HomeHome Metamath Proof Explorer
Theorem List (p. 352 of 437)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-28347)
  Hilbert Space Explorer  Hilbert Space Explorer
(28348-29872)
  Users' Mathboxes  Users' Mathboxes
(29873-43661)
 

Theorem List for Metamath Proof Explorer - 35101-35200   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremax12indalem 35101 Lemma for ax12inda2 35103 and ax12inda 35104. (Contributed by NM, 24-Jan-2007.) (Proof modification is discouraged.) (New usage is discouraged.)
(¬ ∀𝑥 𝑥 = 𝑦 → (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦𝜑))))       (¬ ∀𝑦 𝑦 = 𝑧 → (¬ ∀𝑥 𝑥 = 𝑦 → (𝑥 = 𝑦 → (∀𝑧𝜑 → ∀𝑥(𝑥 = 𝑦 → ∀𝑧𝜑)))))
 
Theoremax12inda2ALT 35102* Alternate proof of ax12inda2 35103, slightly more direct and not requiring ax-c16 35048. (Contributed by NM, 4-May-2007.) (Proof modification is discouraged.) (New usage is discouraged.)
(¬ ∀𝑥 𝑥 = 𝑦 → (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦𝜑))))       (¬ ∀𝑥 𝑥 = 𝑦 → (𝑥 = 𝑦 → (∀𝑧𝜑 → ∀𝑥(𝑥 = 𝑦 → ∀𝑧𝜑))))
 
Theoremax12inda2 35103* Induction step for constructing a substitution instance of ax-c15 35045 without using ax-c15 35045. Quantification case. When 𝑧 and 𝑦 are distinct, this theorem avoids the dummy variables needed by the more general ax12inda 35104. (Contributed by NM, 24-Jan-2007.) (Proof modification is discouraged.) (New usage is discouraged.)
(¬ ∀𝑥 𝑥 = 𝑦 → (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦𝜑))))       (¬ ∀𝑥 𝑥 = 𝑦 → (𝑥 = 𝑦 → (∀𝑧𝜑 → ∀𝑥(𝑥 = 𝑦 → ∀𝑧𝜑))))
 
Theoremax12inda 35104* Induction step for constructing a substitution instance of ax-c15 35045 without using ax-c15 35045. Quantification case. (When 𝑧 and 𝑦 are distinct, ax12inda2 35103 may be used instead to avoid the dummy variable 𝑤 in the proof.) (Contributed by NM, 24-Jan-2007.) (Proof modification is discouraged.) (New usage is discouraged.)
(¬ ∀𝑥 𝑥 = 𝑤 → (𝑥 = 𝑤 → (𝜑 → ∀𝑥(𝑥 = 𝑤𝜑))))       (¬ ∀𝑥 𝑥 = 𝑦 → (𝑥 = 𝑦 → (∀𝑧𝜑 → ∀𝑥(𝑥 = 𝑦 → ∀𝑧𝜑))))
 
Theoremax12v2-o 35105* Rederivation of ax-c15 35045 from ax12v 2164 (without using ax-c15 35045 or the full ax-12 2163). Thus, the hypothesis (ax12v 2164) provides an alternate axiom that can be used in place of ax-c15 35045. See also axc15 2387. (Contributed by NM, 2-Feb-2007.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝑥 = 𝑧 → (𝜑 → ∀𝑥(𝑥 = 𝑧𝜑)))       (¬ ∀𝑥 𝑥 = 𝑦 → (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦𝜑))))
 
Theoremax12a2-o 35106* Derive ax-c15 35045 from a hypothesis in the form of ax-12 2163, without using ax-12 2163 or ax-c15 35045. The hypothesis is weaker than ax-12 2163, with 𝑧 both distinct from 𝑥 and not occurring in 𝜑. Thus, the hypothesis provides an alternate axiom that can be used in place of ax-12 2163, if we also have ax-c11 35043, which this proof uses. As theorem ax12 2389 shows, the distinct variable conditions are optional. An open problem is whether we can derive this with ax-c11n 35044 instead of ax-c11 35043. (Contributed by NM, 2-Feb-2007.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝑥 = 𝑧 → (∀𝑧𝜑 → ∀𝑥(𝑥 = 𝑧𝜑)))       (¬ ∀𝑥 𝑥 = 𝑦 → (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦𝜑))))
 
Theoremaxc11-o 35107 Show that ax-c11 35043 can be derived from ax-c11n 35044 and ax-12 2163. An open problem is whether this theorem can be derived from ax-c11n 35044 and the others when ax-12 2163 is replaced with ax-c15 35045 or ax12v 2164. See theorem axc11nfromc11 35082 for the rederivation of ax-c11n 35044 from axc11 2396.

Normally, axc11 2396 should be used rather than ax-c11 35043 or axc11-o 35107, except by theorems specifically studying the latter's properties. (Contributed by NM, 16-May-2008.) (Proof modification is discouraged.) (New usage is discouraged.)

(∀𝑥 𝑥 = 𝑦 → (∀𝑥𝜑 → ∀𝑦𝜑))
 
Theoremfsumshftd 35108* Index shift of a finite sum with a weaker "implicit substitution" hypothesis than fsumshft 14916. The proof demonstrates how this can be derived starting from from fsumshft 14916. (Contributed by NM, 1-Nov-2019.)
(𝜑𝐾 ∈ ℤ)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝑁 ∈ ℤ)    &   ((𝜑𝑗 ∈ (𝑀...𝑁)) → 𝐴 ∈ ℂ)    &   ((𝜑𝑗 = (𝑘𝐾)) → 𝐴 = 𝐵)       (𝜑 → Σ𝑗 ∈ (𝑀...𝑁)𝐴 = Σ𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))𝐵)
 
Axiomax-riotaBAD 35109 Define restricted description binder. In case it doesn't exist, we return a set which is not a member of the domain of discourse 𝐴. See also comments for df-iota 6099. (Contributed by NM, 15-Sep-2011.) (Revised by Mario Carneiro, 15-Oct-2016.) WARNING: THIS "AXIOM", WHICH IS THE OLD df-riota 6883, CONFLICTS WITH (THE NEW) df-riota 6883 AND MAKES THE SYSTEM IN set.mm INCONSISTENT. IT IS TEMPORARY AND WILL BE DELETED AFTER ALL USES ARE ELIMINATED.
(𝑥𝐴 𝜑) = if(∃!𝑥𝐴 𝜑, (℩𝑥(𝑥𝐴𝜑)), (Undef‘{𝑥𝑥𝐴}))
 
TheoremriotaclbgBAD 35110* Closure of restricted iota. (Contributed by NM, 28-Feb-2013.) (Revised by Mario Carneiro, 24-Dec-2016.)
(𝐴𝑉 → (∃!𝑥𝐴 𝜑 ↔ (𝑥𝐴 𝜑) ∈ 𝐴))
 
TheoremriotaclbBAD 35111* Closure of restricted iota. (Contributed by NM, 15-Sep-2011.)
𝐴 ∈ V       (∃!𝑥𝐴 𝜑 ↔ (𝑥𝐴 𝜑) ∈ 𝐴)
 
Theoremriotasvd 35112* Deduction version of riotasv 35115. (Contributed by NM, 4-Mar-2013.) (Revised by Mario Carneiro, 15-Oct-2016.)
(𝜑𝐷 = (𝑥𝐴𝑦𝐵 (𝜓𝑥 = 𝐶)))    &   (𝜑𝐷𝐴)       ((𝜑𝐴𝑉) → ((𝑦𝐵𝜓) → 𝐷 = 𝐶))
 
Theoremriotasv2d 35113* Value of description binder 𝐷 for a single-valued class expression 𝐶(𝑦) (as in e.g. reusv2 5115). Special case of riota2f 6904. (Contributed by NM, 2-Mar-2013.)
𝑦𝜑    &   (𝜑𝑦𝐹)    &   (𝜑 → Ⅎ𝑦𝜒)    &   (𝜑𝐷 = (𝑥𝐴𝑦𝐵 (𝜓𝑥 = 𝐶)))    &   ((𝜑𝑦 = 𝐸) → (𝜓𝜒))    &   ((𝜑𝑦 = 𝐸) → 𝐶 = 𝐹)    &   (𝜑𝐷𝐴)    &   (𝜑𝐸𝐵)    &   (𝜑𝜒)       ((𝜑𝐴𝑉) → 𝐷 = 𝐹)
 
Theoremriotasv2s 35114* The value of description binder 𝐷 for a single-valued class expression 𝐶(𝑦) (as in e.g. reusv2 5115) in the form of a substitution instance. Special case of riota2f 6904. (Contributed by NM, 3-Mar-2013.) (Proof shortened by Mario Carneiro, 6-Dec-2016.)
𝐷 = (𝑥𝐴𝑦𝐵 (𝜑𝑥 = 𝐶))       ((𝐴𝑉𝐷𝐴 ∧ (𝐸𝐵[𝐸 / 𝑦]𝜑)) → 𝐷 = 𝐸 / 𝑦𝐶)
 
Theoremriotasv 35115* Value of description binder 𝐷 for a single-valued class expression 𝐶(𝑦) (as in e.g. reusv2 5115). Special case of riota2f 6904. (Contributed by NM, 26-Jan-2013.) (Proof shortened by Mario Carneiro, 6-Dec-2016.)
𝐴 ∈ V    &   𝐷 = (𝑥𝐴𝑦𝐵 (𝜑𝑥 = 𝐶))       ((𝐷𝐴𝑦𝐵𝜑) → 𝐷 = 𝐶)
 
Theoremriotasv3d 35116* A property 𝜒 holding for a representative of a single-valued class expression 𝐶(𝑦) (see e.g. reusv2 5115) also holds for its description binder 𝐷 (in the form of property 𝜃). (Contributed by NM, 5-Mar-2013.) (Revised by Mario Carneiro, 15-Oct-2016.)
𝑦𝜑    &   (𝜑 → Ⅎ𝑦𝜃)    &   (𝜑𝐷 = (𝑥𝐴𝑦𝐵 (𝜓𝑥 = 𝐶)))    &   ((𝜑𝐶 = 𝐷) → (𝜒𝜃))    &   (𝜑 → ((𝑦𝐵𝜓) → 𝜒))    &   (𝜑𝐷𝐴)    &   (𝜑 → ∃𝑦𝐵 𝜓)       ((𝜑𝐴𝑉) → 𝜃)
 
20.23.4  Experiments with weak deduction theorem
 
Theoremelimhyps 35117 A version of elimhyp 4370 using explicit substitution. (Contributed by NM, 15-Jun-2019.)
[𝐵 / 𝑥]𝜑       [if(𝜑, 𝑥, 𝐵) / 𝑥]𝜑
 
Theoremdedths 35118 A version of weak deduction theorem dedth 4363 using explicit substitution. (Contributed by NM, 15-Jun-2019.)
[if(𝜑, 𝑥, 𝐵) / 𝑥]𝜓       (𝜑𝜓)
 
TheoremrenegclALT 35119 Closure law for negative of reals. Demonstrates use of weak deduction theorem with explicit substitution. The proof is much longer than that of renegcl 10686. (Contributed by NM, 15-Jun-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝐴 ∈ ℝ → -𝐴 ∈ ℝ)
 
Theoremelimhyps2 35120 Generalization of elimhyps 35117 that is not useful unless we can separately prove 𝐴 ∈ V. (Contributed by NM, 13-Jun-2019.)
[𝐵 / 𝑥]𝜑       [if([𝐴 / 𝑥]𝜑, 𝐴, 𝐵) / 𝑥]𝜑
 
Theoremdedths2 35121 Generalization of dedths 35118 that is not useful unless we can separately prove 𝐴 ∈ V. (Contributed by NM, 13-Jun-2019.)
[if([𝐴 / 𝑥]𝜑, 𝐴, 𝐵) / 𝑥]𝜓       ([𝐴 / 𝑥]𝜑[𝐴 / 𝑥]𝜓)
 
Theoremnfcxfrdf 35122 A utility lemma to transfer a bound-variable hypothesis builder into a definition. (Contributed by NM, 19-Nov-2020.)
𝑥𝜑    &   (𝜑𝐴 = 𝐵)    &   (𝜑𝑥𝐵)       (𝜑𝑥𝐴)
 
Theoremnfded 35123 A deduction theorem that converts a not-free inference directly to deduction form. The first hypothesis is the hypothesis of the deduction form. The second is an equality deduction (e.g., (𝑥𝐴 {𝑦 ∣ ∀𝑥𝑦𝐴} = 𝐴)) that starts from abidnf 3585. The last is assigned to the inference form (e.g., 𝑥 {𝑦 ∣ ∀𝑥𝑦𝐴}) whose hypothesis is satisfied using nfaba1 2941. (Contributed by NM, 19-Nov-2020.)
(𝜑𝑥𝐴)    &   (𝑥𝐴𝐵 = 𝐶)    &   𝑥𝐵       (𝜑𝑥𝐶)
 
Theoremnfded2 35124 A deduction theorem that converts a not-free inference directly to deduction form. The first 2 hypotheses are the hypotheses of the deduction form. The third is an equality deduction (e.g., ((𝑥𝐴𝑥𝐵) → ⟨{𝑦 ∣ ∀𝑥𝑦𝐴}, {𝑦 ∣ ∀𝑥𝑦𝐵}⟩ = ⟨𝐴, 𝐵⟩) for nfopd 4653) that starts from abidnf 3585. The last is assigned to the inference form (e.g., 𝑥⟨{𝑦 ∣ ∀𝑥𝑦𝐴}, {𝑦 ∣ ∀𝑥𝑦𝐵}⟩ for nfop 4652) whose hypotheses are satisfied using nfaba1 2941. (Contributed by NM, 19-Nov-2020.)
(𝜑𝑥𝐴)    &   (𝜑𝑥𝐵)    &   ((𝑥𝐴𝑥𝐵) → 𝐶 = 𝐷)    &   𝑥𝐶       (𝜑𝑥𝐷)
 
TheoremnfunidALT2 35125 Deduction version of nfuni 4677. (Contributed by NM, 19-Nov-2020.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝜑𝑥𝐴)       (𝜑𝑥 𝐴)
 
TheoremnfunidALT 35126 Deduction version of nfuni 4677. (Contributed by NM, 19-Nov-2020.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝜑𝑥𝐴)       (𝜑𝑥 𝐴)
 
TheoremnfopdALT 35127 Deduction version of bound-variable hypothesis builder nfop 4652. This shows how the deduction version of a not-free theorem such as nfop 4652 can be created from the corresponding not-free inference theorem. (Contributed by NM, 19-Nov-2020.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝜑𝑥𝐴)    &   (𝜑𝑥𝐵)       (𝜑𝑥𝐴, 𝐵⟩)
 
20.23.5  Miscellanea
 
Theoremcnaddcom 35128 Recover the commutative law of addition for complex numbers from the Abelian group structure. (Contributed by NM, 17-Mar-2013.) (Proof modification is discouraged.)
((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) = (𝐵 + 𝐴))
 
Theoremtoycom 35129* Show the commutative law for an operation 𝑂 on a toy structure class 𝐶 of commuatitive operations on . This illustrates how a structure class can be partially specialized. In practice, we would ordinarily define a new constant such as "CAbel" in place of 𝐶. (Contributed by NM, 17-Mar-2013.) (Proof modification is discouraged.)
𝐶 = {𝑔 ∈ Abel ∣ (Base‘𝑔) = ℂ}    &    + = (+g𝐾)       ((𝐾𝐶𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) = (𝐵 + 𝐴))
 
20.23.6  Atoms, hyperplanes, and covering in a left vector space (or module)
 
Syntaxclsa 35130 Extend class notation with all 1-dim subspaces (atoms) of a left module or left vector space.
class LSAtoms
 
Syntaxclsh 35131 Extend class notation with all subspaces of a left module or left vector space that are hyperplanes.
class LSHyp
 
Definitiondf-lsatoms 35132* Define the set of all 1-dim subspaces (atoms) of a left module or left vector space. (Contributed by NM, 9-Apr-2014.)
LSAtoms = (𝑤 ∈ V ↦ ran (𝑣 ∈ ((Base‘𝑤) ∖ {(0g𝑤)}) ↦ ((LSpan‘𝑤)‘{𝑣})))
 
Definitiondf-lshyp 35133* Define the set of all hyperplanes of a left module or left vector space. Also called co-atoms, these are subspaces that are one dimension less that the full space. (Contributed by NM, 29-Jun-2014.)
LSHyp = (𝑤 ∈ V ↦ {𝑠 ∈ (LSubSp‘𝑤) ∣ (𝑠 ≠ (Base‘𝑤) ∧ ∃𝑣 ∈ (Base‘𝑤)((LSpan‘𝑤)‘(𝑠 ∪ {𝑣})) = (Base‘𝑤))})
 
Theoremlshpset 35134* The set of all hyperplanes of a left module or left vector space. The vector 𝑣 is called a generating vector for the hyperplane. (Contributed by NM, 29-Jun-2014.)
𝑉 = (Base‘𝑊)    &   𝑁 = (LSpan‘𝑊)    &   𝑆 = (LSubSp‘𝑊)    &   𝐻 = (LSHyp‘𝑊)       (𝑊𝑋𝐻 = {𝑠𝑆 ∣ (𝑠𝑉 ∧ ∃𝑣𝑉 (𝑁‘(𝑠 ∪ {𝑣})) = 𝑉)})
 
Theoremislshp 35135* The predicate "is a hyperplane" (of a left module or left vector space). (Contributed by NM, 29-Jun-2014.)
𝑉 = (Base‘𝑊)    &   𝑁 = (LSpan‘𝑊)    &   𝑆 = (LSubSp‘𝑊)    &   𝐻 = (LSHyp‘𝑊)       (𝑊𝑋 → (𝑈𝐻 ↔ (𝑈𝑆𝑈𝑉 ∧ ∃𝑣𝑉 (𝑁‘(𝑈 ∪ {𝑣})) = 𝑉)))
 
Theoremislshpsm 35136* Hyperplane properties expressed with subspace sum. (Contributed by NM, 3-Jul-2014.)
𝑉 = (Base‘𝑊)    &   𝑁 = (LSpan‘𝑊)    &   𝑆 = (LSubSp‘𝑊)    &    = (LSSum‘𝑊)    &   𝐻 = (LSHyp‘𝑊)    &   (𝜑𝑊 ∈ LMod)       (𝜑 → (𝑈𝐻 ↔ (𝑈𝑆𝑈𝑉 ∧ ∃𝑣𝑉 (𝑈 (𝑁‘{𝑣})) = 𝑉)))
 
Theoremlshplss 35137 A hyperplane is a subspace. (Contributed by NM, 3-Jul-2014.)
𝑆 = (LSubSp‘𝑊)    &   𝐻 = (LSHyp‘𝑊)    &   (𝜑𝑊 ∈ LMod)    &   (𝜑𝑈𝐻)       (𝜑𝑈𝑆)
 
Theoremlshpne 35138 A hyperplane is not equal to the vector space. (Contributed by NM, 4-Jul-2014.)
𝑉 = (Base‘𝑊)    &   𝐻 = (LSHyp‘𝑊)    &   (𝜑𝑊 ∈ LMod)    &   (𝜑𝑈𝐻)       (𝜑𝑈𝑉)
 
Theoremlshpnel 35139 A hyperplane's generating vector does not belong to the hyperplane. (Contributed by NM, 3-Jul-2014.)
𝑉 = (Base‘𝑊)    &   𝑁 = (LSpan‘𝑊)    &    = (LSSum‘𝑊)    &   𝐻 = (LSHyp‘𝑊)    &   (𝜑𝑊 ∈ LMod)    &   (𝜑𝑈𝐻)    &   (𝜑𝑋𝑉)    &   (𝜑 → (𝑈 (𝑁‘{𝑋})) = 𝑉)       (𝜑 → ¬ 𝑋𝑈)
 
Theoremlshpnelb 35140 The subspace sum of a hyperplane and the span of an element equals the vector space iff the element is not in the hyperplane. (Contributed by NM, 2-Oct-2014.)
𝑉 = (Base‘𝑊)    &   𝑁 = (LSpan‘𝑊)    &    = (LSSum‘𝑊)    &   𝐻 = (LSHyp‘𝑊)    &   (𝜑𝑊 ∈ LVec)    &   (𝜑𝑈𝐻)    &   (𝜑𝑋𝑉)       (𝜑 → (¬ 𝑋𝑈 ↔ (𝑈 (𝑁‘{𝑋})) = 𝑉))
 
Theoremlshpnel2N 35141 Condition that determines a hyperplane. (Contributed by NM, 3-Oct-2014.) (New usage is discouraged.)
𝑉 = (Base‘𝑊)    &   𝑆 = (LSubSp‘𝑊)    &   𝑁 = (LSpan‘𝑊)    &    = (LSSum‘𝑊)    &   𝐻 = (LSHyp‘𝑊)    &   (𝜑𝑊 ∈ LVec)    &   (𝜑𝑈𝑆)    &   (𝜑𝑈𝑉)    &   (𝜑𝑋𝑉)    &   (𝜑 → ¬ 𝑋𝑈)       (𝜑 → (𝑈𝐻 ↔ (𝑈 (𝑁‘{𝑋})) = 𝑉))
 
Theoremlshpne0 35142 The member of the span in the hyperplane definition does not belong to the hyperplane. (Contributed by NM, 14-Jul-2014.) (Proof shortened by AV, 19-Jul-2022.)
𝑉 = (Base‘𝑊)    &   𝑁 = (LSpan‘𝑊)    &    = (LSSum‘𝑊)    &   𝐻 = (LSHyp‘𝑊)    &    0 = (0g𝑊)    &   (𝜑𝑊 ∈ LMod)    &   (𝜑𝑈𝐻)    &   (𝜑𝑋𝑉)    &   (𝜑 → (𝑈 (𝑁‘{𝑋})) = 𝑉)       (𝜑𝑋0 )
 
Theoremlshpdisj 35143 A hyperplane and the span in the hyperplane definition are disjoint. (Contributed by NM, 3-Jul-2014.)
𝑉 = (Base‘𝑊)    &    0 = (0g𝑊)    &   𝑁 = (LSpan‘𝑊)    &    = (LSSum‘𝑊)    &   𝐻 = (LSHyp‘𝑊)    &   (𝜑𝑊 ∈ LVec)    &   (𝜑𝑈𝐻)    &   (𝜑𝑋𝑉)    &   (𝜑 → (𝑈 (𝑁‘{𝑋})) = 𝑉)       (𝜑 → (𝑈 ∩ (𝑁‘{𝑋})) = { 0 })
 
Theoremlshpcmp 35144 If two hyperplanes are comparable, they are equal. (Contributed by NM, 9-Oct-2014.)
𝐻 = (LSHyp‘𝑊)    &   (𝜑𝑊 ∈ LVec)    &   (𝜑𝑇𝐻)    &   (𝜑𝑈𝐻)       (𝜑 → (𝑇𝑈𝑇 = 𝑈))
 
TheoremlshpinN 35145 The intersection of two different hyperplanes is not a hyperplane. (Contributed by NM, 29-Oct-2014.) (New usage is discouraged.)
𝐻 = (LSHyp‘𝑊)    &   (𝜑𝑊 ∈ LVec)    &   (𝜑𝑇𝐻)    &   (𝜑𝑈𝐻)       (𝜑 → ((𝑇𝑈) ∈ 𝐻𝑇 = 𝑈))
 
Theoremlsatset 35146* The set of all 1-dim subspaces (atoms) of a left module or left vector space. (Contributed by NM, 9-Apr-2014.) (Revised by Mario Carneiro, 22-Sep-2015.)
𝑉 = (Base‘𝑊)    &   𝑁 = (LSpan‘𝑊)    &    0 = (0g𝑊)    &   𝐴 = (LSAtoms‘𝑊)       (𝑊𝑋𝐴 = ran (𝑣 ∈ (𝑉 ∖ { 0 }) ↦ (𝑁‘{𝑣})))
 
Theoremislsat 35147* The predicate "is a 1-dim subspace (atom)" (of a left module or left vector space). (Contributed by NM, 9-Apr-2014.) (Revised by Mario Carneiro, 24-Jun-2014.)
𝑉 = (Base‘𝑊)    &   𝑁 = (LSpan‘𝑊)    &    0 = (0g𝑊)    &   𝐴 = (LSAtoms‘𝑊)       (𝑊𝑋 → (𝑈𝐴 ↔ ∃𝑥 ∈ (𝑉 ∖ { 0 })𝑈 = (𝑁‘{𝑥})))
 
Theoremlsatlspsn2 35148 The span of a nonzero singleton is an atom. TODO: make this obsolete and use lsatlspsn 35149 instead? (Contributed by NM, 9-Apr-2014.) (Revised by Mario Carneiro, 24-Jun-2014.)
𝑉 = (Base‘𝑊)    &   𝑁 = (LSpan‘𝑊)    &    0 = (0g𝑊)    &   𝐴 = (LSAtoms‘𝑊)       ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑋0 ) → (𝑁‘{𝑋}) ∈ 𝐴)
 
Theoremlsatlspsn 35149 The span of a nonzero singleton is an atom. (Contributed by NM, 16-Jan-2015.)
𝑉 = (Base‘𝑊)    &   𝑁 = (LSpan‘𝑊)    &    0 = (0g𝑊)    &   𝐴 = (LSAtoms‘𝑊)    &   (𝜑𝑊 ∈ LMod)    &   (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))       (𝜑 → (𝑁‘{𝑋}) ∈ 𝐴)
 
Theoremislsati 35150* A 1-dim subspace (atom) (of a left module or left vector space) equals the span of some vector. (Contributed by NM, 1-Oct-2014.)
𝑉 = (Base‘𝑊)    &   𝑁 = (LSpan‘𝑊)    &   𝐴 = (LSAtoms‘𝑊)       ((𝑊𝑋𝑈𝐴) → ∃𝑣𝑉 𝑈 = (𝑁‘{𝑣}))
 
Theoremlsateln0 35151* A 1-dim subspace (atom) (of a left module or left vector space) contains a nonzero vector. (Contributed by NM, 2-Jan-2015.)
0 = (0g𝑊)    &   𝐴 = (LSAtoms‘𝑊)    &   (𝜑𝑊 ∈ LMod)    &   (𝜑𝑈𝐴)       (𝜑 → ∃𝑣𝑈 𝑣0 )
 
Theoremlsatlss 35152 The set of 1-dim subspaces is a set of subspaces. (Contributed by NM, 9-Apr-2014.) (Revised by Mario Carneiro, 24-Jun-2014.)
𝑆 = (LSubSp‘𝑊)    &   𝐴 = (LSAtoms‘𝑊)       (𝑊 ∈ LMod → 𝐴𝑆)
 
Theoremlsatlssel 35153 An atom is a subspace. (Contributed by NM, 25-Aug-2014.)
𝑆 = (LSubSp‘𝑊)    &   𝐴 = (LSAtoms‘𝑊)    &   (𝜑𝑊 ∈ LMod)    &   (𝜑𝑈𝐴)       (𝜑𝑈𝑆)
 
Theoremlsatssv 35154 An atom is a set of vectors. (Contributed by NM, 27-Feb-2015.)
𝑉 = (Base‘𝑊)    &   𝐴 = (LSAtoms‘𝑊)    &   (𝜑𝑊 ∈ LMod)    &   (𝜑𝑄𝐴)       (𝜑𝑄𝑉)
 
Theoremlsatn0 35155 A 1-dim subspace (atom) of a left module or left vector space is nonzero. (atne0 29776 analog.) (Contributed by NM, 25-Aug-2014.)
0 = (0g𝑊)    &   𝐴 = (LSAtoms‘𝑊)    &   (𝜑𝑊 ∈ LMod)    &   (𝜑𝑈𝐴)       (𝜑𝑈 ≠ { 0 })
 
Theoremlsatspn0 35156 The span of a vector is an atom iff the vector is nonzero. (Contributed by NM, 4-Feb-2015.)
𝑉 = (Base‘𝑊)    &   𝑁 = (LSpan‘𝑊)    &    0 = (0g𝑊)    &   𝐴 = (LSAtoms‘𝑊)    &   (𝜑𝑊 ∈ LMod)    &   (𝜑𝑋𝑉)       (𝜑 → ((𝑁‘{𝑋}) ∈ 𝐴𝑋0 ))
 
Theoremlsator0sp 35157 The span of a vector is either an atom or the zero subspace. (Contributed by NM, 15-Mar-2015.)
𝑉 = (Base‘𝑊)    &   𝑁 = (LSpan‘𝑊)    &    0 = (0g𝑊)    &   𝐴 = (LSAtoms‘𝑊)    &   (𝜑𝑊 ∈ LMod)    &   (𝜑𝑋𝑉)       (𝜑 → ((𝑁‘{𝑋}) ∈ 𝐴 ∨ (𝑁‘{𝑋}) = { 0 }))
 
Theoremlsatssn0 35158 A subspace (or any class) including an atom is nonzero. (Contributed by NM, 3-Feb-2015.)
0 = (0g𝑊)    &   𝐴 = (LSAtoms‘𝑊)    &   (𝜑𝑊 ∈ LMod)    &   (𝜑𝑄𝐴)    &   (𝜑𝑄𝑈)       (𝜑𝑈 ≠ { 0 })
 
Theoremlsatcmp 35159 If two atoms are comparable, they are equal. (atsseq 29778 analog.) TODO: can lspsncmp 19511 shorten this? (Contributed by NM, 25-Aug-2014.)
𝐴 = (LSAtoms‘𝑊)    &   (𝜑𝑊 ∈ LVec)    &   (𝜑𝑇𝐴)    &   (𝜑𝑈𝐴)       (𝜑 → (𝑇𝑈𝑇 = 𝑈))
 
Theoremlsatcmp2 35160 If an atom is included in at-most an atom, they are equal. More general version of lsatcmp 35159. TODO: can lspsncmp 19511 shorten this? (Contributed by NM, 3-Feb-2015.)
0 = (0g𝑊)    &   𝐴 = (LSAtoms‘𝑊)    &   (𝜑𝑊 ∈ LVec)    &   (𝜑𝑇𝐴)    &   (𝜑 → (𝑈𝐴𝑈 = { 0 }))       (𝜑 → (𝑇𝑈𝑇 = 𝑈))
 
Theoremlsatel 35161 A nonzero vector in an atom determines the atom. (Contributed by NM, 25-Aug-2014.)
0 = (0g𝑊)    &   𝑁 = (LSpan‘𝑊)    &   𝐴 = (LSAtoms‘𝑊)    &   (𝜑𝑊 ∈ LVec)    &   (𝜑𝑈𝐴)    &   (𝜑𝑋𝑈)    &   (𝜑𝑋0 )       (𝜑𝑈 = (𝑁‘{𝑋}))
 
TheoremlsatelbN 35162 A nonzero vector in an atom determines the atom. (Contributed by NM, 3-Feb-2015.) (New usage is discouraged.)
𝑉 = (Base‘𝑊)    &    0 = (0g𝑊)    &   𝑁 = (LSpan‘𝑊)    &   𝐴 = (LSAtoms‘𝑊)    &   (𝜑𝑊 ∈ LVec)    &   (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))    &   (𝜑𝑈𝐴)       (𝜑 → (𝑋𝑈𝑈 = (𝑁‘{𝑋})))
 
Theoremlsat2el 35163 Two atoms sharing a nonzero vector are equal. (Contributed by NM, 8-Mar-2015.)
0 = (0g𝑊)    &   𝐴 = (LSAtoms‘𝑊)    &   (𝜑𝑊 ∈ LVec)    &   (𝜑𝑃𝐴)    &   (𝜑𝑄𝐴)    &   (𝜑𝑋0 )    &   (𝜑𝑋𝑃)    &   (𝜑𝑋𝑄)       (𝜑𝑃 = 𝑄)
 
Theoremlsmsat 35164* Convert comparison of atom with sum of subspaces to a comparison to sum with atom. (elpaddatiN 35961 analog.) TODO: any way to shorten this? (Contributed by NM, 15-Jan-2015.)
0 = (0g𝑊)    &   𝑆 = (LSubSp‘𝑊)    &    = (LSSum‘𝑊)    &   𝐴 = (LSAtoms‘𝑊)    &   (𝜑𝑊 ∈ LMod)    &   (𝜑𝑇𝑆)    &   (𝜑𝑈𝑆)    &   (𝜑𝑄𝐴)    &   (𝜑𝑇 ≠ { 0 })    &   (𝜑𝑄 ⊆ (𝑇 𝑈))       (𝜑 → ∃𝑝𝐴 (𝑝𝑇𝑄 ⊆ (𝑝 𝑈)))
 
TheoremlsatfixedN 35165* Show equality with the span of the sum of two vectors, one of which (𝑋) is fixed in advance. Compare lspfixed 19523. (Contributed by NM, 29-May-2015.) (New usage is discouraged.)
𝑉 = (Base‘𝑊)    &    + = (+g𝑊)    &    0 = (0g𝑊)    &   𝑁 = (LSpan‘𝑊)    &   𝐴 = (LSAtoms‘𝑊)    &   (𝜑𝑊 ∈ LVec)    &   (𝜑𝑄𝐴)    &   (𝜑𝑋𝑉)    &   (𝜑𝑌𝑉)    &   (𝜑𝑄 ≠ (𝑁‘{𝑋}))    &   (𝜑𝑄 ≠ (𝑁‘{𝑌}))    &   (𝜑𝑄 ⊆ (𝑁‘{𝑋, 𝑌}))       (𝜑 → ∃𝑧 ∈ ((𝑁‘{𝑌}) ∖ { 0 })𝑄 = (𝑁‘{(𝑋 + 𝑧)}))
 
Theoremlsmsatcv 35166 Subspace sum has the covering property (using spans of singletons to represent atoms). Similar to Exercise 5 of [Kalmbach] p. 153. (spansncvi 29083 analog.) Explicit atom version of lsmcv 19537. (Contributed by NM, 29-Oct-2014.)
𝑆 = (LSubSp‘𝑊)    &    = (LSSum‘𝑊)    &   𝐴 = (LSAtoms‘𝑊)    &   (𝜑𝑊 ∈ LVec)    &   (𝜑𝑇𝑆)    &   (𝜑𝑈𝑆)    &   (𝜑𝑄𝐴)       ((𝜑𝑇𝑈𝑈 ⊆ (𝑇 𝑄)) → 𝑈 = (𝑇 𝑄))
 
Theoremlssatomic 35167* The lattice of subspaces is atomic, i.e. any nonzero element is greater than or equal to some atom. (shatomici 29789 analog.) (Contributed by NM, 10-Jan-2015.)
𝑆 = (LSubSp‘𝑊)    &    0 = (0g𝑊)    &   𝐴 = (LSAtoms‘𝑊)    &   (𝜑𝑊 ∈ LMod)    &   (𝜑𝑈𝑆)    &   (𝜑𝑈 ≠ { 0 })       (𝜑 → ∃𝑞𝐴 𝑞𝑈)
 
Theoremlssats 35168* The lattice of subspaces is atomistic, i.e. any element is the supremum of its atoms. Part of proof of Theorem 16.9 of [MaedaMaeda] p. 70. Hypothesis (shatomistici 29792 analog.) (Contributed by NM, 9-Apr-2014.)
𝑆 = (LSubSp‘𝑊)    &   𝑁 = (LSpan‘𝑊)    &   𝐴 = (LSAtoms‘𝑊)       ((𝑊 ∈ LMod ∧ 𝑈𝑆) → 𝑈 = (𝑁 {𝑥𝐴𝑥𝑈}))
 
Theoremlpssat 35169* Two subspaces in a proper subset relationship imply the existence of an atom less than or equal to one but not the other. (chpssati 29794 analog.) (Contributed by NM, 11-Jan-2015.)
𝑆 = (LSubSp‘𝑊)    &   𝐴 = (LSAtoms‘𝑊)    &   (𝜑𝑊 ∈ LMod)    &   (𝜑𝑇𝑆)    &   (𝜑𝑈𝑆)    &   (𝜑𝑇𝑈)       (𝜑 → ∃𝑞𝐴 (𝑞𝑈 ∧ ¬ 𝑞𝑇))
 
Theoremlrelat 35170* Subspaces are relatively atomic. Remark 2 of [Kalmbach] p. 149. (chrelati 29795 analog.) (Contributed by NM, 11-Jan-2015.)
𝑆 = (LSubSp‘𝑊)    &    = (LSSum‘𝑊)    &   𝐴 = (LSAtoms‘𝑊)    &   (𝜑𝑊 ∈ LMod)    &   (𝜑𝑇𝑆)    &   (𝜑𝑈𝑆)    &   (𝜑𝑇𝑈)       (𝜑 → ∃𝑞𝐴 (𝑇 ⊊ (𝑇 𝑞) ∧ (𝑇 𝑞) ⊆ 𝑈))
 
Theoremlssatle 35171* The ordering of two subspaces is determined by the atoms under them. (chrelat3 29802 analog.) (Contributed by NM, 29-Oct-2014.)
𝑆 = (LSubSp‘𝑊)    &   𝐴 = (LSAtoms‘𝑊)    &   (𝜑𝑊 ∈ LMod)    &   (𝜑𝑇𝑆)    &   (𝜑𝑈𝑆)       (𝜑 → (𝑇𝑈 ↔ ∀𝑝𝐴 (𝑝𝑇𝑝𝑈)))
 
Theoremlssat 35172* Two subspaces in a proper subset relationship imply the existence of a 1-dim subspace less than or equal to one but not the other. (chpssati 29794 analog.) (Contributed by NM, 9-Apr-2014.)
𝑆 = (LSubSp‘𝑊)    &   𝐴 = (LSAtoms‘𝑊)       (((𝑊 ∈ LMod ∧ 𝑈𝑆𝑉𝑆) ∧ 𝑈𝑉) → ∃𝑝𝐴 (𝑝𝑉 ∧ ¬ 𝑝𝑈))
 
Theoremislshpat 35173* Hyperplane properties expressed with subspace sum and an atom. TODO: can proof be shortened? Seems long for a simple variation of islshpsm 35136. (Contributed by NM, 11-Jan-2015.)
𝑉 = (Base‘𝑊)    &   𝑆 = (LSubSp‘𝑊)    &    = (LSSum‘𝑊)    &   𝐻 = (LSHyp‘𝑊)    &   𝐴 = (LSAtoms‘𝑊)    &   (𝜑𝑊 ∈ LMod)       (𝜑 → (𝑈𝐻 ↔ (𝑈𝑆𝑈𝑉 ∧ ∃𝑞𝐴 (𝑈 𝑞) = 𝑉)))
 
Syntaxclcv 35174 Extend class notation with the covering relation for a left module or left vector space.
class L
 
Definitiondf-lcv 35175* Define the covering relation for subspaces of a left vector space. Similar to Definition 3.2.18 of [PtakPulmannova] p. 68. Ptak/Pulmannova's notation 𝐴( ⋖L𝑊)𝐵 is read "𝐵 covers 𝐴 " or "𝐴 is covered by 𝐵 " , and it means that 𝐵 is larger than 𝐴 and there is nothing in between. See lcvbr 35177 for binary relation. (df-cv 29710 analog.) (Contributed by NM, 7-Jan-2015.)
L = (𝑤 ∈ V ↦ {⟨𝑡, 𝑢⟩ ∣ ((𝑡 ∈ (LSubSp‘𝑤) ∧ 𝑢 ∈ (LSubSp‘𝑤)) ∧ (𝑡𝑢 ∧ ¬ ∃𝑠 ∈ (LSubSp‘𝑤)(𝑡𝑠𝑠𝑢)))})
 
Theoremlcvfbr 35176* The covers relation for a left vector space (or a left module). (Contributed by NM, 7-Jan-2015.)
𝑆 = (LSubSp‘𝑊)    &   𝐶 = ( ⋖L𝑊)    &   (𝜑𝑊𝑋)       (𝜑𝐶 = {⟨𝑡, 𝑢⟩ ∣ ((𝑡𝑆𝑢𝑆) ∧ (𝑡𝑢 ∧ ¬ ∃𝑠𝑆 (𝑡𝑠𝑠𝑢)))})
 
Theoremlcvbr 35177* The covers relation for a left vector space (or a left module). (cvbr 29713 analog.) (Contributed by NM, 9-Jan-2015.)
𝑆 = (LSubSp‘𝑊)    &   𝐶 = ( ⋖L𝑊)    &   (𝜑𝑊𝑋)    &   (𝜑𝑇𝑆)    &   (𝜑𝑈𝑆)       (𝜑 → (𝑇𝐶𝑈 ↔ (𝑇𝑈 ∧ ¬ ∃𝑠𝑆 (𝑇𝑠𝑠𝑈))))
 
Theoremlcvbr2 35178* The covers relation for a left vector space (or a left module). (cvbr2 29714 analog.) (Contributed by NM, 9-Jan-2015.)
𝑆 = (LSubSp‘𝑊)    &   𝐶 = ( ⋖L𝑊)    &   (𝜑𝑊𝑋)    &   (𝜑𝑇𝑆)    &   (𝜑𝑈𝑆)       (𝜑 → (𝑇𝐶𝑈 ↔ (𝑇𝑈 ∧ ∀𝑠𝑆 ((𝑇𝑠𝑠𝑈) → 𝑠 = 𝑈))))
 
Theoremlcvbr3 35179* The covers relation for a left vector space (or a left module). (Contributed by NM, 9-Jan-2015.)
𝑆 = (LSubSp‘𝑊)    &   𝐶 = ( ⋖L𝑊)    &   (𝜑𝑊𝑋)    &   (𝜑𝑇𝑆)    &   (𝜑𝑈𝑆)       (𝜑 → (𝑇𝐶𝑈 ↔ (𝑇𝑈 ∧ ∀𝑠𝑆 ((𝑇𝑠𝑠𝑈) → (𝑠 = 𝑇𝑠 = 𝑈)))))
 
Theoremlcvpss 35180 The covers relation implies proper subset. (cvpss 29716 analog.) (Contributed by NM, 7-Jan-2015.)
𝑆 = (LSubSp‘𝑊)    &   𝐶 = ( ⋖L𝑊)    &   (𝜑𝑊𝑋)    &   (𝜑𝑇𝑆)    &   (𝜑𝑈𝑆)    &   (𝜑𝑇𝐶𝑈)       (𝜑𝑇𝑈)
 
Theoremlcvnbtwn 35181 The covers relation implies no in-betweenness. (cvnbtwn 29717 analog.) (Contributed by NM, 7-Jan-2015.)
𝑆 = (LSubSp‘𝑊)    &   𝐶 = ( ⋖L𝑊)    &   (𝜑𝑊𝑋)    &   (𝜑𝑅𝑆)    &   (𝜑𝑇𝑆)    &   (𝜑𝑈𝑆)    &   (𝜑𝑅𝐶𝑇)       (𝜑 → ¬ (𝑅𝑈𝑈𝑇))
 
Theoremlcvntr 35182 The covers relation is not transitive. (cvntr 29723 analog.) (Contributed by NM, 10-Jan-2015.)
𝑆 = (LSubSp‘𝑊)    &   𝐶 = ( ⋖L𝑊)    &   (𝜑𝑊𝑋)    &   (𝜑𝑅𝑆)    &   (𝜑𝑇𝑆)    &   (𝜑𝑈𝑆)    &   (𝜑𝑅𝐶𝑇)    &   (𝜑𝑇𝐶𝑈)       (𝜑 → ¬ 𝑅𝐶𝑈)
 
Theoremlcvnbtwn2 35183 The covers relation implies no in-betweenness. (cvnbtwn2 29718 analog.) (Contributed by NM, 7-Jan-2015.)
𝑆 = (LSubSp‘𝑊)    &   𝐶 = ( ⋖L𝑊)    &   (𝜑𝑊𝑋)    &   (𝜑𝑅𝑆)    &   (𝜑𝑇𝑆)    &   (𝜑𝑈𝑆)    &   (𝜑𝑅𝐶𝑇)    &   (𝜑𝑅𝑈)    &   (𝜑𝑈𝑇)       (𝜑𝑈 = 𝑇)
 
Theoremlcvnbtwn3 35184 The covers relation implies no in-betweenness. (cvnbtwn3 29719 analog.) (Contributed by NM, 7-Jan-2015.)
𝑆 = (LSubSp‘𝑊)    &   𝐶 = ( ⋖L𝑊)    &   (𝜑𝑊𝑋)    &   (𝜑𝑅𝑆)    &   (𝜑𝑇𝑆)    &   (𝜑𝑈𝑆)    &   (𝜑𝑅𝐶𝑇)    &   (𝜑𝑅𝑈)    &   (𝜑𝑈𝑇)       (𝜑𝑈 = 𝑅)
 
Theoremlsmcv2 35185 Subspace sum has the covering property (using spans of singletons to represent atoms). Proposition 1(ii) of [Kalmbach] p. 153. (spansncv2 29724 analog.) (Contributed by NM, 10-Jan-2015.)
𝑉 = (Base‘𝑊)    &   𝑆 = (LSubSp‘𝑊)    &   𝑁 = (LSpan‘𝑊)    &    = (LSSum‘𝑊)    &   𝐶 = ( ⋖L𝑊)    &   (𝜑𝑊 ∈ LVec)    &   (𝜑𝑈𝑆)    &   (𝜑𝑋𝑉)    &   (𝜑 → ¬ (𝑁‘{𝑋}) ⊆ 𝑈)       (𝜑𝑈𝐶(𝑈 (𝑁‘{𝑋})))
 
Theoremlcvat 35186* If a subspace covers another, it equals the other joined with some atom. This is a consequence of relative atomicity. (cvati 29797 analog.) (Contributed by NM, 11-Jan-2015.)
𝑆 = (LSubSp‘𝑊)    &    = (LSSum‘𝑊)    &   𝐴 = (LSAtoms‘𝑊)    &   𝐶 = ( ⋖L𝑊)    &   (𝜑𝑊 ∈ LMod)    &   (𝜑𝑇𝑆)    &   (𝜑𝑈𝑆)    &   (𝜑𝑇𝐶𝑈)       (𝜑 → ∃𝑞𝐴 (𝑇 𝑞) = 𝑈)
 
Theoremlsatcv0 35187 An atom covers the zero subspace. (atcv0 29773 analog.) (Contributed by NM, 7-Jan-2015.)
0 = (0g𝑊)    &   𝐴 = (LSAtoms‘𝑊)    &   𝐶 = ( ⋖L𝑊)    &   (𝜑𝑊 ∈ LVec)    &   (𝜑𝑄𝐴)       (𝜑 → { 0 }𝐶𝑄)
 
Theoremlsatcveq0 35188 A subspace covered by an atom must be the zero subspace. (atcveq0 29779 analog.) (Contributed by NM, 7-Jan-2015.)
0 = (0g𝑊)    &   𝑆 = (LSubSp‘𝑊)    &   𝐴 = (LSAtoms‘𝑊)    &   𝐶 = ( ⋖L𝑊)    &   (𝜑𝑊 ∈ LVec)    &   (𝜑𝑈𝑆)    &   (𝜑𝑄𝐴)       (𝜑 → (𝑈𝐶𝑄𝑈 = { 0 }))
 
Theoremlsat0cv 35189 A subspace is an atom iff it covers the zero subspace. This could serve as an alternate definition of an atom. TODO: this is a quick-and-dirty proof that could probably be more efficient. (Contributed by NM, 14-Mar-2015.)
0 = (0g𝑊)    &   𝑆 = (LSubSp‘𝑊)    &   𝐴 = (LSAtoms‘𝑊)    &   𝐶 = ( ⋖L𝑊)    &   (𝜑𝑊 ∈ LVec)    &   (𝜑𝑈𝑆)       (𝜑 → (𝑈𝐴 ↔ { 0 }𝐶𝑈))
 
Theoremlcvexchlem1 35190 Lemma for lcvexch 35195. (Contributed by NM, 10-Jan-2015.)
𝑆 = (LSubSp‘𝑊)    &    = (LSSum‘𝑊)    &   𝐶 = ( ⋖L𝑊)    &   (𝜑𝑊 ∈ LMod)    &   (𝜑𝑇𝑆)    &   (𝜑𝑈𝑆)       (𝜑 → (𝑇 ⊊ (𝑇 𝑈) ↔ (𝑇𝑈) ⊊ 𝑈))
 
Theoremlcvexchlem2 35191 Lemma for lcvexch 35195. (Contributed by NM, 10-Jan-2015.)
𝑆 = (LSubSp‘𝑊)    &    = (LSSum‘𝑊)    &   𝐶 = ( ⋖L𝑊)    &   (𝜑𝑊 ∈ LMod)    &   (𝜑𝑇𝑆)    &   (𝜑𝑈𝑆)    &   (𝜑𝑅𝑆)    &   (𝜑 → (𝑇𝑈) ⊆ 𝑅)    &   (𝜑𝑅𝑈)       (𝜑 → ((𝑅 𝑇) ∩ 𝑈) = 𝑅)
 
Theoremlcvexchlem3 35192 Lemma for lcvexch 35195. (Contributed by NM, 10-Jan-2015.)
𝑆 = (LSubSp‘𝑊)    &    = (LSSum‘𝑊)    &   𝐶 = ( ⋖L𝑊)    &   (𝜑𝑊 ∈ LMod)    &   (𝜑𝑇𝑆)    &   (𝜑𝑈𝑆)    &   (𝜑𝑅𝑆)    &   (𝜑𝑇𝑅)    &   (𝜑𝑅 ⊆ (𝑇 𝑈))       (𝜑 → ((𝑅𝑈) 𝑇) = 𝑅)
 
Theoremlcvexchlem4 35193 Lemma for lcvexch 35195. (Contributed by NM, 10-Jan-2015.)
𝑆 = (LSubSp‘𝑊)    &    = (LSSum‘𝑊)    &   𝐶 = ( ⋖L𝑊)    &   (𝜑𝑊 ∈ LMod)    &   (𝜑𝑇𝑆)    &   (𝜑𝑈𝑆)    &   (𝜑𝑇𝐶(𝑇 𝑈))       (𝜑 → (𝑇𝑈)𝐶𝑈)
 
Theoremlcvexchlem5 35194 Lemma for lcvexch 35195. (Contributed by NM, 10-Jan-2015.)
𝑆 = (LSubSp‘𝑊)    &    = (LSSum‘𝑊)    &   𝐶 = ( ⋖L𝑊)    &   (𝜑𝑊 ∈ LMod)    &   (𝜑𝑇𝑆)    &   (𝜑𝑈𝑆)    &   (𝜑 → (𝑇𝑈)𝐶𝑈)       (𝜑𝑇𝐶(𝑇 𝑈))
 
Theoremlcvexch 35195 Subspaces satisfy the exchange axiom. Lemma 7.5 of [MaedaMaeda] p. 31. (cvexchi 29800 analog.) TODO: combine some lemmas. (Contributed by NM, 10-Jan-2015.)
𝑆 = (LSubSp‘𝑊)    &    = (LSSum‘𝑊)    &   𝐶 = ( ⋖L𝑊)    &   (𝜑𝑊 ∈ LMod)    &   (𝜑𝑇𝑆)    &   (𝜑𝑈𝑆)       (𝜑 → ((𝑇𝑈)𝐶𝑈𝑇𝐶(𝑇 𝑈)))
 
Theoremlcvp 35196 Covering property of Definition 7.4 of [MaedaMaeda] p. 31 and its converse. (cvp 29806 analog.) (Contributed by NM, 10-Jan-2015.)
𝑆 = (LSubSp‘𝑊)    &    = (LSSum‘𝑊)    &    0 = (0g𝑊)    &   𝐴 = (LSAtoms‘𝑊)    &   𝐶 = ( ⋖L𝑊)    &   (𝜑𝑊 ∈ LVec)    &   (𝜑𝑈𝑆)    &   (𝜑𝑄𝐴)       (𝜑 → ((𝑈𝑄) = { 0 } ↔ 𝑈𝐶(𝑈 𝑄)))
 
Theoremlcv1 35197 Covering property of a subspace plus an atom. (chcv1 29786 analog.) (Contributed by NM, 10-Jan-2015.)
𝑆 = (LSubSp‘𝑊)    &    = (LSSum‘𝑊)    &   𝐴 = (LSAtoms‘𝑊)    &   𝐶 = ( ⋖L𝑊)    &   (𝜑𝑊 ∈ LVec)    &   (𝜑𝑈𝑆)    &   (𝜑𝑄𝐴)       (𝜑 → (¬ 𝑄𝑈𝑈𝐶(𝑈 𝑄)))
 
Theoremlcv2 35198 Covering property of a subspace plus an atom. (chcv2 29787 analog.) (Contributed by NM, 10-Jan-2015.)
𝑆 = (LSubSp‘𝑊)    &    = (LSSum‘𝑊)    &   𝐴 = (LSAtoms‘𝑊)    &   𝐶 = ( ⋖L𝑊)    &   (𝜑𝑊 ∈ LVec)    &   (𝜑𝑈𝑆)    &   (𝜑𝑄𝐴)       (𝜑 → (𝑈 ⊊ (𝑈 𝑄) ↔ 𝑈𝐶(𝑈 𝑄)))
 
Theoremlsatexch 35199 The atom exchange property. Proposition 1(i) of [Kalmbach] p. 140. A version of this theorem was originally proved by Hermann Grassmann in 1862. (atexch 29812 analog.) (Contributed by NM, 10-Jan-2015.)
𝑆 = (LSubSp‘𝑊)    &    = (LSSum‘𝑊)    &    0 = (0g𝑊)    &   𝐴 = (LSAtoms‘𝑊)    &   (𝜑𝑊 ∈ LVec)    &   (𝜑𝑈𝑆)    &   (𝜑𝑄𝐴)    &   (𝜑𝑅𝐴)    &   (𝜑𝑄 ⊆ (𝑈 𝑅))    &   (𝜑 → (𝑈𝑄) = { 0 })       (𝜑𝑅 ⊆ (𝑈 𝑄))
 
Theoremlsatnle 35200 The meet of a subspace and an incomparable atom is the zero subspace. (atnssm0 29807 analog.) (Contributed by NM, 10-Jan-2015.)
0 = (0g𝑊)    &   𝑆 = (LSubSp‘𝑊)    &   𝐴 = (LSAtoms‘𝑊)    &   (𝜑𝑊 ∈ LVec)    &   (𝜑𝑈𝑆)    &   (𝜑𝑄𝐴)       (𝜑 → (¬ 𝑄𝑈 ↔ (𝑈𝑄) = { 0 }))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43661
  Copyright terms: Public domain < Previous  Next >