| Metamath
Proof Explorer Theorem List (p. 352 of 499) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30893) |
(30894-32416) |
(32417-49836) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | elwf 35101 | An element of a well-founded set is well-founded. (Contributed by BTernaryTau, 30-Dec-2025.) |
| ⊢ ((𝐴 ∈ ∪ (𝑅1 “ On) ∧ 𝐵 ∈ 𝐴) → 𝐵 ∈ ∪ (𝑅1 “ On)) | ||
| Theorem | r1elcl 35102 | Each set of the cumulative hierarchy is closed under membership. (Contributed by BTernaryTau, 30-Dec-2025.) |
| ⊢ ((𝐴 ∈ (𝑅1‘𝐵) ∧ 𝐶 ∈ 𝐴) → 𝐶 ∈ (𝑅1‘𝐵)) | ||
| Theorem | rankval2b 35103* | Value of an alternate definition of the rank function. Definition of [BellMachover] p. 478. This variant of rankval2 9708 does not use Regularity, and so requires the assumption that 𝐴 is in the range of 𝑅1. (Contributed by BTernaryTau, 19-Jan-2026.) |
| ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → (rank‘𝐴) = ∩ {𝑥 ∈ On ∣ 𝐴 ⊆ (𝑅1‘𝑥)}) | ||
| Theorem | rankval4b 35104* | The rank of a set is the supremum of the successors of the ranks of its members. Exercise 9.1 of [Jech] p. 72. Also a special case of Theorem 7V(b) of [Enderton] p. 204. This variant of rankval4 9757 does not use Regularity, and so requires the assumption that 𝐴 is in the range of 𝑅1. (Contributed by BTernaryTau, 19-Jan-2026.) |
| ⊢ (𝐴 ∈ ∪ (𝑅1 “ On) → (rank‘𝐴) = ∪ 𝑥 ∈ 𝐴 suc (rank‘𝑥)) | ||
| Theorem | rankfilimbi 35105* | If all elements in a finite well-founded set have a rank less than a limit ordinal, then the rank of that set is also less than the limit ordinal. (Contributed by BTernaryTau, 19-Jan-2026.) |
| ⊢ (((𝐴 ∈ Fin ∧ 𝐴 ∈ ∪ (𝑅1 “ On)) ∧ (∀𝑥 ∈ 𝐴 (rank‘𝑥) ∈ 𝐵 ∧ Lim 𝐵)) → (rank‘𝐴) ∈ 𝐵) | ||
| Theorem | r1filimi 35106* | If all elements in a finite set appear in the cumulative hierarchy prior to a limit ordinal, then that set also appears in the cumulative hierarchy prior to the limit ordinal. (Contributed by BTernaryTau, 19-Jan-2026.) |
| ⊢ ((𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 𝑥 ∈ ∪ (𝑅1 “ 𝐵) ∧ Lim 𝐵) → 𝐴 ∈ ∪ (𝑅1 “ 𝐵)) | ||
| Theorem | r1omfi 35107 | Hereditarily finite sets are finite sets. (Contributed by BTernaryTau, 30-Dec-2025.) |
| ⊢ ∪ (𝑅1 “ ω) ⊆ Fin | ||
| Theorem | r1omhf 35108* | A set is hereditarily finite iff it is finite and all of its elements are hereditarily finite. (Contributed by BTernaryTau, 19-Jan-2026.) |
| ⊢ (𝐴 ∈ ∪ (𝑅1 “ ω) ↔ (𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 𝑥 ∈ ∪ (𝑅1 “ ω))) | ||
| Theorem | r1ssel 35109 | A set is a subset of the value of the cumulative hierarchy of sets function iff it is an element of the value at the successor. (Contributed by BTernaryTau, 15-Jan-2026.) |
| ⊢ (𝐵 ∈ On → (𝐴 ⊆ (𝑅1‘𝐵) ↔ 𝐴 ∈ (𝑅1‘suc 𝐵))) | ||
| Theorem | axnulg 35110 | A generalization of ax-nul 5244 in which 𝑥 and 𝑦 need not be distinct. Note that it is possible to use axc7e 2319 to derive elirrv 9483 from this theorem, which justifies the dependency on ax-reg 9478. Usage of this theorem is discouraged because it depends on ax-13 2372. (Contributed by BTernaryTau, 3-Aug-2025.) (New usage is discouraged.) |
| ⊢ ∃𝑥∀𝑦 ¬ 𝑦 ∈ 𝑥 | ||
| Theorem | axnulALT2 35111* | Alternate proof of axnul 5243, proved from propositional calculus, ax-gen 1796, ax-4 1810, ax-5 1911, and ax-inf2 9531. (Contributed by BTernaryTau, 22-Jun-2025.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ∃𝑥∀𝑦 ¬ 𝑦 ∈ 𝑥 | ||
| Axiom | ax-regs 35112* | A strong version of the Axiom of Regularity. It states that if there exists a set with property 𝜑, then there must exist a set with property 𝜑 such that none of its elements have property 𝜑. This axiom can be derived from the axioms of ZF set theory as shown in axregs 35133, but this derivation relies on ax-inf2 9531 and is thus not possible in a finitist context. (Contributed by BTernaryTau, 29-Dec-2025.) |
| ⊢ (∃𝑥𝜑 → ∃𝑦(∀𝑥(𝑥 = 𝑦 → 𝜑) ∧ ∀𝑧(𝑧 ∈ 𝑦 → ¬ ∀𝑥(𝑥 = 𝑧 → 𝜑)))) | ||
| Theorem | axreg 35113* | Derivation of ax-reg 9478 from ax-regs 35112 and Tarski's FOL axiom schemes. This demonstrates the sense in which ax-regs 35112 is a stronger version of ax-reg 9478. (Contributed by BTernaryTau, 30-Dec-2025.) |
| ⊢ (∃𝑦 𝑦 ∈ 𝑥 → ∃𝑦(𝑦 ∈ 𝑥 ∧ ∀𝑧(𝑧 ∈ 𝑦 → ¬ 𝑧 ∈ 𝑥))) | ||
| Theorem | axregscl 35114* | A version of ax-regs 35112 with a class variable instead of a wff variable. Axiom D in Gödel, The Consistency of the Axiom of Choice and of the Generalized Continuum Hypothesis with the Axioms of Set Theory (1940), p. 6. (Contributed by BTernaryTau, 30-Dec-2025.) |
| ⊢ (∃𝑥 𝑥 ∈ 𝐴 → ∃𝑦(𝑦 ∈ 𝐴 ∧ ∀𝑧(𝑧 ∈ 𝑦 → ¬ 𝑧 ∈ 𝐴))) | ||
| Theorem | axregszf 35115* | Derivation of zfregs 9622 using ax-regs 35112. (Contributed by BTernaryTau, 30-Dec-2025.) |
| ⊢ (𝐴 ≠ ∅ → ∃𝑥 ∈ 𝐴 (𝑥 ∩ 𝐴) = ∅) | ||
| Theorem | setindregs 35116* | Set (epsilon) induction. This version of setind 9624 replaces zfregs 9622 with axregszf 35115. (Contributed by BTernaryTau, 30-Dec-2025.) |
| ⊢ (∀𝑥(𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐴) → 𝐴 = V) | ||
| Theorem | setinds2regs 35117* | Principle of set induction (or E-induction). If a property passes from all elements of 𝑥 to 𝑥 itself, then it holds for all 𝑥. (Contributed by BTernaryTau, 31-Dec-2025.) |
| ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) & ⊢ (∀𝑦 ∈ 𝑥 𝜓 → 𝜑) ⇒ ⊢ 𝜑 | ||
| Theorem | tz9.1regs 35118* | Every set has a transitive closure (the smallest transitive extension). This version of tz9.1 9619 depends on ax-regs 35112 instead of ax-reg 9478 and ax-inf2 9531. This suggests a possible answer to the third question posed in tz9.1 9619, namely that the missing property is that countably infinite classes must obey regularity. In ZF set theory we can prove this by showing that countably infinite classes are sets and thus ax-reg 9478 applies to them directly, but in a finitist context it seems that an axiom like ax-regs 35112 is required since countably infinite classes are proper classes. (Contributed by BTernaryTau, 31-Dec-2025.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ ∃𝑥(𝐴 ⊆ 𝑥 ∧ Tr 𝑥 ∧ ∀𝑦((𝐴 ⊆ 𝑦 ∧ Tr 𝑦) → 𝑥 ⊆ 𝑦)) | ||
| Theorem | unir1regs 35119 | The cumulative hierarchy of sets covers the universe. This version of unir1 9703 replaces setind 9624 with setindregs 35116. (Contributed by BTernaryTau, 30-Dec-2025.) |
| ⊢ ∪ (𝑅1 “ On) = V | ||
| Theorem | trssfir1omregs 35120 | If every element in a transitive class is finite, then every element is also hereditarily finite. (Contributed by BTernaryTau, 20-Jan-2026.) |
| ⊢ ((Tr 𝐴 ∧ 𝐴 ⊆ Fin) → 𝐴 ⊆ ∪ (𝑅1 “ ω)) | ||
| Theorem | r1omhfbregs 35121* | The class of all hereditarily finite sets is the only class with the property that all sets are members of it iff they are finite and all of their elements are members of it. (Contributed by BTernaryTau, 21-Jan-2026.) |
| ⊢ (𝐻 = ∪ (𝑅1 “ ω) ↔ ∀𝑥(𝑥 ∈ 𝐻 ↔ (𝑥 ∈ Fin ∧ ∀𝑦 ∈ 𝑥 𝑦 ∈ 𝐻))) | ||
| Theorem | fineqvomon 35122 | If the Axiom of Infinity is negated, then the class of all natural numbers equals the proper class of all ordinal numbers. (Contributed by BTernaryTau, 30-Dec-2025.) |
| ⊢ (Fin = V → ω = On) | ||
| Theorem | fineqvr1ombregs 35123 | All sets are finite iff all sets are hereditarily finite. (Contributed by BTernaryTau, 30-Dec-2025.) |
| ⊢ (Fin = V ↔ ∪ (𝑅1 “ ω) = V) | ||
| Theorem | prcinf 35124* | Any proper class is literally infinite, in the sense that it contains subsets of arbitrarily large finite cardinality. This proof holds regardless of whether the Axiom of Infinity is accepted or negated. (Contributed by BTernaryTau, 22-Jun-2025.) |
| ⊢ (¬ 𝐴 ∈ V → ∀𝑛 ∈ ω ∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝑛)) | ||
| Theorem | fineqvrep 35125* | If the Axiom of Infinity is negated, then the Axiom of Replacement becomes redundant. (Contributed by BTernaryTau, 12-Sep-2024.) |
| ⊢ (Fin = V → (∀𝑤∃𝑦∀𝑧(∀𝑦𝜑 → 𝑧 = 𝑦) → ∃𝑦∀𝑧(𝑧 ∈ 𝑦 ↔ ∃𝑤(𝑤 ∈ 𝑥 ∧ ∀𝑦𝜑)))) | ||
| Theorem | fineqvpow 35126* | If the Axiom of Infinity is negated, then the Axiom of Power Sets becomes redundant. (Contributed by BTernaryTau, 12-Sep-2024.) |
| ⊢ (Fin = V → ∃𝑦∀𝑧(∀𝑤(𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑥) → 𝑧 ∈ 𝑦)) | ||
| Theorem | fineqvac 35127 | If the Axiom of Infinity is negated, then the Axiom of Choice becomes redundant. For a shorter proof using ax-rep 5217 and ax-pow 5303, see fineqvacALT 35128. (Contributed by BTernaryTau, 21-Sep-2024.) |
| ⊢ (Fin = V → CHOICE) | ||
| Theorem | fineqvacALT 35128 | Shorter proof of fineqvac 35127 using ax-rep 5217 and ax-pow 5303. (Contributed by BTernaryTau, 21-Sep-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (Fin = V → CHOICE) | ||
| Theorem | fineqvnttrclselem1 35129* | Lemma for fineqvnttrclse 35132. (Contributed by BTernaryTau, 12-Jan-2026.) |
| ⊢ (𝐵 ∈ (ω ∖ 1o) → ∪ {𝑑 ∈ On ∣ (𝐴 +o 𝑑) = 𝐵} ∈ ω) | ||
| Theorem | fineqvnttrclselem2 35130* | Lemma for fineqvnttrclse 35132. (Contributed by BTernaryTau, 12-Jan-2026.) |
| ⊢ 𝐹 = (𝑣 ∈ suc suc 𝑁 ↦ ∪ {𝑑 ∈ On ∣ (𝑣 +o 𝑑) = 𝐵}) ⇒ ⊢ ((𝐵 ∈ (ω ∖ 1o) ∧ 𝑁 ∈ 𝐵 ∧ 𝐴 ∈ suc suc 𝑁) → (𝐴 +o (𝐹‘𝐴)) = 𝐵) | ||
| Theorem | fineqvnttrclselem3 35131* | Lemma for fineqvnttrclse 35132. (Contributed by BTernaryTau, 12-Jan-2026.) |
| ⊢ 𝑅 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑥 = suc 𝑦)} & ⊢ 𝐴 = ω & ⊢ 𝐹 = (𝑣 ∈ suc suc 𝑁 ↦ ∪ {𝑑 ∈ On ∣ (𝑣 +o 𝑑) = 𝐵}) ⇒ ⊢ ((𝐵 ∈ (ω ∖ 1o) ∧ 𝑁 ∈ 𝐵) → ∀𝑎 ∈ suc 𝑁(𝐹‘𝑎)𝑅(𝐹‘suc 𝑎)) | ||
| Theorem | fineqvnttrclse 35132* | A counterexample demonstrating that ttrclse 9617 does not hold when all sets are finite. (Contributed by BTernaryTau, 12-Jan-2026.) |
| ⊢ 𝑅 = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑥 = suc 𝑦)} & ⊢ 𝐴 = ω ⇒ ⊢ (Fin = V → (𝑅 Se 𝐴 ∧ ¬ t++(𝑅 ↾ 𝐴) Se 𝐴)) | ||
| Theorem | axregs 35133* | Derivation of ax-regs 35112 from the axioms of ZF set theory. (Contributed by BTernaryTau, 29-Dec-2025.) |
| ⊢ (∃𝑥𝜑 → ∃𝑦(∀𝑥(𝑥 = 𝑦 → 𝜑) ∧ ∀𝑧(𝑧 ∈ 𝑦 → ¬ ∀𝑥(𝑥 = 𝑧 → 𝜑)))) | ||
| Theorem | gblacfnacd 35134* | If 𝐺 is a global choice function, then the Axiom of Choice (in the form of the right-hand side of dfac4 10010) holds. Note that 𝐺 must be a proper class by fndmexb 7836. This means we cannot show that the existence of a class that behaves as a global choice function is sufficient because we only have existential quantifiers for sets, not (proper) classes. However, if a class variant of exlimiv 1931 were available, then it could be used alongside the closed form of this theorem to prove that result. (Contributed by BTernaryTau, 12-Dec-2024.) |
| ⊢ (𝜑 → 𝐺 Fn V) & ⊢ (𝜑 → ∀𝑧(𝑧 ≠ ∅ → (𝐺‘𝑧) ∈ 𝑧)) ⇒ ⊢ (𝜑 → ∀𝑥∃𝑓(𝑓 Fn 𝑥 ∧ ∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧))) | ||
| Theorem | onvf1odlem1 35135* | Lemma for onvf1od 35139. (Contributed by BTernaryTau, 2-Dec-2025.) |
| ⊢ (𝐴 ∈ 𝑉 → ∃𝑥 ∈ On ∃𝑦 ∈ (𝑅1‘𝑥) ¬ 𝑦 ∈ 𝐴) | ||
| Theorem | onvf1odlem2 35136* | Lemma for onvf1od 35139. (Contributed by BTernaryTau, 2-Dec-2025.) |
| ⊢ (𝜑 → ∀𝑧(𝑧 ≠ ∅ → (𝐺‘𝑧) ∈ 𝑧)) & ⊢ 𝑀 = ∩ {𝑥 ∈ On ∣ ∃𝑦 ∈ (𝑅1‘𝑥) ¬ 𝑦 ∈ 𝐴} & ⊢ 𝑁 = (𝐺‘((𝑅1‘𝑀) ∖ 𝐴)) ⇒ ⊢ (𝜑 → (𝐴 ∈ 𝑉 → 𝑁 ∈ ((𝑅1‘𝑀) ∖ 𝐴))) | ||
| Theorem | onvf1odlem3 35137* | Lemma for onvf1od 35139. The value of 𝐹 at an ordinal 𝐴. (Contributed by BTernaryTau, 2-Dec-2025.) |
| ⊢ 𝑀 = ∩ {𝑥 ∈ On ∣ ∃𝑦 ∈ (𝑅1‘𝑥) ¬ 𝑦 ∈ ran 𝑤} & ⊢ 𝑁 = (𝐺‘((𝑅1‘𝑀) ∖ ran 𝑤)) & ⊢ 𝐹 = recs((𝑤 ∈ V ↦ 𝑁)) & ⊢ 𝐵 = ∩ {𝑢 ∈ On ∣ ∃𝑣 ∈ (𝑅1‘𝑢) ¬ 𝑣 ∈ (𝐹 “ 𝐴)} & ⊢ 𝐶 = (𝐺‘((𝑅1‘𝐵) ∖ (𝐹 “ 𝐴))) ⇒ ⊢ (𝐴 ∈ On → (𝐹‘𝐴) = 𝐶) | ||
| Theorem | onvf1odlem4 35138* | Lemma for onvf1od 35139. If the range of 𝐹 does not exist, then it must equal the universe. (Contributed by BTernaryTau, 4-Dec-2025.) |
| ⊢ (𝜑 → ∀𝑧(𝑧 ≠ ∅ → (𝐺‘𝑧) ∈ 𝑧)) & ⊢ 𝑀 = ∩ {𝑥 ∈ On ∣ ∃𝑦 ∈ (𝑅1‘𝑥) ¬ 𝑦 ∈ ran 𝑤} & ⊢ 𝑁 = (𝐺‘((𝑅1‘𝑀) ∖ ran 𝑤)) & ⊢ 𝐹 = recs((𝑤 ∈ V ↦ 𝑁)) & ⊢ 𝐵 = ∩ {𝑢 ∈ On ∣ ∃𝑣 ∈ (𝑅1‘𝑢) ¬ 𝑣 ∈ (𝐹 “ 𝑡)} & ⊢ 𝐶 = (𝐺‘((𝑅1‘𝐵) ∖ (𝐹 “ 𝑡))) ⇒ ⊢ (𝜑 → (¬ ran 𝐹 ∈ V → ran 𝐹 = V)) | ||
| Theorem | onvf1od 35139* | If 𝐺 is a global choice function, then 𝐹 is a bijection from the ordinals to the universe. This is the ZFC version of (1 → 2) in https://tinyurl.com/hamkins-gblac. (Contributed by BTernaryTau, 5-Dec-2025.) |
| ⊢ (𝜑 → ∀𝑧(𝑧 ≠ ∅ → (𝐺‘𝑧) ∈ 𝑧)) & ⊢ 𝑀 = ∩ {𝑥 ∈ On ∣ ∃𝑦 ∈ (𝑅1‘𝑥) ¬ 𝑦 ∈ ran 𝑤} & ⊢ 𝑁 = (𝐺‘((𝑅1‘𝑀) ∖ ran 𝑤)) & ⊢ 𝐹 = recs((𝑤 ∈ V ↦ 𝑁)) ⇒ ⊢ (𝜑 → 𝐹:On–1-1-onto→V) | ||
| Theorem | vonf1owev 35140* | If 𝐹 is a bijection from the universe to the ordinals, then 𝑅 well-orders the universe. This is the ZFC version of (2 → 3) in https://tinyurl.com/hamkins-gblac. (Contributed by BTernaryTau, 6-Dec-2025.) |
| ⊢ 𝑅 = {〈𝑥, 𝑦〉 ∣ (𝐹‘𝑥) ∈ (𝐹‘𝑦)} ⇒ ⊢ (𝐹:V–1-1-onto→On → 𝑅 We V) | ||
| Theorem | wevgblacfn 35141* | If 𝑅 is a well-ordering of the universe, then 𝐺 is a global choice function. Here 𝐺 maps each set 𝑧 to its minimal element with respect to 𝑅 (except when 𝑧 is the empty set, in which case it is mapped to the empty set, though this is only done for convenience). This is the ZFC version of (3 → 1) in https://tinyurl.com/hamkins-gblac. (Contributed by BTernaryTau, 29-Jun-2025.) |
| ⊢ 𝐺 = (𝑧 ∈ V ↦ ∪ {𝑦 ∈ 𝑧 ∣ ∀𝑥 ∈ 𝑧 ¬ 𝑥𝑅𝑦}) ⇒ ⊢ (𝑅 We V → (𝐺 Fn V ∧ ∀𝑧(𝑧 ≠ ∅ → (𝐺‘𝑧) ∈ 𝑧))) | ||
| Theorem | zltp1ne 35142 | Integer ordering relation. (Contributed by BTernaryTau, 24-Sep-2023.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 + 1) < 𝐵 ↔ (𝐴 < 𝐵 ∧ 𝐵 ≠ (𝐴 + 1)))) | ||
| Theorem | nnltp1ne 35143 | Positive integer ordering relation. (Contributed by BTernaryTau, 24-Sep-2023.) |
| ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴 + 1) < 𝐵 ↔ (𝐴 < 𝐵 ∧ 𝐵 ≠ (𝐴 + 1)))) | ||
| Theorem | nn0ltp1ne 35144 | Nonnegative integer ordering relation. (Contributed by BTernaryTau, 24-Sep-2023.) |
| ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0) → ((𝐴 + 1) < 𝐵 ↔ (𝐴 < 𝐵 ∧ 𝐵 ≠ (𝐴 + 1)))) | ||
| Theorem | 0nn0m1nnn0 35145 | A number is zero if and only if it's a nonnegative integer that becomes negative after subtracting 1. (Contributed by BTernaryTau, 30-Sep-2023.) |
| ⊢ (𝑁 = 0 ↔ (𝑁 ∈ ℕ0 ∧ ¬ (𝑁 − 1) ∈ ℕ0)) | ||
| Theorem | f1resfz0f1d 35146 | If a function with a sequence of nonnegative integers (starting at 0) as its domain is one-to-one when 0 is removed, and if the range of that restriction does not contain the function's value at the removed integer, then the function is itself one-to-one. (Contributed by BTernaryTau, 4-Oct-2023.) |
| ⊢ (𝜑 → 𝐾 ∈ ℕ0) & ⊢ (𝜑 → 𝐹:(0...𝐾)⟶𝑉) & ⊢ (𝜑 → (𝐹 ↾ (1...𝐾)):(1...𝐾)–1-1→𝑉) & ⊢ (𝜑 → ((𝐹 “ {0}) ∩ (𝐹 “ (1...𝐾))) = ∅) ⇒ ⊢ (𝜑 → 𝐹:(0...𝐾)–1-1→𝑉) | ||
| Theorem | fisshasheq 35147 | A finite set is equal to its subset if they are the same size. (Contributed by BTernaryTau, 3-Oct-2023.) |
| ⊢ ((𝐵 ∈ Fin ∧ 𝐴 ⊆ 𝐵 ∧ (♯‘𝐴) = (♯‘𝐵)) → 𝐴 = 𝐵) | ||
| Theorem | revpfxsfxrev 35148 | The reverse of a prefix of a word is equal to the same-length suffix of the reverse of that word. (Contributed by BTernaryTau, 2-Dec-2023.) |
| ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ (0...(♯‘𝑊))) → (reverse‘(𝑊 prefix 𝐿)) = ((reverse‘𝑊) substr 〈((♯‘𝑊) − 𝐿), (♯‘𝑊)〉)) | ||
| Theorem | swrdrevpfx 35149 | A subword expressed in terms of reverses and prefixes. (Contributed by BTernaryTau, 3-Dec-2023.) |
| ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑊))) → (𝑊 substr 〈𝐹, 𝐿〉) = (reverse‘((reverse‘(𝑊 prefix 𝐿)) prefix (𝐿 − 𝐹)))) | ||
| Theorem | lfuhgr 35150* | A hypergraph is loop-free if and only if every edge connects at least two vertices. (Contributed by BTernaryTau, 15-Oct-2023.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) ⇒ ⊢ (𝐺 ∈ UHGraph → (𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} ↔ ∀𝑥 ∈ (Edg‘𝐺)2 ≤ (♯‘𝑥))) | ||
| Theorem | lfuhgr2 35151* | A hypergraph is loop-free if and only if every edge is not a loop. (Contributed by BTernaryTau, 15-Oct-2023.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) ⇒ ⊢ (𝐺 ∈ UHGraph → (𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} ↔ ∀𝑥 ∈ (Edg‘𝐺)(♯‘𝑥) ≠ 1)) | ||
| Theorem | lfuhgr3 35152* | A hypergraph is loop-free if and only if none of its edges connect to only one vertex. (Contributed by BTernaryTau, 15-Oct-2023.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) ⇒ ⊢ (𝐺 ∈ UHGraph → (𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} ↔ ¬ ∃𝑎{𝑎} ∈ (Edg‘𝐺))) | ||
| Theorem | cplgredgex 35153* | Any two (distinct) vertices in a complete graph are connected to each other by at least one edge. (Contributed by BTernaryTau, 2-Oct-2023.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ (𝐺 ∈ ComplGraph → ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ (𝑉 ∖ {𝐴})) → ∃𝑒 ∈ 𝐸 {𝐴, 𝐵} ⊆ 𝑒)) | ||
| Theorem | cusgredgex 35154 | Any two (distinct) vertices in a complete simple graph are connected to each other by an edge. (Contributed by BTernaryTau, 3-Oct-2023.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ (𝐺 ∈ ComplUSGraph → ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ (𝑉 ∖ {𝐴})) → {𝐴, 𝐵} ∈ 𝐸)) | ||
| Theorem | cusgredgex2 35155 | Any two distinct vertices in a complete simple graph are connected to each other by an edge. (Contributed by BTernaryTau, 4-Oct-2023.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ (𝐺 ∈ ComplUSGraph → ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐴 ≠ 𝐵) → {𝐴, 𝐵} ∈ 𝐸)) | ||
| Theorem | pfxwlk 35156 | A prefix of a walk is a walk. (Contributed by BTernaryTau, 2-Dec-2023.) |
| ⊢ ((𝐹(Walks‘𝐺)𝑃 ∧ 𝐿 ∈ (0...(♯‘𝐹))) → (𝐹 prefix 𝐿)(Walks‘𝐺)(𝑃 prefix (𝐿 + 1))) | ||
| Theorem | revwlk 35157 | The reverse of a walk is a walk. (Contributed by BTernaryTau, 30-Nov-2023.) |
| ⊢ (𝐹(Walks‘𝐺)𝑃 → (reverse‘𝐹)(Walks‘𝐺)(reverse‘𝑃)) | ||
| Theorem | revwlkb 35158 | Two words represent a walk if and only if their reverses also represent a walk. (Contributed by BTernaryTau, 4-Dec-2023.) |
| ⊢ ((𝐹 ∈ Word 𝑊 ∧ 𝑃 ∈ Word 𝑈) → (𝐹(Walks‘𝐺)𝑃 ↔ (reverse‘𝐹)(Walks‘𝐺)(reverse‘𝑃))) | ||
| Theorem | swrdwlk 35159 | Two matching subwords of a walk also represent a walk. (Contributed by BTernaryTau, 7-Dec-2023.) |
| ⊢ ((𝐹(Walks‘𝐺)𝑃 ∧ 𝐵 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝐹))) → (𝐹 substr 〈𝐵, 𝐿〉)(Walks‘𝐺)(𝑃 substr 〈𝐵, (𝐿 + 1)〉)) | ||
| Theorem | pthhashvtx 35160 | A graph containing a path has at least as many vertices as there are edges in the path. (Contributed by BTernaryTau, 5-Oct-2023.) |
| ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (𝐹(Paths‘𝐺)𝑃 → (♯‘𝐹) ≤ (♯‘𝑉)) | ||
| Theorem | spthcycl 35161 | A walk is a trivial path if and only if it is both a simple path and a cycle. (Contributed by BTernaryTau, 8-Oct-2023.) |
| ⊢ ((𝐹(Paths‘𝐺)𝑃 ∧ 𝐹 = ∅) ↔ (𝐹(SPaths‘𝐺)𝑃 ∧ 𝐹(Cycles‘𝐺)𝑃)) | ||
| Theorem | usgrgt2cycl 35162 | A non-trivial cycle in a simple graph has a length greater than 2. (Contributed by BTernaryTau, 24-Sep-2023.) |
| ⊢ ((𝐺 ∈ USGraph ∧ 𝐹(Cycles‘𝐺)𝑃 ∧ 𝐹 ≠ ∅) → 2 < (♯‘𝐹)) | ||
| Theorem | usgrcyclgt2v 35163 | A simple graph with a non-trivial cycle must have at least 3 vertices. (Contributed by BTernaryTau, 5-Oct-2023.) |
| ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ ((𝐺 ∈ USGraph ∧ 𝐹(Cycles‘𝐺)𝑃 ∧ 𝐹 ≠ ∅) → 2 < (♯‘𝑉)) | ||
| Theorem | subgrwlk 35164 | If a walk exists in a subgraph of a graph 𝐺, then that walk also exists in 𝐺. (Contributed by BTernaryTau, 22-Oct-2023.) |
| ⊢ (𝑆 SubGraph 𝐺 → (𝐹(Walks‘𝑆)𝑃 → 𝐹(Walks‘𝐺)𝑃)) | ||
| Theorem | subgrtrl 35165 | If a trail exists in a subgraph of a graph 𝐺, then that trail also exists in 𝐺. (Contributed by BTernaryTau, 22-Oct-2023.) |
| ⊢ (𝑆 SubGraph 𝐺 → (𝐹(Trails‘𝑆)𝑃 → 𝐹(Trails‘𝐺)𝑃)) | ||
| Theorem | subgrpth 35166 | If a path exists in a subgraph of a graph 𝐺, then that path also exists in 𝐺. (Contributed by BTernaryTau, 22-Oct-2023.) |
| ⊢ (𝑆 SubGraph 𝐺 → (𝐹(Paths‘𝑆)𝑃 → 𝐹(Paths‘𝐺)𝑃)) | ||
| Theorem | subgrcycl 35167 | If a cycle exists in a subgraph of a graph 𝐺, then that cycle also exists in 𝐺. (Contributed by BTernaryTau, 23-Oct-2023.) |
| ⊢ (𝑆 SubGraph 𝐺 → (𝐹(Cycles‘𝑆)𝑃 → 𝐹(Cycles‘𝐺)𝑃)) | ||
| Theorem | cusgr3cyclex 35168* | Every complete simple graph with more than two vertices has a 3-cycle. (Contributed by BTernaryTau, 4-Oct-2023.) |
| ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ ((𝐺 ∈ ComplUSGraph ∧ 2 < (♯‘𝑉)) → ∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3)) | ||
| Theorem | loop1cycl 35169* | A hypergraph has a cycle of length one if and only if it has a loop. (Contributed by BTernaryTau, 13-Oct-2023.) |
| ⊢ (𝐺 ∈ UHGraph → (∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 1 ∧ (𝑝‘0) = 𝐴) ↔ {𝐴} ∈ (Edg‘𝐺))) | ||
| Theorem | 2cycld 35170 | Construction of a 2-cycle from two given edges in a graph. (Contributed by BTernaryTau, 16-Oct-2023.) |
| ⊢ 𝑃 = 〈“𝐴𝐵𝐶”〉 & ⊢ 𝐹 = 〈“𝐽𝐾”〉 & ⊢ (𝜑 → (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) & ⊢ (𝜑 → (𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶)) & ⊢ (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼‘𝐽) ∧ {𝐵, 𝐶} ⊆ (𝐼‘𝐾))) & ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ (𝜑 → 𝐽 ≠ 𝐾) & ⊢ (𝜑 → 𝐴 = 𝐶) ⇒ ⊢ (𝜑 → 𝐹(Cycles‘𝐺)𝑃) | ||
| Theorem | 2cycl2d 35171 | Construction of a 2-cycle from two given edges in a graph. (Contributed by BTernaryTau, 16-Oct-2023.) |
| ⊢ 𝑃 = 〈“𝐴𝐵𝐴”〉 & ⊢ 𝐹 = 〈“𝐽𝐾”〉 & ⊢ (𝜑 → (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉)) & ⊢ (𝜑 → 𝐴 ≠ 𝐵) & ⊢ (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼‘𝐽) ∧ {𝐴, 𝐵} ⊆ (𝐼‘𝐾))) & ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ (𝜑 → 𝐽 ≠ 𝐾) ⇒ ⊢ (𝜑 → 𝐹(Cycles‘𝐺)𝑃) | ||
| Theorem | umgr2cycllem 35172* | Lemma for umgr2cycl 35173. (Contributed by BTernaryTau, 17-Oct-2023.) |
| ⊢ 𝐹 = 〈“𝐽𝐾”〉 & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ UMGraph) & ⊢ (𝜑 → 𝐽 ∈ dom 𝐼) & ⊢ (𝜑 → 𝐽 ≠ 𝐾) & ⊢ (𝜑 → (𝐼‘𝐽) = (𝐼‘𝐾)) ⇒ ⊢ (𝜑 → ∃𝑝 𝐹(Cycles‘𝐺)𝑝) | ||
| Theorem | umgr2cycl 35173* | A multigraph with two distinct edges that connect the same vertices has a 2-cycle. (Contributed by BTernaryTau, 17-Oct-2023.) |
| ⊢ 𝐼 = (iEdg‘𝐺) ⇒ ⊢ ((𝐺 ∈ UMGraph ∧ ∃𝑗 ∈ dom 𝐼∃𝑘 ∈ dom 𝐼((𝐼‘𝑗) = (𝐼‘𝑘) ∧ 𝑗 ≠ 𝑘)) → ∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 2)) | ||
| Syntax | cacycgr 35174 | Extend class notation with acyclic graphs. |
| class AcyclicGraph | ||
| Definition | df-acycgr 35175* | Define the class of all acyclic graphs. A graph is called acyclic if it has no (non-trivial) cycles. (Contributed by BTernaryTau, 11-Oct-2023.) |
| ⊢ AcyclicGraph = {𝑔 ∣ ¬ ∃𝑓∃𝑝(𝑓(Cycles‘𝑔)𝑝 ∧ 𝑓 ≠ ∅)} | ||
| Theorem | dfacycgr1 35176* | An alternate definition of the class of all acyclic graphs that requires all cycles to be trivial. (Contributed by BTernaryTau, 11-Oct-2023.) |
| ⊢ AcyclicGraph = {𝑔 ∣ ∀𝑓∀𝑝(𝑓(Cycles‘𝑔)𝑝 → 𝑓 = ∅)} | ||
| Theorem | isacycgr 35177* | The property of being an acyclic graph. (Contributed by BTernaryTau, 11-Oct-2023.) |
| ⊢ (𝐺 ∈ 𝑊 → (𝐺 ∈ AcyclicGraph ↔ ¬ ∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ 𝑓 ≠ ∅))) | ||
| Theorem | isacycgr1 35178* | The property of being an acyclic graph. (Contributed by BTernaryTau, 11-Oct-2023.) |
| ⊢ (𝐺 ∈ 𝑊 → (𝐺 ∈ AcyclicGraph ↔ ∀𝑓∀𝑝(𝑓(Cycles‘𝐺)𝑝 → 𝑓 = ∅))) | ||
| Theorem | acycgrcycl 35179 | Any cycle in an acyclic graph is trivial (i.e. has one vertex and no edges). (Contributed by BTernaryTau, 12-Oct-2023.) |
| ⊢ ((𝐺 ∈ AcyclicGraph ∧ 𝐹(Cycles‘𝐺)𝑃) → 𝐹 = ∅) | ||
| Theorem | acycgr0v 35180 | A null graph (with no vertices) is an acyclic graph. (Contributed by BTernaryTau, 11-Oct-2023.) |
| ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ ((𝐺 ∈ 𝑊 ∧ 𝑉 = ∅) → 𝐺 ∈ AcyclicGraph) | ||
| Theorem | acycgr1v 35181 | A multigraph with one vertex is an acyclic graph. (Contributed by BTernaryTau, 12-Oct-2023.) |
| ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ ((𝐺 ∈ UMGraph ∧ (♯‘𝑉) = 1) → 𝐺 ∈ AcyclicGraph) | ||
| Theorem | acycgr2v 35182 | A simple graph with two vertices is an acyclic graph. (Contributed by BTernaryTau, 12-Oct-2023.) |
| ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ ((𝐺 ∈ USGraph ∧ (♯‘𝑉) = 2) → 𝐺 ∈ AcyclicGraph) | ||
| Theorem | prclisacycgr 35183* | A proper class (representing a null graph, see vtxvalprc 29021) has the property of an acyclic graph (see also acycgr0v 35180). (Contributed by BTernaryTau, 11-Oct-2023.) (New usage is discouraged.) |
| ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (¬ 𝐺 ∈ V → ¬ ∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ 𝑓 ≠ ∅)) | ||
| Theorem | acycgrislfgr 35184* | An acyclic hypergraph is a loop-free hypergraph. (Contributed by BTernaryTau, 15-Oct-2023.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) ⇒ ⊢ ((𝐺 ∈ AcyclicGraph ∧ 𝐺 ∈ UHGraph) → 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}) | ||
| Theorem | upgracycumgr 35185 | An acyclic pseudograph is a multigraph. (Contributed by BTernaryTau, 15-Oct-2023.) |
| ⊢ ((𝐺 ∈ UPGraph ∧ 𝐺 ∈ AcyclicGraph) → 𝐺 ∈ UMGraph) | ||
| Theorem | umgracycusgr 35186 | An acyclic multigraph is a simple graph. (Contributed by BTernaryTau, 17-Oct-2023.) |
| ⊢ ((𝐺 ∈ UMGraph ∧ 𝐺 ∈ AcyclicGraph) → 𝐺 ∈ USGraph) | ||
| Theorem | upgracycusgr 35187 | An acyclic pseudograph is a simple graph. (Contributed by BTernaryTau, 17-Oct-2023.) |
| ⊢ ((𝐺 ∈ UPGraph ∧ 𝐺 ∈ AcyclicGraph) → 𝐺 ∈ USGraph) | ||
| Theorem | cusgracyclt3v 35188 | A complete simple graph is acyclic if and only if it has fewer than three vertices. (Contributed by BTernaryTau, 20-Oct-2023.) |
| ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (𝐺 ∈ ComplUSGraph → (𝐺 ∈ AcyclicGraph ↔ (♯‘𝑉) < 3)) | ||
| Theorem | pthacycspth 35189 | A path in an acyclic graph is a simple path. (Contributed by BTernaryTau, 21-Oct-2023.) |
| ⊢ ((𝐺 ∈ AcyclicGraph ∧ 𝐹(Paths‘𝐺)𝑃) → 𝐹(SPaths‘𝐺)𝑃) | ||
| Theorem | acycgrsubgr 35190 | The subgraph of an acyclic graph is also acyclic. (Contributed by BTernaryTau, 23-Oct-2023.) |
| ⊢ ((𝐺 ∈ AcyclicGraph ∧ 𝑆 SubGraph 𝐺) → 𝑆 ∈ AcyclicGraph) | ||
| Axiom | ax-7d 35191* | Distinct variable version of ax-11 2160. (Contributed by Mario Carneiro, 14-Aug-2015.) |
| ⊢ (∀𝑥∀𝑦𝜑 → ∀𝑦∀𝑥𝜑) | ||
| Axiom | ax-8d 35192* | Distinct variable version of ax-7 2009. (Contributed by Mario Carneiro, 14-Aug-2015.) |
| ⊢ (𝑥 = 𝑦 → (𝑥 = 𝑧 → 𝑦 = 𝑧)) | ||
| Axiom | ax-9d1 35193 | Distinct variable version of ax-6 1968, equal variables case. (Contributed by Mario Carneiro, 14-Aug-2015.) |
| ⊢ ¬ ∀𝑥 ¬ 𝑥 = 𝑥 | ||
| Axiom | ax-9d2 35194* | Distinct variable version of ax-6 1968, distinct variables case. (Contributed by Mario Carneiro, 14-Aug-2015.) |
| ⊢ ¬ ∀𝑥 ¬ 𝑥 = 𝑦 | ||
| Axiom | ax-10d 35195* | Distinct variable version of axc11n 2426. (Contributed by Mario Carneiro, 14-Aug-2015.) |
| ⊢ (∀𝑥 𝑥 = 𝑦 → ∀𝑦 𝑦 = 𝑥) | ||
| Axiom | ax-11d 35196* | Distinct variable version of ax-12 2180. (Contributed by Mario Carneiro, 14-Aug-2015.) |
| ⊢ (𝑥 = 𝑦 → (∀𝑦𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑))) | ||
| Theorem | quartfull 35197 | The quartic equation, written out in full. This actually makes a fairly good Metamath stress test. Note that the length of this formula could be shortened significantly if the intermediate expressions were expanded and simplified, but it's not like this theorem will be used anyway. (Contributed by Mario Carneiro, 6-May-2015.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐷 ∈ ℂ) & ⊢ (𝜑 → 𝑋 ∈ ℂ) & ⊢ (𝜑 → (((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))) + (√‘((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))))↑2) − (4 · ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))↑3))))) / 2)↑𝑐(1 / 3)) ≠ 0) & ⊢ (𝜑 → -((((2 · (𝐵 − ((3 / 8) · (𝐴↑2)))) + (((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))) + (√‘((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))))↑2) − (4 · ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))↑3))))) / 2)↑𝑐(1 / 3))) + ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))) / (((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))) + (√‘((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))))↑2) − (4 · ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))↑3))))) / 2)↑𝑐(1 / 3)))) / 3) ≠ 0) ⇒ ⊢ (𝜑 → ((((𝑋↑4) + (𝐴 · (𝑋↑3))) + ((𝐵 · (𝑋↑2)) + ((𝐶 · 𝑋) + 𝐷))) = 0 ↔ ((𝑋 = ((-(𝐴 / 4) − ((√‘-((((2 · (𝐵 − ((3 / 8) · (𝐴↑2)))) + (((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))) + (√‘((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))))↑2) − (4 · ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))↑3))))) / 2)↑𝑐(1 / 3))) + ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))) / (((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))) + (√‘((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))))↑2) − (4 · ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))↑3))))) / 2)↑𝑐(1 / 3)))) / 3)) / 2)) + (√‘((-(((√‘-((((2 · (𝐵 − ((3 / 8) · (𝐴↑2)))) + (((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))) + (√‘((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))))↑2) − (4 · ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))↑3))))) / 2)↑𝑐(1 / 3))) + ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))) / (((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))) + (√‘((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))))↑2) − (4 · ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))↑3))))) / 2)↑𝑐(1 / 3)))) / 3)) / 2)↑2) − ((𝐵 − ((3 / 8) · (𝐴↑2))) / 2)) + ((((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8)) / 4) / ((√‘-((((2 · (𝐵 − ((3 / 8) · (𝐴↑2)))) + (((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))) + (√‘((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))))↑2) − (4 · ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))↑3))))) / 2)↑𝑐(1 / 3))) + ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))) / (((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))) + (√‘((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))))↑2) − (4 · ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))↑3))))) / 2)↑𝑐(1 / 3)))) / 3)) / 2))))) ∨ 𝑋 = ((-(𝐴 / 4) − ((√‘-((((2 · (𝐵 − ((3 / 8) · (𝐴↑2)))) + (((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))) + (√‘((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))))↑2) − (4 · ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))↑3))))) / 2)↑𝑐(1 / 3))) + ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))) / (((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))) + (√‘((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))))↑2) − (4 · ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))↑3))))) / 2)↑𝑐(1 / 3)))) / 3)) / 2)) − (√‘((-(((√‘-((((2 · (𝐵 − ((3 / 8) · (𝐴↑2)))) + (((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))) + (√‘((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))))↑2) − (4 · ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))↑3))))) / 2)↑𝑐(1 / 3))) + ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))) / (((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))) + (√‘((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))))↑2) − (4 · ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))↑3))))) / 2)↑𝑐(1 / 3)))) / 3)) / 2)↑2) − ((𝐵 − ((3 / 8) · (𝐴↑2))) / 2)) + ((((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8)) / 4) / ((√‘-((((2 · (𝐵 − ((3 / 8) · (𝐴↑2)))) + (((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))) + (√‘((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))))↑2) − (4 · ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))↑3))))) / 2)↑𝑐(1 / 3))) + ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))) / (((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))) + (√‘((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))))↑2) − (4 · ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))↑3))))) / 2)↑𝑐(1 / 3)))) / 3)) / 2)))))) ∨ (𝑋 = ((-(𝐴 / 4) + ((√‘-((((2 · (𝐵 − ((3 / 8) · (𝐴↑2)))) + (((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))) + (√‘((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))))↑2) − (4 · ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))↑3))))) / 2)↑𝑐(1 / 3))) + ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))) / (((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))) + (√‘((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))))↑2) − (4 · ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))↑3))))) / 2)↑𝑐(1 / 3)))) / 3)) / 2)) + (√‘((-(((√‘-((((2 · (𝐵 − ((3 / 8) · (𝐴↑2)))) + (((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))) + (√‘((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))))↑2) − (4 · ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))↑3))))) / 2)↑𝑐(1 / 3))) + ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))) / (((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))) + (√‘((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))))↑2) − (4 · ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))↑3))))) / 2)↑𝑐(1 / 3)))) / 3)) / 2)↑2) − ((𝐵 − ((3 / 8) · (𝐴↑2))) / 2)) − ((((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8)) / 4) / ((√‘-((((2 · (𝐵 − ((3 / 8) · (𝐴↑2)))) + (((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))) + (√‘((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))))↑2) − (4 · ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))↑3))))) / 2)↑𝑐(1 / 3))) + ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))) / (((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))) + (√‘((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))))↑2) − (4 · ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))↑3))))) / 2)↑𝑐(1 / 3)))) / 3)) / 2))))) ∨ 𝑋 = ((-(𝐴 / 4) + ((√‘-((((2 · (𝐵 − ((3 / 8) · (𝐴↑2)))) + (((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))) + (√‘((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))))↑2) − (4 · ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))↑3))))) / 2)↑𝑐(1 / 3))) + ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))) / (((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))) + (√‘((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))))↑2) − (4 · ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))↑3))))) / 2)↑𝑐(1 / 3)))) / 3)) / 2)) − (√‘((-(((√‘-((((2 · (𝐵 − ((3 / 8) · (𝐴↑2)))) + (((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))) + (√‘((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))))↑2) − (4 · ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))↑3))))) / 2)↑𝑐(1 / 3))) + ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))) / (((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))) + (√‘((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))))↑2) − (4 · ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))↑3))))) / 2)↑𝑐(1 / 3)))) / 3)) / 2)↑2) − ((𝐵 − ((3 / 8) · (𝐴↑2))) / 2)) − ((((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8)) / 4) / ((√‘-((((2 · (𝐵 − ((3 / 8) · (𝐴↑2)))) + (((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))) + (√‘((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))))↑2) − (4 · ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))↑3))))) / 2)↑𝑐(1 / 3))) + ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))) / (((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))) + (√‘((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))))↑2) − (4 · ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))↑3))))) / 2)↑𝑐(1 / 3)))) / 3)) / 2))))))))) | ||
| Theorem | deranglem 35198* | Lemma for derangements. (Contributed by Mario Carneiro, 19-Jan-2015.) |
| ⊢ (𝐴 ∈ Fin → {𝑓 ∣ (𝑓:𝐴–1-1-onto→𝐴 ∧ 𝜑)} ∈ Fin) | ||
| Theorem | derangval 35199* | Define the derangement function, which counts the number of bijections from a set to itself such that no element is mapped to itself. (Contributed by Mario Carneiro, 19-Jan-2015.) |
| ⊢ 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥–1-1-onto→𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) ≠ 𝑦)})) ⇒ ⊢ (𝐴 ∈ Fin → (𝐷‘𝐴) = (♯‘{𝑓 ∣ (𝑓:𝐴–1-1-onto→𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑓‘𝑦) ≠ 𝑦)})) | ||
| Theorem | derangf 35200* | The derangement number is a function from finite sets to nonnegative integers. (Contributed by Mario Carneiro, 19-Jan-2015.) |
| ⊢ 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥–1-1-onto→𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) ≠ 𝑦)})) ⇒ ⊢ 𝐷:Fin⟶ℕ0 | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |