| Metamath
Proof Explorer Theorem List (p. 352 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30854) |
(30855-32377) |
(32378-49798) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | onvf1od 35101* | If 𝐺 is a global choice function, then 𝐹 is a bijection from the ordinals to the universe. This is the ZFC version of (1 → 2) in https://tinyurl.com/hamkins-gblac. (Contributed by BTernaryTau, 5-Dec-2025.) |
| ⊢ (𝜑 → ∀𝑧(𝑧 ≠ ∅ → (𝐺‘𝑧) ∈ 𝑧)) & ⊢ 𝑀 = ∩ {𝑥 ∈ On ∣ ∃𝑦 ∈ (𝑅1‘𝑥) ¬ 𝑦 ∈ ran 𝑤} & ⊢ 𝑁 = (𝐺‘((𝑅1‘𝑀) ∖ ran 𝑤)) & ⊢ 𝐹 = recs((𝑤 ∈ V ↦ 𝑁)) ⇒ ⊢ (𝜑 → 𝐹:On–1-1-onto→V) | ||
| Theorem | vonf1owev 35102* | If 𝐹 is a bijection from the universe to the ordinals, then 𝑅 well-orders the universe. This is the ZFC version of (2 → 3) in https://tinyurl.com/hamkins-gblac. (Contributed by BTernaryTau, 6-Dec-2025.) |
| ⊢ 𝑅 = {〈𝑥, 𝑦〉 ∣ (𝐹‘𝑥) ∈ (𝐹‘𝑦)} ⇒ ⊢ (𝐹:V–1-1-onto→On → 𝑅 We V) | ||
| Theorem | wevgblacfn 35103* | If 𝑅 is a well-ordering of the universe, then 𝐺 is a global choice function. Here 𝐺 maps each set 𝑧 to its minimal element with respect to 𝑅 (except when 𝑧 is the empty set, in which case it is mapped to the empty set, though this is only done for convenience). This is the ZFC version of (3 → 1) in https://tinyurl.com/hamkins-gblac. (Contributed by BTernaryTau, 29-Jun-2025.) |
| ⊢ 𝐺 = (𝑧 ∈ V ↦ ∪ {𝑦 ∈ 𝑧 ∣ ∀𝑥 ∈ 𝑧 ¬ 𝑥𝑅𝑦}) ⇒ ⊢ (𝑅 We V → (𝐺 Fn V ∧ ∀𝑧(𝑧 ≠ ∅ → (𝐺‘𝑧) ∈ 𝑧))) | ||
| Theorem | zltp1ne 35104 | Integer ordering relation. (Contributed by BTernaryTau, 24-Sep-2023.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 + 1) < 𝐵 ↔ (𝐴 < 𝐵 ∧ 𝐵 ≠ (𝐴 + 1)))) | ||
| Theorem | nnltp1ne 35105 | Positive integer ordering relation. (Contributed by BTernaryTau, 24-Sep-2023.) |
| ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴 + 1) < 𝐵 ↔ (𝐴 < 𝐵 ∧ 𝐵 ≠ (𝐴 + 1)))) | ||
| Theorem | nn0ltp1ne 35106 | Nonnegative integer ordering relation. (Contributed by BTernaryTau, 24-Sep-2023.) |
| ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0) → ((𝐴 + 1) < 𝐵 ↔ (𝐴 < 𝐵 ∧ 𝐵 ≠ (𝐴 + 1)))) | ||
| Theorem | 0nn0m1nnn0 35107 | A number is zero if and only if it's a nonnegative integer that becomes negative after subtracting 1. (Contributed by BTernaryTau, 30-Sep-2023.) |
| ⊢ (𝑁 = 0 ↔ (𝑁 ∈ ℕ0 ∧ ¬ (𝑁 − 1) ∈ ℕ0)) | ||
| Theorem | f1resfz0f1d 35108 | If a function with a sequence of nonnegative integers (starting at 0) as its domain is one-to-one when 0 is removed, and if the range of that restriction does not contain the function's value at the removed integer, then the function is itself one-to-one. (Contributed by BTernaryTau, 4-Oct-2023.) |
| ⊢ (𝜑 → 𝐾 ∈ ℕ0) & ⊢ (𝜑 → 𝐹:(0...𝐾)⟶𝑉) & ⊢ (𝜑 → (𝐹 ↾ (1...𝐾)):(1...𝐾)–1-1→𝑉) & ⊢ (𝜑 → ((𝐹 “ {0}) ∩ (𝐹 “ (1...𝐾))) = ∅) ⇒ ⊢ (𝜑 → 𝐹:(0...𝐾)–1-1→𝑉) | ||
| Theorem | fisshasheq 35109 | A finite set is equal to its subset if they are the same size. (Contributed by BTernaryTau, 3-Oct-2023.) |
| ⊢ ((𝐵 ∈ Fin ∧ 𝐴 ⊆ 𝐵 ∧ (♯‘𝐴) = (♯‘𝐵)) → 𝐴 = 𝐵) | ||
| Theorem | revpfxsfxrev 35110 | The reverse of a prefix of a word is equal to the same-length suffix of the reverse of that word. (Contributed by BTernaryTau, 2-Dec-2023.) |
| ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ (0...(♯‘𝑊))) → (reverse‘(𝑊 prefix 𝐿)) = ((reverse‘𝑊) substr 〈((♯‘𝑊) − 𝐿), (♯‘𝑊)〉)) | ||
| Theorem | swrdrevpfx 35111 | A subword expressed in terms of reverses and prefixes. (Contributed by BTernaryTau, 3-Dec-2023.) |
| ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑊))) → (𝑊 substr 〈𝐹, 𝐿〉) = (reverse‘((reverse‘(𝑊 prefix 𝐿)) prefix (𝐿 − 𝐹)))) | ||
| Theorem | lfuhgr 35112* | A hypergraph is loop-free if and only if every edge connects at least two vertices. (Contributed by BTernaryTau, 15-Oct-2023.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) ⇒ ⊢ (𝐺 ∈ UHGraph → (𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} ↔ ∀𝑥 ∈ (Edg‘𝐺)2 ≤ (♯‘𝑥))) | ||
| Theorem | lfuhgr2 35113* | A hypergraph is loop-free if and only if every edge is not a loop. (Contributed by BTernaryTau, 15-Oct-2023.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) ⇒ ⊢ (𝐺 ∈ UHGraph → (𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} ↔ ∀𝑥 ∈ (Edg‘𝐺)(♯‘𝑥) ≠ 1)) | ||
| Theorem | lfuhgr3 35114* | A hypergraph is loop-free if and only if none of its edges connect to only one vertex. (Contributed by BTernaryTau, 15-Oct-2023.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) ⇒ ⊢ (𝐺 ∈ UHGraph → (𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} ↔ ¬ ∃𝑎{𝑎} ∈ (Edg‘𝐺))) | ||
| Theorem | cplgredgex 35115* | Any two (distinct) vertices in a complete graph are connected to each other by at least one edge. (Contributed by BTernaryTau, 2-Oct-2023.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ (𝐺 ∈ ComplGraph → ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ (𝑉 ∖ {𝐴})) → ∃𝑒 ∈ 𝐸 {𝐴, 𝐵} ⊆ 𝑒)) | ||
| Theorem | cusgredgex 35116 | Any two (distinct) vertices in a complete simple graph are connected to each other by an edge. (Contributed by BTernaryTau, 3-Oct-2023.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ (𝐺 ∈ ComplUSGraph → ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ (𝑉 ∖ {𝐴})) → {𝐴, 𝐵} ∈ 𝐸)) | ||
| Theorem | cusgredgex2 35117 | Any two distinct vertices in a complete simple graph are connected to each other by an edge. (Contributed by BTernaryTau, 4-Oct-2023.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ (𝐺 ∈ ComplUSGraph → ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐴 ≠ 𝐵) → {𝐴, 𝐵} ∈ 𝐸)) | ||
| Theorem | pfxwlk 35118 | A prefix of a walk is a walk. (Contributed by BTernaryTau, 2-Dec-2023.) |
| ⊢ ((𝐹(Walks‘𝐺)𝑃 ∧ 𝐿 ∈ (0...(♯‘𝐹))) → (𝐹 prefix 𝐿)(Walks‘𝐺)(𝑃 prefix (𝐿 + 1))) | ||
| Theorem | revwlk 35119 | The reverse of a walk is a walk. (Contributed by BTernaryTau, 30-Nov-2023.) |
| ⊢ (𝐹(Walks‘𝐺)𝑃 → (reverse‘𝐹)(Walks‘𝐺)(reverse‘𝑃)) | ||
| Theorem | revwlkb 35120 | Two words represent a walk if and only if their reverses also represent a walk. (Contributed by BTernaryTau, 4-Dec-2023.) |
| ⊢ ((𝐹 ∈ Word 𝑊 ∧ 𝑃 ∈ Word 𝑈) → (𝐹(Walks‘𝐺)𝑃 ↔ (reverse‘𝐹)(Walks‘𝐺)(reverse‘𝑃))) | ||
| Theorem | swrdwlk 35121 | Two matching subwords of a walk also represent a walk. (Contributed by BTernaryTau, 7-Dec-2023.) |
| ⊢ ((𝐹(Walks‘𝐺)𝑃 ∧ 𝐵 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝐹))) → (𝐹 substr 〈𝐵, 𝐿〉)(Walks‘𝐺)(𝑃 substr 〈𝐵, (𝐿 + 1)〉)) | ||
| Theorem | pthhashvtx 35122 | A graph containing a path has at least as many vertices as there are edges in the path. (Contributed by BTernaryTau, 5-Oct-2023.) |
| ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (𝐹(Paths‘𝐺)𝑃 → (♯‘𝐹) ≤ (♯‘𝑉)) | ||
| Theorem | spthcycl 35123 | A walk is a trivial path if and only if it is both a simple path and a cycle. (Contributed by BTernaryTau, 8-Oct-2023.) |
| ⊢ ((𝐹(Paths‘𝐺)𝑃 ∧ 𝐹 = ∅) ↔ (𝐹(SPaths‘𝐺)𝑃 ∧ 𝐹(Cycles‘𝐺)𝑃)) | ||
| Theorem | usgrgt2cycl 35124 | A non-trivial cycle in a simple graph has a length greater than 2. (Contributed by BTernaryTau, 24-Sep-2023.) |
| ⊢ ((𝐺 ∈ USGraph ∧ 𝐹(Cycles‘𝐺)𝑃 ∧ 𝐹 ≠ ∅) → 2 < (♯‘𝐹)) | ||
| Theorem | usgrcyclgt2v 35125 | A simple graph with a non-trivial cycle must have at least 3 vertices. (Contributed by BTernaryTau, 5-Oct-2023.) |
| ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ ((𝐺 ∈ USGraph ∧ 𝐹(Cycles‘𝐺)𝑃 ∧ 𝐹 ≠ ∅) → 2 < (♯‘𝑉)) | ||
| Theorem | subgrwlk 35126 | If a walk exists in a subgraph of a graph 𝐺, then that walk also exists in 𝐺. (Contributed by BTernaryTau, 22-Oct-2023.) |
| ⊢ (𝑆 SubGraph 𝐺 → (𝐹(Walks‘𝑆)𝑃 → 𝐹(Walks‘𝐺)𝑃)) | ||
| Theorem | subgrtrl 35127 | If a trail exists in a subgraph of a graph 𝐺, then that trail also exists in 𝐺. (Contributed by BTernaryTau, 22-Oct-2023.) |
| ⊢ (𝑆 SubGraph 𝐺 → (𝐹(Trails‘𝑆)𝑃 → 𝐹(Trails‘𝐺)𝑃)) | ||
| Theorem | subgrpth 35128 | If a path exists in a subgraph of a graph 𝐺, then that path also exists in 𝐺. (Contributed by BTernaryTau, 22-Oct-2023.) |
| ⊢ (𝑆 SubGraph 𝐺 → (𝐹(Paths‘𝑆)𝑃 → 𝐹(Paths‘𝐺)𝑃)) | ||
| Theorem | subgrcycl 35129 | If a cycle exists in a subgraph of a graph 𝐺, then that cycle also exists in 𝐺. (Contributed by BTernaryTau, 23-Oct-2023.) |
| ⊢ (𝑆 SubGraph 𝐺 → (𝐹(Cycles‘𝑆)𝑃 → 𝐹(Cycles‘𝐺)𝑃)) | ||
| Theorem | cusgr3cyclex 35130* | Every complete simple graph with more than two vertices has a 3-cycle. (Contributed by BTernaryTau, 4-Oct-2023.) |
| ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ ((𝐺 ∈ ComplUSGraph ∧ 2 < (♯‘𝑉)) → ∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3)) | ||
| Theorem | loop1cycl 35131* | A hypergraph has a cycle of length one if and only if it has a loop. (Contributed by BTernaryTau, 13-Oct-2023.) |
| ⊢ (𝐺 ∈ UHGraph → (∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 1 ∧ (𝑝‘0) = 𝐴) ↔ {𝐴} ∈ (Edg‘𝐺))) | ||
| Theorem | 2cycld 35132 | Construction of a 2-cycle from two given edges in a graph. (Contributed by BTernaryTau, 16-Oct-2023.) |
| ⊢ 𝑃 = 〈“𝐴𝐵𝐶”〉 & ⊢ 𝐹 = 〈“𝐽𝐾”〉 & ⊢ (𝜑 → (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) & ⊢ (𝜑 → (𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶)) & ⊢ (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼‘𝐽) ∧ {𝐵, 𝐶} ⊆ (𝐼‘𝐾))) & ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ (𝜑 → 𝐽 ≠ 𝐾) & ⊢ (𝜑 → 𝐴 = 𝐶) ⇒ ⊢ (𝜑 → 𝐹(Cycles‘𝐺)𝑃) | ||
| Theorem | 2cycl2d 35133 | Construction of a 2-cycle from two given edges in a graph. (Contributed by BTernaryTau, 16-Oct-2023.) |
| ⊢ 𝑃 = 〈“𝐴𝐵𝐴”〉 & ⊢ 𝐹 = 〈“𝐽𝐾”〉 & ⊢ (𝜑 → (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉)) & ⊢ (𝜑 → 𝐴 ≠ 𝐵) & ⊢ (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼‘𝐽) ∧ {𝐴, 𝐵} ⊆ (𝐼‘𝐾))) & ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ (𝜑 → 𝐽 ≠ 𝐾) ⇒ ⊢ (𝜑 → 𝐹(Cycles‘𝐺)𝑃) | ||
| Theorem | umgr2cycllem 35134* | Lemma for umgr2cycl 35135. (Contributed by BTernaryTau, 17-Oct-2023.) |
| ⊢ 𝐹 = 〈“𝐽𝐾”〉 & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ UMGraph) & ⊢ (𝜑 → 𝐽 ∈ dom 𝐼) & ⊢ (𝜑 → 𝐽 ≠ 𝐾) & ⊢ (𝜑 → (𝐼‘𝐽) = (𝐼‘𝐾)) ⇒ ⊢ (𝜑 → ∃𝑝 𝐹(Cycles‘𝐺)𝑝) | ||
| Theorem | umgr2cycl 35135* | A multigraph with two distinct edges that connect the same vertices has a 2-cycle. (Contributed by BTernaryTau, 17-Oct-2023.) |
| ⊢ 𝐼 = (iEdg‘𝐺) ⇒ ⊢ ((𝐺 ∈ UMGraph ∧ ∃𝑗 ∈ dom 𝐼∃𝑘 ∈ dom 𝐼((𝐼‘𝑗) = (𝐼‘𝑘) ∧ 𝑗 ≠ 𝑘)) → ∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 2)) | ||
| Syntax | cacycgr 35136 | Extend class notation with acyclic graphs. |
| class AcyclicGraph | ||
| Definition | df-acycgr 35137* | Define the class of all acyclic graphs. A graph is called acyclic if it has no (non-trivial) cycles. (Contributed by BTernaryTau, 11-Oct-2023.) |
| ⊢ AcyclicGraph = {𝑔 ∣ ¬ ∃𝑓∃𝑝(𝑓(Cycles‘𝑔)𝑝 ∧ 𝑓 ≠ ∅)} | ||
| Theorem | dfacycgr1 35138* | An alternate definition of the class of all acyclic graphs that requires all cycles to be trivial. (Contributed by BTernaryTau, 11-Oct-2023.) |
| ⊢ AcyclicGraph = {𝑔 ∣ ∀𝑓∀𝑝(𝑓(Cycles‘𝑔)𝑝 → 𝑓 = ∅)} | ||
| Theorem | isacycgr 35139* | The property of being an acyclic graph. (Contributed by BTernaryTau, 11-Oct-2023.) |
| ⊢ (𝐺 ∈ 𝑊 → (𝐺 ∈ AcyclicGraph ↔ ¬ ∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ 𝑓 ≠ ∅))) | ||
| Theorem | isacycgr1 35140* | The property of being an acyclic graph. (Contributed by BTernaryTau, 11-Oct-2023.) |
| ⊢ (𝐺 ∈ 𝑊 → (𝐺 ∈ AcyclicGraph ↔ ∀𝑓∀𝑝(𝑓(Cycles‘𝐺)𝑝 → 𝑓 = ∅))) | ||
| Theorem | acycgrcycl 35141 | Any cycle in an acyclic graph is trivial (i.e. has one vertex and no edges). (Contributed by BTernaryTau, 12-Oct-2023.) |
| ⊢ ((𝐺 ∈ AcyclicGraph ∧ 𝐹(Cycles‘𝐺)𝑃) → 𝐹 = ∅) | ||
| Theorem | acycgr0v 35142 | A null graph (with no vertices) is an acyclic graph. (Contributed by BTernaryTau, 11-Oct-2023.) |
| ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ ((𝐺 ∈ 𝑊 ∧ 𝑉 = ∅) → 𝐺 ∈ AcyclicGraph) | ||
| Theorem | acycgr1v 35143 | A multigraph with one vertex is an acyclic graph. (Contributed by BTernaryTau, 12-Oct-2023.) |
| ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ ((𝐺 ∈ UMGraph ∧ (♯‘𝑉) = 1) → 𝐺 ∈ AcyclicGraph) | ||
| Theorem | acycgr2v 35144 | A simple graph with two vertices is an acyclic graph. (Contributed by BTernaryTau, 12-Oct-2023.) |
| ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ ((𝐺 ∈ USGraph ∧ (♯‘𝑉) = 2) → 𝐺 ∈ AcyclicGraph) | ||
| Theorem | prclisacycgr 35145* | A proper class (representing a null graph, see vtxvalprc 28979) has the property of an acyclic graph (see also acycgr0v 35142). (Contributed by BTernaryTau, 11-Oct-2023.) (New usage is discouraged.) |
| ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (¬ 𝐺 ∈ V → ¬ ∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ 𝑓 ≠ ∅)) | ||
| Theorem | acycgrislfgr 35146* | An acyclic hypergraph is a loop-free hypergraph. (Contributed by BTernaryTau, 15-Oct-2023.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) ⇒ ⊢ ((𝐺 ∈ AcyclicGraph ∧ 𝐺 ∈ UHGraph) → 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}) | ||
| Theorem | upgracycumgr 35147 | An acyclic pseudograph is a multigraph. (Contributed by BTernaryTau, 15-Oct-2023.) |
| ⊢ ((𝐺 ∈ UPGraph ∧ 𝐺 ∈ AcyclicGraph) → 𝐺 ∈ UMGraph) | ||
| Theorem | umgracycusgr 35148 | An acyclic multigraph is a simple graph. (Contributed by BTernaryTau, 17-Oct-2023.) |
| ⊢ ((𝐺 ∈ UMGraph ∧ 𝐺 ∈ AcyclicGraph) → 𝐺 ∈ USGraph) | ||
| Theorem | upgracycusgr 35149 | An acyclic pseudograph is a simple graph. (Contributed by BTernaryTau, 17-Oct-2023.) |
| ⊢ ((𝐺 ∈ UPGraph ∧ 𝐺 ∈ AcyclicGraph) → 𝐺 ∈ USGraph) | ||
| Theorem | cusgracyclt3v 35150 | A complete simple graph is acyclic if and only if it has fewer than three vertices. (Contributed by BTernaryTau, 20-Oct-2023.) |
| ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (𝐺 ∈ ComplUSGraph → (𝐺 ∈ AcyclicGraph ↔ (♯‘𝑉) < 3)) | ||
| Theorem | pthacycspth 35151 | A path in an acyclic graph is a simple path. (Contributed by BTernaryTau, 21-Oct-2023.) |
| ⊢ ((𝐺 ∈ AcyclicGraph ∧ 𝐹(Paths‘𝐺)𝑃) → 𝐹(SPaths‘𝐺)𝑃) | ||
| Theorem | acycgrsubgr 35152 | The subgraph of an acyclic graph is also acyclic. (Contributed by BTernaryTau, 23-Oct-2023.) |
| ⊢ ((𝐺 ∈ AcyclicGraph ∧ 𝑆 SubGraph 𝐺) → 𝑆 ∈ AcyclicGraph) | ||
| Axiom | ax-7d 35153* | Distinct variable version of ax-11 2158. (Contributed by Mario Carneiro, 14-Aug-2015.) |
| ⊢ (∀𝑥∀𝑦𝜑 → ∀𝑦∀𝑥𝜑) | ||
| Axiom | ax-8d 35154* | Distinct variable version of ax-7 2008. (Contributed by Mario Carneiro, 14-Aug-2015.) |
| ⊢ (𝑥 = 𝑦 → (𝑥 = 𝑧 → 𝑦 = 𝑧)) | ||
| Axiom | ax-9d1 35155 | Distinct variable version of ax-6 1967, equal variables case. (Contributed by Mario Carneiro, 14-Aug-2015.) |
| ⊢ ¬ ∀𝑥 ¬ 𝑥 = 𝑥 | ||
| Axiom | ax-9d2 35156* | Distinct variable version of ax-6 1967, distinct variables case. (Contributed by Mario Carneiro, 14-Aug-2015.) |
| ⊢ ¬ ∀𝑥 ¬ 𝑥 = 𝑦 | ||
| Axiom | ax-10d 35157* | Distinct variable version of axc11n 2425. (Contributed by Mario Carneiro, 14-Aug-2015.) |
| ⊢ (∀𝑥 𝑥 = 𝑦 → ∀𝑦 𝑦 = 𝑥) | ||
| Axiom | ax-11d 35158* | Distinct variable version of ax-12 2178. (Contributed by Mario Carneiro, 14-Aug-2015.) |
| ⊢ (𝑥 = 𝑦 → (∀𝑦𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑))) | ||
| Theorem | quartfull 35159 | The quartic equation, written out in full. This actually makes a fairly good Metamath stress test. Note that the length of this formula could be shortened significantly if the intermediate expressions were expanded and simplified, but it's not like this theorem will be used anyway. (Contributed by Mario Carneiro, 6-May-2015.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐷 ∈ ℂ) & ⊢ (𝜑 → 𝑋 ∈ ℂ) & ⊢ (𝜑 → (((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))) + (√‘((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))))↑2) − (4 · ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))↑3))))) / 2)↑𝑐(1 / 3)) ≠ 0) & ⊢ (𝜑 → -((((2 · (𝐵 − ((3 / 8) · (𝐴↑2)))) + (((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))) + (√‘((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))))↑2) − (4 · ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))↑3))))) / 2)↑𝑐(1 / 3))) + ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))) / (((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))) + (√‘((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))))↑2) − (4 · ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))↑3))))) / 2)↑𝑐(1 / 3)))) / 3) ≠ 0) ⇒ ⊢ (𝜑 → ((((𝑋↑4) + (𝐴 · (𝑋↑3))) + ((𝐵 · (𝑋↑2)) + ((𝐶 · 𝑋) + 𝐷))) = 0 ↔ ((𝑋 = ((-(𝐴 / 4) − ((√‘-((((2 · (𝐵 − ((3 / 8) · (𝐴↑2)))) + (((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))) + (√‘((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))))↑2) − (4 · ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))↑3))))) / 2)↑𝑐(1 / 3))) + ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))) / (((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))) + (√‘((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))))↑2) − (4 · ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))↑3))))) / 2)↑𝑐(1 / 3)))) / 3)) / 2)) + (√‘((-(((√‘-((((2 · (𝐵 − ((3 / 8) · (𝐴↑2)))) + (((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))) + (√‘((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))))↑2) − (4 · ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))↑3))))) / 2)↑𝑐(1 / 3))) + ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))) / (((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))) + (√‘((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))))↑2) − (4 · ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))↑3))))) / 2)↑𝑐(1 / 3)))) / 3)) / 2)↑2) − ((𝐵 − ((3 / 8) · (𝐴↑2))) / 2)) + ((((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8)) / 4) / ((√‘-((((2 · (𝐵 − ((3 / 8) · (𝐴↑2)))) + (((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))) + (√‘((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))))↑2) − (4 · ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))↑3))))) / 2)↑𝑐(1 / 3))) + ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))) / (((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))) + (√‘((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))))↑2) − (4 · ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))↑3))))) / 2)↑𝑐(1 / 3)))) / 3)) / 2))))) ∨ 𝑋 = ((-(𝐴 / 4) − ((√‘-((((2 · (𝐵 − ((3 / 8) · (𝐴↑2)))) + (((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))) + (√‘((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))))↑2) − (4 · ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))↑3))))) / 2)↑𝑐(1 / 3))) + ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))) / (((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))) + (√‘((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))))↑2) − (4 · ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))↑3))))) / 2)↑𝑐(1 / 3)))) / 3)) / 2)) − (√‘((-(((√‘-((((2 · (𝐵 − ((3 / 8) · (𝐴↑2)))) + (((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))) + (√‘((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))))↑2) − (4 · ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))↑3))))) / 2)↑𝑐(1 / 3))) + ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))) / (((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))) + (√‘((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))))↑2) − (4 · ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))↑3))))) / 2)↑𝑐(1 / 3)))) / 3)) / 2)↑2) − ((𝐵 − ((3 / 8) · (𝐴↑2))) / 2)) + ((((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8)) / 4) / ((√‘-((((2 · (𝐵 − ((3 / 8) · (𝐴↑2)))) + (((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))) + (√‘((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))))↑2) − (4 · ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))↑3))))) / 2)↑𝑐(1 / 3))) + ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))) / (((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))) + (√‘((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))))↑2) − (4 · ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))↑3))))) / 2)↑𝑐(1 / 3)))) / 3)) / 2)))))) ∨ (𝑋 = ((-(𝐴 / 4) + ((√‘-((((2 · (𝐵 − ((3 / 8) · (𝐴↑2)))) + (((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))) + (√‘((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))))↑2) − (4 · ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))↑3))))) / 2)↑𝑐(1 / 3))) + ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))) / (((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))) + (√‘((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))))↑2) − (4 · ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))↑3))))) / 2)↑𝑐(1 / 3)))) / 3)) / 2)) + (√‘((-(((√‘-((((2 · (𝐵 − ((3 / 8) · (𝐴↑2)))) + (((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))) + (√‘((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))))↑2) − (4 · ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))↑3))))) / 2)↑𝑐(1 / 3))) + ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))) / (((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))) + (√‘((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))))↑2) − (4 · ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))↑3))))) / 2)↑𝑐(1 / 3)))) / 3)) / 2)↑2) − ((𝐵 − ((3 / 8) · (𝐴↑2))) / 2)) − ((((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8)) / 4) / ((√‘-((((2 · (𝐵 − ((3 / 8) · (𝐴↑2)))) + (((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))) + (√‘((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))))↑2) − (4 · ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))↑3))))) / 2)↑𝑐(1 / 3))) + ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))) / (((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))) + (√‘((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))))↑2) − (4 · ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))↑3))))) / 2)↑𝑐(1 / 3)))) / 3)) / 2))))) ∨ 𝑋 = ((-(𝐴 / 4) + ((√‘-((((2 · (𝐵 − ((3 / 8) · (𝐴↑2)))) + (((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))) + (√‘((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))))↑2) − (4 · ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))↑3))))) / 2)↑𝑐(1 / 3))) + ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))) / (((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))) + (√‘((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))))↑2) − (4 · ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))↑3))))) / 2)↑𝑐(1 / 3)))) / 3)) / 2)) − (√‘((-(((√‘-((((2 · (𝐵 − ((3 / 8) · (𝐴↑2)))) + (((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))) + (√‘((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))))↑2) − (4 · ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))↑3))))) / 2)↑𝑐(1 / 3))) + ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))) / (((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))) + (√‘((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))))↑2) − (4 · ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))↑3))))) / 2)↑𝑐(1 / 3)))) / 3)) / 2)↑2) − ((𝐵 − ((3 / 8) · (𝐴↑2))) / 2)) − ((((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8)) / 4) / ((√‘-((((2 · (𝐵 − ((3 / 8) · (𝐴↑2)))) + (((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))) + (√‘((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))))↑2) − (4 · ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))↑3))))) / 2)↑𝑐(1 / 3))) + ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))) / (((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))) + (√‘((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))))↑2) − (4 · ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))↑3))))) / 2)↑𝑐(1 / 3)))) / 3)) / 2))))))))) | ||
| Theorem | deranglem 35160* | Lemma for derangements. (Contributed by Mario Carneiro, 19-Jan-2015.) |
| ⊢ (𝐴 ∈ Fin → {𝑓 ∣ (𝑓:𝐴–1-1-onto→𝐴 ∧ 𝜑)} ∈ Fin) | ||
| Theorem | derangval 35161* | Define the derangement function, which counts the number of bijections from a set to itself such that no element is mapped to itself. (Contributed by Mario Carneiro, 19-Jan-2015.) |
| ⊢ 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥–1-1-onto→𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) ≠ 𝑦)})) ⇒ ⊢ (𝐴 ∈ Fin → (𝐷‘𝐴) = (♯‘{𝑓 ∣ (𝑓:𝐴–1-1-onto→𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑓‘𝑦) ≠ 𝑦)})) | ||
| Theorem | derangf 35162* | The derangement number is a function from finite sets to nonnegative integers. (Contributed by Mario Carneiro, 19-Jan-2015.) |
| ⊢ 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥–1-1-onto→𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) ≠ 𝑦)})) ⇒ ⊢ 𝐷:Fin⟶ℕ0 | ||
| Theorem | derang0 35163* | The derangement number of the empty set. (Contributed by Mario Carneiro, 19-Jan-2015.) |
| ⊢ 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥–1-1-onto→𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) ≠ 𝑦)})) ⇒ ⊢ (𝐷‘∅) = 1 | ||
| Theorem | derangsn 35164* | The derangement number of a singleton. (Contributed by Mario Carneiro, 19-Jan-2015.) |
| ⊢ 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥–1-1-onto→𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) ≠ 𝑦)})) ⇒ ⊢ (𝐴 ∈ 𝑉 → (𝐷‘{𝐴}) = 0) | ||
| Theorem | derangenlem 35165* | One half of derangen 35166. (Contributed by Mario Carneiro, 22-Jan-2015.) |
| ⊢ 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥–1-1-onto→𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) ≠ 𝑦)})) ⇒ ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin) → (𝐷‘𝐴) ≤ (𝐷‘𝐵)) | ||
| Theorem | derangen 35166* | The derangement number is a cardinal invariant, i.e. it only depends on the size of a set and not on its contents. (Contributed by Mario Carneiro, 22-Jan-2015.) |
| ⊢ 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥–1-1-onto→𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) ≠ 𝑦)})) ⇒ ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin) → (𝐷‘𝐴) = (𝐷‘𝐵)) | ||
| Theorem | subfacval 35167* | The subfactorial is defined as the number of derangements (see derangval 35161) of the set (1...𝑁). (Contributed by Mario Carneiro, 21-Jan-2015.) |
| ⊢ 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥–1-1-onto→𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) ≠ 𝑦)})) & ⊢ 𝑆 = (𝑛 ∈ ℕ0 ↦ (𝐷‘(1...𝑛))) ⇒ ⊢ (𝑁 ∈ ℕ0 → (𝑆‘𝑁) = (𝐷‘(1...𝑁))) | ||
| Theorem | derangen2 35168* | Write the derangement number in terms of the subfactorial. (Contributed by Mario Carneiro, 22-Jan-2015.) |
| ⊢ 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥–1-1-onto→𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) ≠ 𝑦)})) & ⊢ 𝑆 = (𝑛 ∈ ℕ0 ↦ (𝐷‘(1...𝑛))) ⇒ ⊢ (𝐴 ∈ Fin → (𝐷‘𝐴) = (𝑆‘(♯‘𝐴))) | ||
| Theorem | subfacf 35169* | The subfactorial is a function from nonnegative integers to nonnegative integers. (Contributed by Mario Carneiro, 19-Jan-2015.) |
| ⊢ 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥–1-1-onto→𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) ≠ 𝑦)})) & ⊢ 𝑆 = (𝑛 ∈ ℕ0 ↦ (𝐷‘(1...𝑛))) ⇒ ⊢ 𝑆:ℕ0⟶ℕ0 | ||
| Theorem | subfaclefac 35170* | The subfactorial is less than the factorial. (Contributed by Mario Carneiro, 19-Jan-2015.) |
| ⊢ 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥–1-1-onto→𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) ≠ 𝑦)})) & ⊢ 𝑆 = (𝑛 ∈ ℕ0 ↦ (𝐷‘(1...𝑛))) ⇒ ⊢ (𝑁 ∈ ℕ0 → (𝑆‘𝑁) ≤ (!‘𝑁)) | ||
| Theorem | subfac0 35171* | The subfactorial at zero. (Contributed by Mario Carneiro, 19-Jan-2015.) |
| ⊢ 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥–1-1-onto→𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) ≠ 𝑦)})) & ⊢ 𝑆 = (𝑛 ∈ ℕ0 ↦ (𝐷‘(1...𝑛))) ⇒ ⊢ (𝑆‘0) = 1 | ||
| Theorem | subfac1 35172* | The subfactorial at one. (Contributed by Mario Carneiro, 19-Jan-2015.) |
| ⊢ 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥–1-1-onto→𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) ≠ 𝑦)})) & ⊢ 𝑆 = (𝑛 ∈ ℕ0 ↦ (𝐷‘(1...𝑛))) ⇒ ⊢ (𝑆‘1) = 0 | ||
| Theorem | subfacp1lem1 35173* | Lemma for subfacp1 35180. The set 𝐾 together with {1, 𝑀} partitions the set 1...(𝑁 + 1). (Contributed by Mario Carneiro, 23-Jan-2015.) |
| ⊢ 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥–1-1-onto→𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) ≠ 𝑦)})) & ⊢ 𝑆 = (𝑛 ∈ ℕ0 ↦ (𝐷‘(1...𝑛))) & ⊢ 𝐴 = {𝑓 ∣ (𝑓:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ∧ ∀𝑦 ∈ (1...(𝑁 + 1))(𝑓‘𝑦) ≠ 𝑦)} & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑀 ∈ (2...(𝑁 + 1))) & ⊢ 𝑀 ∈ V & ⊢ 𝐾 = ((2...(𝑁 + 1)) ∖ {𝑀}) ⇒ ⊢ (𝜑 → ((𝐾 ∩ {1, 𝑀}) = ∅ ∧ (𝐾 ∪ {1, 𝑀}) = (1...(𝑁 + 1)) ∧ (♯‘𝐾) = (𝑁 − 1))) | ||
| Theorem | subfacp1lem2a 35174* | Lemma for subfacp1 35180. Properties of a bijection on 𝐾 augmented with the two-element flip to get a bijection on 𝐾 ∪ {1, 𝑀}. (Contributed by Mario Carneiro, 23-Jan-2015.) |
| ⊢ 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥–1-1-onto→𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) ≠ 𝑦)})) & ⊢ 𝑆 = (𝑛 ∈ ℕ0 ↦ (𝐷‘(1...𝑛))) & ⊢ 𝐴 = {𝑓 ∣ (𝑓:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ∧ ∀𝑦 ∈ (1...(𝑁 + 1))(𝑓‘𝑦) ≠ 𝑦)} & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑀 ∈ (2...(𝑁 + 1))) & ⊢ 𝑀 ∈ V & ⊢ 𝐾 = ((2...(𝑁 + 1)) ∖ {𝑀}) & ⊢ 𝐹 = (𝐺 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉}) & ⊢ (𝜑 → 𝐺:𝐾–1-1-onto→𝐾) ⇒ ⊢ (𝜑 → (𝐹:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ∧ (𝐹‘1) = 𝑀 ∧ (𝐹‘𝑀) = 1)) | ||
| Theorem | subfacp1lem2b 35175* | Lemma for subfacp1 35180. Properties of a bijection on 𝐾 augmented with the two-element flip to get a bijection on 𝐾 ∪ {1, 𝑀}. (Contributed by Mario Carneiro, 23-Jan-2015.) |
| ⊢ 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥–1-1-onto→𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) ≠ 𝑦)})) & ⊢ 𝑆 = (𝑛 ∈ ℕ0 ↦ (𝐷‘(1...𝑛))) & ⊢ 𝐴 = {𝑓 ∣ (𝑓:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ∧ ∀𝑦 ∈ (1...(𝑁 + 1))(𝑓‘𝑦) ≠ 𝑦)} & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑀 ∈ (2...(𝑁 + 1))) & ⊢ 𝑀 ∈ V & ⊢ 𝐾 = ((2...(𝑁 + 1)) ∖ {𝑀}) & ⊢ 𝐹 = (𝐺 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉}) & ⊢ (𝜑 → 𝐺:𝐾–1-1-onto→𝐾) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐾) → (𝐹‘𝑋) = (𝐺‘𝑋)) | ||
| Theorem | subfacp1lem3 35176* | Lemma for subfacp1 35180. In subfacp1lem6 35179 we cut up the set of all derangements on 1...(𝑁 + 1) first according to the value at 1, and then by whether or not (𝑓‘(𝑓‘1)) = 1. In this lemma, we show that the subset of all 𝑁 + 1 derangements that satisfy this for fixed 𝑀 = (𝑓‘1) is in bijection with 𝑁 − 1 derangements, by simply dropping the 𝑥 = 1 and 𝑥 = 𝑀 points from the function to get a derangement on 𝐾 = (1...(𝑁 − 1)) ∖ {1, 𝑀}. (Contributed by Mario Carneiro, 23-Jan-2015.) |
| ⊢ 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥–1-1-onto→𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) ≠ 𝑦)})) & ⊢ 𝑆 = (𝑛 ∈ ℕ0 ↦ (𝐷‘(1...𝑛))) & ⊢ 𝐴 = {𝑓 ∣ (𝑓:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ∧ ∀𝑦 ∈ (1...(𝑁 + 1))(𝑓‘𝑦) ≠ 𝑦)} & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑀 ∈ (2...(𝑁 + 1))) & ⊢ 𝑀 ∈ V & ⊢ 𝐾 = ((2...(𝑁 + 1)) ∖ {𝑀}) & ⊢ 𝐵 = {𝑔 ∈ 𝐴 ∣ ((𝑔‘1) = 𝑀 ∧ (𝑔‘𝑀) = 1)} & ⊢ 𝐶 = {𝑓 ∣ (𝑓:𝐾–1-1-onto→𝐾 ∧ ∀𝑦 ∈ 𝐾 (𝑓‘𝑦) ≠ 𝑦)} ⇒ ⊢ (𝜑 → (♯‘𝐵) = (𝑆‘(𝑁 − 1))) | ||
| Theorem | subfacp1lem4 35177* | Lemma for subfacp1 35180. The function 𝐹, which swaps 1 with 𝑀 and leaves all other elements alone, is a bijection of order 2, i.e. it is its own inverse. (Contributed by Mario Carneiro, 19-Jan-2015.) |
| ⊢ 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥–1-1-onto→𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) ≠ 𝑦)})) & ⊢ 𝑆 = (𝑛 ∈ ℕ0 ↦ (𝐷‘(1...𝑛))) & ⊢ 𝐴 = {𝑓 ∣ (𝑓:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ∧ ∀𝑦 ∈ (1...(𝑁 + 1))(𝑓‘𝑦) ≠ 𝑦)} & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑀 ∈ (2...(𝑁 + 1))) & ⊢ 𝑀 ∈ V & ⊢ 𝐾 = ((2...(𝑁 + 1)) ∖ {𝑀}) & ⊢ 𝐵 = {𝑔 ∈ 𝐴 ∣ ((𝑔‘1) = 𝑀 ∧ (𝑔‘𝑀) ≠ 1)} & ⊢ 𝐹 = (( I ↾ 𝐾) ∪ {〈1, 𝑀〉, 〈𝑀, 1〉}) ⇒ ⊢ (𝜑 → ◡𝐹 = 𝐹) | ||
| Theorem | subfacp1lem5 35178* | Lemma for subfacp1 35180. In subfacp1lem6 35179 we cut up the set of all derangements on 1...(𝑁 + 1) first according to the value at 1, and then by whether or not (𝑓‘(𝑓‘1)) = 1. In this lemma, we show that the subset of all 𝑁 + 1 derangements with (𝑓‘(𝑓‘1)) ≠ 1 for fixed 𝑀 = (𝑓‘1) is in bijection with derangements of 2...(𝑁 + 1), because pre-composing with the function 𝐹 swaps 1 and 𝑀 and turns the function into a bijection with (𝑓‘1) = 1 and (𝑓‘𝑥) ≠ 𝑥 for all other 𝑥, so dropping the point at 1 yields a derangement on the 𝑁 remaining points. (Contributed by Mario Carneiro, 23-Jan-2015.) |
| ⊢ 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥–1-1-onto→𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) ≠ 𝑦)})) & ⊢ 𝑆 = (𝑛 ∈ ℕ0 ↦ (𝐷‘(1...𝑛))) & ⊢ 𝐴 = {𝑓 ∣ (𝑓:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ∧ ∀𝑦 ∈ (1...(𝑁 + 1))(𝑓‘𝑦) ≠ 𝑦)} & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑀 ∈ (2...(𝑁 + 1))) & ⊢ 𝑀 ∈ V & ⊢ 𝐾 = ((2...(𝑁 + 1)) ∖ {𝑀}) & ⊢ 𝐵 = {𝑔 ∈ 𝐴 ∣ ((𝑔‘1) = 𝑀 ∧ (𝑔‘𝑀) ≠ 1)} & ⊢ 𝐹 = (( I ↾ 𝐾) ∪ {〈1, 𝑀〉, 〈𝑀, 1〉}) & ⊢ 𝐶 = {𝑓 ∣ (𝑓:(2...(𝑁 + 1))–1-1-onto→(2...(𝑁 + 1)) ∧ ∀𝑦 ∈ (2...(𝑁 + 1))(𝑓‘𝑦) ≠ 𝑦)} ⇒ ⊢ (𝜑 → (♯‘𝐵) = (𝑆‘𝑁)) | ||
| Theorem | subfacp1lem6 35179* | Lemma for subfacp1 35180. By induction, we cut up the set of all derangements on 𝑁 + 1 according to the 𝑁 possible values of (𝑓‘1) (since (𝑓‘1) ≠ 1), and for each set for fixed 𝑀 = (𝑓‘1), the subset of derangements with (𝑓‘𝑀) = 1 has size 𝑆(𝑁 − 1) (by subfacp1lem3 35176), while the subset with (𝑓‘𝑀) ≠ 1 has size 𝑆(𝑁) (by subfacp1lem5 35178). Adding it all up yields the desired equation 𝑁(𝑆(𝑁) + 𝑆(𝑁 − 1)) for the number of derangements on 𝑁 + 1. (Contributed by Mario Carneiro, 22-Jan-2015.) |
| ⊢ 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥–1-1-onto→𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) ≠ 𝑦)})) & ⊢ 𝑆 = (𝑛 ∈ ℕ0 ↦ (𝐷‘(1...𝑛))) & ⊢ 𝐴 = {𝑓 ∣ (𝑓:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ∧ ∀𝑦 ∈ (1...(𝑁 + 1))(𝑓‘𝑦) ≠ 𝑦)} ⇒ ⊢ (𝑁 ∈ ℕ → (𝑆‘(𝑁 + 1)) = (𝑁 · ((𝑆‘𝑁) + (𝑆‘(𝑁 − 1))))) | ||
| Theorem | subfacp1 35180* | A two-term recurrence for the subfactorial. This theorem allows to forget the combinatorial definition of the derangement number in favor of the recursive definition provided by this theorem and subfac0 35171, subfac1 35172. (Contributed by Mario Carneiro, 23-Jan-2015.) |
| ⊢ 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥–1-1-onto→𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) ≠ 𝑦)})) & ⊢ 𝑆 = (𝑛 ∈ ℕ0 ↦ (𝐷‘(1...𝑛))) ⇒ ⊢ (𝑁 ∈ ℕ → (𝑆‘(𝑁 + 1)) = (𝑁 · ((𝑆‘𝑁) + (𝑆‘(𝑁 − 1))))) | ||
| Theorem | subfacval2 35181* | A closed-form expression for the subfactorial. (Contributed by Mario Carneiro, 23-Jan-2015.) |
| ⊢ 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥–1-1-onto→𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) ≠ 𝑦)})) & ⊢ 𝑆 = (𝑛 ∈ ℕ0 ↦ (𝐷‘(1...𝑛))) ⇒ ⊢ (𝑁 ∈ ℕ0 → (𝑆‘𝑁) = ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)((-1↑𝑘) / (!‘𝑘)))) | ||
| Theorem | subfaclim 35182* | The subfactorial converges rapidly to 𝑁! / e. This is part of Metamath 100 proof #88. (Contributed by Mario Carneiro, 23-Jan-2015.) |
| ⊢ 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥–1-1-onto→𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) ≠ 𝑦)})) & ⊢ 𝑆 = (𝑛 ∈ ℕ0 ↦ (𝐷‘(1...𝑛))) ⇒ ⊢ (𝑁 ∈ ℕ → (abs‘(((!‘𝑁) / e) − (𝑆‘𝑁))) < (1 / 𝑁)) | ||
| Theorem | subfacval3 35183* | Another closed form expression for the subfactorial. The expression ⌊‘(𝑥 + 1 / 2) is a way of saying "rounded to the nearest integer". (Contributed by Mario Carneiro, 23-Jan-2015.) |
| ⊢ 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥–1-1-onto→𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) ≠ 𝑦)})) & ⊢ 𝑆 = (𝑛 ∈ ℕ0 ↦ (𝐷‘(1...𝑛))) ⇒ ⊢ (𝑁 ∈ ℕ → (𝑆‘𝑁) = (⌊‘(((!‘𝑁) / e) + (1 / 2)))) | ||
| Theorem | derangfmla 35184* | The derangements formula, which expresses the number of derangements of a finite nonempty set in terms of the factorial. The expression ⌊‘(𝑥 + 1 / 2) is a way of saying "rounded to the nearest integer". This is part of Metamath 100 proof #88. (Contributed by Mario Carneiro, 23-Jan-2015.) |
| ⊢ 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥–1-1-onto→𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) ≠ 𝑦)})) ⇒ ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → (𝐷‘𝐴) = (⌊‘(((!‘(♯‘𝐴)) / e) + (1 / 2)))) | ||
| Theorem | erdszelem1 35185* | Lemma for erdsze 35196. (Contributed by Mario Carneiro, 22-Jan-2015.) |
| ⊢ 𝑆 = {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐴 ∈ 𝑦)} ⇒ ⊢ (𝑋 ∈ 𝑆 ↔ (𝑋 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑋) Isom < , 𝑂 (𝑋, (𝐹 “ 𝑋)) ∧ 𝐴 ∈ 𝑋)) | ||
| Theorem | erdszelem2 35186* | Lemma for erdsze 35196. (Contributed by Mario Carneiro, 22-Jan-2015.) |
| ⊢ 𝑆 = {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐴 ∈ 𝑦)} ⇒ ⊢ ((♯ “ 𝑆) ∈ Fin ∧ (♯ “ 𝑆) ⊆ ℕ) | ||
| Theorem | erdszelem3 35187* | Lemma for erdsze 35196. (Contributed by Mario Carneiro, 22-Jan-2015.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐹:(1...𝑁)–1-1→ℝ) & ⊢ 𝐾 = (𝑥 ∈ (1...𝑁) ↦ sup((♯ “ {𝑦 ∈ 𝒫 (1...𝑥) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝑥 ∈ 𝑦)}), ℝ, < )) ⇒ ⊢ (𝐴 ∈ (1...𝑁) → (𝐾‘𝐴) = sup((♯ “ {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐴 ∈ 𝑦)}), ℝ, < )) | ||
| Theorem | erdszelem4 35188* | Lemma for erdsze 35196. (Contributed by Mario Carneiro, 22-Jan-2015.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐹:(1...𝑁)–1-1→ℝ) & ⊢ 𝐾 = (𝑥 ∈ (1...𝑁) ↦ sup((♯ “ {𝑦 ∈ 𝒫 (1...𝑥) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝑥 ∈ 𝑦)}), ℝ, < )) & ⊢ 𝑂 Or ℝ ⇒ ⊢ ((𝜑 ∧ 𝐴 ∈ (1...𝑁)) → {𝐴} ∈ {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐴 ∈ 𝑦)}) | ||
| Theorem | erdszelem5 35189* | Lemma for erdsze 35196. (Contributed by Mario Carneiro, 22-Jan-2015.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐹:(1...𝑁)–1-1→ℝ) & ⊢ 𝐾 = (𝑥 ∈ (1...𝑁) ↦ sup((♯ “ {𝑦 ∈ 𝒫 (1...𝑥) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝑥 ∈ 𝑦)}), ℝ, < )) & ⊢ 𝑂 Or ℝ ⇒ ⊢ ((𝜑 ∧ 𝐴 ∈ (1...𝑁)) → (𝐾‘𝐴) ∈ (♯ “ {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐴 ∈ 𝑦)})) | ||
| Theorem | erdszelem6 35190* | Lemma for erdsze 35196. (Contributed by Mario Carneiro, 22-Jan-2015.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐹:(1...𝑁)–1-1→ℝ) & ⊢ 𝐾 = (𝑥 ∈ (1...𝑁) ↦ sup((♯ “ {𝑦 ∈ 𝒫 (1...𝑥) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝑥 ∈ 𝑦)}), ℝ, < )) & ⊢ 𝑂 Or ℝ ⇒ ⊢ (𝜑 → 𝐾:(1...𝑁)⟶ℕ) | ||
| Theorem | erdszelem7 35191* | Lemma for erdsze 35196. (Contributed by Mario Carneiro, 22-Jan-2015.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐹:(1...𝑁)–1-1→ℝ) & ⊢ 𝐾 = (𝑥 ∈ (1...𝑁) ↦ sup((♯ “ {𝑦 ∈ 𝒫 (1...𝑥) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝑥 ∈ 𝑦)}), ℝ, < )) & ⊢ 𝑂 Or ℝ & ⊢ (𝜑 → 𝐴 ∈ (1...𝑁)) & ⊢ (𝜑 → 𝑅 ∈ ℕ) & ⊢ (𝜑 → ¬ (𝐾‘𝐴) ∈ (1...(𝑅 − 1))) ⇒ ⊢ (𝜑 → ∃𝑠 ∈ 𝒫 (1...𝑁)(𝑅 ≤ (♯‘𝑠) ∧ (𝐹 ↾ 𝑠) Isom < , 𝑂 (𝑠, (𝐹 “ 𝑠)))) | ||
| Theorem | erdszelem8 35192* | Lemma for erdsze 35196. (Contributed by Mario Carneiro, 22-Jan-2015.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐹:(1...𝑁)–1-1→ℝ) & ⊢ 𝐾 = (𝑥 ∈ (1...𝑁) ↦ sup((♯ “ {𝑦 ∈ 𝒫 (1...𝑥) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝑥 ∈ 𝑦)}), ℝ, < )) & ⊢ 𝑂 Or ℝ & ⊢ (𝜑 → 𝐴 ∈ (1...𝑁)) & ⊢ (𝜑 → 𝐵 ∈ (1...𝑁)) & ⊢ (𝜑 → 𝐴 < 𝐵) ⇒ ⊢ (𝜑 → ((𝐾‘𝐴) = (𝐾‘𝐵) → ¬ (𝐹‘𝐴)𝑂(𝐹‘𝐵))) | ||
| Theorem | erdszelem9 35193* | Lemma for erdsze 35196. (Contributed by Mario Carneiro, 22-Jan-2015.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐹:(1...𝑁)–1-1→ℝ) & ⊢ 𝐼 = (𝑥 ∈ (1...𝑁) ↦ sup((♯ “ {𝑦 ∈ 𝒫 (1...𝑥) ∣ ((𝐹 ↾ 𝑦) Isom < , < (𝑦, (𝐹 “ 𝑦)) ∧ 𝑥 ∈ 𝑦)}), ℝ, < )) & ⊢ 𝐽 = (𝑥 ∈ (1...𝑁) ↦ sup((♯ “ {𝑦 ∈ 𝒫 (1...𝑥) ∣ ((𝐹 ↾ 𝑦) Isom < , ◡ < (𝑦, (𝐹 “ 𝑦)) ∧ 𝑥 ∈ 𝑦)}), ℝ, < )) & ⊢ 𝑇 = (𝑛 ∈ (1...𝑁) ↦ 〈(𝐼‘𝑛), (𝐽‘𝑛)〉) ⇒ ⊢ (𝜑 → 𝑇:(1...𝑁)–1-1→(ℕ × ℕ)) | ||
| Theorem | erdszelem10 35194* | Lemma for erdsze 35196. (Contributed by Mario Carneiro, 22-Jan-2015.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐹:(1...𝑁)–1-1→ℝ) & ⊢ 𝐼 = (𝑥 ∈ (1...𝑁) ↦ sup((♯ “ {𝑦 ∈ 𝒫 (1...𝑥) ∣ ((𝐹 ↾ 𝑦) Isom < , < (𝑦, (𝐹 “ 𝑦)) ∧ 𝑥 ∈ 𝑦)}), ℝ, < )) & ⊢ 𝐽 = (𝑥 ∈ (1...𝑁) ↦ sup((♯ “ {𝑦 ∈ 𝒫 (1...𝑥) ∣ ((𝐹 ↾ 𝑦) Isom < , ◡ < (𝑦, (𝐹 “ 𝑦)) ∧ 𝑥 ∈ 𝑦)}), ℝ, < )) & ⊢ 𝑇 = (𝑛 ∈ (1...𝑁) ↦ 〈(𝐼‘𝑛), (𝐽‘𝑛)〉) & ⊢ (𝜑 → 𝑅 ∈ ℕ) & ⊢ (𝜑 → 𝑆 ∈ ℕ) & ⊢ (𝜑 → ((𝑅 − 1) · (𝑆 − 1)) < 𝑁) ⇒ ⊢ (𝜑 → ∃𝑚 ∈ (1...𝑁)(¬ (𝐼‘𝑚) ∈ (1...(𝑅 − 1)) ∨ ¬ (𝐽‘𝑚) ∈ (1...(𝑆 − 1)))) | ||
| Theorem | erdszelem11 35195* | Lemma for erdsze 35196. (Contributed by Mario Carneiro, 22-Jan-2015.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐹:(1...𝑁)–1-1→ℝ) & ⊢ 𝐼 = (𝑥 ∈ (1...𝑁) ↦ sup((♯ “ {𝑦 ∈ 𝒫 (1...𝑥) ∣ ((𝐹 ↾ 𝑦) Isom < , < (𝑦, (𝐹 “ 𝑦)) ∧ 𝑥 ∈ 𝑦)}), ℝ, < )) & ⊢ 𝐽 = (𝑥 ∈ (1...𝑁) ↦ sup((♯ “ {𝑦 ∈ 𝒫 (1...𝑥) ∣ ((𝐹 ↾ 𝑦) Isom < , ◡ < (𝑦, (𝐹 “ 𝑦)) ∧ 𝑥 ∈ 𝑦)}), ℝ, < )) & ⊢ 𝑇 = (𝑛 ∈ (1...𝑁) ↦ 〈(𝐼‘𝑛), (𝐽‘𝑛)〉) & ⊢ (𝜑 → 𝑅 ∈ ℕ) & ⊢ (𝜑 → 𝑆 ∈ ℕ) & ⊢ (𝜑 → ((𝑅 − 1) · (𝑆 − 1)) < 𝑁) ⇒ ⊢ (𝜑 → ∃𝑠 ∈ 𝒫 (1...𝑁)((𝑅 ≤ (♯‘𝑠) ∧ (𝐹 ↾ 𝑠) Isom < , < (𝑠, (𝐹 “ 𝑠))) ∨ (𝑆 ≤ (♯‘𝑠) ∧ (𝐹 ↾ 𝑠) Isom < , ◡ < (𝑠, (𝐹 “ 𝑠))))) | ||
| Theorem | erdsze 35196* | The Erdős-Szekeres theorem. For any injective sequence 𝐹 on the reals of length at least (𝑅 − 1) · (𝑆 − 1) + 1, there is either a subsequence of length at least 𝑅 on which 𝐹 is increasing (i.e. a < , < order isomorphism) or a subsequence of length at least 𝑆 on which 𝐹 is decreasing (i.e. a < , ◡ < order isomorphism, recalling that ◡ < is the "greater than" relation). This is part of Metamath 100 proof #73. (Contributed by Mario Carneiro, 22-Jan-2015.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐹:(1...𝑁)–1-1→ℝ) & ⊢ (𝜑 → 𝑅 ∈ ℕ) & ⊢ (𝜑 → 𝑆 ∈ ℕ) & ⊢ (𝜑 → ((𝑅 − 1) · (𝑆 − 1)) < 𝑁) ⇒ ⊢ (𝜑 → ∃𝑠 ∈ 𝒫 (1...𝑁)((𝑅 ≤ (♯‘𝑠) ∧ (𝐹 ↾ 𝑠) Isom < , < (𝑠, (𝐹 “ 𝑠))) ∨ (𝑆 ≤ (♯‘𝑠) ∧ (𝐹 ↾ 𝑠) Isom < , ◡ < (𝑠, (𝐹 “ 𝑠))))) | ||
| Theorem | erdsze2lem1 35197* | Lemma for erdsze2 35199. (Contributed by Mario Carneiro, 22-Jan-2015.) |
| ⊢ (𝜑 → 𝑅 ∈ ℕ) & ⊢ (𝜑 → 𝑆 ∈ ℕ) & ⊢ (𝜑 → 𝐹:𝐴–1-1→ℝ) & ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ 𝑁 = ((𝑅 − 1) · (𝑆 − 1)) & ⊢ (𝜑 → 𝑁 < (♯‘𝐴)) ⇒ ⊢ (𝜑 → ∃𝑓(𝑓:(1...(𝑁 + 1))–1-1→𝐴 ∧ 𝑓 Isom < , < ((1...(𝑁 + 1)), ran 𝑓))) | ||
| Theorem | erdsze2lem2 35198* | Lemma for erdsze2 35199. (Contributed by Mario Carneiro, 22-Jan-2015.) |
| ⊢ (𝜑 → 𝑅 ∈ ℕ) & ⊢ (𝜑 → 𝑆 ∈ ℕ) & ⊢ (𝜑 → 𝐹:𝐴–1-1→ℝ) & ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ 𝑁 = ((𝑅 − 1) · (𝑆 − 1)) & ⊢ (𝜑 → 𝑁 < (♯‘𝐴)) & ⊢ (𝜑 → 𝐺:(1...(𝑁 + 1))–1-1→𝐴) & ⊢ (𝜑 → 𝐺 Isom < , < ((1...(𝑁 + 1)), ran 𝐺)) ⇒ ⊢ (𝜑 → ∃𝑠 ∈ 𝒫 𝐴((𝑅 ≤ (♯‘𝑠) ∧ (𝐹 ↾ 𝑠) Isom < , < (𝑠, (𝐹 “ 𝑠))) ∨ (𝑆 ≤ (♯‘𝑠) ∧ (𝐹 ↾ 𝑠) Isom < , ◡ < (𝑠, (𝐹 “ 𝑠))))) | ||
| Theorem | erdsze2 35199* | Generalize the statement of the Erdős-Szekeres theorem erdsze 35196 to "sequences" indexed by an arbitrary subset of ℝ, which can be infinite. This is part of Metamath 100 proof #73. (Contributed by Mario Carneiro, 22-Jan-2015.) |
| ⊢ (𝜑 → 𝑅 ∈ ℕ) & ⊢ (𝜑 → 𝑆 ∈ ℕ) & ⊢ (𝜑 → 𝐹:𝐴–1-1→ℝ) & ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → ((𝑅 − 1) · (𝑆 − 1)) < (♯‘𝐴)) ⇒ ⊢ (𝜑 → ∃𝑠 ∈ 𝒫 𝐴((𝑅 ≤ (♯‘𝑠) ∧ (𝐹 ↾ 𝑠) Isom < , < (𝑠, (𝐹 “ 𝑠))) ∨ (𝑆 ≤ (♯‘𝑠) ∧ (𝐹 ↾ 𝑠) Isom < , ◡ < (𝑠, (𝐹 “ 𝑠))))) | ||
| Theorem | kur14lem1 35200 | Lemma for kur14 35210. (Contributed by Mario Carneiro, 17-Feb-2015.) |
| ⊢ 𝐴 ⊆ 𝑋 & ⊢ (𝑋 ∖ 𝐴) ∈ 𝑇 & ⊢ (𝐾‘𝐴) ∈ 𝑇 ⇒ ⊢ (𝑁 = 𝐴 → (𝑁 ⊆ 𝑋 ∧ {(𝑋 ∖ 𝑁), (𝐾‘𝑁)} ⊆ 𝑇)) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |