj 35136 | . 2 class prj | |
2 | va | . . 3 setvar 𝑎 | |
3 | cvv 3473 | . . 3 class V | |
4 | vn | . . . 4 setvar 𝑛 | |
5 | vi | . . . 4 setvar 𝑖 | |
6 | com 7859 | . . . . 5 class ω | |
7 | c1o 8465 | . . . . 5 class 1o | |
8 | 6, 7 | cdif 3945 | . . . 4 class (ω ∖ 1o) |
9 | 4 | cv 1539 | . . . 4 class 𝑛 |
10 | vx | . . . . 5 setvar 𝑥 | |
11 | 2 | cv 1539 | . . . . . 6 class 𝑎 |
12 | cmap 8826 | . . . . . 6 class ↑m | |
13 | 11, 9, 12 | co 7412 | . . . . 5 class (𝑎 ↑m 𝑛) |
14 | 5 | cv 1539 | . . . . . 6 class 𝑖 |
15 | 10 | cv 1539 | . . . . . 6 class 𝑥 |
16 | 14, 15 | cfv 6543 | . . . . 5 class (𝑥‘𝑖) |
17 | 10, 13, 16 | cmpt 5231 | . . . 4 class (𝑥 ∈ (𝑎 ↑m 𝑛) ↦ (𝑥‘𝑖)) |
18 | 4, 5, 8, 9, 17 | cmpo 7414 | . . 3 class (𝑛 ∈ (ω ∖ 1o), 𝑖 ∈ 𝑛 ↦ (𝑥 ∈ (𝑎 ↑m 𝑛) ↦ (𝑥‘𝑖))) |
19 | 2, 3, 18 | cmpt 5231 | . 2 class (𝑎 ∈ V ↦ (𝑛 ∈ (ω ∖ 1o), 𝑖 ∈ 𝑛 ↦ (𝑥 ∈ (𝑎 ↑m 𝑛) ↦ (𝑥‘𝑖)))) |
20 | 1, 19 | wceq 1540 | 1 wff prj = (𝑎 ∈ V ↦ (𝑛 ∈ (ω ∖ 1o), 𝑖 ∈ 𝑛 ↦ (𝑥 ∈ (𝑎 ↑m 𝑛) ↦ (𝑥‘𝑖)))) |
Colors of variables: wff setvar class |
This definition is referenced by: (None) |
Copyright terms: Public domain | W3C validator |