| Metamath
Proof Explorer Theorem List (p. 352 of 494) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30937) |
(30938-32460) |
(32461-49324) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | f1resrcmplf1d 35101 | If a function's restriction to a subclass of its domain and its restriction to the relative complement of that subclass are both one-to-one, and if the ranges of those two restrictions are disjoint, then the function is itself one-to-one. (Contributed by BTernaryTau, 28-Sep-2023.) |
| ⊢ (𝜑 → 𝐶 ⊆ 𝐴) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ (𝜑 → (𝐹 ↾ 𝐶):𝐶–1-1→𝐵) & ⊢ (𝜑 → (𝐹 ↾ (𝐴 ∖ 𝐶)):(𝐴 ∖ 𝐶)–1-1→𝐵) & ⊢ (𝜑 → ((𝐹 “ 𝐶) ∩ (𝐹 “ (𝐴 ∖ 𝐶))) = ∅) ⇒ ⊢ (𝜑 → 𝐹:𝐴–1-1→𝐵) | ||
| Theorem | funen1cnv 35102 | If a function is equinumerous to ordinal 1, then its converse is also a function. (Contributed by BTernaryTau, 8-Oct-2023.) |
| ⊢ ((Fun 𝐹 ∧ 𝐹 ≈ 1o) → Fun ◡𝐹) | ||
| Theorem | fnrelpredd 35103* | A function that preserves a relation also preserves predecessors. (Contributed by BTernaryTau, 16-Jul-2024.) |
| ⊢ (𝜑 → 𝐹 Fn 𝐴) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐹‘𝑥)𝑆(𝐹‘𝑦))) & ⊢ (𝜑 → 𝐶 ⊆ 𝐴) & ⊢ (𝜑 → 𝐷 ∈ 𝐴) ⇒ ⊢ (𝜑 → Pred(𝑆, (𝐹 “ 𝐶), (𝐹‘𝐷)) = (𝐹 “ Pred(𝑅, 𝐶, 𝐷))) | ||
| Theorem | cardpred 35104 | The cardinality function preserves predecessors. (Contributed by BTernaryTau, 18-Jul-2024.) |
| ⊢ ((𝐴 ⊆ dom card ∧ 𝐵 ∈ dom card) → Pred( E , (card “ 𝐴), (card‘𝐵)) = (card “ Pred( ≺ , 𝐴, 𝐵))) | ||
| Theorem | nummin 35105* | Every nonempty class of numerable sets has a minimal element. (Contributed by BTernaryTau, 18-Jul-2024.) |
| ⊢ ((𝐴 ⊆ dom card ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐴 Pred( ≺ , 𝐴, 𝑥) = ∅) | ||
| Theorem | axnulg 35106 | A generalization of ax-nul 5306 in which 𝑥 and 𝑦 need not be distinct. Note that it is possible to use axc7e 2318 to derive elirrv 9636 from this theorem, which justifies the dependency on ax-reg 9632. Usage of this theorem is discouraged because it depends on ax-13 2377. (Contributed by BTernaryTau, 3-Aug-2025.) (New usage is discouraged.) |
| ⊢ ∃𝑥∀𝑦 ¬ 𝑦 ∈ 𝑥 | ||
| Theorem | axnulALT2 35107* | Alternate proof of axnul 5305, proved from propositional calculus, ax-gen 1795, ax-4 1809, ax-5 1910, and ax-inf2 9681. (Contributed by BTernaryTau, 22-Jun-2025.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ∃𝑥∀𝑦 ¬ 𝑦 ∈ 𝑥 | ||
| Theorem | prcinf 35108* | Any proper class is literally infinite, in the sense that it contains subsets of arbitrarily large finite cardinality. This proof holds regardless of whether the Axiom of Infinity is accepted or negated. (Contributed by BTernaryTau, 22-Jun-2025.) |
| ⊢ (¬ 𝐴 ∈ V → ∀𝑛 ∈ ω ∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝑛)) | ||
| Theorem | fineqvrep 35109* | If the Axiom of Infinity is negated, then the Axiom of Replacement becomes redundant. (Contributed by BTernaryTau, 12-Sep-2024.) |
| ⊢ (Fin = V → (∀𝑤∃𝑦∀𝑧(∀𝑦𝜑 → 𝑧 = 𝑦) → ∃𝑦∀𝑧(𝑧 ∈ 𝑦 ↔ ∃𝑤(𝑤 ∈ 𝑥 ∧ ∀𝑦𝜑)))) | ||
| Theorem | fineqvpow 35110* | If the Axiom of Infinity is negated, then the Axiom of Power Sets becomes redundant. (Contributed by BTernaryTau, 12-Sep-2024.) |
| ⊢ (Fin = V → ∃𝑦∀𝑧(∀𝑤(𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑥) → 𝑧 ∈ 𝑦)) | ||
| Theorem | fineqvac 35111 | If the Axiom of Infinity is negated, then the Axiom of Choice becomes redundant. For a shorter proof using ax-rep 5279 and ax-pow 5365, see fineqvacALT 35112. (Contributed by BTernaryTau, 21-Sep-2024.) |
| ⊢ (Fin = V → CHOICE) | ||
| Theorem | fineqvacALT 35112 | Shorter proof of fineqvac 35111 using ax-rep 5279 and ax-pow 5365. (Contributed by BTernaryTau, 21-Sep-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (Fin = V → CHOICE) | ||
| Theorem | gblacfnacd 35113* | If 𝐹 is a global choice function, then the Axiom of Choice (in the form of the right-hand side of dfac4 10162) holds. Note that 𝐹 must be a proper class by fndmexb 7928. This means we cannot show that the existence of a class that behaves as a global choice function is sufficient because we only have existential quantifiers for sets, not (proper) classes. However, if a class variant of exlimiv 1930 were available, then it could be used alongside the closed form of this theorem to prove that result. (Contributed by BTernaryTau, 12-Dec-2024.) |
| ⊢ (𝜑 → 𝐹 Fn V) & ⊢ (𝜑 → ∀𝑧(𝑧 ≠ ∅ → (𝐹‘𝑧) ∈ 𝑧)) ⇒ ⊢ (𝜑 → ∀𝑥∃𝑓(𝑓 Fn 𝑥 ∧ ∀𝑧 ∈ 𝑥 (𝑧 ≠ ∅ → (𝑓‘𝑧) ∈ 𝑧))) | ||
| Theorem | wevgblacfn 35114* | If 𝑅 is a well-ordering of the universe, then 𝐹 is a global choice function. Here 𝐹 maps each set 𝑧 to its minimal element with respect to 𝑅 (except when 𝑧 is the empty set, in which case it is mapped to the empty set, though this is only done for convenience). (Contributed by BTernaryTau, 29-Jun-2025.) |
| ⊢ 𝐹 = (𝑧 ∈ V ↦ ∪ {𝑦 ∈ 𝑧 ∣ ∀𝑥 ∈ 𝑧 ¬ 𝑥𝑅𝑦}) ⇒ ⊢ (𝑅 We V → (𝐹 Fn V ∧ ∀𝑧(𝑧 ≠ ∅ → (𝐹‘𝑧) ∈ 𝑧))) | ||
| Theorem | zltp1ne 35115 | Integer ordering relation. (Contributed by BTernaryTau, 24-Sep-2023.) |
| ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 + 1) < 𝐵 ↔ (𝐴 < 𝐵 ∧ 𝐵 ≠ (𝐴 + 1)))) | ||
| Theorem | nnltp1ne 35116 | Positive integer ordering relation. (Contributed by BTernaryTau, 24-Sep-2023.) |
| ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴 + 1) < 𝐵 ↔ (𝐴 < 𝐵 ∧ 𝐵 ≠ (𝐴 + 1)))) | ||
| Theorem | nn0ltp1ne 35117 | Nonnegative integer ordering relation. (Contributed by BTernaryTau, 24-Sep-2023.) |
| ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0) → ((𝐴 + 1) < 𝐵 ↔ (𝐴 < 𝐵 ∧ 𝐵 ≠ (𝐴 + 1)))) | ||
| Theorem | 0nn0m1nnn0 35118 | A number is zero if and only if it's a nonnegative integer that becomes negative after subtracting 1. (Contributed by BTernaryTau, 30-Sep-2023.) |
| ⊢ (𝑁 = 0 ↔ (𝑁 ∈ ℕ0 ∧ ¬ (𝑁 − 1) ∈ ℕ0)) | ||
| Theorem | f1resfz0f1d 35119 | If a function with a sequence of nonnegative integers (starting at 0) as its domain is one-to-one when 0 is removed, and if the range of that restriction does not contain the function's value at the removed integer, then the function is itself one-to-one. (Contributed by BTernaryTau, 4-Oct-2023.) |
| ⊢ (𝜑 → 𝐾 ∈ ℕ0) & ⊢ (𝜑 → 𝐹:(0...𝐾)⟶𝑉) & ⊢ (𝜑 → (𝐹 ↾ (1...𝐾)):(1...𝐾)–1-1→𝑉) & ⊢ (𝜑 → ((𝐹 “ {0}) ∩ (𝐹 “ (1...𝐾))) = ∅) ⇒ ⊢ (𝜑 → 𝐹:(0...𝐾)–1-1→𝑉) | ||
| Theorem | fisshasheq 35120 | A finite set is equal to its subset if they are the same size. (Contributed by BTernaryTau, 3-Oct-2023.) |
| ⊢ ((𝐵 ∈ Fin ∧ 𝐴 ⊆ 𝐵 ∧ (♯‘𝐴) = (♯‘𝐵)) → 𝐴 = 𝐵) | ||
| Theorem | revpfxsfxrev 35121 | The reverse of a prefix of a word is equal to the same-length suffix of the reverse of that word. (Contributed by BTernaryTau, 2-Dec-2023.) |
| ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ (0...(♯‘𝑊))) → (reverse‘(𝑊 prefix 𝐿)) = ((reverse‘𝑊) substr 〈((♯‘𝑊) − 𝐿), (♯‘𝑊)〉)) | ||
| Theorem | swrdrevpfx 35122 | A subword expressed in terms of reverses and prefixes. (Contributed by BTernaryTau, 3-Dec-2023.) |
| ⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐹 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝑊))) → (𝑊 substr 〈𝐹, 𝐿〉) = (reverse‘((reverse‘(𝑊 prefix 𝐿)) prefix (𝐿 − 𝐹)))) | ||
| Theorem | lfuhgr 35123* | A hypergraph is loop-free if and only if every edge connects at least two vertices. (Contributed by BTernaryTau, 15-Oct-2023.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) ⇒ ⊢ (𝐺 ∈ UHGraph → (𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} ↔ ∀𝑥 ∈ (Edg‘𝐺)2 ≤ (♯‘𝑥))) | ||
| Theorem | lfuhgr2 35124* | A hypergraph is loop-free if and only if every edge is not a loop. (Contributed by BTernaryTau, 15-Oct-2023.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) ⇒ ⊢ (𝐺 ∈ UHGraph → (𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} ↔ ∀𝑥 ∈ (Edg‘𝐺)(♯‘𝑥) ≠ 1)) | ||
| Theorem | lfuhgr3 35125* | A hypergraph is loop-free if and only if none of its edges connect to only one vertex. (Contributed by BTernaryTau, 15-Oct-2023.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) ⇒ ⊢ (𝐺 ∈ UHGraph → (𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} ↔ ¬ ∃𝑎{𝑎} ∈ (Edg‘𝐺))) | ||
| Theorem | cplgredgex 35126* | Any two (distinct) vertices in a complete graph are connected to each other by at least one edge. (Contributed by BTernaryTau, 2-Oct-2023.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ (𝐺 ∈ ComplGraph → ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ (𝑉 ∖ {𝐴})) → ∃𝑒 ∈ 𝐸 {𝐴, 𝐵} ⊆ 𝑒)) | ||
| Theorem | cusgredgex 35127 | Any two (distinct) vertices in a complete simple graph are connected to each other by an edge. (Contributed by BTernaryTau, 3-Oct-2023.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ (𝐺 ∈ ComplUSGraph → ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ (𝑉 ∖ {𝐴})) → {𝐴, 𝐵} ∈ 𝐸)) | ||
| Theorem | cusgredgex2 35128 | Any two distinct vertices in a complete simple graph are connected to each other by an edge. (Contributed by BTernaryTau, 4-Oct-2023.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐸 = (Edg‘𝐺) ⇒ ⊢ (𝐺 ∈ ComplUSGraph → ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐴 ≠ 𝐵) → {𝐴, 𝐵} ∈ 𝐸)) | ||
| Theorem | pfxwlk 35129 | A prefix of a walk is a walk. (Contributed by BTernaryTau, 2-Dec-2023.) |
| ⊢ ((𝐹(Walks‘𝐺)𝑃 ∧ 𝐿 ∈ (0...(♯‘𝐹))) → (𝐹 prefix 𝐿)(Walks‘𝐺)(𝑃 prefix (𝐿 + 1))) | ||
| Theorem | revwlk 35130 | The reverse of a walk is a walk. (Contributed by BTernaryTau, 30-Nov-2023.) |
| ⊢ (𝐹(Walks‘𝐺)𝑃 → (reverse‘𝐹)(Walks‘𝐺)(reverse‘𝑃)) | ||
| Theorem | revwlkb 35131 | Two words represent a walk if and only if their reverses also represent a walk. (Contributed by BTernaryTau, 4-Dec-2023.) |
| ⊢ ((𝐹 ∈ Word 𝑊 ∧ 𝑃 ∈ Word 𝑈) → (𝐹(Walks‘𝐺)𝑃 ↔ (reverse‘𝐹)(Walks‘𝐺)(reverse‘𝑃))) | ||
| Theorem | swrdwlk 35132 | Two matching subwords of a walk also represent a walk. (Contributed by BTernaryTau, 7-Dec-2023.) |
| ⊢ ((𝐹(Walks‘𝐺)𝑃 ∧ 𝐵 ∈ (0...𝐿) ∧ 𝐿 ∈ (0...(♯‘𝐹))) → (𝐹 substr 〈𝐵, 𝐿〉)(Walks‘𝐺)(𝑃 substr 〈𝐵, (𝐿 + 1)〉)) | ||
| Theorem | pthhashvtx 35133 | A graph containing a path has at least as many vertices as there are edges in the path. (Contributed by BTernaryTau, 5-Oct-2023.) |
| ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (𝐹(Paths‘𝐺)𝑃 → (♯‘𝐹) ≤ (♯‘𝑉)) | ||
| Theorem | spthcycl 35134 | A walk is a trivial path if and only if it is both a simple path and a cycle. (Contributed by BTernaryTau, 8-Oct-2023.) |
| ⊢ ((𝐹(Paths‘𝐺)𝑃 ∧ 𝐹 = ∅) ↔ (𝐹(SPaths‘𝐺)𝑃 ∧ 𝐹(Cycles‘𝐺)𝑃)) | ||
| Theorem | usgrgt2cycl 35135 | A non-trivial cycle in a simple graph has a length greater than 2. (Contributed by BTernaryTau, 24-Sep-2023.) |
| ⊢ ((𝐺 ∈ USGraph ∧ 𝐹(Cycles‘𝐺)𝑃 ∧ 𝐹 ≠ ∅) → 2 < (♯‘𝐹)) | ||
| Theorem | usgrcyclgt2v 35136 | A simple graph with a non-trivial cycle must have at least 3 vertices. (Contributed by BTernaryTau, 5-Oct-2023.) |
| ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ ((𝐺 ∈ USGraph ∧ 𝐹(Cycles‘𝐺)𝑃 ∧ 𝐹 ≠ ∅) → 2 < (♯‘𝑉)) | ||
| Theorem | subgrwlk 35137 | If a walk exists in a subgraph of a graph 𝐺, then that walk also exists in 𝐺. (Contributed by BTernaryTau, 22-Oct-2023.) |
| ⊢ (𝑆 SubGraph 𝐺 → (𝐹(Walks‘𝑆)𝑃 → 𝐹(Walks‘𝐺)𝑃)) | ||
| Theorem | subgrtrl 35138 | If a trail exists in a subgraph of a graph 𝐺, then that trail also exists in 𝐺. (Contributed by BTernaryTau, 22-Oct-2023.) |
| ⊢ (𝑆 SubGraph 𝐺 → (𝐹(Trails‘𝑆)𝑃 → 𝐹(Trails‘𝐺)𝑃)) | ||
| Theorem | subgrpth 35139 | If a path exists in a subgraph of a graph 𝐺, then that path also exists in 𝐺. (Contributed by BTernaryTau, 22-Oct-2023.) |
| ⊢ (𝑆 SubGraph 𝐺 → (𝐹(Paths‘𝑆)𝑃 → 𝐹(Paths‘𝐺)𝑃)) | ||
| Theorem | subgrcycl 35140 | If a cycle exists in a subgraph of a graph 𝐺, then that cycle also exists in 𝐺. (Contributed by BTernaryTau, 23-Oct-2023.) |
| ⊢ (𝑆 SubGraph 𝐺 → (𝐹(Cycles‘𝑆)𝑃 → 𝐹(Cycles‘𝐺)𝑃)) | ||
| Theorem | cusgr3cyclex 35141* | Every complete simple graph with more than two vertices has a 3-cycle. (Contributed by BTernaryTau, 4-Oct-2023.) |
| ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ ((𝐺 ∈ ComplUSGraph ∧ 2 < (♯‘𝑉)) → ∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3)) | ||
| Theorem | loop1cycl 35142* | A hypergraph has a cycle of length one if and only if it has a loop. (Contributed by BTernaryTau, 13-Oct-2023.) |
| ⊢ (𝐺 ∈ UHGraph → (∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 1 ∧ (𝑝‘0) = 𝐴) ↔ {𝐴} ∈ (Edg‘𝐺))) | ||
| Theorem | 2cycld 35143 | Construction of a 2-cycle from two given edges in a graph. (Contributed by BTernaryTau, 16-Oct-2023.) |
| ⊢ 𝑃 = 〈“𝐴𝐵𝐶”〉 & ⊢ 𝐹 = 〈“𝐽𝐾”〉 & ⊢ (𝜑 → (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉)) & ⊢ (𝜑 → (𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶)) & ⊢ (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼‘𝐽) ∧ {𝐵, 𝐶} ⊆ (𝐼‘𝐾))) & ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ (𝜑 → 𝐽 ≠ 𝐾) & ⊢ (𝜑 → 𝐴 = 𝐶) ⇒ ⊢ (𝜑 → 𝐹(Cycles‘𝐺)𝑃) | ||
| Theorem | 2cycl2d 35144 | Construction of a 2-cycle from two given edges in a graph. (Contributed by BTernaryTau, 16-Oct-2023.) |
| ⊢ 𝑃 = 〈“𝐴𝐵𝐴”〉 & ⊢ 𝐹 = 〈“𝐽𝐾”〉 & ⊢ (𝜑 → (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉)) & ⊢ (𝜑 → 𝐴 ≠ 𝐵) & ⊢ (𝜑 → ({𝐴, 𝐵} ⊆ (𝐼‘𝐽) ∧ {𝐴, 𝐵} ⊆ (𝐼‘𝐾))) & ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ (𝜑 → 𝐽 ≠ 𝐾) ⇒ ⊢ (𝜑 → 𝐹(Cycles‘𝐺)𝑃) | ||
| Theorem | umgr2cycllem 35145* | Lemma for umgr2cycl 35146. (Contributed by BTernaryTau, 17-Oct-2023.) |
| ⊢ 𝐹 = 〈“𝐽𝐾”〉 & ⊢ 𝐼 = (iEdg‘𝐺) & ⊢ (𝜑 → 𝐺 ∈ UMGraph) & ⊢ (𝜑 → 𝐽 ∈ dom 𝐼) & ⊢ (𝜑 → 𝐽 ≠ 𝐾) & ⊢ (𝜑 → (𝐼‘𝐽) = (𝐼‘𝐾)) ⇒ ⊢ (𝜑 → ∃𝑝 𝐹(Cycles‘𝐺)𝑝) | ||
| Theorem | umgr2cycl 35146* | A multigraph with two distinct edges that connect the same vertices has a 2-cycle. (Contributed by BTernaryTau, 17-Oct-2023.) |
| ⊢ 𝐼 = (iEdg‘𝐺) ⇒ ⊢ ((𝐺 ∈ UMGraph ∧ ∃𝑗 ∈ dom 𝐼∃𝑘 ∈ dom 𝐼((𝐼‘𝑗) = (𝐼‘𝑘) ∧ 𝑗 ≠ 𝑘)) → ∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 2)) | ||
| Syntax | cacycgr 35147 | Extend class notation with acyclic graphs. |
| class AcyclicGraph | ||
| Definition | df-acycgr 35148* | Define the class of all acyclic graphs. A graph is called acyclic if it has no (non-trivial) cycles. (Contributed by BTernaryTau, 11-Oct-2023.) |
| ⊢ AcyclicGraph = {𝑔 ∣ ¬ ∃𝑓∃𝑝(𝑓(Cycles‘𝑔)𝑝 ∧ 𝑓 ≠ ∅)} | ||
| Theorem | dfacycgr1 35149* | An alternate definition of the class of all acyclic graphs that requires all cycles to be trivial. (Contributed by BTernaryTau, 11-Oct-2023.) |
| ⊢ AcyclicGraph = {𝑔 ∣ ∀𝑓∀𝑝(𝑓(Cycles‘𝑔)𝑝 → 𝑓 = ∅)} | ||
| Theorem | isacycgr 35150* | The property of being an acyclic graph. (Contributed by BTernaryTau, 11-Oct-2023.) |
| ⊢ (𝐺 ∈ 𝑊 → (𝐺 ∈ AcyclicGraph ↔ ¬ ∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ 𝑓 ≠ ∅))) | ||
| Theorem | isacycgr1 35151* | The property of being an acyclic graph. (Contributed by BTernaryTau, 11-Oct-2023.) |
| ⊢ (𝐺 ∈ 𝑊 → (𝐺 ∈ AcyclicGraph ↔ ∀𝑓∀𝑝(𝑓(Cycles‘𝐺)𝑝 → 𝑓 = ∅))) | ||
| Theorem | acycgrcycl 35152 | Any cycle in an acyclic graph is trivial (i.e. has one vertex and no edges). (Contributed by BTernaryTau, 12-Oct-2023.) |
| ⊢ ((𝐺 ∈ AcyclicGraph ∧ 𝐹(Cycles‘𝐺)𝑃) → 𝐹 = ∅) | ||
| Theorem | acycgr0v 35153 | A null graph (with no vertices) is an acyclic graph. (Contributed by BTernaryTau, 11-Oct-2023.) |
| ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ ((𝐺 ∈ 𝑊 ∧ 𝑉 = ∅) → 𝐺 ∈ AcyclicGraph) | ||
| Theorem | acycgr1v 35154 | A multigraph with one vertex is an acyclic graph. (Contributed by BTernaryTau, 12-Oct-2023.) |
| ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ ((𝐺 ∈ UMGraph ∧ (♯‘𝑉) = 1) → 𝐺 ∈ AcyclicGraph) | ||
| Theorem | acycgr2v 35155 | A simple graph with two vertices is an acyclic graph. (Contributed by BTernaryTau, 12-Oct-2023.) |
| ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ ((𝐺 ∈ USGraph ∧ (♯‘𝑉) = 2) → 𝐺 ∈ AcyclicGraph) | ||
| Theorem | prclisacycgr 35156* | A proper class (representing a null graph, see vtxvalprc 29062) has the property of an acyclic graph (see also acycgr0v 35153). (Contributed by BTernaryTau, 11-Oct-2023.) (New usage is discouraged.) |
| ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (¬ 𝐺 ∈ V → ¬ ∃𝑓∃𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ 𝑓 ≠ ∅)) | ||
| Theorem | acycgrislfgr 35157* | An acyclic hypergraph is a loop-free hypergraph. (Contributed by BTernaryTau, 15-Oct-2023.) |
| ⊢ 𝑉 = (Vtx‘𝐺) & ⊢ 𝐼 = (iEdg‘𝐺) ⇒ ⊢ ((𝐺 ∈ AcyclicGraph ∧ 𝐺 ∈ UHGraph) → 𝐼:dom 𝐼⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}) | ||
| Theorem | upgracycumgr 35158 | An acyclic pseudograph is a multigraph. (Contributed by BTernaryTau, 15-Oct-2023.) |
| ⊢ ((𝐺 ∈ UPGraph ∧ 𝐺 ∈ AcyclicGraph) → 𝐺 ∈ UMGraph) | ||
| Theorem | umgracycusgr 35159 | An acyclic multigraph is a simple graph. (Contributed by BTernaryTau, 17-Oct-2023.) |
| ⊢ ((𝐺 ∈ UMGraph ∧ 𝐺 ∈ AcyclicGraph) → 𝐺 ∈ USGraph) | ||
| Theorem | upgracycusgr 35160 | An acyclic pseudograph is a simple graph. (Contributed by BTernaryTau, 17-Oct-2023.) |
| ⊢ ((𝐺 ∈ UPGraph ∧ 𝐺 ∈ AcyclicGraph) → 𝐺 ∈ USGraph) | ||
| Theorem | cusgracyclt3v 35161 | A complete simple graph is acyclic if and only if it has fewer than three vertices. (Contributed by BTernaryTau, 20-Oct-2023.) |
| ⊢ 𝑉 = (Vtx‘𝐺) ⇒ ⊢ (𝐺 ∈ ComplUSGraph → (𝐺 ∈ AcyclicGraph ↔ (♯‘𝑉) < 3)) | ||
| Theorem | pthacycspth 35162 | A path in an acyclic graph is a simple path. (Contributed by BTernaryTau, 21-Oct-2023.) |
| ⊢ ((𝐺 ∈ AcyclicGraph ∧ 𝐹(Paths‘𝐺)𝑃) → 𝐹(SPaths‘𝐺)𝑃) | ||
| Theorem | acycgrsubgr 35163 | The subgraph of an acyclic graph is also acyclic. (Contributed by BTernaryTau, 23-Oct-2023.) |
| ⊢ ((𝐺 ∈ AcyclicGraph ∧ 𝑆 SubGraph 𝐺) → 𝑆 ∈ AcyclicGraph) | ||
| Axiom | ax-7d 35164* | Distinct variable version of ax-11 2157. (Contributed by Mario Carneiro, 14-Aug-2015.) |
| ⊢ (∀𝑥∀𝑦𝜑 → ∀𝑦∀𝑥𝜑) | ||
| Axiom | ax-8d 35165* | Distinct variable version of ax-7 2007. (Contributed by Mario Carneiro, 14-Aug-2015.) |
| ⊢ (𝑥 = 𝑦 → (𝑥 = 𝑧 → 𝑦 = 𝑧)) | ||
| Axiom | ax-9d1 35166 | Distinct variable version of ax-6 1967, equal variables case. (Contributed by Mario Carneiro, 14-Aug-2015.) |
| ⊢ ¬ ∀𝑥 ¬ 𝑥 = 𝑥 | ||
| Axiom | ax-9d2 35167* | Distinct variable version of ax-6 1967, distinct variables case. (Contributed by Mario Carneiro, 14-Aug-2015.) |
| ⊢ ¬ ∀𝑥 ¬ 𝑥 = 𝑦 | ||
| Axiom | ax-10d 35168* | Distinct variable version of axc11n 2431. (Contributed by Mario Carneiro, 14-Aug-2015.) |
| ⊢ (∀𝑥 𝑥 = 𝑦 → ∀𝑦 𝑦 = 𝑥) | ||
| Axiom | ax-11d 35169* | Distinct variable version of ax-12 2177. (Contributed by Mario Carneiro, 14-Aug-2015.) |
| ⊢ (𝑥 = 𝑦 → (∀𝑦𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑))) | ||
| Theorem | quartfull 35170 | The quartic equation, written out in full. This actually makes a fairly good Metamath stress test. Note that the length of this formula could be shortened significantly if the intermediate expressions were expanded and simplified, but it's not like this theorem will be used anyway. (Contributed by Mario Carneiro, 6-May-2015.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐷 ∈ ℂ) & ⊢ (𝜑 → 𝑋 ∈ ℂ) & ⊢ (𝜑 → (((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))) + (√‘((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))))↑2) − (4 · ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))↑3))))) / 2)↑𝑐(1 / 3)) ≠ 0) & ⊢ (𝜑 → -((((2 · (𝐵 − ((3 / 8) · (𝐴↑2)))) + (((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))) + (√‘((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))))↑2) − (4 · ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))↑3))))) / 2)↑𝑐(1 / 3))) + ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))) / (((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))) + (√‘((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))))↑2) − (4 · ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))↑3))))) / 2)↑𝑐(1 / 3)))) / 3) ≠ 0) ⇒ ⊢ (𝜑 → ((((𝑋↑4) + (𝐴 · (𝑋↑3))) + ((𝐵 · (𝑋↑2)) + ((𝐶 · 𝑋) + 𝐷))) = 0 ↔ ((𝑋 = ((-(𝐴 / 4) − ((√‘-((((2 · (𝐵 − ((3 / 8) · (𝐴↑2)))) + (((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))) + (√‘((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))))↑2) − (4 · ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))↑3))))) / 2)↑𝑐(1 / 3))) + ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))) / (((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))) + (√‘((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))))↑2) − (4 · ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))↑3))))) / 2)↑𝑐(1 / 3)))) / 3)) / 2)) + (√‘((-(((√‘-((((2 · (𝐵 − ((3 / 8) · (𝐴↑2)))) + (((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))) + (√‘((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))))↑2) − (4 · ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))↑3))))) / 2)↑𝑐(1 / 3))) + ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))) / (((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))) + (√‘((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))))↑2) − (4 · ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))↑3))))) / 2)↑𝑐(1 / 3)))) / 3)) / 2)↑2) − ((𝐵 − ((3 / 8) · (𝐴↑2))) / 2)) + ((((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8)) / 4) / ((√‘-((((2 · (𝐵 − ((3 / 8) · (𝐴↑2)))) + (((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))) + (√‘((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))))↑2) − (4 · ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))↑3))))) / 2)↑𝑐(1 / 3))) + ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))) / (((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))) + (√‘((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))))↑2) − (4 · ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))↑3))))) / 2)↑𝑐(1 / 3)))) / 3)) / 2))))) ∨ 𝑋 = ((-(𝐴 / 4) − ((√‘-((((2 · (𝐵 − ((3 / 8) · (𝐴↑2)))) + (((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))) + (√‘((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))))↑2) − (4 · ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))↑3))))) / 2)↑𝑐(1 / 3))) + ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))) / (((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))) + (√‘((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))))↑2) − (4 · ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))↑3))))) / 2)↑𝑐(1 / 3)))) / 3)) / 2)) − (√‘((-(((√‘-((((2 · (𝐵 − ((3 / 8) · (𝐴↑2)))) + (((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))) + (√‘((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))))↑2) − (4 · ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))↑3))))) / 2)↑𝑐(1 / 3))) + ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))) / (((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))) + (√‘((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))))↑2) − (4 · ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))↑3))))) / 2)↑𝑐(1 / 3)))) / 3)) / 2)↑2) − ((𝐵 − ((3 / 8) · (𝐴↑2))) / 2)) + ((((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8)) / 4) / ((√‘-((((2 · (𝐵 − ((3 / 8) · (𝐴↑2)))) + (((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))) + (√‘((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))))↑2) − (4 · ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))↑3))))) / 2)↑𝑐(1 / 3))) + ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))) / (((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))) + (√‘((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))))↑2) − (4 · ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))↑3))))) / 2)↑𝑐(1 / 3)))) / 3)) / 2)))))) ∨ (𝑋 = ((-(𝐴 / 4) + ((√‘-((((2 · (𝐵 − ((3 / 8) · (𝐴↑2)))) + (((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))) + (√‘((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))))↑2) − (4 · ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))↑3))))) / 2)↑𝑐(1 / 3))) + ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))) / (((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))) + (√‘((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))))↑2) − (4 · ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))↑3))))) / 2)↑𝑐(1 / 3)))) / 3)) / 2)) + (√‘((-(((√‘-((((2 · (𝐵 − ((3 / 8) · (𝐴↑2)))) + (((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))) + (√‘((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))))↑2) − (4 · ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))↑3))))) / 2)↑𝑐(1 / 3))) + ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))) / (((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))) + (√‘((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))))↑2) − (4 · ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))↑3))))) / 2)↑𝑐(1 / 3)))) / 3)) / 2)↑2) − ((𝐵 − ((3 / 8) · (𝐴↑2))) / 2)) − ((((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8)) / 4) / ((√‘-((((2 · (𝐵 − ((3 / 8) · (𝐴↑2)))) + (((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))) + (√‘((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))))↑2) − (4 · ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))↑3))))) / 2)↑𝑐(1 / 3))) + ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))) / (((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))) + (√‘((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))))↑2) − (4 · ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))↑3))))) / 2)↑𝑐(1 / 3)))) / 3)) / 2))))) ∨ 𝑋 = ((-(𝐴 / 4) + ((√‘-((((2 · (𝐵 − ((3 / 8) · (𝐴↑2)))) + (((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))) + (√‘((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))))↑2) − (4 · ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))↑3))))) / 2)↑𝑐(1 / 3))) + ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))) / (((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))) + (√‘((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))))↑2) − (4 · ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))↑3))))) / 2)↑𝑐(1 / 3)))) / 3)) / 2)) − (√‘((-(((√‘-((((2 · (𝐵 − ((3 / 8) · (𝐴↑2)))) + (((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))) + (√‘((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))))↑2) − (4 · ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))↑3))))) / 2)↑𝑐(1 / 3))) + ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))) / (((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))) + (√‘((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))))↑2) − (4 · ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))↑3))))) / 2)↑𝑐(1 / 3)))) / 3)) / 2)↑2) − ((𝐵 − ((3 / 8) · (𝐴↑2))) / 2)) − ((((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8)) / 4) / ((√‘-((((2 · (𝐵 − ((3 / 8) · (𝐴↑2)))) + (((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))) + (√‘((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))))↑2) − (4 · ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))↑3))))) / 2)↑𝑐(1 / 3))) + ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))) / (((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))) + (√‘((((-(2 · ((𝐵 − ((3 / 8) · (𝐴↑2)))↑3)) − (;27 · (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8))↑2))) + (;72 · ((𝐵 − ((3 / 8) · (𝐴↑2))) · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4)))))))↑2) − (4 · ((((𝐵 − ((3 / 8) · (𝐴↑2)))↑2) + (;12 · ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / ;16) − ((3 / ;;256) · (𝐴↑4))))))↑3))))) / 2)↑𝑐(1 / 3)))) / 3)) / 2))))))))) | ||
| Theorem | deranglem 35171* | Lemma for derangements. (Contributed by Mario Carneiro, 19-Jan-2015.) |
| ⊢ (𝐴 ∈ Fin → {𝑓 ∣ (𝑓:𝐴–1-1-onto→𝐴 ∧ 𝜑)} ∈ Fin) | ||
| Theorem | derangval 35172* | Define the derangement function, which counts the number of bijections from a set to itself such that no element is mapped to itself. (Contributed by Mario Carneiro, 19-Jan-2015.) |
| ⊢ 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥–1-1-onto→𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) ≠ 𝑦)})) ⇒ ⊢ (𝐴 ∈ Fin → (𝐷‘𝐴) = (♯‘{𝑓 ∣ (𝑓:𝐴–1-1-onto→𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑓‘𝑦) ≠ 𝑦)})) | ||
| Theorem | derangf 35173* | The derangement number is a function from finite sets to nonnegative integers. (Contributed by Mario Carneiro, 19-Jan-2015.) |
| ⊢ 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥–1-1-onto→𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) ≠ 𝑦)})) ⇒ ⊢ 𝐷:Fin⟶ℕ0 | ||
| Theorem | derang0 35174* | The derangement number of the empty set. (Contributed by Mario Carneiro, 19-Jan-2015.) |
| ⊢ 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥–1-1-onto→𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) ≠ 𝑦)})) ⇒ ⊢ (𝐷‘∅) = 1 | ||
| Theorem | derangsn 35175* | The derangement number of a singleton. (Contributed by Mario Carneiro, 19-Jan-2015.) |
| ⊢ 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥–1-1-onto→𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) ≠ 𝑦)})) ⇒ ⊢ (𝐴 ∈ 𝑉 → (𝐷‘{𝐴}) = 0) | ||
| Theorem | derangenlem 35176* | One half of derangen 35177. (Contributed by Mario Carneiro, 22-Jan-2015.) |
| ⊢ 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥–1-1-onto→𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) ≠ 𝑦)})) ⇒ ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin) → (𝐷‘𝐴) ≤ (𝐷‘𝐵)) | ||
| Theorem | derangen 35177* | The derangement number is a cardinal invariant, i.e. it only depends on the size of a set and not on its contents. (Contributed by Mario Carneiro, 22-Jan-2015.) |
| ⊢ 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥–1-1-onto→𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) ≠ 𝑦)})) ⇒ ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin) → (𝐷‘𝐴) = (𝐷‘𝐵)) | ||
| Theorem | subfacval 35178* | The subfactorial is defined as the number of derangements (see derangval 35172) of the set (1...𝑁). (Contributed by Mario Carneiro, 21-Jan-2015.) |
| ⊢ 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥–1-1-onto→𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) ≠ 𝑦)})) & ⊢ 𝑆 = (𝑛 ∈ ℕ0 ↦ (𝐷‘(1...𝑛))) ⇒ ⊢ (𝑁 ∈ ℕ0 → (𝑆‘𝑁) = (𝐷‘(1...𝑁))) | ||
| Theorem | derangen2 35179* | Write the derangement number in terms of the subfactorial. (Contributed by Mario Carneiro, 22-Jan-2015.) |
| ⊢ 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥–1-1-onto→𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) ≠ 𝑦)})) & ⊢ 𝑆 = (𝑛 ∈ ℕ0 ↦ (𝐷‘(1...𝑛))) ⇒ ⊢ (𝐴 ∈ Fin → (𝐷‘𝐴) = (𝑆‘(♯‘𝐴))) | ||
| Theorem | subfacf 35180* | The subfactorial is a function from nonnegative integers to nonnegative integers. (Contributed by Mario Carneiro, 19-Jan-2015.) |
| ⊢ 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥–1-1-onto→𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) ≠ 𝑦)})) & ⊢ 𝑆 = (𝑛 ∈ ℕ0 ↦ (𝐷‘(1...𝑛))) ⇒ ⊢ 𝑆:ℕ0⟶ℕ0 | ||
| Theorem | subfaclefac 35181* | The subfactorial is less than the factorial. (Contributed by Mario Carneiro, 19-Jan-2015.) |
| ⊢ 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥–1-1-onto→𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) ≠ 𝑦)})) & ⊢ 𝑆 = (𝑛 ∈ ℕ0 ↦ (𝐷‘(1...𝑛))) ⇒ ⊢ (𝑁 ∈ ℕ0 → (𝑆‘𝑁) ≤ (!‘𝑁)) | ||
| Theorem | subfac0 35182* | The subfactorial at zero. (Contributed by Mario Carneiro, 19-Jan-2015.) |
| ⊢ 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥–1-1-onto→𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) ≠ 𝑦)})) & ⊢ 𝑆 = (𝑛 ∈ ℕ0 ↦ (𝐷‘(1...𝑛))) ⇒ ⊢ (𝑆‘0) = 1 | ||
| Theorem | subfac1 35183* | The subfactorial at one. (Contributed by Mario Carneiro, 19-Jan-2015.) |
| ⊢ 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥–1-1-onto→𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) ≠ 𝑦)})) & ⊢ 𝑆 = (𝑛 ∈ ℕ0 ↦ (𝐷‘(1...𝑛))) ⇒ ⊢ (𝑆‘1) = 0 | ||
| Theorem | subfacp1lem1 35184* | Lemma for subfacp1 35191. The set 𝐾 together with {1, 𝑀} partitions the set 1...(𝑁 + 1). (Contributed by Mario Carneiro, 23-Jan-2015.) |
| ⊢ 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥–1-1-onto→𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) ≠ 𝑦)})) & ⊢ 𝑆 = (𝑛 ∈ ℕ0 ↦ (𝐷‘(1...𝑛))) & ⊢ 𝐴 = {𝑓 ∣ (𝑓:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ∧ ∀𝑦 ∈ (1...(𝑁 + 1))(𝑓‘𝑦) ≠ 𝑦)} & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑀 ∈ (2...(𝑁 + 1))) & ⊢ 𝑀 ∈ V & ⊢ 𝐾 = ((2...(𝑁 + 1)) ∖ {𝑀}) ⇒ ⊢ (𝜑 → ((𝐾 ∩ {1, 𝑀}) = ∅ ∧ (𝐾 ∪ {1, 𝑀}) = (1...(𝑁 + 1)) ∧ (♯‘𝐾) = (𝑁 − 1))) | ||
| Theorem | subfacp1lem2a 35185* | Lemma for subfacp1 35191. Properties of a bijection on 𝐾 augmented with the two-element flip to get a bijection on 𝐾 ∪ {1, 𝑀}. (Contributed by Mario Carneiro, 23-Jan-2015.) |
| ⊢ 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥–1-1-onto→𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) ≠ 𝑦)})) & ⊢ 𝑆 = (𝑛 ∈ ℕ0 ↦ (𝐷‘(1...𝑛))) & ⊢ 𝐴 = {𝑓 ∣ (𝑓:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ∧ ∀𝑦 ∈ (1...(𝑁 + 1))(𝑓‘𝑦) ≠ 𝑦)} & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑀 ∈ (2...(𝑁 + 1))) & ⊢ 𝑀 ∈ V & ⊢ 𝐾 = ((2...(𝑁 + 1)) ∖ {𝑀}) & ⊢ 𝐹 = (𝐺 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉}) & ⊢ (𝜑 → 𝐺:𝐾–1-1-onto→𝐾) ⇒ ⊢ (𝜑 → (𝐹:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ∧ (𝐹‘1) = 𝑀 ∧ (𝐹‘𝑀) = 1)) | ||
| Theorem | subfacp1lem2b 35186* | Lemma for subfacp1 35191. Properties of a bijection on 𝐾 augmented with the two-element flip to get a bijection on 𝐾 ∪ {1, 𝑀}. (Contributed by Mario Carneiro, 23-Jan-2015.) |
| ⊢ 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥–1-1-onto→𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) ≠ 𝑦)})) & ⊢ 𝑆 = (𝑛 ∈ ℕ0 ↦ (𝐷‘(1...𝑛))) & ⊢ 𝐴 = {𝑓 ∣ (𝑓:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ∧ ∀𝑦 ∈ (1...(𝑁 + 1))(𝑓‘𝑦) ≠ 𝑦)} & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑀 ∈ (2...(𝑁 + 1))) & ⊢ 𝑀 ∈ V & ⊢ 𝐾 = ((2...(𝑁 + 1)) ∖ {𝑀}) & ⊢ 𝐹 = (𝐺 ∪ {〈1, 𝑀〉, 〈𝑀, 1〉}) & ⊢ (𝜑 → 𝐺:𝐾–1-1-onto→𝐾) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐾) → (𝐹‘𝑋) = (𝐺‘𝑋)) | ||
| Theorem | subfacp1lem3 35187* | Lemma for subfacp1 35191. In subfacp1lem6 35190 we cut up the set of all derangements on 1...(𝑁 + 1) first according to the value at 1, and then by whether or not (𝑓‘(𝑓‘1)) = 1. In this lemma, we show that the subset of all 𝑁 + 1 derangements that satisfy this for fixed 𝑀 = (𝑓‘1) is in bijection with 𝑁 − 1 derangements, by simply dropping the 𝑥 = 1 and 𝑥 = 𝑀 points from the function to get a derangement on 𝐾 = (1...(𝑁 − 1)) ∖ {1, 𝑀}. (Contributed by Mario Carneiro, 23-Jan-2015.) |
| ⊢ 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥–1-1-onto→𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) ≠ 𝑦)})) & ⊢ 𝑆 = (𝑛 ∈ ℕ0 ↦ (𝐷‘(1...𝑛))) & ⊢ 𝐴 = {𝑓 ∣ (𝑓:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ∧ ∀𝑦 ∈ (1...(𝑁 + 1))(𝑓‘𝑦) ≠ 𝑦)} & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑀 ∈ (2...(𝑁 + 1))) & ⊢ 𝑀 ∈ V & ⊢ 𝐾 = ((2...(𝑁 + 1)) ∖ {𝑀}) & ⊢ 𝐵 = {𝑔 ∈ 𝐴 ∣ ((𝑔‘1) = 𝑀 ∧ (𝑔‘𝑀) = 1)} & ⊢ 𝐶 = {𝑓 ∣ (𝑓:𝐾–1-1-onto→𝐾 ∧ ∀𝑦 ∈ 𝐾 (𝑓‘𝑦) ≠ 𝑦)} ⇒ ⊢ (𝜑 → (♯‘𝐵) = (𝑆‘(𝑁 − 1))) | ||
| Theorem | subfacp1lem4 35188* | Lemma for subfacp1 35191. The function 𝐹, which swaps 1 with 𝑀 and leaves all other elements alone, is a bijection of order 2, i.e. it is its own inverse. (Contributed by Mario Carneiro, 19-Jan-2015.) |
| ⊢ 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥–1-1-onto→𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) ≠ 𝑦)})) & ⊢ 𝑆 = (𝑛 ∈ ℕ0 ↦ (𝐷‘(1...𝑛))) & ⊢ 𝐴 = {𝑓 ∣ (𝑓:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ∧ ∀𝑦 ∈ (1...(𝑁 + 1))(𝑓‘𝑦) ≠ 𝑦)} & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑀 ∈ (2...(𝑁 + 1))) & ⊢ 𝑀 ∈ V & ⊢ 𝐾 = ((2...(𝑁 + 1)) ∖ {𝑀}) & ⊢ 𝐵 = {𝑔 ∈ 𝐴 ∣ ((𝑔‘1) = 𝑀 ∧ (𝑔‘𝑀) ≠ 1)} & ⊢ 𝐹 = (( I ↾ 𝐾) ∪ {〈1, 𝑀〉, 〈𝑀, 1〉}) ⇒ ⊢ (𝜑 → ◡𝐹 = 𝐹) | ||
| Theorem | subfacp1lem5 35189* | Lemma for subfacp1 35191. In subfacp1lem6 35190 we cut up the set of all derangements on 1...(𝑁 + 1) first according to the value at 1, and then by whether or not (𝑓‘(𝑓‘1)) = 1. In this lemma, we show that the subset of all 𝑁 + 1 derangements with (𝑓‘(𝑓‘1)) ≠ 1 for fixed 𝑀 = (𝑓‘1) is in bijection with derangements of 2...(𝑁 + 1), because pre-composing with the function 𝐹 swaps 1 and 𝑀 and turns the function into a bijection with (𝑓‘1) = 1 and (𝑓‘𝑥) ≠ 𝑥 for all other 𝑥, so dropping the point at 1 yields a derangement on the 𝑁 remaining points. (Contributed by Mario Carneiro, 23-Jan-2015.) |
| ⊢ 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥–1-1-onto→𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) ≠ 𝑦)})) & ⊢ 𝑆 = (𝑛 ∈ ℕ0 ↦ (𝐷‘(1...𝑛))) & ⊢ 𝐴 = {𝑓 ∣ (𝑓:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ∧ ∀𝑦 ∈ (1...(𝑁 + 1))(𝑓‘𝑦) ≠ 𝑦)} & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝑀 ∈ (2...(𝑁 + 1))) & ⊢ 𝑀 ∈ V & ⊢ 𝐾 = ((2...(𝑁 + 1)) ∖ {𝑀}) & ⊢ 𝐵 = {𝑔 ∈ 𝐴 ∣ ((𝑔‘1) = 𝑀 ∧ (𝑔‘𝑀) ≠ 1)} & ⊢ 𝐹 = (( I ↾ 𝐾) ∪ {〈1, 𝑀〉, 〈𝑀, 1〉}) & ⊢ 𝐶 = {𝑓 ∣ (𝑓:(2...(𝑁 + 1))–1-1-onto→(2...(𝑁 + 1)) ∧ ∀𝑦 ∈ (2...(𝑁 + 1))(𝑓‘𝑦) ≠ 𝑦)} ⇒ ⊢ (𝜑 → (♯‘𝐵) = (𝑆‘𝑁)) | ||
| Theorem | subfacp1lem6 35190* | Lemma for subfacp1 35191. By induction, we cut up the set of all derangements on 𝑁 + 1 according to the 𝑁 possible values of (𝑓‘1) (since (𝑓‘1) ≠ 1), and for each set for fixed 𝑀 = (𝑓‘1), the subset of derangements with (𝑓‘𝑀) = 1 has size 𝑆(𝑁 − 1) (by subfacp1lem3 35187), while the subset with (𝑓‘𝑀) ≠ 1 has size 𝑆(𝑁) (by subfacp1lem5 35189). Adding it all up yields the desired equation 𝑁(𝑆(𝑁) + 𝑆(𝑁 − 1)) for the number of derangements on 𝑁 + 1. (Contributed by Mario Carneiro, 22-Jan-2015.) |
| ⊢ 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥–1-1-onto→𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) ≠ 𝑦)})) & ⊢ 𝑆 = (𝑛 ∈ ℕ0 ↦ (𝐷‘(1...𝑛))) & ⊢ 𝐴 = {𝑓 ∣ (𝑓:(1...(𝑁 + 1))–1-1-onto→(1...(𝑁 + 1)) ∧ ∀𝑦 ∈ (1...(𝑁 + 1))(𝑓‘𝑦) ≠ 𝑦)} ⇒ ⊢ (𝑁 ∈ ℕ → (𝑆‘(𝑁 + 1)) = (𝑁 · ((𝑆‘𝑁) + (𝑆‘(𝑁 − 1))))) | ||
| Theorem | subfacp1 35191* | A two-term recurrence for the subfactorial. This theorem allows to forget the combinatorial definition of the derangement number in favor of the recursive definition provided by this theorem and subfac0 35182, subfac1 35183. (Contributed by Mario Carneiro, 23-Jan-2015.) |
| ⊢ 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥–1-1-onto→𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) ≠ 𝑦)})) & ⊢ 𝑆 = (𝑛 ∈ ℕ0 ↦ (𝐷‘(1...𝑛))) ⇒ ⊢ (𝑁 ∈ ℕ → (𝑆‘(𝑁 + 1)) = (𝑁 · ((𝑆‘𝑁) + (𝑆‘(𝑁 − 1))))) | ||
| Theorem | subfacval2 35192* | A closed-form expression for the subfactorial. (Contributed by Mario Carneiro, 23-Jan-2015.) |
| ⊢ 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥–1-1-onto→𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) ≠ 𝑦)})) & ⊢ 𝑆 = (𝑛 ∈ ℕ0 ↦ (𝐷‘(1...𝑛))) ⇒ ⊢ (𝑁 ∈ ℕ0 → (𝑆‘𝑁) = ((!‘𝑁) · Σ𝑘 ∈ (0...𝑁)((-1↑𝑘) / (!‘𝑘)))) | ||
| Theorem | subfaclim 35193* | The subfactorial converges rapidly to 𝑁! / e. This is part of Metamath 100 proof #88. (Contributed by Mario Carneiro, 23-Jan-2015.) |
| ⊢ 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥–1-1-onto→𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) ≠ 𝑦)})) & ⊢ 𝑆 = (𝑛 ∈ ℕ0 ↦ (𝐷‘(1...𝑛))) ⇒ ⊢ (𝑁 ∈ ℕ → (abs‘(((!‘𝑁) / e) − (𝑆‘𝑁))) < (1 / 𝑁)) | ||
| Theorem | subfacval3 35194* | Another closed form expression for the subfactorial. The expression ⌊‘(𝑥 + 1 / 2) is a way of saying "rounded to the nearest integer". (Contributed by Mario Carneiro, 23-Jan-2015.) |
| ⊢ 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥–1-1-onto→𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) ≠ 𝑦)})) & ⊢ 𝑆 = (𝑛 ∈ ℕ0 ↦ (𝐷‘(1...𝑛))) ⇒ ⊢ (𝑁 ∈ ℕ → (𝑆‘𝑁) = (⌊‘(((!‘𝑁) / e) + (1 / 2)))) | ||
| Theorem | derangfmla 35195* | The derangements formula, which expresses the number of derangements of a finite nonempty set in terms of the factorial. The expression ⌊‘(𝑥 + 1 / 2) is a way of saying "rounded to the nearest integer". This is part of Metamath 100 proof #88. (Contributed by Mario Carneiro, 23-Jan-2015.) |
| ⊢ 𝐷 = (𝑥 ∈ Fin ↦ (♯‘{𝑓 ∣ (𝑓:𝑥–1-1-onto→𝑥 ∧ ∀𝑦 ∈ 𝑥 (𝑓‘𝑦) ≠ 𝑦)})) ⇒ ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → (𝐷‘𝐴) = (⌊‘(((!‘(♯‘𝐴)) / e) + (1 / 2)))) | ||
| Theorem | erdszelem1 35196* | Lemma for erdsze 35207. (Contributed by Mario Carneiro, 22-Jan-2015.) |
| ⊢ 𝑆 = {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐴 ∈ 𝑦)} ⇒ ⊢ (𝑋 ∈ 𝑆 ↔ (𝑋 ⊆ (1...𝐴) ∧ (𝐹 ↾ 𝑋) Isom < , 𝑂 (𝑋, (𝐹 “ 𝑋)) ∧ 𝐴 ∈ 𝑋)) | ||
| Theorem | erdszelem2 35197* | Lemma for erdsze 35207. (Contributed by Mario Carneiro, 22-Jan-2015.) |
| ⊢ 𝑆 = {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐴 ∈ 𝑦)} ⇒ ⊢ ((♯ “ 𝑆) ∈ Fin ∧ (♯ “ 𝑆) ⊆ ℕ) | ||
| Theorem | erdszelem3 35198* | Lemma for erdsze 35207. (Contributed by Mario Carneiro, 22-Jan-2015.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐹:(1...𝑁)–1-1→ℝ) & ⊢ 𝐾 = (𝑥 ∈ (1...𝑁) ↦ sup((♯ “ {𝑦 ∈ 𝒫 (1...𝑥) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝑥 ∈ 𝑦)}), ℝ, < )) ⇒ ⊢ (𝐴 ∈ (1...𝑁) → (𝐾‘𝐴) = sup((♯ “ {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐴 ∈ 𝑦)}), ℝ, < )) | ||
| Theorem | erdszelem4 35199* | Lemma for erdsze 35207. (Contributed by Mario Carneiro, 22-Jan-2015.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐹:(1...𝑁)–1-1→ℝ) & ⊢ 𝐾 = (𝑥 ∈ (1...𝑁) ↦ sup((♯ “ {𝑦 ∈ 𝒫 (1...𝑥) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝑥 ∈ 𝑦)}), ℝ, < )) & ⊢ 𝑂 Or ℝ ⇒ ⊢ ((𝜑 ∧ 𝐴 ∈ (1...𝑁)) → {𝐴} ∈ {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐴 ∈ 𝑦)}) | ||
| Theorem | erdszelem5 35200* | Lemma for erdsze 35207. (Contributed by Mario Carneiro, 22-Jan-2015.) |
| ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → 𝐹:(1...𝑁)–1-1→ℝ) & ⊢ 𝐾 = (𝑥 ∈ (1...𝑁) ↦ sup((♯ “ {𝑦 ∈ 𝒫 (1...𝑥) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝑥 ∈ 𝑦)}), ℝ, < )) & ⊢ 𝑂 Or ℝ ⇒ ⊢ ((𝜑 ∧ 𝐴 ∈ (1...𝑁)) → (𝐾‘𝐴) ∈ (♯ “ {𝑦 ∈ 𝒫 (1...𝐴) ∣ ((𝐹 ↾ 𝑦) Isom < , 𝑂 (𝑦, (𝐹 “ 𝑦)) ∧ 𝐴 ∈ 𝑦)})) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |