![]() |
Metamath
Proof Explorer Theorem List (p. 352 of 489) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30950) |
![]() (30951-32473) |
![]() (32474-48899) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | subgrtrl 35101 | If a trail exists in a subgraph of a graph 𝐺, then that trail also exists in 𝐺. (Contributed by BTernaryTau, 22-Oct-2023.) |
⊢ (𝑆 SubGraph 𝐺 → (𝐹(Trails‘𝑆)𝑃 → 𝐹(Trails‘𝐺)𝑃)) | ||
Theorem | subgrpth 35102 | If a path exists in a subgraph of a graph 𝐺, then that path also exists in 𝐺. (Contributed by BTernaryTau, 22-Oct-2023.) |
⊢ (𝑆 SubGraph 𝐺 → (𝐹(Paths‘𝑆)𝑃 → 𝐹(Paths‘𝐺)𝑃)) | ||
Theorem | subgrcycl 35103 | If a cycle exists in a subgraph of a graph 𝐺, then that cycle also exists in 𝐺. (Contributed by BTernaryTau, 23-Oct-2023.) |
⊢ (𝑆 SubGraph 𝐺 → (𝐹(Cycles‘𝑆)𝑃 → 𝐹(Cycles‘𝐺)𝑃)) | ||
Theorem | cusgr3cyclex 35104* | Every complete simple graph with more than two vertices has a 3-cycle. (Contributed by BTernaryTau, 4-Oct-2023.) |
⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ ((𝐺 ∈ ComplUSGraph ∧ 2 < (♯‘𝑉)) → ∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3)) | ||
Theorem | loop1cycl 35105* | A hypergraph has a cycle of length one if and only if it has a loop. (Contributed by BTernaryTau, 13-Oct-2023.) |
⊢ (𝐺 ∈ UHGraph → (∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 1 ∧ (𝑝‘0) = 𝐴) ↔ {𝐴} ∈ (Edg‘𝐺))) | ||
Theorem | 2cycld 35106 | Construction of a 2-cycle from two given edges in a graph. (Contributed by BTernaryTau, 16-Oct-2023.) |
⊢ 𝑃 = 〈“𝐴𝐵𝐶”〉 & ⊢ 𝐹 = 〈“𝐽𝐾”〉 & ⊢ (𝜑 → (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) & ⊢ (𝜑 → (𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶)) & ⊢ (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼‘𝐽) ∧ {𝐵, 𝐶} ⊆ (𝐼‘𝐾))) & ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ (𝜑 → 𝐽 ≠ 𝐾) & ⊢ (𝜑 → 𝐴 = 𝐶) ⇒ ⊢ (𝜑 → 𝐹(Cycles‘𝐺)𝑃) | ||
Theorem | 2cycl2d 35107 | Construction of a 2-cycle from two given edges in a graph. (Contributed by BTernaryTau, 16-Oct-2023.) |
⊢ 𝑃 = 〈“𝐴𝐵𝐴”〉 & ⊢ 𝐹 = 〈“𝐽𝐾”〉 & ⊢ (𝜑 → (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉)) & ⊢ (𝜑 → 𝐴 ≠ 𝐵) & ⊢ (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼‘𝐽) ∧ {𝐴, 𝐵} ⊆ (𝐼‘𝐾))) & ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ (𝜑 → 𝐽 ≠ 𝐾) ⇒ ⊢ (𝜑 → 𝐹(Cycles‘𝐺)𝑃) | ||
Theorem | umgr2cycllem 35108* | Lemma for umgr2cycl 35109. (Contributed by BTernaryTau, 17-Oct-2023.) |
⊢ 𝐹 = 〈“𝐽𝐾”〉 & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ UMGraph) & ⊢ (𝜑 → 𝐽 ∈ dom 𝐼) & ⊢ (𝜑 → 𝐽 ≠ 𝐾) & ⊢ (𝜑 → (𝐼‘𝐽) = (𝐼‘𝐾)) ⇒ ⊢ (𝜑 → ∃𝑝 𝐹(Cycles‘𝐺)𝑝) | ||
Theorem | umgr2cycl 35109* | A multigraph with two distinct edges that connect the same vertices has a 2-cycle. (Contributed by BTernaryTau, 17-Oct-2023.) |
⊢ 𝐼 = (iEdg‘𝐺) ⇒ ⊢ ((𝐺 ∈ UMGraph ∧ ∃𝑗 ∈ dom 𝐼∃𝑘 ∈ dom 𝐼((𝐼‘𝑗) = (𝐼‘𝑘) ∧ 𝑗 ≠ 𝑘)) → ∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 2)) | ||
Syntax | cacycgr 35110 | Extend class notation with acyclic graphs. |
class AcyclicGraph | ||
Definition | df-acycgr 35111* | Define the class of all acyclic graphs. A graph is called acyclic if it has no (non-trivial) cycles. (Contributed by BTernaryTau, 11-Oct-2023.) |
⊢ AcyclicGraph = {𝑔 ∣ ¬ ∃𝑓∃𝑝(𝑓(Cycles‘𝑔)𝑝 ∧ 𝑓 ≠ ∅)} | ||
Theorem | dfacycgr1 35112* | An alternate definition of the class of all acyclic graphs that requires all cycles to be trivial. (Contributed by BTernaryTau, 11-Oct-2023.) |
⊢ AcyclicGraph = {𝑔 ∣ ∀𝑓∀𝑝(𝑓(Cycles‘𝑔)𝑝 → 𝑓 = ∅)} | ||
Theorem | isacycgr 35113* | The property of being an acyclic graph. (Contributed by BTernaryTau, 11-Oct-2023.) |
⊢ (𝐺 ∈ 𝑊 → (𝐺 ∈ AcyclicGraph ↔ ¬ ∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ 𝑓 ≠ ∅))) | ||
Theorem | isacycgr1 35114* | The property of being an acyclic graph. (Contributed by BTernaryTau, 11-Oct-2023.) |
⊢ (𝐺 ∈ 𝑊 → (𝐺 ∈ AcyclicGraph ↔ ∀𝑓∀𝑝(𝑓(Cycles‘𝐺)𝑝 → 𝑓 = ∅))) | ||
Theorem | acycgrcycl 35115 | Any cycle in an acyclic graph is trivial (i.e. has one vertex and no edges). (Contributed by BTernaryTau, 12-Oct-2023.) |
⊢ ((𝐺 ∈ AcyclicGraph ∧ 𝐹(Cycles‘𝐺)𝑃) → 𝐹 = ∅) | ||
Theorem | acycgr0v 35116 | A null graph (with no vertices) is an acyclic graph. (Contributed by BTernaryTau, 11-Oct-2023.) |
⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ ((𝐺 ∈ 𝑊 ∧ 𝑉 = ∅) → 𝐺 ∈ AcyclicGraph) | ||
Theorem | acycgr1v 35117 | A multigraph with one vertex is an acyclic graph. (Contributed by BTernaryTau, 12-Oct-2023.) |
⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ ((𝐺 ∈ UMGraph ∧ (♯‘𝑉) = 1) → 𝐺 ∈ AcyclicGraph) | ||
Theorem | acycgr2v 35118 | A simple graph with two vertices is an acyclic graph. (Contributed by BTernaryTau, 12-Oct-2023.) |
⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ ((𝐺 ∈ USGraph ∧ (♯‘𝑉) = 2) → 𝐺 ∈ AcyclicGraph) | ||
Theorem | prclisacycgr 35119* | A proper class (representing a null graph, see vtxvalprc 29080) has the property of an acyclic graph (see also acycgr0v 35116). (Contributed by BTernaryTau, 11-Oct-2023.) (New usage is discouraged.) |
⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (¬ 𝐺 ∈ V → ¬ ∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ 𝑓 ≠ ∅)) | ||
Theorem | acycgrislfgr 35120* | An acyclic hypergraph is a loop-free hypergraph. (Contributed by BTernaryTau, 15-Oct-2023.) |
⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) ⇒ ⊢ ((𝐺 ∈ AcyclicGraph ∧ 𝐺 ∈ UHGraph) → 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}) | ||
Theorem | upgracycumgr 35121 | An acyclic pseudograph is a multigraph. (Contributed by BTernaryTau, 15-Oct-2023.) |
⊢ ((𝐺 ∈ UPGraph ∧ 𝐺 ∈ AcyclicGraph) → 𝐺 ∈ UMGraph) | ||
Theorem | umgracycusgr 35122 | An acyclic multigraph is a simple graph. (Contributed by BTernaryTau, 17-Oct-2023.) |
⊢ ((𝐺 ∈ UMGraph ∧ 𝐺 ∈ AcyclicGraph) → 𝐺 ∈ USGraph) | ||
Theorem | upgracycusgr 35123 | An acyclic pseudograph is a simple graph. (Contributed by BTernaryTau, 17-Oct-2023.) |
⊢ ((𝐺 ∈ UPGraph ∧ 𝐺 ∈ AcyclicGraph) → 𝐺 ∈ USGraph) | ||
Theorem | cusgracyclt3v 35124 | A complete simple graph is acyclic if and only if it has fewer than three vertices. (Contributed by BTernaryTau, 20-Oct-2023.) |
⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (𝐺 ∈ ComplUSGraph → (𝐺 ∈ AcyclicGraph ↔ (♯‘𝑉) < 3)) | ||
Theorem | pthacycspth 35125 | A path in an acyclic graph is a simple path. (Contributed by BTernaryTau, 21-Oct-2023.) |
⊢ ((𝐺 ∈ AcyclicGraph ∧ 𝐹(Paths‘𝐺)𝑃) → 𝐹(SPaths‘𝐺)𝑃) | ||
Theorem | acycgrsubgr 35126 | The subgraph of an acyclic graph is also acyclic. (Contributed by BTernaryTau, 23-Oct-2023.) |
⊢ ((𝐺 ∈ AcyclicGraph ∧ 𝑆 SubGraph 𝐺) → 𝑆 ∈ AcyclicGraph) | ||
Axiom | ax-7d 35127* | Distinct variable version of ax-11 2158. (Contributed by Mario Carneiro, 14-Aug-2015.) |
⊢ (∀𝑥∀𝑦𝜑 → ∀𝑦∀𝑥𝜑) | ||
Axiom | ax-8d 35128* | Distinct variable version of ax-7 2007. (Contributed by Mario Carneiro, 14-Aug-2015.) |
⊢ (𝑥 = 𝑦 → (𝑥 = 𝑧 → 𝑦 = 𝑧)) | ||
Axiom | ax-9d1 35129 | Distinct variable version of ax-6 1967, equal variables case. (Contributed by Mario Carneiro, 14-Aug-2015.) |
⊢ ¬ ∀𝑥 ¬ 𝑥 = 𝑥 | ||
Axiom | ax-9d2 35130* | Distinct variable version of ax-6 1967, distinct variables case. (Contributed by Mario Carneiro, 14-Aug-2015.) |
⊢ ¬ ∀𝑥 ¬ 𝑥 = 𝑦 | ||
Axiom | ax-10d 35131* | Distinct variable version of axc11n 2434. (Contributed by Mario Carneiro, 14-Aug-2015.) |
⊢ (∀𝑥 𝑥 = 𝑦 → ∀𝑦 𝑦 = 𝑥) | ||
Axiom | ax-11d 35132* | Distinct variable version of ax-12 2178. (Contributed by Mario Carneiro, 14-Aug-2015.) |
⊢ (𝑥 = 𝑦 → (∀𝑦𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑))) | ||
Theorem | quartfull 35133 | The quartic equation, written out in full. This actually makes a fairly good Metamath stress test. Note that the length of this formula could be shortened significantly if the intermediate expressions were expanded and simplified, but it's not like this theorem will be used anyway. (Contributed by Mario Carneiro, 6-May-2015.) |
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐷 ∈ ℂ) & ⊢ (𝜑 → 𝑋 ∈ ℂ) & ⊢ (𝜑 → (((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))) + (√‘((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))))↑2) − (4 · ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))↑3))))) / 2)↑𝑐(1 / 3)) ≠ 0) & ⊢ (𝜑 → -((((2 · (𝐵 − ((3 / 8) · (𝐴↑2)))) + (((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))) + (√‘((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))))↑2) − (4 · ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))↑3))))) / 2)↑𝑐(1 / 3))) + ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))) / (((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))) + (√‘((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))))↑2) − (4 · ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))↑3))))) / 2)↑𝑐(1 / 3)))) / 3) ≠ 0) ⇒ ⊢ (𝜑 → ((((𝑋↑4) + (𝐴 · (𝑋↑3))) + ((𝐵 · (𝑋↑2)) + ((𝐶 · 𝑋) + 𝐷))) = 0 ↔ ((𝑋 = ((-(𝐴 / 4) − ((√‘-((((2 · (𝐵 − ((3 / 8) · (𝐴↑2)))) + (((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))) + (√‘((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))))↑2) − (4 · ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))↑3))))) / 2)↑𝑐(1 / 3))) + ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))) / (((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))) + (√‘((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))))↑2) − (4 · ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))↑3))))) / 2)↑𝑐(1 / 3)))) / 3)) / 2)) + (√‘((-(((√‘-((((2 · (𝐵 − ((3 / 8) · (𝐴↑2)))) + (((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))) + (√‘((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))))↑2) − (4 · ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))↑3))))) / 2)↑𝑐(1 / 3))) + ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))) / (((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))) + (√‘((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))))↑2) − (4 · ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))↑3))))) / 2)↑𝑐(1 / 3)))) / 3)) / 2)↑2) − ((𝐵 − ((3 / 8) · (𝐴↑2))) / 2)) + ((((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8)) / 4) / ((√‘-((((2 · (𝐵 − ((3 / 8) · (𝐴↑2)))) + (((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))) + (√‘((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))))↑2) − (4 · ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))↑3))))) / 2)↑𝑐(1 / 3))) + ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))) / (((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))) + (√‘((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))))↑2) − (4 · ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))↑3))))) / 2)↑𝑐(1 / 3)))) / 3)) / 2))))) ∨ 𝑋 = ((-(𝐴 / 4) − ((√‘-((((2 · (𝐵 − ((3 / 8) · (𝐴↑2)))) + (((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))) + (√‘((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))))↑2) − (4 · ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))↑3))))) / 2)↑𝑐(1 / 3))) + ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))) / (((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))) + (√‘((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))))↑2) − (4 · ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))↑3))))) / 2)↑𝑐(1 / 3)))) / 3)) / 2)) − (√‘((-(((√‘-((((2 · (𝐵 − ((3 / 8) · (𝐴↑2)))) + (((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))) + (√‘((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))))↑2) − (4 · ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))↑3))))) / 2)↑𝑐(1 / 3))) + ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))) / (((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))) + (√‘((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))))↑2) − (4 · ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))↑3))))) / 2)↑𝑐(1 / 3)))) / 3)) / 2)↑2) − ((𝐵 − ((3 / 8) · (𝐴↑2))) / 2)) + ((((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8)) / 4) / ((√‘-((((2 · (𝐵 − ((3 / 8) · (𝐴↑2)))) + (((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))) + (√‘((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))))↑2) − (4 · ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))↑3))))) / 2)↑𝑐(1 / 3))) + ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))) / (((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))) + (√‘((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))))↑2) − (4 · ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))↑3))))) / 2)↑𝑐(1 / 3)))) / 3)) / 2)))))) ∨ (𝑋 = ((-(𝐴 / 4) + ((√‘-((((2 · (𝐵 − ((3 / 8) · (𝐴↑2)))) + (((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))) + (√‘((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))))↑2) − (4 · ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))↑3))))) / 2)↑𝑐(1 / 3))) + ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))) / (((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))) + (√‘((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))))↑2) − (4 · ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))↑3))))) / 2)↑𝑐(1 / 3)))) / 3)) / 2)) + (√‘((-(((√‘-((((2 · (𝐵 − ((3 / 8) · (𝐴↑2)))) + (((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))) + (√‘((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))))↑2) − (4 · ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))↑3))))) / 2)↑𝑐(1 / 3))) + ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))) / (((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))) + (√‘((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))))↑2) − (4 · ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))↑3))))) / 2)↑𝑐(1 / 3)))) / 3)) / 2)↑2) − ((𝐵 − ((3 / 8) · (𝐴↑2))) / 2)) − ((((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8)) / 4) / ((√‘-((((2 · (𝐵 − ((3 / 8) · (𝐴↑2)))) + (((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))) + (√‘((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))))↑2) − (4 · ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))↑3))))) / 2)↑𝑐(1 / 3))) + ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))) / (((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))) + (√‘((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))))↑2) − (4 · ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))↑3))))) / 2)↑𝑐(1 / 3)))) / 3)) / 2))))) ∨ 𝑋 = ((-(𝐴 / 4) + ((√‘-((((2 · (𝐵 − ((3 / 8) · (𝐴↑2)))) + (((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))) + (√‘((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))))↑2) − (4 · ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))↑3))))) / 2)↑𝑐(1 / 3))) + ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))) / (((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))) + (√‘((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))))↑2) − (4 · ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))↑3))))) / 2)↑𝑐(1 / 3)))) / 3)) / 2)) − (√‘((-(((√‘-((((2 · (𝐵 − ((3 / 8) · (𝐴↑2)))) + (((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))) + (√‘((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))))↑2) − (4 · ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))↑3))))) / 2)↑𝑐(1 / 3))) + ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))) / (((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))) + (√‘((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))))↑2) − (4 · ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))↑3))))) / 2)↑𝑐(1 / 3)))) / 3)) / 2)↑2) − ((𝐵 − ((3 / 8) · (𝐴↑2))) / 2)) − ((((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8)) / 4) / ((√‘-((((2 · (𝐵 − ((3 / 8) · (𝐴↑2)))) + (((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))) + (√‘((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))))↑2) − (4 · ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))↑3))))) / 2)↑𝑐(1 / 3))) + ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))) / (((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))) + (√‘((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))))↑2) − (4 · ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))↑3))))) / 2)↑𝑐(1 / 3)))) / 3)) / 2))))))))) | ||
Theorem | deranglem 35134* | Lemma for derangements. (Contributed by Mario Carneiro, 19-Jan-2015.) |
⊢ (𝐴 ∈ Fin → {𝑓 ∣ (𝑓:𝐴–1-1-onto→𝐴 ∧ 𝜑)} ∈ Fin) | ||
Theorem | derangval 35135* | Define the derangement function, which counts the number of bijections from a set to itself such that no element is mapped to itself. (Contributed by Mario Carneiro, 19-Jan-2015.) |
⊢ 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥–1-1-onto→𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) ≠ 𝑦)})) ⇒ ⊢ (𝐴 ∈ Fin → (𝐷‘𝐴) = (♯‘{𝑓 ∣ (𝑓:𝐴–1-1-onto→𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑓‘𝑦) ≠ 𝑦)})) | ||
Theorem | derangf 35136* | The derangement number is a function from finite sets to nonnegative integers. (Contributed by Mario Carneiro, 19-Jan-2015.) |
⊢ 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥–1-1-onto→𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) ≠ 𝑦)})) ⇒ ⊢ 𝐷:Fin⟶ℕ0 | ||
Theorem | derang0 35137* | The derangement number of the empty set. (Contributed by Mario Carneiro, 19-Jan-2015.) |
⊢ 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥–1-1-onto→𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) ≠ 𝑦)})) ⇒ ⊢ (𝐷‘∅) = 1 | ||
Theorem | derangsn 35138* | The derangement number of a singleton. (Contributed by Mario Carneiro, 19-Jan-2015.) |
⊢ 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥–1-1-onto→𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) ≠ 𝑦)})) ⇒ ⊢ (𝐴 ∈ 𝑉 → (𝐷‘{𝐴}) = 0) | ||
Theorem | derangenlem 35139* | One half of derangen 35140. (Contributed by Mario Carneiro, 22-Jan-2015.) |
⊢ 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥–1-1-onto→𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) ≠ 𝑦)})) ⇒ ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin) → (𝐷‘𝐴) ≤ (𝐷‘𝐵)) | ||
Theorem | derangen 35140* | The derangement number is a cardinal invariant, i.e. it only depends on the size of a set and not on its contents. (Contributed by Mario Carneiro, 22-Jan-2015.) |
⊢ 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥–1-1-onto→𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) ≠ 𝑦)})) ⇒ ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin) → (𝐷‘𝐴) = (𝐷‘𝐵)) | ||
Theorem | subfacval 35141* | The subfactorial is defined as the number of derangements (see derangval 35135) of the set (1...𝑁). (Contributed by Mario Carneiro, 21-Jan-2015.) |
⊢ 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥–1-1-onto→𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) ≠ 𝑦)})) & ⊢ 𝑆 = (𝑛 ∈ ℕ0 ↦ (𝐷‘(1...𝑛))) ⇒ ⊢ (𝑁 ∈ ℕ0 → (𝑆‘𝑁) = (𝐷‘(1...𝑁))) | ||
Theorem | derangen2 35142* | Write the derangement number in terms of the subfactorial. (Contributed by Mario Carneiro, 22-Jan-2015.) |
⊢ 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥–1-1-onto→𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) ≠ 𝑦)})) & ⊢ 𝑆 = (𝑛 ∈ ℕ0 ↦ (𝐷‘(1...𝑛))) ⇒ ⊢ (𝐴 ∈ Fin → (𝐷‘𝐴) = (𝑆‘(♯‘𝐴))) | ||
Theorem | subfacf 35143* | The subfactorial is a function from nonnegative integers to nonnegative integers. (Contributed by Mario Carneiro, 19-Jan-2015.) |
⊢ 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥–1-1-onto→𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) ≠ 𝑦)})) & ⊢ 𝑆 = (𝑛 ∈ ℕ0 ↦ (𝐷‘(1...𝑛))) ⇒ ⊢ 𝑆:ℕ0⟶ℕ0 | ||
Theorem | subfaclefac 35144* | The subfactorial is less than the factorial. (Contributed by Mario Carneiro, 19-Jan-2015.) |
⊢ 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥–1-1-onto→𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) ≠ 𝑦)})) & ⊢ 𝑆 = (𝑛 ∈ ℕ0 ↦ (𝐷‘(1...𝑛))) ⇒ ⊢ (𝑁 ∈ ℕ0 → (𝑆‘𝑁) ≤ (!‘𝑁)) | ||
Theorem | subfac0 35145* | The subfactorial at zero. (Contributed by Mario Carneiro, 19-Jan-2015.) |
⊢ 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥–1-1-onto→𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) ≠ 𝑦)})) & ⊢ 𝑆 = (𝑛 ∈ ℕ0 ↦ (𝐷‘(1...𝑛))) ⇒ ⊢ (𝑆‘0) = 1 | ||
Theorem | subfac1 35146* | The subfactorial at one. (Contributed by Mario Carneiro, 19-Jan-2015.) |
⊢ 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥–1-1-onto→𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) ≠ 𝑦)})) & ⊢ 𝑆 = (𝑛 ∈ ℕ0 ↦ (𝐷‘(1...𝑛))) ⇒ ⊢ (𝑆‘1) = 0 | ||
Theorem | subfacp1lem1 35147* | Lemma for subfacp1 35154. The set 𝐾 together with {1, 𝑀} partitions the set 1...(𝑁 + 1). (Contributed by Mario Carneiro, 23-Jan-2015.) |
⊢ 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥–1-1-onto→𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) ≠ 𝑦)})) & ⊢ 𝑆 = (𝑛 ∈ ℕ0 ↦ (𝐷‘(1...𝑛))) & ⊢ 𝐴 = {𝑓 ∣ (𝑓:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ∧ ∀𝑦 ∈ (1...(𝑁 + 1))(𝑓‘𝑦) ≠ 𝑦)} & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑀 ∈ (2...(𝑁 + 1))) & ⊢ 𝑀 ∈ V & ⊢ 𝐾 = ((2...(𝑁 + 1)) ∖ {𝑀}) ⇒ ⊢ (𝜑 → ((𝐾 ∩ {1, 𝑀}) = ∅ ∧ (𝐾 ∪ {1, 𝑀}) = (1...(𝑁 + 1)) ∧ (♯‘𝐾) = (𝑁 − 1))) | ||
Theorem | subfacp1lem2a 35148* | Lemma for subfacp1 35154. Properties of a bijection on 𝐾 augmented with the two-element flip to get a bijection on 𝐾 ∪ {1, 𝑀}. (Contributed by Mario Carneiro, 23-Jan-2015.) |
⊢ 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥–1-1-onto→𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) ≠ 𝑦)})) & ⊢ 𝑆 = (𝑛 ∈ ℕ0 ↦ (𝐷‘(1...𝑛))) & ⊢ 𝐴 = {𝑓 ∣ (𝑓:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ∧ ∀𝑦 ∈ (1...(𝑁 + 1))(𝑓‘𝑦) ≠ 𝑦)} & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑀 ∈ (2...(𝑁 + 1))) & ⊢ 𝑀 ∈ V & ⊢ 𝐾 = ((2...(𝑁 + 1)) ∖ {𝑀}) & ⊢ 𝐹 = (𝐺 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉}) & ⊢ (𝜑 → 𝐺:𝐾–1-1-onto→𝐾) ⇒ ⊢ (𝜑 → (𝐹:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ∧ (𝐹‘1) = 𝑀 ∧ (𝐹‘𝑀) = 1)) | ||
Theorem | subfacp1lem2b 35149* | Lemma for subfacp1 35154. Properties of a bijection on 𝐾 augmented with the two-element flip to get a bijection on 𝐾 ∪ {1, 𝑀}. (Contributed by Mario Carneiro, 23-Jan-2015.) |
⊢ 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥–1-1-onto→𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) ≠ 𝑦)})) & ⊢ 𝑆 = (𝑛 ∈ ℕ0 ↦ (𝐷‘(1...𝑛))) & ⊢ 𝐴 = {𝑓 ∣ (𝑓:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ∧ ∀𝑦 ∈ (1...(𝑁 + 1))(𝑓‘𝑦) ≠ 𝑦)} & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑀 ∈ (2...(𝑁 + 1))) & ⊢ 𝑀 ∈ V & ⊢ 𝐾 = ((2...(𝑁 + 1)) ∖ {𝑀}) & ⊢ 𝐹 = (𝐺 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉}) & ⊢ (𝜑 → 𝐺:𝐾–1-1-onto→𝐾) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐾) → (𝐹‘𝑋) = (𝐺‘𝑋)) | ||
Theorem | subfacp1lem3 35150* | Lemma for subfacp1 35154. In subfacp1lem6 35153 we cut up the set of all derangements on 1...(𝑁 + 1) first according to the value at 1, and then by whether or not (𝑓‘(𝑓‘1)) = 1. In this lemma, we show that the subset of all 𝑁 + 1 derangements that satisfy this for fixed 𝑀 = (𝑓‘1) is in bijection with 𝑁 − 1 derangements, by simply dropping the 𝑥 = 1 and 𝑥 = 𝑀 points from the function to get a derangement on 𝐾 = (1...(𝑁 − 1)) ∖ {1, 𝑀}. (Contributed by Mario Carneiro, 23-Jan-2015.) |
⊢ 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥–1-1-onto→𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) ≠ 𝑦)})) & ⊢ 𝑆 = (𝑛 ∈ ℕ0 ↦ (𝐷‘(1...𝑛))) & ⊢ 𝐴 = {𝑓 ∣ (𝑓:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ∧ ∀𝑦 ∈ (1...(𝑁 + 1))(𝑓‘𝑦) ≠ 𝑦)} & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑀 ∈ (2...(𝑁 + 1))) & ⊢ 𝑀 ∈ V & ⊢ 𝐾 = ((2...(𝑁 + 1)) ∖ {𝑀}) & ⊢ 𝐵 = {𝑔 ∈ 𝐴 ∣ ((𝑔‘1) = 𝑀 ∧ (𝑔‘𝑀) = 1)} & ⊢ 𝐶 = {𝑓 ∣ (𝑓:𝐾–1-1-onto→𝐾 ∧ ∀𝑦 ∈ 𝐾 (𝑓‘𝑦) ≠ 𝑦)} ⇒ ⊢ (𝜑 → (♯‘𝐵) = (𝑆‘(𝑁 − 1))) | ||
Theorem | subfacp1lem4 35151* | Lemma for subfacp1 35154. The function 𝐹, which swaps 1 with 𝑀 and leaves all other elements alone, is a bijection of order 2, i.e. it is its own inverse. (Contributed by Mario Carneiro, 19-Jan-2015.) |
⊢ 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥–1-1-onto→𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) ≠ 𝑦)})) & ⊢ 𝑆 = (𝑛 ∈ ℕ0 ↦ (𝐷‘(1...𝑛))) & ⊢ 𝐴 = {𝑓 ∣ (𝑓:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ∧ ∀𝑦 ∈ (1...(𝑁 + 1))(𝑓‘𝑦) ≠ 𝑦)} & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑀 ∈ (2...(𝑁 + 1))) & ⊢ 𝑀 ∈ V & ⊢ 𝐾 = ((2...(𝑁 + 1)) ∖ {𝑀}) & ⊢ 𝐵 = {𝑔 ∈ 𝐴 ∣ ((𝑔‘1) = 𝑀 ∧ (𝑔‘𝑀) ≠ 1)} & ⊢ 𝐹 = (( I ↾ 𝐾) ∪ {〈1, 𝑀〉, 〈𝑀, 1〉}) ⇒ ⊢ (𝜑 → ◡𝐹 = 𝐹) | ||
Theorem | subfacp1lem5 35152* | Lemma for subfacp1 35154. In subfacp1lem6 35153 we cut up the set of all derangements on 1...(𝑁 + 1) first according to the value at 1, and then by whether or not (𝑓‘(𝑓‘1)) = 1. In this lemma, we show that the subset of all 𝑁 + 1 derangements with (𝑓‘(𝑓‘1)) ≠ 1 for fixed 𝑀 = (𝑓‘1) is in bijection with derangements of 2...(𝑁 + 1), because pre-composing with the function 𝐹 swaps 1 and 𝑀 and turns the function into a bijection with (𝑓‘1) = 1 and (𝑓‘𝑥) ≠ 𝑥 for all other 𝑥, so dropping the point at 1 yields a derangement on the 𝑁 remaining points. (Contributed by Mario Carneiro, 23-Jan-2015.) |
⊢ 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥–1-1-onto→𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) ≠ 𝑦)})) & ⊢ 𝑆 = (𝑛 ∈ ℕ0 ↦ (𝐷‘(1...𝑛))) & ⊢ 𝐴 = {𝑓 ∣ (𝑓:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ∧ ∀𝑦 ∈ (1...(𝑁 + 1))(𝑓‘𝑦) ≠ 𝑦)} & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑀 ∈ (2...(𝑁 + 1))) & ⊢ 𝑀 ∈ V & ⊢ 𝐾 = ((2...(𝑁 + 1)) ∖ {𝑀}) & ⊢ 𝐵 = {𝑔 ∈ 𝐴 ∣ ((𝑔‘1) = 𝑀 ∧ (𝑔‘𝑀) ≠ 1)} & ⊢ 𝐹 = (( I ↾ 𝐾) ∪ {〈1, 𝑀〉, 〈𝑀, 1〉}) & ⊢ 𝐶 = {𝑓 ∣ (𝑓:(2...(𝑁 + 1))–1-1-onto→(2...(𝑁 + 1)) ∧ ∀𝑦 ∈ (2...(𝑁 + 1))(𝑓‘𝑦) ≠ 𝑦)} ⇒ ⊢ (𝜑 → (♯‘𝐵) = (𝑆‘𝑁)) | ||
Theorem | subfacp1lem6 35153* | Lemma for subfacp1 35154. By induction, we cut up the set of all derangements on 𝑁 + 1 according to the 𝑁 possible values of (𝑓‘1) (since (𝑓‘1) ≠ 1), and for each set for fixed 𝑀 = (𝑓‘1), the subset of derangements with (𝑓‘𝑀) = 1 has size 𝑆(𝑁 − 1) (by subfacp1lem3 35150), while the subset with (𝑓‘𝑀) ≠ 1 has size 𝑆(𝑁) (by subfacp1lem5 35152). Adding it all up yields the desired equation 𝑁(𝑆(𝑁) + 𝑆(𝑁 − 1)) for the number of derangements on 𝑁 + 1. (Contributed by Mario Carneiro, 22-Jan-2015.) |
⊢ 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥–1-1-onto→𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) ≠ 𝑦)})) & ⊢ 𝑆 = (𝑛 ∈ ℕ0 ↦ (𝐷‘(1...𝑛))) & ⊢ 𝐴 = {𝑓 ∣ (𝑓:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ∧ ∀𝑦 ∈ (1...(𝑁 + 1))(𝑓‘𝑦) ≠ 𝑦)} ⇒ ⊢ (𝑁 ∈ ℕ → (𝑆‘(𝑁 + 1)) = (𝑁 · ((𝑆‘𝑁) + (𝑆‘(𝑁 − 1))))) | ||
Theorem | subfacp1 35154* | A two-term recurrence for the subfactorial. This theorem allows to forget the combinatorial definition of the derangement number in favor of the recursive definition provided by this theorem and subfac0 35145, subfac1 35146. (Contributed by Mario Carneiro, 23-Jan-2015.) |
⊢ 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥–1-1-onto→𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) ≠ 𝑦)})) & ⊢ 𝑆 = (𝑛 ∈ ℕ0 ↦ (𝐷‘(1...𝑛))) ⇒ ⊢ (𝑁 ∈ ℕ → (𝑆‘(𝑁 + 1)) = (𝑁 · ((𝑆‘𝑁) + (𝑆‘(𝑁 − 1))))) | ||
Theorem | subfacval2 35155* | A closed-form expression for the subfactorial. (Contributed by Mario Carneiro, 23-Jan-2015.) |
⊢ 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥–1-1-onto→𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) ≠ 𝑦)})) & ⊢ 𝑆 = (𝑛 ∈ ℕ0 ↦ (𝐷‘(1...𝑛))) ⇒ ⊢ (𝑁 ∈ ℕ0 → (𝑆‘𝑁) = ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)((-1↑𝑘) / (!‘𝑘)))) | ||
Theorem | subfaclim 35156* | The subfactorial converges rapidly to 𝑁! / e. This is part of Metamath 100 proof #88. (Contributed by Mario Carneiro, 23-Jan-2015.) |
⊢ 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥–1-1-onto→𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) ≠ 𝑦)})) & ⊢ 𝑆 = (𝑛 ∈ ℕ0 ↦ (𝐷‘(1...𝑛))) ⇒ ⊢ (𝑁 ∈ ℕ → (abs‘(((!‘𝑁) / e) − (𝑆‘𝑁))) < (1 / 𝑁)) | ||
Theorem | subfacval3 35157* | Another closed form expression for the subfactorial. The expression ⌊‘(𝑥 + 1 / 2) is a way of saying "rounded to the nearest integer". (Contributed by Mario Carneiro, 23-Jan-2015.) |
⊢ 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥–1-1-onto→𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) ≠ 𝑦)})) & ⊢ 𝑆 = (𝑛 ∈ ℕ0 ↦ (𝐷‘(1...𝑛))) ⇒ ⊢ (𝑁 ∈ ℕ → (𝑆‘𝑁) = (⌊‘(((!‘𝑁) / e) + (1 / 2)))) | ||
Theorem | derangfmla 35158* | The derangements formula, which expresses the number of derangements of a finite nonempty set in terms of the factorial. The expression ⌊‘(𝑥 + 1 / 2) is a way of saying "rounded to the nearest integer". This is part of Metamath 100 proof #88. (Contributed by Mario Carneiro, 23-Jan-2015.) |
⊢ 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥–1-1-onto→𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) ≠ 𝑦)})) ⇒ ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → (𝐷‘𝐴) = (⌊‘(((!‘(♯‘𝐴)) / e) + (1 / 2)))) | ||
Theorem | erdszelem1 35159* | Lemma for erdsze 35170. (Contributed by Mario Carneiro, 22-Jan-2015.) |
⊢ 𝑆 = {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐴 ∈ 𝑦)} ⇒ ⊢ (𝑋 ∈ 𝑆 ↔ (𝑋 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑋) Isom < , 𝑂 (𝑋, (𝐹 “ 𝑋)) ∧ 𝐴 ∈ 𝑋)) | ||
Theorem | erdszelem2 35160* | Lemma for erdsze 35170. (Contributed by Mario Carneiro, 22-Jan-2015.) |
⊢ 𝑆 = {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐴 ∈ 𝑦)} ⇒ ⊢ ((♯ “ 𝑆) ∈ Fin ∧ (♯ “ 𝑆) ⊆ ℕ) | ||
Theorem | erdszelem3 35161* | Lemma for erdsze 35170. (Contributed by Mario Carneiro, 22-Jan-2015.) |
⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐹:(1...𝑁)–1-1→ℝ) & ⊢ 𝐾 = (𝑥 ∈ (1...𝑁) ↦ sup((♯ “ {𝑦 ∈ 𝒫 (1...𝑥) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝑥 ∈ 𝑦)}), ℝ, < )) ⇒ ⊢ (𝐴 ∈ (1...𝑁) → (𝐾‘𝐴) = sup((♯ “ {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐴 ∈ 𝑦)}), ℝ, < )) | ||
Theorem | erdszelem4 35162* | Lemma for erdsze 35170. (Contributed by Mario Carneiro, 22-Jan-2015.) |
⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐹:(1...𝑁)–1-1→ℝ) & ⊢ 𝐾 = (𝑥 ∈ (1...𝑁) ↦ sup((♯ “ {𝑦 ∈ 𝒫 (1...𝑥) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝑥 ∈ 𝑦)}), ℝ, < )) & ⊢ 𝑂 Or ℝ ⇒ ⊢ ((𝜑 ∧ 𝐴 ∈ (1...𝑁)) → {𝐴} ∈ {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐴 ∈ 𝑦)}) | ||
Theorem | erdszelem5 35163* | Lemma for erdsze 35170. (Contributed by Mario Carneiro, 22-Jan-2015.) |
⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐹:(1...𝑁)–1-1→ℝ) & ⊢ 𝐾 = (𝑥 ∈ (1...𝑁) ↦ sup((♯ “ {𝑦 ∈ 𝒫 (1...𝑥) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝑥 ∈ 𝑦)}), ℝ, < )) & ⊢ 𝑂 Or ℝ ⇒ ⊢ ((𝜑 ∧ 𝐴 ∈ (1...𝑁)) → (𝐾‘𝐴) ∈ (♯ “ {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐴 ∈ 𝑦)})) | ||
Theorem | erdszelem6 35164* | Lemma for erdsze 35170. (Contributed by Mario Carneiro, 22-Jan-2015.) |
⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐹:(1...𝑁)–1-1→ℝ) & ⊢ 𝐾 = (𝑥 ∈ (1...𝑁) ↦ sup((♯ “ {𝑦 ∈ 𝒫 (1...𝑥) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝑥 ∈ 𝑦)}), ℝ, < )) & ⊢ 𝑂 Or ℝ ⇒ ⊢ (𝜑 → 𝐾:(1...𝑁)⟶ℕ) | ||
Theorem | erdszelem7 35165* | Lemma for erdsze 35170. (Contributed by Mario Carneiro, 22-Jan-2015.) |
⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐹:(1...𝑁)–1-1→ℝ) & ⊢ 𝐾 = (𝑥 ∈ (1...𝑁) ↦ sup((♯ “ {𝑦 ∈ 𝒫 (1...𝑥) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝑥 ∈ 𝑦)}), ℝ, < )) & ⊢ 𝑂 Or ℝ & ⊢ (𝜑 → 𝐴 ∈ (1...𝑁)) & ⊢ (𝜑 → 𝑅 ∈ ℕ) & ⊢ (𝜑 → ¬ (𝐾‘𝐴) ∈ (1...(𝑅 − 1))) ⇒ ⊢ (𝜑 → ∃𝑠 ∈ 𝒫 (1...𝑁)(𝑅 ≤ (♯‘𝑠) ∧ (𝐹 ↾ 𝑠) Isom < , 𝑂 (𝑠, (𝐹 “ 𝑠)))) | ||
Theorem | erdszelem8 35166* | Lemma for erdsze 35170. (Contributed by Mario Carneiro, 22-Jan-2015.) |
⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐹:(1...𝑁)–1-1→ℝ) & ⊢ 𝐾 = (𝑥 ∈ (1...𝑁) ↦ sup((♯ “ {𝑦 ∈ 𝒫 (1...𝑥) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝑥 ∈ 𝑦)}), ℝ, < )) & ⊢ 𝑂 Or ℝ & ⊢ (𝜑 → 𝐴 ∈ (1...𝑁)) & ⊢ (𝜑 → 𝐵 ∈ (1...𝑁)) & ⊢ (𝜑 → 𝐴 < 𝐵) ⇒ ⊢ (𝜑 → ((𝐾‘𝐴) = (𝐾‘𝐵) → ¬ (𝐹‘𝐴)𝑂(𝐹‘𝐵))) | ||
Theorem | erdszelem9 35167* | Lemma for erdsze 35170. (Contributed by Mario Carneiro, 22-Jan-2015.) |
⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐹:(1...𝑁)–1-1→ℝ) & ⊢ 𝐼 = (𝑥 ∈ (1...𝑁) ↦ sup((♯ “ {𝑦 ∈ 𝒫 (1...𝑥) ∣ ((𝐹 ↾ 𝑦) Isom < , < (𝑦, (𝐹 “ 𝑦)) ∧ 𝑥 ∈ 𝑦)}), ℝ, < )) & ⊢ 𝐽 = (𝑥 ∈ (1...𝑁) ↦ sup((♯ “ {𝑦 ∈ 𝒫 (1...𝑥) ∣ ((𝐹 ↾ 𝑦) Isom < , ◡ < (𝑦, (𝐹 “ 𝑦)) ∧ 𝑥 ∈ 𝑦)}), ℝ, < )) & ⊢ 𝑇 = (𝑛 ∈ (1...𝑁) ↦ 〈(𝐼‘𝑛), (𝐽‘𝑛)〉) ⇒ ⊢ (𝜑 → 𝑇:(1...𝑁)–1-1→(ℕ × ℕ)) | ||
Theorem | erdszelem10 35168* | Lemma for erdsze 35170. (Contributed by Mario Carneiro, 22-Jan-2015.) |
⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐹:(1...𝑁)–1-1→ℝ) & ⊢ 𝐼 = (𝑥 ∈ (1...𝑁) ↦ sup((♯ “ {𝑦 ∈ 𝒫 (1...𝑥) ∣ ((𝐹 ↾ 𝑦) Isom < , < (𝑦, (𝐹 “ 𝑦)) ∧ 𝑥 ∈ 𝑦)}), ℝ, < )) & ⊢ 𝐽 = (𝑥 ∈ (1...𝑁) ↦ sup((♯ “ {𝑦 ∈ 𝒫 (1...𝑥) ∣ ((𝐹 ↾ 𝑦) Isom < , ◡ < (𝑦, (𝐹 “ 𝑦)) ∧ 𝑥 ∈ 𝑦)}), ℝ, < )) & ⊢ 𝑇 = (𝑛 ∈ (1...𝑁) ↦ 〈(𝐼‘𝑛), (𝐽‘𝑛)〉) & ⊢ (𝜑 → 𝑅 ∈ ℕ) & ⊢ (𝜑 → 𝑆 ∈ ℕ) & ⊢ (𝜑 → ((𝑅 − 1) · (𝑆 − 1)) < 𝑁) ⇒ ⊢ (𝜑 → ∃𝑚 ∈ (1...𝑁)(¬ (𝐼‘𝑚) ∈ (1...(𝑅 − 1)) ∨ ¬ (𝐽‘𝑚) ∈ (1...(𝑆 − 1)))) | ||
Theorem | erdszelem11 35169* | Lemma for erdsze 35170. (Contributed by Mario Carneiro, 22-Jan-2015.) |
⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐹:(1...𝑁)–1-1→ℝ) & ⊢ 𝐼 = (𝑥 ∈ (1...𝑁) ↦ sup((♯ “ {𝑦 ∈ 𝒫 (1...𝑥) ∣ ((𝐹 ↾ 𝑦) Isom < , < (𝑦, (𝐹 “ 𝑦)) ∧ 𝑥 ∈ 𝑦)}), ℝ, < )) & ⊢ 𝐽 = (𝑥 ∈ (1...𝑁) ↦ sup((♯ “ {𝑦 ∈ 𝒫 (1...𝑥) ∣ ((𝐹 ↾ 𝑦) Isom < , ◡ < (𝑦, (𝐹 “ 𝑦)) ∧ 𝑥 ∈ 𝑦)}), ℝ, < )) & ⊢ 𝑇 = (𝑛 ∈ (1...𝑁) ↦ 〈(𝐼‘𝑛), (𝐽‘𝑛)〉) & ⊢ (𝜑 → 𝑅 ∈ ℕ) & ⊢ (𝜑 → 𝑆 ∈ ℕ) & ⊢ (𝜑 → ((𝑅 − 1) · (𝑆 − 1)) < 𝑁) ⇒ ⊢ (𝜑 → ∃𝑠 ∈ 𝒫 (1...𝑁)((𝑅 ≤ (♯‘𝑠) ∧ (𝐹 ↾ 𝑠) Isom < , < (𝑠, (𝐹 “ 𝑠))) ∨ (𝑆 ≤ (♯‘𝑠) ∧ (𝐹 ↾ 𝑠) Isom < , ◡ < (𝑠, (𝐹 “ 𝑠))))) | ||
Theorem | erdsze 35170* | The Erdős-Szekeres theorem. For any injective sequence 𝐹 on the reals of length at least (𝑅 − 1) · (𝑆 − 1) + 1, there is either a subsequence of length at least 𝑅 on which 𝐹 is increasing (i.e. a < , < order isomorphism) or a subsequence of length at least 𝑆 on which 𝐹 is decreasing (i.e. a < , ◡ < order isomorphism, recalling that ◡ < is the "greater than" relation). This is part of Metamath 100 proof #73. (Contributed by Mario Carneiro, 22-Jan-2015.) |
⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐹:(1...𝑁)–1-1→ℝ) & ⊢ (𝜑 → 𝑅 ∈ ℕ) & ⊢ (𝜑 → 𝑆 ∈ ℕ) & ⊢ (𝜑 → ((𝑅 − 1) · (𝑆 − 1)) < 𝑁) ⇒ ⊢ (𝜑 → ∃𝑠 ∈ 𝒫 (1...𝑁)((𝑅 ≤ (♯‘𝑠) ∧ (𝐹 ↾ 𝑠) Isom < , < (𝑠, (𝐹 “ 𝑠))) ∨ (𝑆 ≤ (♯‘𝑠) ∧ (𝐹 ↾ 𝑠) Isom < , ◡ < (𝑠, (𝐹 “ 𝑠))))) | ||
Theorem | erdsze2lem1 35171* | Lemma for erdsze2 35173. (Contributed by Mario Carneiro, 22-Jan-2015.) |
⊢ (𝜑 → 𝑅 ∈ ℕ) & ⊢ (𝜑 → 𝑆 ∈ ℕ) & ⊢ (𝜑 → 𝐹:𝐴–1-1→ℝ) & ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ 𝑁 = ((𝑅 − 1) · (𝑆 − 1)) & ⊢ (𝜑 → 𝑁 < (♯‘𝐴)) ⇒ ⊢ (𝜑 → ∃𝑓(𝑓:(1...(𝑁 + 1))–1-1→𝐴 ∧ 𝑓 Isom < , < ((1...(𝑁 + 1)), ran 𝑓))) | ||
Theorem | erdsze2lem2 35172* | Lemma for erdsze2 35173. (Contributed by Mario Carneiro, 22-Jan-2015.) |
⊢ (𝜑 → 𝑅 ∈ ℕ) & ⊢ (𝜑 → 𝑆 ∈ ℕ) & ⊢ (𝜑 → 𝐹:𝐴–1-1→ℝ) & ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ 𝑁 = ((𝑅 − 1) · (𝑆 − 1)) & ⊢ (𝜑 → 𝑁 < (♯‘𝐴)) & ⊢ (𝜑 → 𝐺:(1...(𝑁 + 1))–1-1→𝐴) & ⊢ (𝜑 → 𝐺 Isom < , < ((1...(𝑁 + 1)), ran 𝐺)) ⇒ ⊢ (𝜑 → ∃𝑠 ∈ 𝒫 𝐴((𝑅 ≤ (♯‘𝑠) ∧ (𝐹 ↾ 𝑠) Isom < , < (𝑠, (𝐹 “ 𝑠))) ∨ (𝑆 ≤ (♯‘𝑠) ∧ (𝐹 ↾ 𝑠) Isom < , ◡ < (𝑠, (𝐹 “ 𝑠))))) | ||
Theorem | erdsze2 35173* | Generalize the statement of the Erdős-Szekeres theorem erdsze 35170 to "sequences" indexed by an arbitrary subset of ℝ, which can be infinite. This is part of Metamath 100 proof #73. (Contributed by Mario Carneiro, 22-Jan-2015.) |
⊢ (𝜑 → 𝑅 ∈ ℕ) & ⊢ (𝜑 → 𝑆 ∈ ℕ) & ⊢ (𝜑 → 𝐹:𝐴–1-1→ℝ) & ⊢ (𝜑 → 𝐴 ⊆ ℝ) & ⊢ (𝜑 → ((𝑅 − 1) · (𝑆 − 1)) < (♯‘𝐴)) ⇒ ⊢ (𝜑 → ∃𝑠 ∈ 𝒫 𝐴((𝑅 ≤ (♯‘𝑠) ∧ (𝐹 ↾ 𝑠) Isom < , < (𝑠, (𝐹 “ 𝑠))) ∨ (𝑆 ≤ (♯‘𝑠) ∧ (𝐹 ↾ 𝑠) Isom < , ◡ < (𝑠, (𝐹 “ 𝑠))))) | ||
Theorem | kur14lem1 35174 | Lemma for kur14 35184. (Contributed by Mario Carneiro, 17-Feb-2015.) |
⊢ 𝐴 ⊆ 𝑋 & ⊢ (𝑋 ∖ 𝐴) ∈ 𝑇 & ⊢ (𝐾‘𝐴) ∈ 𝑇 ⇒ ⊢ (𝑁 = 𝐴 → (𝑁 ⊆ 𝑋 ∧ {(𝑋 ∖ 𝑁), (𝐾‘𝑁)} ⊆ 𝑇)) | ||
Theorem | kur14lem2 35175 | Lemma for kur14 35184. Write interior in terms of closure and complement: 𝑖𝐴 = 𝑐𝑘𝑐𝐴 where 𝑐 is complement and 𝑘 is closure. (Contributed by Mario Carneiro, 11-Feb-2015.) |
⊢ 𝐽 ∈ Top & ⊢ 𝑋 = ∪ 𝐽 & ⊢ 𝐾 = (cls‘𝐽) & ⊢ 𝐼 = (int‘𝐽) & ⊢ 𝐴 ⊆ 𝑋 ⇒ ⊢ (𝐼‘𝐴) = (𝑋 ∖ (𝐾‘(𝑋 ∖ 𝐴))) | ||
Theorem | kur14lem3 35176 | Lemma for kur14 35184. A closure is a subset of the base set. (Contributed by Mario Carneiro, 11-Feb-2015.) |
⊢ 𝐽 ∈ Top & ⊢ 𝑋 = ∪ 𝐽 & ⊢ 𝐾 = (cls‘𝐽) & ⊢ 𝐼 = (int‘𝐽) & ⊢ 𝐴 ⊆ 𝑋 ⇒ ⊢ (𝐾‘𝐴) ⊆ 𝑋 | ||
Theorem | kur14lem4 35177 | Lemma for kur14 35184. Complementation is an involution on the set of subsets of a topology. (Contributed by Mario Carneiro, 11-Feb-2015.) |
⊢ 𝐽 ∈ Top & ⊢ 𝑋 = ∪ 𝐽 & ⊢ 𝐾 = (cls‘𝐽) & ⊢ 𝐼 = (int‘𝐽) & ⊢ 𝐴 ⊆ 𝑋 ⇒ ⊢ (𝑋 ∖ (𝑋 ∖ 𝐴)) = 𝐴 | ||
Theorem | kur14lem5 35178 | Lemma for kur14 35184. Closure is an idempotent operation in the set of subsets of a topology. (Contributed by Mario Carneiro, 11-Feb-2015.) |
⊢ 𝐽 ∈ Top & ⊢ 𝑋 = ∪ 𝐽 & ⊢ 𝐾 = (cls‘𝐽) & ⊢ 𝐼 = (int‘𝐽) & ⊢ 𝐴 ⊆ 𝑋 ⇒ ⊢ (𝐾‘(𝐾‘𝐴)) = (𝐾‘𝐴) | ||
Theorem | kur14lem6 35179 | Lemma for kur14 35184. If 𝑘 is the complementation operator and 𝑘 is the closure operator, this expresses the identity 𝑘𝑐𝑘𝐴 = 𝑘𝑐𝑘𝑐𝑘𝑐𝑘𝐴 for any subset 𝐴 of the topological space. This is the key result that lets us cut down long enough sequences of 𝑐𝑘𝑐𝑘... that arise when applying closure and complement repeatedly to 𝐴, and explains why we end up with a number as large as 14, yet no larger. (Contributed by Mario Carneiro, 11-Feb-2015.) |
⊢ 𝐽 ∈ Top & ⊢ 𝑋 = ∪ 𝐽 & ⊢ 𝐾 = (cls‘𝐽) & ⊢ 𝐼 = (int‘𝐽) & ⊢ 𝐴 ⊆ 𝑋 & ⊢ 𝐵 = (𝑋 ∖ (𝐾‘𝐴)) ⇒ ⊢ (𝐾‘(𝐼‘(𝐾‘𝐵))) = (𝐾‘𝐵) | ||
Theorem | kur14lem7 35180 | Lemma for kur14 35184: main proof. The set 𝑇 here contains all the distinct combinations of 𝑘 and 𝑐 that can arise, and we prove here that applying 𝑘 or 𝑐 to any element of 𝑇 yields another element of 𝑇. In operator shorthand, we have 𝑇 = {𝐴, 𝑐𝐴, 𝑘𝐴 , 𝑐𝑘𝐴, 𝑘𝑐𝐴, 𝑐𝑘𝑐𝐴, 𝑘𝑐𝑘𝐴, 𝑐𝑘𝑐𝑘𝐴, 𝑘𝑐𝑘𝑐𝐴, 𝑐𝑘𝑐𝑘𝑐𝐴, 𝑘𝑐𝑘𝑐𝑘𝐴, 𝑐𝑘𝑐𝑘𝑐𝑘𝐴, 𝑘𝑐𝑘𝑐𝑘𝑐𝐴, 𝑐𝑘𝑐𝑘𝑐𝑘𝑐𝐴}. From the identities 𝑐𝑐𝐴 = 𝐴 and 𝑘𝑘𝐴 = 𝑘𝐴, we can reduce any operator combination containing two adjacent identical operators, which is why the list only contains alternating sequences. The reason the sequences don't keep going after a certain point is due to the identity 𝑘𝑐𝑘𝐴 = 𝑘𝑐𝑘𝑐𝑘𝑐𝑘𝐴, proved in kur14lem6 35179. (Contributed by Mario Carneiro, 11-Feb-2015.) |
⊢ 𝐽 ∈ Top & ⊢ 𝑋 = ∪ 𝐽 & ⊢ 𝐾 = (cls‘𝐽) & ⊢ 𝐼 = (int‘𝐽) & ⊢ 𝐴 ⊆ 𝑋 & ⊢ 𝐵 = (𝑋 ∖ (𝐾‘𝐴)) & ⊢ 𝐶 = (𝐾‘(𝑋 ∖ 𝐴)) & ⊢ 𝐷 = (𝐼‘(𝐾‘𝐴)) & ⊢ 𝑇 = ((({𝐴, (𝑋 ∖ 𝐴), (𝐾‘𝐴)} ∪ {𝐵, 𝐶, (𝐼‘𝐴)}) ∪ {(𝐾‘𝐵), 𝐷, (𝐾‘(𝐼‘𝐴))}) ∪ ({(𝐼‘𝐶), (𝐾‘𝐷), (𝐼‘(𝐾‘𝐵))} ∪ {(𝐾‘(𝐼‘𝐶)), (𝐼‘(𝐾‘(𝐼‘𝐴)))})) ⇒ ⊢ (𝑁 ∈ 𝑇 → (𝑁 ⊆ 𝑋 ∧ {(𝑋 ∖ 𝑁), (𝐾‘𝑁)} ⊆ 𝑇)) | ||
Theorem | kur14lem8 35181 | Lemma for kur14 35184. Show that the set 𝑇 contains at most 14 elements. (It could be less if some of the operators take the same value for a given set, but Kuratowski showed that this upper bound of 14 is tight in the sense that there exist topological spaces and subsets of these spaces for which all 14 generated sets are distinct, and indeed the real numbers form such a topological space.) (Contributed by Mario Carneiro, 11-Feb-2015.) |
⊢ 𝐽 ∈ Top & ⊢ 𝑋 = ∪ 𝐽 & ⊢ 𝐾 = (cls‘𝐽) & ⊢ 𝐼 = (int‘𝐽) & ⊢ 𝐴 ⊆ 𝑋 & ⊢ 𝐵 = (𝑋 ∖ (𝐾‘𝐴)) & ⊢ 𝐶 = (𝐾‘(𝑋 ∖ 𝐴)) & ⊢ 𝐷 = (𝐼‘(𝐾‘𝐴)) & ⊢ 𝑇 = ((({𝐴, (𝑋 ∖ 𝐴), (𝐾‘𝐴)} ∪ {𝐵, 𝐶, (𝐼‘𝐴)}) ∪ {(𝐾‘𝐵), 𝐷, (𝐾‘(𝐼‘𝐴))}) ∪ ({(𝐼‘𝐶), (𝐾‘𝐷), (𝐼‘(𝐾‘𝐵))} ∪ {(𝐾‘(𝐼‘𝐶)), (𝐼‘(𝐾‘(𝐼‘𝐴)))})) ⇒ ⊢ (𝑇 ∈ Fin ∧ (♯‘𝑇) ≤ ;14) | ||
Theorem | kur14lem9 35182* | Lemma for kur14 35184. Since the set 𝑇 is closed under closure and complement, it contains the minimal set 𝑆 as a subset, so 𝑆 also has at most 14 elements. (Indeed 𝑆 = 𝑇, and it's not hard to prove this, but we don't need it for this proof.) (Contributed by Mario Carneiro, 11-Feb-2015.) |
⊢ 𝐽 ∈ Top & ⊢ 𝑋 = ∪ 𝐽 & ⊢ 𝐾 = (cls‘𝐽) & ⊢ 𝐼 = (int‘𝐽) & ⊢ 𝐴 ⊆ 𝑋 & ⊢ 𝐵 = (𝑋 ∖ (𝐾‘𝐴)) & ⊢ 𝐶 = (𝐾‘(𝑋 ∖ 𝐴)) & ⊢ 𝐷 = (𝐼‘(𝐾‘𝐴)) & ⊢ 𝑇 = ((({𝐴, (𝑋 ∖ 𝐴), (𝐾‘𝐴)} ∪ {𝐵, 𝐶, (𝐼‘𝐴)}) ∪ {(𝐾‘𝐵), 𝐷, (𝐾‘(𝐼‘𝐴))}) ∪ ({(𝐼‘𝐶), (𝐾‘𝐷), (𝐼‘(𝐾‘𝐵))} ∪ {(𝐾‘(𝐼‘𝐶)), (𝐼‘(𝐾‘(𝐼‘𝐴)))})) & ⊢ 𝑆 = ∩ {𝑥 ∈ 𝒫 𝒫 𝑋 ∣ (𝐴 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 {(𝑋 ∖ 𝑦), (𝐾‘𝑦)} ⊆ 𝑥)} ⇒ ⊢ (𝑆 ∈ Fin ∧ (♯‘𝑆) ≤ ;14) | ||
Theorem | kur14lem10 35183* | Lemma for kur14 35184. Discharge the set 𝑇. (Contributed by Mario Carneiro, 11-Feb-2015.) |
⊢ 𝐽 ∈ Top & ⊢ 𝑋 = ∪ 𝐽 & ⊢ 𝐾 = (cls‘𝐽) & ⊢ 𝑆 = ∩ {𝑥 ∈ 𝒫 𝒫 𝑋 ∣ (𝐴 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 {(𝑋 ∖ 𝑦), (𝐾‘𝑦)} ⊆ 𝑥)} & ⊢ 𝐴 ⊆ 𝑋 ⇒ ⊢ (𝑆 ∈ Fin ∧ (♯‘𝑆) ≤ ;14) | ||
Theorem | kur14 35184* | Kuratowski's closure-complement theorem. There are at most 14 sets which can be obtained by the application of the closure and complement operations to a set in a topological space. (Contributed by Mario Carneiro, 11-Feb-2015.) |
⊢ 𝑋 = ∪ 𝐽 & ⊢ 𝐾 = (cls‘𝐽) & ⊢ 𝑆 = ∩ {𝑥 ∈ 𝒫 𝒫 𝑋 ∣ (𝐴 ∈ 𝑥 ∧ ∀𝑦 ∈ 𝑥 {(𝑋 ∖ 𝑦), (𝐾‘𝑦)} ⊆ 𝑥)} ⇒ ⊢ ((𝐽 ∈ Top ∧ 𝐴 ⊆ 𝑋) → (𝑆 ∈ Fin ∧ (♯‘𝑆) ≤ ;14)) | ||
Syntax | cretr 35185 | Extend class notation with the retract relation. |
class Retr | ||
Definition | df-retr 35186* | Define the set of retractions on two topological spaces. We say that 𝑅 is a retraction from 𝐽 to 𝐾. or 𝑅 ∈ (𝐽 Retr 𝐾) iff there is an 𝑆 such that 𝑅:𝐽⟶𝐾, 𝑆:𝐾⟶𝐽 are continuous functions called the retraction and section respectively, and their composite 𝑅 ∘ 𝑆 is homotopic to the identity map. If a retraction exists, we say 𝐽 is a retract of 𝐾. (This terminology is borrowed from HoTT and appears to be nonstandard, although it has similaries to the concept of retract in the category of topological spaces and to a deformation retract in general topology.) Two topological spaces that are retracts of each other are called homotopy equivalent. (Contributed by Mario Carneiro, 11-Feb-2015.) |
⊢ Retr = (𝑗 ∈ Top, 𝑘 ∈ Top ↦ {𝑟 ∈ (𝑗 Cn 𝑘) ∣ ∃𝑠 ∈ (𝑘 Cn 𝑗)((𝑟 ∘ 𝑠)(𝑗 Htpy 𝑗)( I ↾ ∪ 𝑗)) ≠ ∅}) | ||
Syntax | cpconn 35187 | Extend class notation with the class of path-connected topologies. |
class PConn | ||
Syntax | csconn 35188 | Extend class notation with the class of simply connected topologies. |
class SConn | ||
Definition | df-pconn 35189* | Define the class of path-connected topologies. A topology is path-connected if there is a path (a continuous function from the closed unit interval) that goes from 𝑥 to 𝑦 for any points 𝑥, 𝑦 in the space. (Contributed by Mario Carneiro, 11-Feb-2015.) |
⊢ PConn = {𝑗 ∈ Top ∣ ∀𝑥 ∈ ∪ 𝑗∀𝑦 ∈ ∪ 𝑗∃𝑓 ∈ (II Cn 𝑗)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)} | ||
Definition | df-sconn 35190* | Define the class of simply connected topologies. A topology is simply connected if it is path-connected and every loop (continuous path with identical start and endpoint) is contractible to a point (path-homotopic to a constant function). (Contributed by Mario Carneiro, 11-Feb-2015.) |
⊢ SConn = {𝑗 ∈ PConn ∣ ∀𝑓 ∈ (II Cn 𝑗)((𝑓‘0) = (𝑓‘1) → 𝑓( ≃ph‘𝑗)((0[,]1) × {(𝑓‘0)}))} | ||
Theorem | ispconn 35191* | The property of being a path-connected topological space. (Contributed by Mario Carneiro, 11-Feb-2015.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝐽 ∈ PConn ↔ (𝐽 ∈ Top ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦))) | ||
Theorem | pconncn 35192* | The property of being a path-connected topological space. (Contributed by Mario Carneiro, 11-Feb-2015.) |
⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ PConn ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ∃𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = 𝐴 ∧ (𝑓‘1) = 𝐵)) | ||
Theorem | pconntop 35193 | A simply connected space is a topology. (Contributed by Mario Carneiro, 11-Feb-2015.) |
⊢ (𝐽 ∈ PConn → 𝐽 ∈ Top) | ||
Theorem | issconn 35194* | The property of being a simply connected topological space. (Contributed by Mario Carneiro, 11-Feb-2015.) |
⊢ (𝐽 ∈ SConn ↔ (𝐽 ∈ PConn ∧ ∀𝑓 ∈ (II Cn 𝐽)((𝑓‘0) = (𝑓‘1) → 𝑓( ≃ph‘𝐽)((0[,]1) × {(𝑓‘0)})))) | ||
Theorem | sconnpconn 35195 | A simply connected space is path-connected. (Contributed by Mario Carneiro, 11-Feb-2015.) |
⊢ (𝐽 ∈ SConn → 𝐽 ∈ PConn) | ||
Theorem | sconntop 35196 | A simply connected space is a topology. (Contributed by Mario Carneiro, 11-Feb-2015.) |
⊢ (𝐽 ∈ SConn → 𝐽 ∈ Top) | ||
Theorem | sconnpht 35197 | A closed path in a simply connected space is contractible to a point. (Contributed by Mario Carneiro, 11-Feb-2015.) |
⊢ ((𝐽 ∈ SConn ∧ 𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = (𝐹‘1)) → 𝐹( ≃ph‘𝐽)((0[,]1) × {(𝐹‘0)})) | ||
Theorem | cnpconn 35198 | An image of a path-connected space is path-connected. (Contributed by Mario Carneiro, 24-Mar-2015.) |
⊢ 𝑌 = ∪ 𝐾 ⇒ ⊢ ((𝐽 ∈ PConn ∧ 𝐹:𝑋–onto→𝑌 ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) → 𝐾 ∈ PConn) | ||
Theorem | pconnconn 35199 | A path-connected space is connected. (Contributed by Mario Carneiro, 11-Feb-2015.) |
⊢ (𝐽 ∈ PConn → 𝐽 ∈ Conn) | ||
Theorem | txpconn 35200 | The topological product of two path-connected spaces is path-connected. (Contributed by Mario Carneiro, 12-Feb-2015.) |
⊢ ((𝑅 ∈ PConn ∧ 𝑆 ∈ PConn) → (𝑅 ×t 𝑆) ∈ PConn) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |